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Abstract

The test of Prentice [1] is a non-parametric statistical test for the two-way
analysis of variance using ranks. The null distribution of this test typically is
approximated using the Chi-square distribution. However, the exact null dis-
tribution deviates from the Chi-square approximation in certain cases com-
monly found in applications of the test, motivating adjustments to the distri-
bution. This manuscript presents adjustments to this null distribution cor-
recting for continuity, multivariate skewness, and multivariate kurtosis. The
effects of alternative scoring methods as non-polynomial functions of rank
sums are also presented as a broader application of the approximation.
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1. Introduction

The Prentice test [1] is the nonparametric analog of a two-way ANOVA, widely
used in survival analysis, agricultural studies, and more generally, in biostatistics.
The test is particularly useful for analyzing data that do not necessarily follow a
normal distribution since ranking the data removes dependence on the original
distribution. This method can be applied to blocked data of several treatments
with variable and potentially unbalanced replicates corresponding to each block
and treatment combination. Several special cases exist, including the Kruskal-Wallis
Test, the nonparametric analog of a one-way ANOVA with one block and varia-
ble replicates [2], and the Friedman test, the case of the Prentice test with one
replicate per group-block combination [3]. The special cases of the Prentice test,

as well as its nonparametric nature and adjustments for unbalanced replicates,
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render the test flexible and applicable to analyzing a wide range of data. These
features of the Prentice test are particularly significant considering that few if
any real-world datasets requiring statistical analysis are normally distributed and
balanced due to participant dropout and noisy data commonplace in many prac-
tical applications.

Despite being an important statistical test, computing the exact Prentice test
statistic distribution for practical applications is highly computationally expen-
sive. Tables with Prentice test statistic values for small examples exist, but in
most practical applications, the Prentice test statistic is applied to larger exam-
ples. Furthermore, the use of tables has the potential to lead to inaccurate con-
clusions, as values achieved in applications rarely match the specific test statistic
values included in tables, in which interpolation or rounding can result in erro-
neous conclusions especially considering the discontinuous nature of the Pren-
tice distribution.

Several approximations via less computationally expensive test distributions
have been developed, namely the Chi-square distribution and the Iman-Davenport
approximation, but they fail to fully capture the behavior of the Prentice test
distribution, especially near the tail of the distributions. Since most practical ap-
plications require test statistic values from the tail of the distribution, inaccurate
approximations can lead to false conclusions which may result in devastating
consequences.

The null distribution of the Prentice test and its special cases are commonly
approximated by the Chi-square distribution. Other multinomial test statistics,
most notably the generalized likelihood ratio statistic, are not considered in this
manuscript [4].

Bounds on the Chi-square approximation to the Friedman test were produced
for both central and non-central distributions and under the null and alternative
hypotheses. The general bounds are of order 0<N a 2) and in the central case,
bounds are improved to order O(N ey k) for the Chi-square distribution with
k — 1 degrees of freedom [5]. More recent bounds on the Chi-square approxima-
tion to the Prentice test statistic have been produced using Stein's method, orig-
inally utilized for approximating the distance between the normal distribution
and a probability distribution of choice, but which have also been applied to
bounding approximations to the }(2 distribution [6]. For & treatments and b
blocks, the distance between the Prentice test statistic distribution and the
Chi-square distribution with & — 1 degrees of freedom is bounded by order 5™
[7]. Furthermore, the bound is dependent on k& approaching zero only if &/b also
approaches zero [7].

Limitations to the approximation by the Chi-square distribution result from
the continuity of the distribution and the assumption that the parameters in the
multinomial distribution studied are independent and identically distributed [4].
The dependence of the Chi-square approximation on the number of blocks and

treatments as well as the limitations of its i.i.d. assumption will be presented via
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example in the sections to follow.

To date, several improvements have been made to the approximation of the
Friedman and Kruskal Wallis test statistics. Of note is the F Statistic approxima-
tion, one of several approximations made by Iman and Davenport and referred
to as the Iman-Davenport approximation throughout [8] [9]. While the Chi-square
approximation frequently underestimates the critical region of the Friedman test
statistic, the Iman-Davenport approximation frequently overestimates the criti-
cal region making it a useful comparison [8].

Here, we apply the adjustments to the Chi-square distribution presented by
Yarnold to the Kruskal-Wallis, Friedman, and Prentice tests. The approximation
applied results from the integration of an Edgeworth asymptotic expansion for
PV(T eB ) where Bis a Borel set and 7 the groupwise sums of & independent
random vectors. When B is the ellipse corresponding to the critical region for
the Prentice test, and the Edgeworth approximation is integrated, the resulting
approximation consists of the adjustments to the Chi-square distribution func-
tion for continuity and kurtosis, respectively [10] [11]. When applied to the
Kruskal-Wallis, Friedman, and Prentice test statistics, the adjustments intro-
duced by Yarnold provide significant corrections to the Chi-square distribution
function approximation for each test statistic distribution.

Notably, the corrections that the Yarnold approximation yields for continuity
and multivariate kurtosis provide a more accurate representation of the tail proba-
bilities of the Prentice test distribution than previous approximations. The adjust-
ment for continuity provides a more accurate representation of the discontinuous
behavior of the Prentice distributions than previous approximations, where i.i.d.
assumptions result in continuous approximations. Furthermore, the adjustment
for kurtosis in the Yarnold approximation more accurately reflects the distribu-
tion of probability in the tail versus the center of the Prentice distribution, re-
sulting in better approximations to the tail of the distribution, which is especially
useful for practical applications of the test. These improvements are also applicable
to all subcases of the Prentice test, which enables more accurate data interpreta-

tion in the diverse research context of the Prentice test commonly used.

2. Methods

Let 7'be a random variable defined as a function of rank sums with a distribu-
tion of k degrees of freedom. Let «,, &;,and k, denote the second, third, and
fourth multivariate cumulants respectively. The cumulants are calculated from
the computed central moments of the test statistics, and depend on the number
of groups, replicates, and blocks in the design using the algebraic relationship

between central moments and cumulants [12].

2.1. The Yarnold Approximation

The approximation by Yarnold is applied to improve approximations for the

Kruskal-Wallis, Friedman, and Prentice tests. The second and third partial sums
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of the Yarnold approximation were considered separately as approximation A
and approximation B. Approximation A corrects for continuity and approxima-

tion B corrects for both continuity and kurtosis. Here, approximation A is valid

1
to O(—j and it is conjectured, but not proven, that approximation B is valid
n

1
to 0[—) [10]. Approximations A and B are presented in Equations (1) and (2),
n

respectively [10].

—c/2
Pr(T<c)z;(;'+(N(nc)—V(nc))(2mskw (1)
—c/2
. e
Pr(T <c)= zi +(N(nc)- V(nc))W o

{%{g(_l)“ @ Z;+2,]+%[g(—1)3' @zkzﬂ

While the original approximation applied techniques to means of independent
replicates, we apply the approximation to summaries with standardized cumu-
lants that have the same structure [10]. Hence, we take n = 1. Here,

| & k. k&

5 =3 XY N () () g

i=liy=1iy=1iy=1
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In the equation above, N (nc) refers to the number of points on the lattice
in the probability ellipse and V(nc) refers to the volume of the probability el-
lipse [10]. For the test statistic 7, the probability ellipse is

T=(Y-u) =" (Y-u)
with Y the group rank sums of the test statistic, excluding one group, u the ex-
pectation of ¥, and X the null variance-covariance matrix of Y. See Figure 1 for
an example.

This approximation was applied to the Prentice test and compared to that of
the Chi-square distribution with k& degrees of freedom and the Monte Carlo
evaluation of the true distribution of the Prentice test statistic under the assump-
tion of treatment homogeneity. Here, both balanced and unbalanced cases with
variable group and block counts were considered. Approximations to the
Kruskal-Wallis and Friedman test statistics occur as special cases of the Prentice
test approximation. The approximation to the Kruskal-Wallis test statistic oc-
curs in cases when one block is considered and the approximation to the Fried-
man test statistic when one replicate per group-block combination is considered.
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Figure 1. The ellipse for the Friedman test statistic in a case with three groups and four
blocks with one replicate in each combination. The number of lattice points falling inside

of the ellipse are summed in N (nc) and the volume of the ellipse is expressed as V' (nc) .

In the case of the Friedman and Kruskal-Wallis test statistics, another compari-
son is made with the Iman-Davenport approximation [8] [9].

To apply the Yarnold approximation with the homogeneity assumption to
each test statistic, the average rank sums were computed for each specified
number of groups, blocks, and replicates.

The Friedman, Prentice, and Kruskal-Wallis tests are generalizations of the
Wilcoxon rank sum test. The Wilcoxon test is a member of larger family of gen-
eral score statistics, formed by replacing the ranks by a monotonic transforma-
tion of ranks. Members of this family with scores other than the raw ranks can
be chosen based on the expected distribution of errors. The particular choice of
ranks as scores is optimal for Laplace errors [13].

Alternative scoring measures were also applied here, where the scores as-
signed to each item were non-polynomial functions of the ranks, namely loga-
rithmic functions. The new scores were then summed by group, and the asso-
ciated quadratic form was used as the test statistic. The application of the Yar-
nold approximation was otherwise unchanged.

The central moments and cumulants are calculated from the number of repli-
cates in each block by treatment category, and are thus dependent on the case
considered. Along with the degrees of freedom as & — 1, the second, third, and
fourth cumulants and second central moment of each case enabled the Yarnold

approximation to be tailored to each test.
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2.2. Central Moments of Generalized Rank Statistics

Suppose that Y, is the rank sum for observations in group ; and block
ke{l, - ,K}. Let Y, be the sum of ranks in group 7 over all blocks;

Y, = Zlil Y, .Let Zbe the JxJ matrix of variances and covariances for these
rank sums; ¥, = Cov[Yj',Y(,A]. Let A represent the inverse of £ with row and
column /removed. Then the Prentice statistic is

I AR {RA LY UAR A}

Let I be an indicator of whether the subject ranked 7 falls into group a.
Consider the test statistic for group a, X* = z; r1}, for scores r;. The stan-
dard Wilcoxon rank sum statistic is given by 7, =i. Its centered version is given
by 7, =i—(n+1)/ 2. Let Z* represent summation over all sets of subscripts
on ranks, omitting any with repeated values; then, for example, for any integers
pand g z*ijr,.prjf’ - Z?ﬂzj‘#npr; ‘

Second powers of the test statistic are given by X‘X” ZZLI rl ,-az';:lrj[?.
Separating into sums without repeated indices,

XX = Z rlf [r,.l;’ + Z rjlfj = Z R+ Z rr I
i=1 i

The expectation of the sum is the sum of expectations, and so

B[ X" )= e[ ]+ Lonel 1))

Let ¢ with ordered subscripts and superscripts represent the expectation of the

product of indicators; that is, for example, ,u;b =E [1 ["If’] . Then
E[ X X" | =X i + X

Because under the hypothesis of homogeneity, y;b does not depend on the
values of 7and j so long as one keeps track of which of these are distinct, then
E[ XX =S u) + 34 , for

St=>r%S; =Zr[r/..

When 7, =i,

, n(n+1)(2n+1) n(n+1)(3n2—n—2)
R R TR

When 7, =i—(n-|—1)/2 then

g? _n(n2—1)' g? _n(l—nz)

o2 2 12

Table 1 contains expectations of these indicators, depending on which group
indicators are equal. A pattern with adjacent indicators indicates equality, and
with bars between them inequality. The first row in this table represents the case
in which a =5, and the second represents the case in which a=5.

Third powers of the test statistic are given by
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Table 1. Expectations of products of two indicators.

Pattern e ey
n n, (na - 1)
ab —-
n n(n —1)
alb 0 Pl

XXX = Z rlf Z rjljb.zn:rklk".
i=1 k=1

J=1

Separating into sums without repeated indices,
XX X=Y P+ Y PRI+ Y i 1Y
+ D IS+ Y LI
Then E[ XXX [= SOy + Sty + STty + 3ty + Sy for

* * *
3 _ 3. o3 _ 2, @3 _
MDA EDWIARED RIS

When 7 =i,
S3=n2(n+l)2‘ S3=n2(n+1)(n2—1).
1 2 5 D) 6 >
Y(n+1)(n’ -2n* —n+2
Sf:n (n )(n : n’—n )

When 7, =i—(n+1)/2 then S =0 for m=1,2,3.

Table 2 contains expectations of these indicators, depending on which group
indicators are equal. A pattern with adjacent indicators indicates equality, and
with bars between them inequality; note a|bc represents a=b=c. The [3] in
the heading to the column with E[Il"lf’ I ] represents the fact that a, b, and ¢
can be matched with subjects 1 and 2 in three distinct ways; the column entries
represent the sum of the three rearrangements. The first entry in this column has
the multiplier 3, because all arrangements lead to the identical expectation when
all groups are the same. The second entry lacks this multiplier, since it represents
the case with two distinct groups; only the arrangement placing both with sub-
ject 1 into the same group represents a positive probability. The third entry is
zero, since that entry represents the case with three distinct groups, and this
cannot happen if subject 1 is assigned both to groups a and b.

Fourth powers of the test statistic are given by

XxX'xex!= Z ifili"zn:rjlfzn:rkl,ﬁzn: r I,
i=1 =1 m=1

=1 k

Separating into sums without repeated indices,
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Table 2. Expectations of products of three indicators.

Pattern ﬂf']bf ldlbzv [3] ﬂgf
n 3n, (n,Z —l) n, (na —1)(na —2)
abc —- - YRS

n n(n—l) n(n—l)(n—Z)

albe o n,n, n,n, (n, —1)
n(n—l) n(n—l)(n—Z)
nanbnr
alble 0 0

n(n—l)(n—Z)

XX XX = I+ Y I LT+ P I T
+ Y I + Z R LT+ rkr I

+ T + Y e I T + Y i ST

itm JrJti

N +Zr rr T+ Y R I T

JJjTm

+ e T +er RILL Y rrnr, LTI

m=i k% m

Taking expectations,
* * * *
aybyevyd | _ 4 abcd 3 abcd 3 abed abed
E|:X XXX ]—Zri Hin +zrf”_,‘ﬂ1112 +Z”i”/ﬂ1121 +Zr T Hh
* * *
2 abcd 3 abcd abcd 2 abcd
+Z”i Tih Moz +ZK- 120t +Z’" Ty Hyony +Z’"i UV
* * *
2.2 abcd 3 abcd 2 abcd 2 abcd
+Zr 7 Hipoy +Z’}rj:u1222 +er 7l Mhoos +ZV[ 731 Fias
* *
2 abcd 2 abcd abed
+Z’"irj YIS +Zrir/’”k Hi233 +Z”i’”jrk’"mﬂ1234~

For the centered scores 7, = n -I—l / 2

1

* n(3n —10n2+7)

S14 :zrf =

240
« 255 3_
S el
s n(5n* =9n* =101’ + 300" +5n-21)
i 720
o, n(=52" +18n* +10n° — 600" — 5n + 42)
== 720
. < n(5n° ~18n" =107 +60n” + 5n—42)
S5 = 2t = 240 '
Then
B[ XXX X! ] =S} il + 8, gt [4]+ Sty [3]+ i patsd [6]+ 82 pasd

Table 3 contains expectations of these indicators, depending on which group
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Table 3. Expectations of products of four indicators.

Pattern 75 piy (4] Him 3] w6l 750
n, 4n, (na—l) 3n, (na—l) 6n, (na —l)(nﬂ —2) n, (na—l)(na —2)(11“—3)
abed W n(n-1) n(n-1) n(n-1)(n-2) n(n—1)(n—2)(n-3)
bed 0 n,n, 0 3n,n, (n,, —1) n,n, (n,7 —1)(nh —2)
albe n(n-1) n(n-1)(n-2) n(n-1)(n-2)(n-3)
bled o 0 n,n, nn, (n, +n, —2) n,(n,—1)n, (n, —1)
able n(n-1) n(n—1)(n—2) n(n—1)(n—2)(n—3)
bled 0 0 0 n.nn, n,mn, (nc —1)
alble n(n-1)(n-2) n(n-1)(n-2)(n-3)
alblc|d 0 0 0 0 nn,n.n,

n(n—l)(n—2)(n—3)

indicators are equal. A pattern with adjacent indicators indicates equality, and
with bars between them inequality; note a|b|cd represents a=b=c=d and

azxc.

3. Results

This section presents an illustrative example to demonstrate the improvements
of our approximation on previous approximations and several cases to demon-

strate the general applicability of our approximation.

3.1. llustrative Example

Consider the effectiveness of advertising for a marketing firm via direct mail,
newspaper, and magazine for twelve companies over the course of a year. In this
example, each of the clients receives each advertising method over the course of
a year and the Friedman test is run to discern the effects of the median response
rate for each advertising method [14].

In this smaller example, the greater applicability of our approximation is bet-
ter demonstrated. In these results in Table 4, our approximation results yields a
conservative estimate of the critical value of the Prentice Test statistic, which we
approximated via Monte Carlo simulation. However, the Chi-Square and Im-
an-Davenport approximations yield liberal estimates that are much further off

from the accepted critical value.

3.2. General Cases

To demonstrate the applicability of our approximation, several cases are pre-
sented varying numbers of blocks and groups. In each case presented, plots
comparing the distribution of the test statistic in comparison to other approxi-
mations and the error of the approximations relative to the Prentice test statistic
will be presented from the 50th to the 99th quantile of the distribution of the
Chi-square test statistic with & — 1 degrees of freedom.
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Table 4. Approximation results of the marketing firm example.

Approximation Critical Value
Prentice Test (Monte Carlo) 0.94196
Chi-Square 0.95
Iman-Davenport 0.957544
Yarnold A 0.9391942
Yarnold B 0.9386689

The mean (Mean RE) and standard deviation (SD RE) of the error of each ap-
proximation relative to the Prentice test will also be presented with each example
for comparison purposes.

Note that the scale for the relative error plot changes depending on the range
of relative error observed in each case. Figure 2 displays a case with relatively
low counts of groups, blocks, and replicates for comparison purposes.

Even in this small example, the Yarnold A (Mean RE 0.258, SD RE 0.2973824)
and Yarnold B (Mean RE 0.239, SD RE 0.2577215) approximations yield a gen-
eral improvement over the Chi-Square (Mean RE 0.312, SD RE 0.312 and Im-
an-Davenport (Mean RE 0.321, SD 0.255) approximations.

As will be displayed by the mean and standard deviation of the relative error
of each approximation, generally, both approximations A and B improve as the
counts of groups, blocks, and replicates increase, but becomes less differentiated
from the Chi-square distribution. The approximation improves most markedly
as the number of blocks increase.

Decreasing the number of blocks to 1, as shown in Figure 3, greatly reduces
the accuracy of all approximations other than the Iman-Davenport approxima-
tion

(Mean RE 0.191, SD RE 0.174) specific to the Kruskal Wallis test [9]. Ap-
proximations A

(Mean RE 1.448, SD RE 2.811) and B

(Mean RE 1.461, SD RE 2.819) only have marginally lower relative error than
the Chi-square distribution

(Mean RE 1.472, SD RE 2.825) However, the difference in relative error im-
proves with larger sample sizes, as shown in Figure 4, where the replicates are
increased from 3 to 10 in each group-block combination. In this case, all ap-
proximations are highly accurate with a small disparity between the Iman Da-
venport (Mean RE 0.048, SD RE 0.049) and Yarnold B (Mean RE 0.1088358, SD
RE 0.108) approximations and the Chi-Square (Mean RE 0.115, SD RE 0.128)
and Yarnold A approximations (Mean RE 0.115, SD RE 0.128).

Figure 5 displays the improvement of the approximation at high numbers of
blocks, holding the replicate and group counts at relatively low values.

In this case, approximations A (Mean RE 0.0232, SD RE 0.02109596) and B
(Mean RE 0.0202, SD RE 0.016) display marked improvements to Chi-Square
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Figure 2. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with three groups, six blocks, and one replicate per group.
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Figure 3. The figure displays the distribution of the Kruskal Wallis test statistic (left) and the relative error with respect to the
distribution of the Kruskal Wallis test statistic (right) for the case with three groups, one block, and three replicates per group.

(Mean RE 0.051, SD RE 0.044) and Iman Davenport (Mean RE 0.058, SD RE
0.045) approximations.

Increasing the number of replicates improves the performance of approxima-
tions A (Mean RE 0.060, SD RE 0.068) and B (Mean RE 0.057, SD RE 0.057) over
the Chi-Square (Mean RE 0.064, SD RE 0.069) approximation.

See an example with three replicates in Figure 6.

The most significant limitation of approximations A and B occurs in the case
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Figure 4. The figure displays the distribution of the Kruskal Wallis test statistic (left) and the relative error with respect to the
distribution of the Kruskal Wallis test statistic (right) for the case with three groups, one block, and ten replicates per group.
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Figure 5. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with three groups, thirty blocks, and one replicate per group.

with higher group counts. In these cases, the distribution of the Prentice test sta-
tistic exhibits more frequent but smaller discontinuities, and appears more con-
tinuous when plotted. Hence, the correction for continuity in the Yarnold A
(Mean RE 0.373, SD RE 0.4223) has a far lesser effect than the cases consi-
dered previously. The adjustment for kurtosis in the Yarnold B
(Mean RE 0.3303, SD RE 0.3473) approximation yields a better approximation
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Figure 6. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-

tion of the Friedman test statistic (right) for the case with three groups, six blocks, and three replicates per group.

than the chi-square

(Mean RE 0.373, SD RE 0.422) and Yarnold A approximations in terms of rel-
ative error. However, the more significant correction for continuity in the Im-
an-Davenport approximation

(Mean RE 0.110, SD RE 0.108) yields a much better approximation in terms of
relative error than the other approximations. See Figure 7 for an example.

Lastly, we present the effects of an alternative logarithmic scoring system. This
results in more frequent discontinuities than in the previous cases considered
due to the non-discrete nature of the scores, rendering the correction for conti-
nuity minimally effective. Hence, only the first and third terms from approxima-
tion B (Mean RE 0.371, SD RE 0.500) were utilized as a comparison to the
Chi-Square approximation (Mean RE 0.396, SD RE 0.561).

See Figure 8 for an example.

4. Discussion

Generally, approximation A is at least as good as the Chi-square distribution and
approximation B is better than approximation A. This pattern indicates that the
correction for kurtosis in approximation B has a greater effect than the correc-
tion for continuity in approximations A and B. Even though this pattern holds
overall, there are some exceptions where the performance of the Chi-square dis-
tribution exceeds that of approximations A and B and when the performance of
approximation A exceeds that of approximation B. However, it should be noted
that approximation B is most often the best approximation for the tail probabil-

ity of each distribution.
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Figure 7. The figure displays the distribution of the Friedman test statistic (left) and the relative error with respect to the distribu-
tion of the Friedman test statistic (right) for the case with six groups, six blocks, and one replicate per group.
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Figure 8. The figure displays the distribution of the Friedman test statistic with logarithmic scoring (left) and the relative error
with respect to the distribution of the Friedman test statistic with logarithmic scoring (right) for the case with three groups, six

blocks, and one replicate per group.

In cases with one replicate per group, both approximations A and B frequently
outperform the Iman-Davenport approximation [8] [9]. However, this does not
hold true in all cases and the Iman-Davenport approximation frequently outper-
forms approximations A and B in cases with high group counts or low block counts.

In Figure 3 which demonstrates the effect of low block counts, some lines are
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terminated early to account for the early termination of the Kruskal-Wallis ap-
proximation relative to the Chi-square, A, and B approximations. Each terminated
line is ended with a bullet point for clarity. In this case, in particular, it is recom-
mended that the Iman-Davenport statistic approximation is used over other ap-
proximations, since the high relative error of the Chi-square, A, and B approxima-
tions renders them inaccurate approximations to the Kruskal-Wallis test statistic.

With increasing group counts, the relative accuracy of approximations A and
B remains unchanged. This is demonstrated by the consistently low relative ac-
curacy of the approximations with low group counts in Figure 2 and higher
group counts in Figure 7.

However, the relative accuracy of approximations A and B increases with a
high number of blocks, as demonstrated by the example in Figure 5. These ef-
fects result from the dependence on the block counts in the standard deviation

o of the Friedman test statistic [3]:

p’-1
126

In the formula above, p refers to the number of ranks in the design and b the
number of blocks in the design. As shown, the standard deviation of the Fried-
man test statistic is inversely related to the number of blocks, and as the number
of blocks increases, the standard deviation decreases. Therefore, the impact of
the correction for continuity in the second term of our approximation decreases,
reducing the relative accuracy of both approximations A and B.

The effect of high numbers of replicates is somewhat more significant than
that for high numbers of blocks, as demonstrated by the relative error decrease
for a modest increase in replicates in 6. With high numbers of replicates, the rel-
ative error quantity for all approximations is so small as to deem all approxima-
tions equal. Therefore, for computational simplicity, it is recommended that the
chi-square approximation is used in these cases since the calculation of Muzc)
quickly becomes less efficient as the number of replicates increases in approxi-
mations A and B.

Lastly, the use of alternative non-polynomial scoring systems results in sums
of scores by treatment that is not supported on a lattice. Hence, the typically dis-
crete distribution is closer to a continuous distribution and the correction for
continuity in Yarnold A is not necessary. However, the correction for kurtosis in
Yarnold B presents an improvement to the chi-square approximation, as dem-
onstrated by the lower relative error in Figure 8. Also, the de/ta, term is non-zero
in this case, reflecting the skewness of the underlying score sum distribution due
to the dependence of delta, on the third multivariate cumulant. Comparisons to
the Iman-Davenport approximation are not included as the alternative scoring

system cannot be applied.

5. Conclusions

We presented an approximation to the Prentice test statistic with corrections for
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continuity and kurtosis in approximations A and B [10].

The approximation presents an improvement on the previous Chi-square and
Iman-Davenport approximations to the Prentice test statistic. The Yarnold ap-
proximation is particularly effective for large block counts with limitations when
applied to scenarios with large group counts.

The approximation also presents an improvement in the Chi-square distribu-

tion with the use of alternative non-polynomial scoring systems.
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