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Abstract: We investigate the nonlinear vibration behavior of a shape-morphing cantilever plate
excited by base acceleration and shape-morphing deformation, imposed by a periodic moment on
the sides of the plate. The interplay of shape-morphing and base excitation causes the system
to demonstrate distinctive and tunable nonlinear behavior. We present frequency responses
based on a finite element parametric study of the actuation parameters, and propose a minimal
modeling of the system based on the Duffing oscillator. This modeling is related to the physical
actuation for analysis of nonlinear curvature-based tunable systems and could be used in future

design scenarios.
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1. INTRODUCTION

The study of nonlinear vibrations and dynamics of can-
tilever beams and plates has played a key role in scien-
tific and technical advancements for applications including
atomic force microscopy (AFM), (micro)electromechanical
systems for sensing, actuation, and energy harvesting, and
biomimetic underwater propulsion (Leadenham and Er-
turk, 2014; Bajaj et al., 2016; Jackson and Gutschmidt,
2018; Yabuno, 2021). A fundamental source of nonlin-
earity lies in the effect of large displacements in certain
vibration scenarios. Of particular interest are geometric
nonlinearities, which arise when large deformations induce
a nonlinear relationship between strain and curvature,
thereby altering the structure’s effective stiffness. In these
cases, it is well known that the nonlinear effects become
prominent and result in complex dynamic behavior in the
system (Volmir, 1974; Soedel, 1993).

Despite this being an active research topic with still
somewhat incomplete understanding (McHugh, 2020), the
fundamental idea can be connected back to Theorema
Egregium by Gauss, see Gauss (1902). Therein, it is stated
that the Gaussian curvature of a surface, defined as the
product of the two principal curvatures of the surface,
remains invariant under local isometry. Based on this
concept, several works have discussed curvature-induced
stiffening of plates. For example, Shihab et al. (2021) have
introduced an innovative approach to tuning the stiffness
and natural frequencies of microplate sensors through an
applied constant transverse curvature. The study demon-
strated that transverse curvature effectively alters the
static stiffness and natural frequencies of a microplate sen-
sor. In dynamic conditions, curvature-based stiffening ap-
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pears in fluid-structure interaction (FSI) scenarios as the
so-called “shape-morphing” strategy introduced in Ahsan
and Aureli (2017, 2018), where a time-varying curvature is
applied in the chord direction of the plate. These studies
suggest that shape-morphing can improve the maneuver-
ability and efficiency of underwater vehicles by allowing
for modulated force reduction through shape-morphing or
increased thrust generation. While these works provide
valuable insights into FSI applications of shape-morphing
plates, the implications on the structural dynamics of the
control architecture were not addressed therein. Thus, a
knowledge gap still remains in understanding the detailed
structural dynamics at play, especially with the addition
of geometric nonlinearity via shape-morphing and its in-
terplay with the transverse vibrations.

Motivated by these studies, as well as by preliminary ex-
perimental results on vibrations of shape-morphing plates
actuated by smart materials and/or tendons, we seek to
understand the structure-control interactions of shape-
morphing plates vibrating in-vacuo. Therefore, in this pa-
per, we investigate the concept of dynamic tunability of
cantilever plate systems, specifically focusing on the non-
linear effects promoted by dynamically applied transverse
curvature in the presence of large amplitude vibrations.
Our prototype problem consists of a cantilever plate un-
dergoing shape-morphing produced by distributed bending
moments along the free edges of the plate. The moments
are time-varying, and their magnitude is prescribed to be
proportional to the deflection of the midline of the plate.
This particular scenario can be effectively interpreted as a
nonlocal boundary condition for the plate system.

We first perform a comprehensive parametric finite ele-
ment analysis (FEA) of shape-morphing plates under base
excitation to investigate their frequency response functions
(FRFs) under different forcing and shape-morphing inten-
sity. We elucidate the interplay of actuation parameters



and reveal landmarks of nonlinearity in our system, in-
cluding frequency shifts, hardening and softening effects,
amplitude jumps and hysteresis phenomena. By distilling
the essential drivers of the observed nonlinear behavior, we
then hypothesize that a forced Duffing oscillator (Nayfeh
and Mook, 1979) can serve as an efficient minimal model
for the dynamics of the system. To verify this hypothesis,
we construct a parameter estimator based on the computa-
tional results that produces suitable governing parameters
for an equivalent Duffing oscillator which replicates the
complex nonlinear dynamics of the shape-morphing plate
vibrating in-vacuo. This model hinges on the powerful
theoretical results for the Duffing oscillator to provide a
convenient framework for analysis of the physical system,
bypassing the need of costly computational studies or
rigorous theoretical treatment, which become prohibitive
in real-time control applications.

The rest of this paper is organized as follows. In Section 2,
we introduce the modeling approach for our prototype
problem and describe the details of the FEA study. We
demonstrate the distinctive nonlinearity of the system
through a representative FRF and the effect of the physical
parameters of the problem. In Section 3, we introduce the
equivalent Duffing oscillator, propose a parameter estima-
tion framework, and discuss the advantages of the minimal
model for the purpose of analysis. Finally, conclusions are
reported in Section 4.

2. COMPUTATIONAL MODELING
2.1 Problem statement

We consider a thin cantilever plate undergoing base ex-
citation in vacuo, see Fig. 1(a). The plate is positioned
within a Cartesian reference frame where the axis, width,
and thickness of the plate lie along the z, y, and z-axes
of the reference frame, respectively. The time variable is
indicated by t. The origin of the reference frame is chosen
to coincide with the centroid of the fixed end. The length,
width, and thickness of the plate are denoted as L, b, and
h, respectively. The material of the plate is linear elastic,
homogeneous, and isotropic. The plate deflection field is
indicated with @(x,y,t).

To study the properties of structure-control interactions,
we consider the effect of shape-morphing actuation pro-
vided to the plate by externally applied edge moments
that arise in response to the plate gross deflection. The
edge moments, distributed along the x-direction, are thus
defined as M(x,t) = Rp,i(z,0,t), see Fig. 1(a). Here,
M (z,t) represents a bending moment per unit length and
has units of Nm/m, w(z, 0, t) is the deflection of the points
along the mid-line of the plate, with units of m, and &, is
a moment coefficient which determines the proportionality
of the applied moment with respect to the deflection of the
points, along the mid-line of the plate and it has units of
N/m. We define the coefficient &, to be greater than 0 if
it produces a negative Gaussian curvature on the surface
during shape-morphing actuation, as shown in Fig. 1(c).
Vice versa, k,, = 0 in Fig. 1(b) corresponds to no shape-
morphing actuation.

M(x, t) = x,, w(x, 0, 1)

(b) (c)

Fig. 1. In (a): Schematics and nomenclature of the prob-
lem. The plate is excited with a base acceleration and
edge moments proportional to the displacement of the
plate mid-line. In (b): Example of deflection under
base excitation with no shape-morphing (k. = 0).
In (c): Example of deflection under base excitation
with shape-morphing, with positive moment coeffi-
cient (K, > 0).

2.2 Finite element analysis considerations

In this work, we perform a comprehensive finite element
analysis study in COMSOL Multiphysics 6.0. Within the
software, we then model a representative system whose
geometric and material properties mimic closely those of
an experimental testbed we also constructed for fluid-
structure-control interaction studies. The plate has a
length L = 250 mm, width b = 152.4mm, and thickness
h = 0.1778 mm. The material (steel) properties include a
Young’s modulus E = 200 GPa, density p = 7850 kg/m?,
and Poisson’s ratio v = 0.3.

The motion of the plate is prescribed by the superposition
of two different actuation protocols, namely a harmonic
base excitation along the z-axis and the chord-wise shape-
morphing about the x-axis. The base excitation is provided
with the Gravity function in the software, by defining a
harmonic dimensional acceleration @ = Asin(wt) to the

system. Here, A is the dimensional amplitude of the base
acceleration and w is the excitation frequency. The shape-
morphing is provided through the linear extrusion function
provided by the software. In detail, during the oscillation
of the plate, the linear extrusion function measures the
deflection of the points along the mid-line of the plate, as
indicated in Fig. 1. Then, the function uses these deflection
values as a simultaneous input to the moment to be exerted
on the sides of the plate, to realize a nonlocal boundary
condition.

To identify universal relationships among the parameters,
we nondimensionalize all lengths and displacements with
the characteristic length L of the plate, and all time
scales with g, defined as the radian undamped natural
fundamental frequency of the plate, under linear elastic



Table 1. Mesh convergence study.

Minimum cell size (um) [ Total degree of freedoms [ Diff. (%) ]

50 40950 -

375 14430 1.37
1000 6150 1.90
2500 3366 2.51
4500 2550 2.51

conditions and in the absence of shape-morphing. For our
aspect ratio b/L =~ 0.61, and for our materials choice,
this frequency is determined from the FEA simulation
as Qo = (2m)2.3854rad/s. With these definitions, the
nondimensional plate deflection becomes w = w/L and
the nondimensional base excitation amplitude becomes
A = A/(Q2L). Furthermore, defining the plate bending
stiffness D = Eh3/12(1 — v?), see Leissa (1969), the
nondimensional nonlocal boundary condition becomes

M(z,t) = kmw(x,0,t) (1)
where k,, = R;,(L?/D) is the nondimensional moment
coeflicient.

Transient, geometrically nonlinear, simulations are run
on the system over several cycles of oscillations, long
enough to ensure a steady-state response of the plate.
To reconstruct a FRF of the primary resonances of the
system, the excitation frequency is varied over a band
comprising the first peak of the FRF, using a frequency
increment of 0.1/ to achieve a detailed representation of
the response across the frequency spectrum. The response
of the system is then extracted using spectral analysis (via
Fast Fourier Transform) on the time history of the plate
deflection sampled at x = L, y = 0.

We use the Shell module of COMSOL Multiphysics to
reduce the computational cost and complexity of the
simulations. The plate is modeled as a mathematical
surface and mapped meshing is used. A convergence study
is performed to assess the independence of results on the
mesh size. In Table 1, we present the sensitivity of our FEA
results to the mesh sizes for the most severe conditions
of this study, that is, on of the largest input acceleration
amplitudes A = 0.0089 and moment coefficients k,, =
5.46, at the peak frequency w/€y = 1.51. In the “Diff.”
column, we report deviations in percentage from the values
determined with the mesh with minimum cell size equal
to 50 pm. As all meshes are seen to provide results within
3%, the final mesh selected has a minimum cell size of
4500 pm.

Time stepping is automatically taken care by the soft-
ware package to satisfy error bound criteria. For further
postprocessing, we select a time resolution of 0.02s at
which the output deflection are made available to the user.
This choice makes available approximately 20 samples per
oscillation period.

Finally, to prevent undesired numerical issues at reso-
nance, Rayleigh damping is used. The Rayleigh’s coeffi-
cients are selected to provide approximately 10% damping
ratio in the band between 1 and 3 Hz.

2.3 Results and discussions

In this section, we investigate a representative FRF of the
shape-morphing plate at the nondimensional acceleration
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Fig. 2. FRF of the scaled plate tip deflection for various
moment coefficients k,,, for the acceleration amplitude
A = 1.78 x 1074, The dashed line indicates the first
eigenfrequency of the plate, w/Qy = 1.

amplitude A = 1.78 x 10~%. This amplitude is chosen
among many to demonstrate a complete nonlinear be-
havior of the system including frequency shifts, hardening
and softening effects, amplitude jumps and hysteresis phe-
nomena. Simulations for a single amplitude and moment
coefficient are performed by a parametric sweep of the ex-
citation frequency, from low to high values. To investigate
possible hysteresis phenomena, the sweep is performed also
in the reverse direction (Nayfeh and Mook, 1979).

To provide a more comprehensive understanding of the
system behavior, the FRF below is displayed in terms
of the nondimensional amplitude wy. Specifically, this
quantity is calculated from the amplitude of the steady
state response w(L,0,t) nondimensionalized as wy =
max; Q2[@(L,0,t)|/A = max, |w(L,0,t)/L|/A. The FRFs
are depicted in 3D plots, as a function of the nondimen-
sional excitation frequency w/ and the moment coeffi-
cient k,,, for each of the studied excitation amplitudes. In
addition, the color scale in the FRF represent high and low
values of the amplitudes. For further clarity, the peak val-
ues of the nondimensional amplitude and of the frequency
are projected on the amplitude-moment coefficient and
frequency—moment coefficient planes, so that the nonlinear
behavior of the system is better visualized.

Figure 2 displays the FRF of the plate excited at A =
1.78 x 10~ for various moment coefficients. At x,, = 0,
the plate is only excited with base acceleration without any
prescribed shape-morphing. The FRF shows a resonance
peak at w/Qy = 1 (by definition), with nondimensional
amplitude w4 = 7.38. An increase of k., to 1.82, results
in amplitude increase to wgq = 9.45 with simultaneous
decrease in the peak frequency to w/Qy = 0.88, demon-
strating a shape-morphing induced softening behavior for
the plate. This phenomenon can be explained by observing
that, in this case, vibration amplitudes are so small that
they cannot elicit a strong hardening response due to geo-
metric nonlinearities. The applied moments, on the other
hand, tend to increase the plate displacements, with over-
all softening effect. For k,, = 3.64, we observe the same
qualitative softening behavior, as the nondimensional am-



plitude increases to 11.42 and the peak frequency decreases
to 0.84. For k,, = 5.46, the behavior of the FRF changes
qualitatively, as a jump phenomenon can be observed from
a larger value wy = 12.59 to a smaller value wyq = 6.73,
at a critical frequency w/Qy = 0.84. The general configu-
ration of the FRF curve, for larger moment coefficients, is
therefore that of a hardening system. The behavior can be
explained by appealing to the nonlinear geometric effects
that become more prominent at relatively large amplitudes
and higher shape-morphing intensities. Interestingly, for
the largest k,, = 7.89 case, we observe the presence of
hysteresis (Nayfeh and Mook, 1979), demonstrated by the
multi-valued nature of the amplitude as a function of
the excitation frequency. Specifically, the two branches of
the FRF curve can be determined by separate frequency
sweeps for increasing and decreasing values. In this case,
the peak frequency occurs at w/Qy = 0.88 and w4 = 13.42
for increasing frequency sweep and at w/Qy = 0.84 and
wy = 12.94 for decreasing frequency sweep. For clarity,
the jump pertaining to the decreasing sweep is indicated
with a magenta line. Thus, Fig. 2 clearly diplays that the
surface w4 as a function of w/Q and k, is a cusp, see
also Nayfeh and Mook (1979).

To better track the jump phenomena, we also project the
amplitudes and frequencies in proximity of the jumps on
the coordinate planes, indicated with red markers and
lines. We observe that as k,, increases, the jump phe-
nomenon occurs at progressively increasing frequencies
and its amplitude becomes progressively larger. For the
largest moment coefficient k,, = 7.89, we have also indi-
cated with dark green markers the corresponding jumps
associated to decreasing frequency sweep.

The study above illustrates that a variety of interesting,
and sometimes contrasting, nonlinear dynamics effects can
be elicited by proper actuation of the plate and via the
structure-control interaction paradigm produced by shape-
morphing. However, due to the complexity of the system,
and to the computational cost of exploring these behaviors,
it is difficult to design a proper actuation strategy that
would yield a desired dynamic behavior, especially in view
of real-time control applications. Therefore, in order to
elucidate this complex link, we take a different approach
and seek to pinpoint the main defining features of the
system based on the observations from our computational
campaign. To this aim, in Fig. 3, we specifically investi-
gate the fundamental role of geometric nonlinearities and
shape-morphing actuation on the response of the system,
for relatively large excitation amplitude. In the compu-
tational framework, we can explicitly turn “on” or “off”
either of these effects. Figure 3 displays two representative
cases with different shape-morphing actuation described
by the values k,,, = 0 and k,,, = 3.64. Both cases are solved
using alternatively the nonlinear solver and a linear solver,
for which the geometric nonlinearities are suppressed.

Without shape-morphing, for x,, = 0, the inclusion of
geometric nonlinearity stiffens the system, leading to a
lower response amplitude. Notably, the peak frequency
remains around w/€Qy = 1 both linear and nonlinear cases.
In the presence of shape-morphing, for x,, = 3.64, a more
dramatic effect is observed. The shape-morphing plate
softens when geometric nonlinearity is not included in the
solver. The peak frequency decreases to 0.76 for the linear
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Fig. 3. Effect of geometric nonlinearity and shape-
morphing on the response of the system for very large
acceleration A = 1.78 x 1072,

case, which also exhibits the highest amplitude among all
scenarios. In contrast, the peak frequency for the nonlinear
case shifts to a higher value of 1.3.

These results suggest that the essential nonlinear behavior
of the system can be understood by using a minimal
equation of motion, for example of the form ¢+ (1 — s, +
aq®)q = —ii. Here, u and q are the nondimensional input
and relative response of the system, respectively, and we
have neglected damping for simplicity. Importantly, a is
the nonlinearity coefficient of a supposed cubic nonlinear-
ity, and s, is the softening effect (assumed linear) due
to shape-morphing. This minimal theoretical framework
offers the capability to capture the behavior observed in
the computational modeling of the shape morphing, at a
highly reduced computational cost. The cubic nonlinear-
ity can however be justified by postulating a one-mode
solution to the equations of motion from the nonlinear
plate theory of Tang et al. (2014), where cubic terms
represent the dominant nonlinear effects, at least for small
excitations.

This observation allows us to hypothesize that we can
model our physical system with base excitation and shape-
morphing through an equivalent forced Duffing oscilla-
tor (Nayfeh and Mook, 1979), endowed with damping and
cubic nonlinearity. Because of the well developed theory
on the forced Duffing oscillator, we aim at constructing
an equivalent oscillator as a powerful tool for much sim-
plified analysis and design for our physical system. This
construction is detailed in Sec. 3.

3. AN EQUIVALENT DUFFING OSCILLATOR
8.1 Review of general theory

In this section, we introduce our minimal model for the
shape-morphing plate based on the forced Duffing oscilla-
tor. In particular, we develop a framework for parameter
estimation for an equivalent oscillator that recovers the
dynamic behaviors observed in FEA studies.

The minimal equation capturing the softening and hard-
ening behavior seen in the FEA study can be recast in
terms of a forced Duffing oscillator, with a nonlinear cubic
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Fig. 4. In (a): Qualitative effect of the nonlinearity co-
efficient « in the Duffing equation on the system’s
response (nonlinear hardening in this case). In (b):
Representative case of jump phenomena during in-
creasing and decreasing frequency sweeps.

spring and damping, harmonically excited, whose govern-
ing equation reads (Nayfeh and Mook, 1979)

G(t) 4 2epdq(t) + N2q(t) + eaq(t)® = eUgcoswt  (2)
where ¢(t) is the degree of freedom, A\ is the natural
undamped frequency of the linearized system, « is the
nonlinearity coefficient of the cubic spring, Uy is the nondi-
mensional amplitude of the harmonic base excitation, oc-
curring at a frequency w, and p is a viscous damping coeffi-
cient. In Eq. (2), € is a small parameter that is conveniently
introduced to develop a perturbation solution for the case
of a weakly damped, weakly nonlinear system excited by
a small amplitude harmonic term. Note that if € — 0, the
equation reduces to that of a harmonic oscillator.

Preliminary numerical analysis, shown in Fig. 4(a) via
direct integration of Eq. (2) demonstrates the well-known
effect of the nonlinearity coefficient o on the response
of the system. As a > 0 increases, the nonlinear spring
is hardening and the FRF of the system, displaying the
amplitude @ of the steady state vibration, bends towards
higher frequencies. The FRFs in Fig. 4(a) are obtained
by varying the frequency w from low to high values. For
relatively large values of «, the system exhibits amplitude
jumps. This behavior is qualitatively consistent with the
findings from our FEA study and motivates our search for
an equivalent Duffing oscillator to capture the dynamics
of our shape-morphing plate.

Further insight in the jump phenomena and in the overall
FRF behavior of the forced Duffing oscillator can be
obtained by a perturbation analysis of Eq. (2). Briefly,
the frequency-amplitude relationship can be written in
implicit form as (Nayfeh and Mook, 1979)

Ug
4)\2@2 - /’1/2 (3)

Because @ is a multi-valued function of w, whereby multi-
ple amplitude solutions coexist for a single frequency, it is
known that the frequency-amplitude curve may exhibit a
hysteresis phenomenon. The complete FRF demonstrating
hysteresis, as shown in Fig. 4(b), can be constructed by
calculating the resulting values for w for suitable ampli-
tudes Q. Two branches of the curve can be identified from
Eq. (3), stemming from the + sign in front of the radicand
of Eq. (3). In Fig. 4(b), the analytical results from Eq. (3)
are marked as dots, and are superimposed to lines from
the numerical solution of Eq. (2). Note in particular that

the dashed line corresponds to solutions for a decreasing
frequency sweep from large to small frequencies. Finally, in
Fig. 4(b) the blue dots correspond to stable branches in the
solution, while the red dots indicate an unstable solution
that cannot be produced by direct numerical integration
of Eq. (2), see also Nayfeh and Mook (1979).

The analysis so far reveals four key parameters that govern
the dynamic behavior of the forced Duffing oscillator: the
nonlinearity coefficient «, the forcing amplitude Uy, the
viscous damping coefficient u, and the primary resonance
frequency A. We observe that € in Egs. (2) and (3) should
not be interpreted as an independent parameter as it could
be incorporated in a rescaling of «, Uy, and u. Next, we
develop a framework for parameter identification that will
associate to each pair of physical actuation parameters
in the FEA study, that is, A and k,,, the quadruple
p = {\ «a, Uy, u} of parameters of the equivalent oscillator.

3.2 Parameter identification

Here, we employ an optimization technique which takes as
an input the nondimensional amplitude w4 from the FEA
study and performs a least squares calculation to estimate
the parameters p of the equivalent Duffing oscillator. First,
we use Eq. (3) to calculate the frequency w when each data
point for w4 is substituted for Q. In all calculations, we
arbitrarily set the small parameter € to 0.1, as it multiplies
all terms with p, o and Up in Eq. (2). Care should be taken
to isolate the + branches in Eq. (3). For example, focusing
on the solution with the minus sign, we could rewrite
Eq. (3) asw™ = F~ (w}y,p) to emphasize the relationship
among the frequency, amplitude, and Duffing parameters
on the negative branch; a similar convention is adopted
for the positive branch. Then, we compare this estimated
frequency with the corresponding actual frequency values
w/Qo from the FEA study. The discrepancy between the
two is incorporated in the following sum-of-squared error
function

.
Epap(p) = Z[Ff(w,lwp) —w; /Q)*+
=1 -
Z[Fﬂwii,wp) —wi /0 (4)

where the index i indicates datapoints from the FEA sim-
ulations and N and N~ indicate the number of available
datapoints on the positive and negative branches. Here the
subscript P2D indicates that the procedure converts the
physical excitation parameters to the equivalent Duffing
oscillator parameters. By minimizing Eq. (4) using the
subroutine fmincon in MATLAB, we find the set of the
four Duffing parameters (A, «, Up, and p) that best fits
the available data as argmin of Epap(p).

To demonstrate the parameter identification framework,
we show representative results for the nondimensional ac-
celeration amplitude A = 1.78 x 10~* in Fig. 5. Here, we
display the FRFs of the FEA study for various moment
coefficients indicated by different colors and full lines with
empty markers. The specific values of k,, are indicated
for each curve. The curve fit by the equivalent Duffing
oscillator is indicated with the dashed lines and the same
corresponding color for each moment coefficient. The FEA



Fig. 5. FRFs of the equivalent Duffing oscillators superim-
posed on the nondimensional amplitude w4 obtained
from the FEA study for various moment coefficients
for the acceleration amplitude A = 1.78 x 10~%.

results and the curve fit by the Duffing oscillator show
good agreement for all the cases, while slightly deterio-
rating for the more extreme cases of A and k,,, where
arguably the perturbation methods used to solve Eq. (2)
are progressively less applicable. Additional sources of dis-
crepancy may lie in the higher order nonlinearities of the
plate behavior which are not incorporated in the Duffing
equation. However, this qualitative agreement validates
our parameter estimator strategy and the main hypothesis
that the shape-morphing plate can be modeled with an
equivalent forced Duffing oscillator.

4. CONCLUSIONS

In this study, we presented a framework for analysis of
the structure-control interaction for a vibrating shape-
morphing plate under base excitation. We have investi-
gated the concept of dynamic curvature-based resonance
and stiffness tuning for a prototype plate system via a
detailed parametric finite element analysis study with par-
ticular focus on the distinctive nonlinear behavior of the
system.

While computational modeling and nonlinear plate theo-
ries can in principle treat the complex nonlinear dynamics
in these systems, we aimed at providing an understanding
of the fundamental aspects of the nonlinear dynamics
through a computationally manageable minimal model
inspired by the behavior of the physical system. By care-
fully dissecting the interplay of geometric nonlinearity and
shape-morphing actuation, we hypothesized that an equiv-
alent forced Duffing oscillator can replicate and capture
the essential features of our system. The hypothesis is
verified through a parameter estimation framework that
allows us to convert the physical actuation parameters
to the governing parameters of an equivalent nonlinear
oscillator.

We are currently extending the framework towards design
applications, in which a desired dynamics (described by
the minimal oscillator) can be enforced in the physical
system via properly determined actuation parameters.

Furthermore, we are conducting an experimental vali-
dation of our framework on a testbed including shape-
morphing plates actuated by smart materials in both air
and underwater environments, for applications including
bioinspired underwater robotic propulsion. These results
will be presented elsewhere.
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