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Task-agnostic exoskeleton control via 
biological joint moment estimation

Dean D. Molinaro1,2,5,8 ✉, Keaton L. Scherpereel1,2,6,8, Ethan B. Schonhaut1, 
Georgios Evangelopoulos3,7, Max K. Shepherd4 & Aaron J. Young1,2

Lower-limb exoskeletons have the potential to transform the way we move1–14, but 
current state-of-the-art controllers cannot accommodate the rich set of possible 
human behaviours that range from cyclic and predictable to transitory and 
unstructured. We introduce a task-agnostic controller that assists the user on the 
basis of instantaneous estimates of lower-limb biological joint moments from a  
deep neural network. By estimating both hip and knee moments in-the-loop, our 
approach provided multi-joint, coordinated assistance through our autonomous, 
clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic 
locomotion to unstructured tasks (for example, passive meandering and high-speed 
lateral cutting), the network accurately estimated hip and knee moments with an 
average R2 of 0.83 relative to ground truth. Further, our approach significantly 
outperformed a best-case task classifier-based method constructed from splines  
and impedance parameters. When tested on ten activities (including level walking, 
running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly 
reduced user energetics (metabolic cost or lower-limb biological joint work depending 
on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without 
any manual controller modifications among activities. Thus, this task-agnostic 
controller can enable exoskeletons to aid users across a broad spectrum of human 
activities, a necessity for real-world viability.

Lower-limb exoskeletons promise to reinvent human mobility by 
augmenting our capability and increasing longevity15,16. However, 
within powered exoskeleton technology lies a critical limitation: the 
controllers—which in many cases were optimized through extensive 
experimentation—only work for a single task or small set of tasks, offer-
ing little adaptability beyond passive devices17,18. Switching between 
tasks typically requires a ‘high-level’ task classification (for example, 
level walking, incline walking and stair ascent) often toggled manu-
ally or in some cases by an autonomous classifier1,19–24. Within each 
class, a ‘mid-level’ controller computes desired exoskeleton assistance, 
which is often tuned on a user- and task-specific basis3,11,25. For highly 
repetitive cyclic tasks, assistance is often designed as a function of 
time or phase3,10,12,24. For some gravity-fighting non-cyclic tasks, such 
as squats or sit-to-stand, impedance controllers assist, removing any 
dependence on time26–28. Although this approach has worked well for 
many laboratory-based experiments, this highly constrained discre-
tization contrasts with the fluidity of natural human movement; we 
shuffle and side-step as we navigate a busy kitchen, stop our jog to 
take in a scenic view and regather our balance to again try the door 
that was heavier than we had anticipated. Our median walking bouts 
are a mere four steps29. Unstructured, non-cyclic and transitory tasks 
make up a large portion of our movements and interactions with the 
environment, but current exoskeleton controllers are incapable of 

recognizing or assisting these tasks. In fact, the expansion of traditional 
classification-based high-level control architectures to encompass 
these unstructured movements is intractable owing to the sheer num-
ber of movements that must be defined.

We have developed a task-agnostic exoskeleton controller that 
short-circuits the need for high-level task classification or gait phase 
estimation by basing assistance on a fundamental, continuous physi-
ological state: the human’s biological joint moment (Fig. 1a and Sup-
plementary Video 1). Biological moment can be calculated using optical 
motion capture and high-fidelity force plates to measure interactions 
with the ground30 but cannot be measured or solved for analytically 
through available wearable sensors, owing to sensor noise and incom-
plete information (particularly shear forces with the ground). Instead, 
biological joint moments can be estimated from wearable sensor data, 
often by including optimization or learning methods to account for 
incomplete sensor information13,14,31–36, but very few studies have begun 
to explore the implications of using this technology in the control 
loop13,14,35,36. In these previous works, however, using instantaneous 
biological joint moment estimates in the control loop has shown sub-
stantial promise. Gasparri et al.13 developed a joint moment-based 
ankle exoskeleton controller, which has shown large metabolic benefits 
across inclines and declines, stairs and mixed terrain in both unim-
paired individuals and those with cerebral palsy13,37–39. Additionally, 
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energy shaping methods35,36 promise joint moment-based control 
agnostic to a specific lower-limb joint. Further, our previous work14 
presented a deep learning-based approach that significantly reduced 
user metabolic cost during both level and incline walking using a hip 
exoskeleton; this approach demonstrated similar or even better out-
comes than using previously optimized, spline-based assistance (that 
is, the previous standard of exoskeleton control) depending on the  
condition.

Although these past studies demonstrate the efficacy of exoskeleton 
control using real-time biological joint moment estimates, they do not 
yet realize the key benefit of this approach: the potential for generaliz-
ability across the broad spectrum of human movement. In fact, these 
previous studies are almost entirely limited to the domain of level walk-
ing, ramps and stairs (domains that have been studied in exoskeleton 
control for decades15,16) aside from the sit–stand task investigated by 
Lin et al.35. Further, this approach could autonomously coordinate 
assistance across many lower-limb joints, a key component of gener-
alizing exoskeleton technology across tasks that depend on different 
joints; however, significant augmentation of user energetics using a 
multi-joint exoskeleton controlled by joint moment estimates remains 

to be demonstrated. In this study, we introduce a task-agnostic control-
ler enabled by a neural network-based joint moment estimator, which 
runs onboard an autonomous, hip–knee exoskeleton. By training the 
network on a diverse dataset of time-synced exoskeleton sensor data 
and ground-truth joint moments, we found that it accurately estimated 
user joint moments during 28 cyclic and non-cyclic human activities 
when deployed online (corresponding dataset released with this study). 
Further, we found that the resulting controller significantly reduced 
metabolic cost (four activities tested) and lower-limb biological joint 
work (six activities tested) relative to a no-assistance condition in all 
tested activities without any manual user or experimenter intervention 
between activities. This work provides a path to generalizing assistance 
across human behaviour, a critical link for the adoption of exoskeleton 
technology in the real world.

Clothing-integrated robotic exoskeleton
We developed a new exoskeleton with the capacity to assist an extensive 
range of movements, with a particular focus on under-appreciated func-
tional movements that are critical to independence, but can be difficult 
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Fig. 1 | Task-agnostic exoskeleton control with a clothing-integrated 
exoskeleton. a, The proposed approach continuously and seamlessly provides 
assistive torque to the hip and knee using an estimate of the user’s biological 
joint moments from a deep neural network. By basing assistance off a continuous 
physiological variable, no task classification is required; the same control  
law can effectively assist across the full range of human movement. The time 
series shown illustrates the average performance of our control approach  
with representative participant-averaged curves on the tasks shown. ext., 
extension. b, An autonomous hip–knee exoskeleton system was constructed to 

capture a rich set of sensing modalities and then assist across a wide range of 
mobility tasks. c, The hybrid design consists of both soft textiles and semirigid 
structural components to efficiently transmit exoskeleton assistance to both 
the hip and knee joints. The human interface consisted of zero-stretch woven 
fabric to efficiently transmit forces, whereas low-stretch knitted fabrics 
covering joints helped avoid restrictions in the user’s range of motion.  
d, Structural compliance and a passive translational degree of freedom 
between the hip and knee allowed hip ab- or adduction and rotation while 
maintaining actuator alignment across movements.
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for many populations, such as older adults. The clothing-integrated 
research exoskeleton presented here (Fig. 1b–d), was designed at X, 
The Moonshot Factory and combines the advantages of rigid exoskel-
etons with the comfort of soft textiles for the human–exoskeleton 
interface16,40 (Fig. 1c). Compact quasi-direct drive actuators (AK80-9 
T-Motor, Nanchang) mounted coaxially with the hip and knee pro-
vided up to 15 N m of assistance at each joint. The semirigid structure 
consisted of carbon fibre and 3D printed nylon orthotics on which 
the actuators and sensors were mounted. Six inertial measurement 
units (IMUs), joint encoders on the hips and knees, and a pair of wire-
less force-sensitive insoles provided real-time human movement 
data for the joint moment estimator (Fig. 1b) with the IMUs being the 
most important for joint moment estimation (Extended Data Fig. 1). 
Sagittal-plane actuation is provided at the hip and knee whereas pas-
sive degrees of freedom at the hip (translation and rotation) provide 
flexibility (Fig. 1d). This new exoskeleton architecture gave the user 
the flexibility and range of motion needed to perform a diverse range 
of structured and unstructured activities and represents a vital step 
forward in designing exoskeleton interfaces that are compliant, com-
fortable and adjustable.

Lower-limb joint moment estimation
To train the joint moment estimator, we collected exoskeleton sensor 
data time-synced with motion capture and ground reaction forces 
(GRFs) while users performed a wide range of tasks. Standard Open-
Sim inverse dynamics (detailed in the Supplementary Information) 
were used to calculate hip and knee moments41,42, providing the 
ground-truth labels (Fig. 2a). To achieve both task generalizability 
and user-independence, our extensive dataset consisted of 15 healthy 
participants performing 28 different activities consisting of 66 total 
conditions (Extended Data Fig. 2). We categorized the 28 activities 
as cyclic (Supplementary Video 2), impedance-like (Supplementary 
Video 3) or unstructured (Supplementary Video 4) on the basis of nor-
mative joint biomechanics43 (Fig. 2b). Using this dataset, we trained a 
temporal convolutional network (TCN) with optimized hyperparam-
eters (see Extended Data Table 1) to estimate hip and knee moments 
from 19 of the 28 tasks, with the 19 tasks chosen by a forward selection 
algorithm to promote task generalization within the model (Fig. 2c and 
Extended Data Fig. 3a). The most helpful data for model generalization 
(aside from the seed task of level-ground walking whose importance 
cannot be assessed) was a series of static standing poses, allowing the 
model to learn the static characteristics of the human body (for exam-
ple, standing upright requires near zero moment), which is critical 
for generalization (Extended Data Fig. 3b). Other critical tasks, such 
as jump and cut, are extremely high-effort tasks that probably helped 
establish the bounds of the system dynamics and thus are also impor-
tant for generalization. These previously understudied activities in the 
exoskeleton domain, many of which are not suitable for gait phase or 
impedance control, were the most critical for training a model to infer 
joint moments across real-world tasks.

The joint moment estimates were mapped to applied exoskeleton 
torque by a continuous transformation (Fig. 2a). Hip and knee moments 
were scaled to 20 and 15% of the total estimated biological moments, 
respectively. These scaling factors were established in pilot experiments 
and provided comfortable assistance while preventing substantial satu-
ration and overheating of the motors during high-torque movements. 
Hip moment estimates were delayed by 100 ms to maximize positive 
work done by the exoskeleton44 and to potentially minimize user meta-
bolic cost14. Furthermore, the delay between knee moment estimates 
and the resulting assistance was set to the minimum achievable by the 
system (a delay of 50 ms), on the basis of single-blinded pairwise pref-
erence tuning45 during pilot testing. Finally, the delayed joint moment 
estimates were lowpass filtered to better match the frequency content 
of human movement46 and increase user comfort.

The model was validated online with ten participants to assess its 
ability to accurately estimate human joint moments while providing 
assistance. No user-specific data were included in training to keep 
the tests user-independent. Furthermore, we developed a best-case 
baseline method based on current state-of-the-art exoskeleton control 
to compare against our joint moment estimator (details in the Sup-
plementary Information); for cyclic activities, the baseline method 
estimated the user- and stride-averaged hip and knee moments from 
each activity (for example, for level walking, the baseline used the 
average level walking curve) and for ‘impedance-like’ activities (for 
example, jumping in place), the baseline method estimated the hip 
and knee moments by estimating zero moment when in swing or flight 
and by using a linear spring-damper model fit to each activity during 
stance (Fig. 3a). Unstructured activities were omitted from the baseline 
because of their lack of phase or impedance-like behaviour, which high-
lights the limitations of current exoskeleton control. We implemented 
the baseline method post hoc with perfect gait phase estimates and task 
classification (that is, a perfectly accurate classifier of 28 classes), thus 
representing the theoretical best possible performance achievable by 
this type of control architecture.

Our deep neural network estimated hip and knee moments signifi-
cantly better than the baseline method for both cyclic (hip R2 0.79, 
knee R2 0.86) and impedance-like activities (hip R2 0.81, knee R2 0.87) 
without any participant-specific calibration (Fig. 3b,c). Representative 
time series are shown in Fig. 3d–f. Comparing within each activity, our 
estimator significantly outperformed the baseline method for 12 of the 
19 total comparisons of R2 at the hip and 13 of the comparisons at the 
knee (Extended Data Fig. 4a,b), with similar results in root mean-square 
error (r.m.s.e.) (cyclic hip and knee r.m.s.e. 0.15 and 0.13 N m kg−1, 
impedance-like hip and knee r.m.s.e. 0.21 and 0.16 N m kg−1) and in 
normalized mean absolute error (MAE) (cyclic hip and knee normalized 
MAEs 7.3 and 5.5%; impedance-like hip and knee normalized MAEs 7.1 
and 6.0%) (Extended Data Figs. 4c–f and 5a–d). The baseline method did 
not significantly outperform our approach on any individual activity 
in R2, r.m.s.e. or normalized MAE. In reality, the high-level state esti-
mators required for the baseline method (that is, a task classifier, gait 
phase estimator and pose estimator) also have non-zero error12,20–23,25, 
further detracting from this approach and highlighting the benefits 
of our regression-based method. We also found that during unstruc-
tured tasks that were not well-defined as cyclic or impedance-like, our 
approach maintained performance with an average hip R2 of 0.80 and 
knee R2 of 0.82 (Fig. 3b). Thus, our task-agnostic controller mimicked 
the natural behaviours of human movement, seamlessly modulating 
assistance throughout the transient motions common in daily life29.

Given the black box nature of our approach it is possible that the 
neural network could generate large, erroneous joint moments leading 
to undesirable exoskeleton assistance. To analyse model under- and 
overestimation, we computed the normalized hip and knee estimate 
error at each time instance as the difference between the absolute value 
of the joint moment estimate and the absolute value of the ground-truth 
label, normalized by the peak-to-peak range of the ground-truth label. 
Extended Data Fig. 5e depicts the distribution of the normalized hip 
and knee error from the online validation trials (representing roughly 
10 million instances total), in which negative and positive values corre-
spond to under- and overestimates, respectively. As shown in the figure, 
large under- and overestimates were uncommon with means close to 
zero (hip mean −2.7%; knee mean −1.3%) and standard deviations of 7.8 
and 6.6% for the hip and knee, respectively. Furthermore, time series 
examples of the most severe instances of under- and overestimation 
from the joint moment estimator are shown in Extended Data Fig. 5f.

Of the 28 evaluated activities, nine were withheld from the training set 
(details in Methods). The average R2 of our estimator on these held-out 
tasks was 0.83 and 0.85 for the hip and knee, respectively, demonstrat-
ing the ability of the network to generalize to the hold-out tasks. To 
further investigate estimator generalization, three users also completed 
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eight completely new tasks, described in Extended Data Table 2, that 
had not been previously tested or analysed (Supplementary Fig. 1 and 
Supplementary Video 5). These tasks were intentionally designed to 
be highly unique from the original dataset to push the limits of our 
approach, including burpees, mimicking a basketball layup and walk-
ing on a split belt treadmill with differing belt speeds. Our approach 
generalized well to the tasks reflective of typical human movement, 
and when pushed to extremely dynamic behaviours outside of the 
training set, our approach provided directionally correct assistance, 
but the magnitude and shape lost accuracy (R2 ranged from 0.24 to 
0.92 at the hip and from 0.32 to 0.91 at the knee for the eight new tasks; 
Supplementary Fig. 1c,d). These results demonstrate the ability of the 
estimator to generalize to never-before-seen activities but highlights 

that task-specific training data is beneficial for activities with highly 
different dynamics (for example, when offloading bodyweight through 
the hands on the ground). Extra details and discussion comparing our 
joint moment estimator relative to previous methods and regarding 
its performance during new tasks are provided in the Supplementary  
Information.

Augmenting user energetics across tasks
To quantify the impact of our task-agnostic controller on the user, we 
measured user metabolic cost during four activities under three assis-
tance conditions: wearing the exoskeleton with our task-agnostic con-
troller (exo on), without wearing the exoskeleton (no exo) and wearing 
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Fig. 2 | Deep neural network training and deployment for joint moment 
estimation. a, Lower-limb joint moment labels were calculated in OpenSim 
using optical motion capture, force plate data and user-specific musculoskeletal 
models; a TCN was trained to predict these joint moment labels from time- 
synchronized exoskeleton sensor data. During deployment, to improve power 
delivery and user comfort, the estimates were transformed into commanded 
exoskeleton torque through a continuous function consisting of a scale,  
delay and a lowpass filter. est., estimate. b, Users wore the exoskeleton while 
performing a wide range of cyclic, impedance-like and unstructured tasks.  

c, Training activities for the moment estimator were selected using a forward 
selection algorithm to maximize the relative improvement in model 
generalization across tasks. Validation r.m.s.e. decreased as the training set 
grew, with the first 19 tasks reducing r.m.s.e. to 0.133 N m kg−1, which was within 
5% of the best model accuracy with all the tasks included. This task set was used 
to train the real-time models used in the rest of this study. For reference, peak-to- 
peak hip and knee moments ranged from 2 to 4 N m kg−1 for most activities in the 
dataset. Results were computed from leave-one-participant-out cross-fold 
validation using a 12-participant dataset (error bars omitted for clarity).
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the exoskeleton without assistance (zero torque). The task-agnostic 
controller significantly reduced metabolic cost for all four tasks 
compared to zero torque (P < 0.05) with relative reductions ranging 
from 8.0% during the lift weight task to 19.7% during 5° inclined walk-
ing (Fig. 4a). Relative to no exo, our approach significantly reduced 
user metabolic cost during the weight lifting task and during running 
(P < 0.05); however, our approach increased metabolic cost during 
level-ground walking (P < 0.05). Given the similarity in level walking 
estimator accuracy and metabolic cost reduction relative to zero 
torque in our previous work, which did reduce metabolic cost rela-
tive to no exo using a lighter weight hip-only exoskeleton14, it is likely 
that the increase in metabolic cost in this study was due to the added 
mass penalty of the hip–knee exoskeleton, not the controller itself47. 
Nevertheless, these results demonstrate the ability of our approach to 
autonomously modulate assistance across tasks in a beneficial manner, 
a critical hurdle in developing task-agnostic exoskeleton controllers.

To further quantify the effect of the device during transient tasks, 
we measured metabolic cost for three participants performing a vary-
ing speed and incline circuit that ranged from walking to running with 
inclines ranging from 0° to 15°. During this highly transient trial, our 
approach reduced user metabolic cost by 12.9% relative to zero torque 
and by 1.6% relative to no exo (Fig. 4b). Thus, our approach seamlessly 
accommodated these transient behaviours so common to daily life29 
without any extra tuning or calibration.

Furthermore, positive lower-limb biological joint work of the user 
was also evaluated during six extra tasks described in Extended Data 
Table 3, which provided insight into the joint-level effects of our con-
troller14,48–50 and was less taxing on the participants than the metabolic 
trials. Total positive lower-limb biological joint work was computed 
as the sum of the components computed at the hip, knee and ankle. 
Positive biological joint work was computed by integrating the posi-
tive biological power at each joint, which involved subtracting the 

Exo sensor
data

Temporal
convolutional

network

Estimated
joint

moments

Our approach

Task class
and

gait phase

Lookup table
of normative 
joint moments Estimated

joint
momentsLookup table

of impedance
parameters

If cyclic

If impedance-
like

Baseline method 0

0.4

0.6

0.8

1.0

0

0.4

0.6

0.8

1.0

 H
ip

 R
2

K
ne

e 
R

2
UnstructuredCyclic

*

Impedance-like

*

* *

Cyclic Impedance-like Unstructured

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

 H
ip

 R
2  p

er
 t

as
k

Worse Better

B
et

te
r

–1
0
1
2

–1
0
1
2

H
ip

K
ne

e
M

om
en

t 
(N

 m
 k

g–1
)

0 0.3 0.6 0.9 0 0.3 0.6 0.9 0 0.3 0.60 0.3 0.6 0.9 1.2

0

1

2

0

1

2

H
ip

K
ne

e
M

om
en

t 
(N

 m
 k

g–1
)

Time (s)

0 0.6 1.2 1.8 0 0.6 1.2 0 0.6 1.2

Time (s)

Left-leaning
squat

Symmetric
squat

Right-leaning
squat

0 0.5 1.0 1.5 2.0 2.5

Knee R2 per task

–1

0

1

2

–1

0

1

2

H
ip

K
ne

e

M
om

en
t 

(N
 m

 k
g–1

)
Time (s)

Stand Run Cut to left Slow down

Our approach Baseline Ground truth

10° incline
walkFast walk Run

Walk
backwards

Our approach
Baseline

Our approach

Baseline

Ours 0.93
Base 0.91

Ours 0.93 Base 0.90

Ours 0.90 Base 0.55

Ours 0.93 Base 0.93

Ours 0.91 Base 0.61

Ours 0.93 Base 0.74

Ours 0.94 Base 0.84
Ours 0.98
Base 0.97

Ours 0.92 Base 0.90

Ours 0.96 Base 0.90

Ours 0.70 Base 0.61

Ours 0.73 Base 0.18

Ours 0.96 Base 0.69

Ours 0.98 Base 0.98

Ours 0.90

Ours 0.96

a

d f

e

b c

Fig. 3 | Online joint moment estimation performance. a, We compared our 
neural network-based joint moment estimator (deployed online) to a best-case 
baseline method (computed offline) that relied on perfect task classification 
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interquartile range, horizontal lines within boxes depict inter-participant 
median and error bars depict inter-participant minimum and maximum  
(n = 10). c, Estimator R2 is shown per task for our approach and the baseline 
method. Each marker corresponds to the inter-participant average per single 

task (n = 10, except for the run condition where n = 9). d, Representative strides 
from various cyclic tasks are shown. The baseline method required a different 
task classification for each depicted ambulation mode, whereas our approach 
did not require any discrete switching. e, Representative trials are shown when 
squatting to the left, right and symmetrically. The impedance control-based 
approach failed to capture changes in joint moments by relying solely on 
kinematics. Instead, our approach accurately modified joint moments with  
the change in weight distribution across the user’s legs. f, A representative  
trial during leftward cutting is shown, depicting the ability of our approach to 
seamlessly modulate assistance during highly unstructured behaviours. As it is 
unclear how to extend the baseline method to these types of activity, it was 
omitted. Estimator R2 relative to ground truth is shown for our approach (ours) 
and the baseline method (base) above each representative trial.
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exoskeleton torque from the ground-truth total joint moment from 
inverse dynamics (further details are provided in the Methods section). 
Our controller significantly reduced positive lower-limb biological joint 
work of the user during all six tasks compared to zero torque (P < 0.05) 

with decreases ranging from 5.3 to 15.7% (Fig. 4c). During four of the 
six tasks, our controller also reduced positive joint work compared to 
no exo with significant decreases ranging from 8.5 to 22.3%. The other 
two tasks, stair ascent and step up, showed no significant difference. 
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Fig. 4 | Human outcome performance. a, Participant metabolic cost was 
measured during four activities while wearing the exoskeleton using the 
task-agnostic controller (exo on), without wearing the exoskeleton (no exo) and 
while wearing the exoskeleton without assistance (zero torque). Tasks other 
than running were conducted using 6 min trials and a counter-balanced design 
(ABCCBA). Owing to the strenuous nature of the running trials, conditions  
were only completed once (ABC) and each trial only lasted 3.5 min. Below each 
activity is the cycle-averaged commanded torque during exo on as a function  
of movement percentage. The shaded region around each curve depicts  
±1 standard deviation about the mean. b, Three participants returned and 
performed a varying speed and incline protocol while metabolic cost was 
measured. Individual traces are provided for each participant as well as the 

average. The detailed variations in speed and incline are shown below the 
activity. c, The average positive biological joint work per movement cycle 
summed across each participant’s hip, knee and ankle are shown. Participants 
completed the six activities under the same three assistance conditions as the 
metabolic trials. Again, the cycle-average commanded torque during exo on for 
each activity is shown as a function of movement percentage whereas the shaded 
region around each curve depicts ±1 standard deviation about the mean. Each 
black square depicts the inter-participant mean, each coloured box depicts  
the interquartile range, each horizontal line within the boxes depicts the inter- 
participant median and each error bar depicts the inter-participant minimum 
and maximum. Asterisks indicate statistical significance (P < 0.05; exact  
P values are provided in Supplementary Data 1).
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Furthermore, participant lower-limb kinematics showed little variation 
across exoskeleton conditions (Supplementary Fig. 2), suggesting that 
reductions in biological joint work were achieved primarily through 
reductions in biological joint moments as opposed to modified kin-
ematics (details in the section ‘Exoskeleton effects on user kinematics’ 
in the Supplementary Information).

With further improvements to the exoskeleton, such as reducing 
exoskeleton mass, relocating knee actuators more proximal to the 
body47, and increasing the maximum magnitude of assistance, we 
anticipate substantially greater capacity for our approach to enhance 
human performance across activities compared to this first evalu-
ation. Furthermore, it is likely that our mid-level controller was not 
optimal for all tasks and similarly may not be optimal for populations 
outside of young, able-bodied individuals. Further optimization 
of the mid-level controller3,8,11, consideration of how this approach 
could generalize to extra populations and investigation of the physi-
ological mechanisms that drive the relationship between exoskeleton 
assistance and user outcomes could result in further improvements 
in user outcomes and expand the scope of this approach. Neverthe-
less, these comparisons demonstrate the efficacy of our task-agnostic 
controller to dynamically and beneficially modulate assistance with 
changing user behaviour without user- or task-specific tuning, which 
is a critical component for exoskeleton controllers deployed in the  
real world.

Conclusion
By relying on internal physiological state estimates rather than human- 
engineered gait parameterizations, control is given back to the user 
and the exoskeleton can respond to that user’s specific, real-time joint 
moments without any user-specific calibration or hand-engineered 
state machine criteria. Whereas recent work has demonstrated how to 
leverage instantaneous joint moment estimates as a promising alter-
native for exoskeleton control during walking13,14,35,36, here we present 
the missing piece: task generalization. Specifically, our deep neural 
network approach to exoskeleton control provides a task-agnostic 
framework, capable of seamlessly augmenting human effort by coor-
dinating exoskeleton assistance across joints during both structured 
and unstructured tasks. Building from these advances, we believe 
this technology will become paramount in many industries, allowing 
researchers to test new hypotheses during natural, less-structured 
behaviours, relieving worker exhaustion in manual labour industries 
and enabling disaster relief teams to act with extra endurance in 
time-sensitive missions.
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Methods

Autonomous robotic hip–knee exoskeleton
In this study, we used the clothing-integrated robotic exoskeleton 
developed at X, which was designed to enhance human mobility by 
providing powered sagittal-plane assistance to the hips and knees 
(design rationale provided in the supplementary section ‘Why the hip 
and knee and not the ankle?’). A Raspberry Pi 4B (RPi) (Raspberry Pi) 
served as the primary onboard computer that ran the exoskeleton con-
trol loop at 55 Hz. The RPi managed Controller Area Network (CAN) Bus 
and Bluetooth communication with peripherals, saved experimental 
data locally and provided all functions other than joint moment esti-
mates. Joint moment estimates were generated on a machine learning 
coprocessor (NVIDIA Jetson Nano) also mounted onboard the device; 
thus, all computation was fully onboard the exoskeleton. The Jetson 
Nano provided a low power consumption (5 V, 2 A) coprocessor, easily 
integrated into the exoskeleton by means of ethernet connection and 
commonly available portable charging banks. Actuated hip flexion and 
extension and knee flexion and extension was provided by quasi-direct 
drive actuators (T-Motor AK80-9s, Nanchang), with a peak intermittent 
torque constrained to 15 N m. Open-loop torque commands were sent 
to the actuators from the RPi over CAN and encoder measurements 
were returned to the RPi. Encoder velocity was lowpass filtered using a 
second-order Butterworth filter with a 10 Hz cut-off frequency. Six-axis 
IMUs (OpenIMUA) were mounted to the shank and thigh struts and 
communicated with the RPi by means of CAN. Pressure-sensitive insoles 
(Moticon) measured vertical GRF and centre of pressure (COP) and 
had an embedded six-axis IMU. They communicated with the RPi by 
Bluetooth and were powered by coin-cell batteries. The RPi and actua-
tors were powered by two 20 V, 3 Ah drill batteries (DeWalt) connected 
in parallel, providing power for roughly 2 h of continuous walking at 
a minimum. The RPi interfaced through WiFi with a laptop for data 
visualization using a custom user interface.

The human–robot interface was designed to be as compliant, com-
fortable and adjustable as possible, while maintaining the minimal 
structure required for effective transfer of actuator torques to the body. 
The semirigid structure included thin, waterjet-cut carbon fibre plates 
in the thigh struts that were compliant in ab- or adduction and internal 
or external rotation of the hip, but supported flexion and extension 
torques. A passive translational degree of freedom allowed the shorten-
ing of the thigh strut required for hip ab- or adduction. The 3D printed 
nylon shin struts, shin cuffs and pelvic orthosis were designed to apply 
the assistance to comfortable sections on the shin and pelvis. The cus-
tom trousers provided tight integration of the semirigid structure with 
the body, preventing buckling of the thin thigh struts. Quick release 
snaps, adjustable with Velcro, connected the pelvic orthosis and thigh 
or shank struts to the trousers. Woven zero-stretch fabric on the thigh 
and shank allowed slop-free transfer of the applied exoskeleton torque 
to the leg through a ‘hammocking’ effect. Knit fabric, with some stretch 
and elasticity, around the knee and hip allowed free range of motion 
and was used on the lateral sides of the trousers to allow variation in 
sizing between users. Zippers on the shank allowed tight integration 
of the fabric with the lower shank while allowing don and doff over the 
heel. Overall, the entire exoskeleton added roughly 7 kg to the user 
depending on the exoskeleton size worn during the experiment. Fur-
thermore, although comfort was a key consideration of the exoskeleton 
design, some participants voiced discomfort regarding the shape of 
the backplate and the load-bearing seams of the soft textile trousers.

Real-time joint moment estimation
To deploy the joint moment estimator within the exoskeleton control-
ler, we integrated the machine learning coprocessor (that is, the Jetson 
Nano) into the device using an asynchronous TCP/IP connection over 
wired ethernet with the RPi. With each control loop, sensor data were 
measured from the actuators, IMUs and pressure insoles. The sensor 

data were sent from the RPi to the coprocessor, which returned esti-
mates of the total hip and knee flexion or extension moments from the 
neural network. Biological joint moment estimates were then computed 
by subtracting the measured actuator torques from the previous loop 
from each corresponding joint moment estimate.

Desired torque assistance was computed from the resulting biologi-
cal joint moment estimates using three steps. (1) The biological joint 
moments at the hip and knee were scaled by 20 and 15%, respectively, 
to maximize assistance while maintaining safe operating regions for 
the device hardware (15 N m at each joint). (2) The scaled hip and knee 
moments were then delayed by 100 and 50 ms, respectively. This delay 
was chosen at the knee because 50 ms was the minimum possible delay 
to guarantee a consistent relationship between biological joint moment 
estimates and exoskeleton assistance owing to limitations in loop rate 
reliability of the exoskeleton. Hip assistance was further delayed by an 
extra 50 ms because this approach can maximize the positive work 
done by the exoskeleton during walking, which can lead to further 
benefits for the user14,44. (3) The exoskeleton assistance was lowpass 
filtered using a second-order 10 Hz Butterworth filter to preserve the 
frequency content of human motion43,51–53 while removing jitter from 
the estimator14. This filter added an extra delay of 25 ms, resulting in a 
total hip delay of 125 ms and knee delay of 75 ms. In the case in which 
the resulting assistance was larger than the peak exoskeleton torque, 
commanded torque was clamped to the peak exoskeleton torque.

Because the exoskeleton controller intentionally delayed the hip 
moment estimates by an extra 50 ms relative to the minimum achiev-
able system delay with our system, we chose to train the network to 
estimate hip moments delayed by 50 ms relative to the input sequence. 
Our previous work found that delaying joint moment estimates relative 
to the input sequence can further improve model accuracy54, and we 
found that this approach resulted in an extra 5% improvement in hip 
moment validation MAE for this study.

Neural network architecture optimization
In our previous work, we achieved state-of-the-art accuracy in estimat-
ing user joint moments with a TCN32,54. In this study, we implemented 
the TCN as originally introduced by Bai et al.55 and modified for joint 
moment estimation in our previous work14,32,54. The TCN input consisted 
of a sequence of unilateral hip and knee encoder data, thigh, shank 
and foot IMU data, and pressure insole data (vertical GRF and COP). 
Owing to the exoskeleton loop rate of 55 Hz, the data were upsampled 
in real-time to 200 Hz to match the sampling frequency previously 
used for the TCN. Each of the model inputs were also normalized using 
their corresponding mean and standard deviation computed from 
the training set. The TCN was designed with two output heads for the 
instantaneous estimates of the total hip and knee flexion or extension 
moments (that is, the sum of exoskeleton torque and human biological 
moment). Joint moment labels in the training set were scaled by par-
ticipant body mass during training, such that the model was trained to 
estimate joint moments in units of N m kg−1 (refs. 32,54). Furthermore, 
we trained the TCN to estimate the total joint moments to maintain the 
relationship between exoskeleton sensor data and TCN joint moment 
outputs, regardless of the specific parameters of the exoskeleton con-
troller, such as assistance magnitude. We then computed biological 
joint moments later in the control framework by subtracting the exo-
skeleton torque from the total estimated moment.

In our previous work, we conducted a thorough hyperparameter 
optimization of the TCN for estimating sagittal-plane hip moments32, 
however, this approach did not consider model generalizability (that 
is, during the hyperparameter optimization the model training set 
and validation set consisted of the same ambulation modes). Further-
more, this optimization was conducted under different conditions 
(only sagittal-plane hip moments, cyclic ambulatory activities and 
kinematic sensors). Thus, we conducted a rigorous hyperparameter 
optimization using a multi-stage approach, specifically targeting model 
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generalizability under conditions consistent with this study (Extended 
Data Table 1). In stage 1 of the optimization, we used our previous data-
set of human lower-limb biomechanics during cyclic and non-cyclic 
activities43 to optimize a large, 11-dimensional hyperparameter space 
using Bayesian optimization implemented in Vizier56 (training and 
testing more than 10,000 models). In stage 2, we finetuned the network 
hyperparameters using actual exoskeleton sensor data from phases 
1 and 2 of the experimental protocol (details below) over a smaller, 
six-dimensional search space that could be rigorously optimized using 
grid search (training and testing 1,440 models). The six-dimensional 
space was constructed to finetune the most sensitive network hyperpa-
rameters determined from the marginal and conditional results of the 
stage 1 optimization. The resulting network hyperparameters (shown 
in Extended Data Table 1) resulted in an 8% improvement in MAE using 
leave-one-participant-out cross-fold validation compared to using the 
original hyperparameters from Molinaro et al.32.

Task optimization for generalizability
Because the collection of actuated, motion capture-labelled data is 
difficult and costly, we first sought to discover a subset of tasks that 
could allow a user-independent lower-limb joint moment estimator 
to generalize to the rest of human activities. To determine the subset 
of training activities that best promoted generalization, we used the 
same dataset used for stage 1 of the hyperparameter optimization to 
conduct a forward activity selection optimization (Extended Data 
Fig. 3a). During each optimization step, the TCN was trained and tested 
using leave-one-participant-out validation to compute the expected 
model performance when evaluated on a new participant. First, model 
performance was computed by training the model using only the 
level-ground walking data but tested on all activities. The TCN was then 
iteratively trained from random initialization, including one activity 
from the candidate task set into the training set at a time. On the ith 
optimization step, the relative improvement in generalizability s i[ ]g  
associated with including a candidate activity (g) into the training set 
(that is, the relative improvement in model performance on all activi-
ties beside g) was computed as
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1
− 1
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where n is the total number of tasks and e i[ ]g j,  is the MAE of estimating 
joint moments during the jth task when trained using the updated 
training set over the first  i − 1 optimization steps and the extra candi-
date task g. Thus, s i[ ]g  evaluated the overall improvement in model 
performance across all activities, excluding the relative improvement 
of the task at hand. Furthermore, g i* [ ] was the activity associated with 
the largest improvement score, which was then added to the training 
set for all further optimization steps and removed from the set of can-
didate tasks G to be selected in the next optimization step. This process 
was repeated until all tasks were selected.

We defined the activity set that saturated model generalization as 
the minimum set of selected activities that contributed more than 
95% of the sum total of relative improvement in generalizability across 
the complete optimization. After the first seven tasks, the model had 
reached this threshold, indicating that further tasks failed to substan-
tially improve the model’s ability to estimate joint moments on other 
tasks (Extended Data Fig. 3b). Aside from level-ground walking, which 
was used to seed the optimizer, none of the selected tasks was cyclic 
and four were unstructured.

Although model generalization saturated rapidly, task-specific data 
continued to improve user-independent, task-specific validation error 
(Fig. 2c). The overall model performance required 19 selected activities 

before validation MAE fell within 5% of the validation MAE when trained 
on all activities. This demonstrates that there was added benefit to be 
gained from training on task-specific data even after generalization 
saturated. For all further analyses, the TCN was trained using the data 
from these 19 selected tasks unless otherwise stated.

Sensor contribution to moment estimation
Previous joint moment estimation studies often use data from IMUs and 
joint encoders as model inputs14,32,34,54,57,58; however, the relative impor-
tance of each of these sensors (and others) on model performance is less 
explored. Furthermore, the sensitivity of model performance relative 
to sensor dropout (for example, from sensor disconnection) is also a 
critical real-world consideration. To investigate these two topics, we 
trained several extra models under two different conditions: first, using 
different subsets of available sensors and second, simulating sensor 
disconnection during model deployment. We tested the performance 
of these models offline on the data from the ten participants used to 
test our approach online. For the first condition, two of the sensor 
sets were inspired by common exoskeleton design choices: (1) remov-
ing the GRF and COP contributed by the insoles (that is, -insoles) and  
(2) removing all foot mounted sensing (that is, -insoles, -foot IMU). The 
other three sensor sets were chosen to demonstrate the contribution 
from each unique sensor modality: (1) only using the thigh and shank 
IMUs (IMU only), (2) only using the hip and knee encoders (encoder 
only) and (3) only using the GRF and COP from the foot insole (insole 
only). For the second condition, a single sensor was effectively dropped 
out during model testing, by zeroing that respective sensor’s inputs to 
simulate a sensor losing connection during device deployment. These 
comparisons are presented in Extended Data Fig. 1.

In the first condition, removing the GRF and COP resulted in a 0.03 
and a 0.07 reduction in R2 at the hip and knee, respectively, demon-
strating the moderate benefit of adding kinetic based sensing, with an 
additional penalty when removing the foot IMU. The ‘IMU only’ condi-
tion resulted in a further drop in performance; the benefit gained from 
the encoders indicated that our six-axis IMUs did not fully capture the 
relevant kinematic input information. Overall, the IMUs contributed 
the most to the accuracy of the model, followed by the encoders and, 
last, the insole. Previous work has shown that kinematic sensors can 
be effectively used to estimate GRFs, indicating a potential reason the 
IMUs contributed the most to the model34,59. Likewise, because the 
insoles initially measure pressure, from which the GRF is calculated, the 
amount of information provided to the model may be less than other 
more accurate sensors, such as in-ground force plates.

In the second condition, dropping out different sensors showed 
the reliance of our network on each sensor. In general, loss of a sensor 
resulted in a significant drop in accuracy, indicating that the model gen-
erally used all available sensing inputs in the neural network weights. 
The loss of the knee encoder, however, was much worse for estimat-
ing knee joint moments and, similarly, the loss of the hip encoder was 
much worse for estimating hip joint moments. The losses of the thigh 
IMU and foot insole were likewise much more consequential to model 
accuracy when compared to the loss of the shank or foot IMU. These 
results indicate that our trained network learned to rely on each sensor 
for generating joint moment estimates, underscoring the importance 
of the need for high-quality hardware and sensor integration; however, 
further analyses could explore training the network with synthesized 
sensor dropout to potentially improve robustness.

Experimental data collection
The data used in this study were collected over three phases to facilitate 
model training and online testing of the joint moment estimator. Over 
the three phases, a total of 22 able-bodied participants participated in 
the study protocol. Participants provided written informed consent to 
participate in the study under Georgia Institute of Technology Institu-
tional Review Board protocol H21184. Consent to publish participant 

https://www.ncbi.nlm.nih.gov/nuccore/H21184


images was also obtained. In each phase, participants completed a set 
of 28 cyclic and non-cyclic activities, consisting of 66 total conditions 
as detailed in Scherpereel et al.43 and outlined in Extended Data Fig. 2. 
During these activities, retroreflective markers on both the body and 
exoskeleton were tracked using a motion capture system at 200 Hz 
(Vicon Motion Systems). Furthermore, overground force plates and 
an instrumented treadmill (Bertec) were used to measure GRFs at 
1,000 Hz. Owing to software limitations early in this study, motion 
capture data collected for two participants during phase 1 were col-
lected at 120 Hz and subsequently upsampled to 200 Hz.

To sync the exoskeleton data with the participants’ ground-truth joint 
biomechanics, the exoskeleton data were first upsampled to 200 Hz to 
match the frequency of the motion capture data. At the start of each 
exoskeleton trial when motion capture and GRF data were collected, 
participants kicked three times with their right leg while exoskeleton 
actuation was off. On the basis of this movement, the exoskeleton data 
were time shifted to maximize the R2 between the right knee encoder 
and the resulting right knee joint kinematics computed from the bio-
mechanical model.

Phase 1: initial data collection
In phase 1, ten participants (six males, four females, age of 
23.7 ± 2.0 years, height of 176.3 ± 8.7 cm and body mass of 76.5 ± 13.3 kg) 
participated in a single day protocol collecting exoskeleton data and 
ground-truth human joint moments during the 28 cyclic and non-cyclic 
activities. As we could not deploy the task-agnostic controller until 
initial training data were collected, participants completed all activi-
ties with exoskeleton assistance turned off while sensor data were 
collected. To further increase the richness of our training data, we 
also hand-designed activity-specific controllers to collect actuated 
data for 46 out of the 66 total experimental conditions. Spline-based 
assistance was implemented as a function of gait phase when possible 
using eight- and six-node piecewise cubic Hermite interpolating poly-
nomials at the hip and knee, respectively. Gait phase was estimated 
in real-time using the duration of the previous two strides measured 
from the pressure insole data12. The splines were shaped on the basis of 
the biological hip and knee moments reported in our previous work43. 
Furthermore, an impedance-based stance-swing state machine was 
used during several non-cyclic, impedance-like activities to control the 
device. Stance and swing phase were determined using the vertical GRF 
data measured from the pressure insoles. During leg swing, assistance 
was set to zero. During stance, the exoskeleton commanded torques 
using a spring-mode with a stiffness of 5 N m rad−1 and an equilibrium 
angle of 0°, which allowed all tasks to be completed without exceeding 
the actuator capabilities. These controllers were not intended to pro-
vide optimal assistance, but instead were used to collect a rich dataset 
for model training that included actuated exoskeleton data as well as 
the unactuated data.

Phase 2: training data with pilot model
In phase 2, five new participants (four males, one female, age of 
23.4 ± 4.9 years, height of 171.4 ± 7.4 cm and body mass of 68.0 ± 12.7 kg) 
participated in a single day protocol similar to phase 1. However, during 
phase 2 we deployed the task-agnostic controller on the exoskeleton 
using a preliminary joint moment estimator trained using the phase 1 
dataset. Each participant completed all 28 tasks while the exoskeleton 
provided assistance, which generated a dataset closely representing 
the controller to be deployed in the final phase.

Phase 3: online accuracy and user outcomes
In phase 3, ten participants (seven males, three females, age of 
21.8 ± 2.5 years, height of 174.8 ± 8.5 cm and body mass of 71.7 ± 10.2 kg) 
participated in a multi-day protocol consisting of three sessions each 
centred on a specific outcome metric: model accuracy, metabolic cost 
and lower-limb biological joint work. Model accuracy was assessed with 

R2, r.m.s.e. and normalized MAE with respect to ground-truth total hip 
and knee moments31,32,60. Normalized MAE was normalized to the 
peak-to-peak range of the corresponding ground-truth joint moments 
per task. Metabolic cost and lower-limb biological joint work provided 
an indication of the exoskeleton’s impact on user effort3,16,61–63, with 
metabolic cost more directly related to user energetics but only possible 
to measure and fairly compare during long bouts of repetitive tasks with 
consistent mechanical work requirements. During each session, the 
exoskeleton was controlled using the task-agnostic controller informed 
by the model trained on phase 1 and 2 data. Three of the participants 
were already enrolled in previous phases of the protocol. To ensure that 
the controller was evaluated on a participant-independent basis, we 
retrained separate models from random initialization for each of these 
participants while withholding the participant-specific data from the 
training set, ensuring that each participant was truly new to the network.

The network accuracy session was performed using the same pro-
tocol as phase 2 in which the exoskeleton was powered on for all 28 
activities. During each condition, motion capture and GRF data were 
collected to compute ground-truth joint moments, which were then 
used to evaluate model performance. Each participant completed this 
session first, which served as a training session for the participant to 
adapt to the exoskeleton assistance, a critical component to evaluating 
human–exoskeleton interactions64. Owing to an error when exporting 
the segmented trials, data for the run task from one participant was 
not included in this study. Additionally, three participants returned to 
perform eight truly new tasks while collecting the same data to compare 
estimates to ground-truth moments (Extended Data Table 2).

During the lower-limb biological joint work session, participants 
completed six tasks detailed in Extended Data Table 3. These tasks 
were selected for our joint work analysis as measuring their resulting 
metabolic cost was infeasible owing to participant fatigue and time con-
straints. Each activity was repeated under three conditions: (1) wearing 
the exoskeleton with the task-agnostic controller providing assistance 
(exo on), (2) without wearing the exoskeleton (no exo) and (3) wearing 
the exoskeleton without actuation (zero torque). The order of these 
conditions was randomized; however, to minimize the time taken to 
complete the experimental protocol, the no exo condition was always 
placed either at the beginning or at the end, and all of the no exo activi-
ties were completed in succession, whereas the zero torque and exo on 
were alternated between each activity. Lower-limb positive biological 
joint work of the participant was computed by summing the average 
positive biological joint work from the hip, knee and ankle joints. Posi-
tive biological joint work for each joint was computed as the integral 
of the positive biological joint power for each joint, which was calcu-
lated as the product of the biological joint velocity and the biological 
joint moment (that is, the joint moment computed from ground-truth 
inverse dynamics after subtracting exoskeleton assistance torque). 
Results are presented as the average right leg positive joint work per 
repetition or stride. Owing to a bug in the exoskeleton data logger dur-
ing the experimental protocol, stair ascent results for one participant 
and lunging results for one participant were not included in this study. 
Further, although this analysis quantified changes in the energetics of 
the biological joints, it did not account for muscle-level changes, such 
as muscle cocontraction.

At the beginning of the metabolic cost session, each participant 
completed a habituation protocol to reacclimate to the device. The 
habituation protocol consisted of level-ground walking on the tread-
mill at 1.25 m s−1 while wearing the exoskeleton controlled with the 
task-agnostic controller. Exoskeleton assistance was sequentially 
ramped up in four evenly spaced increments every 2 min until the par-
ticipant reached full torque assistance. The participant then walked 
at full assistance (20 and 15% of the estimated biological hip and knee 
moments, respectively) for 5 min to complete the habituation protocol.

During each metabolic trial, oxygen intake ̇V( O )2  and carbon dioxide 
exhaust ̇V( CO )2  from each breath were measured using a metabolic 
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measurement system (TrueOne 2400, ParvoMedics). User metabolic 
cost was computed from the ̇V O2 and ̇V CO2 measurements using the 
modified Brockway equation11,65. These measurements were taken 
during four activities: level-ground walking at 1.25 m s−1, lifting a 25 lb 
weight, 5° incline walking at 1.25 m s−1 and running on level ground at 
2.5 m s−1. For the lift weight trials, a metronome played a tone at 10 bpm 
and participants were instructed on each tone to use both hands to lift 
a 11 kg (25 lb) kettle bell off a shelf at waist height, touch the weight to 
the ground between their feet and then replace the weight on the shelf 
before returning to neutral standing and waiting for the next tone. For 
each activity, we tested the same three conditions as those of the joint 
work protocol: no exo, exo on and zero torque. Furthermore, the basal 
metabolic rate for each participant was measured from a 6 min stand-
ing trial while not wearing the exoskeleton. Owing to experimental 
time constraints, motion capture data were not collected during the 
metabolic experiments.

The level-ground walking, lift weight and incline walking trials were 
each completed using a within-participant counter-balanced design 
(ABCCBA)12. Each condition lasted 6 min, and steady-state metabolic 
cost for each trial was computed as the average of the last 3 min of 
data11,66. Owing to the strenuous nature of running, especially during 
zero torque, the running conditions were only completed once (ABC) 
and lasted 3.5 min. Steady-state metabolic cost was then computed 
from the output of a first-order model fit to the running data11,66. The 
basal metabolic rate measured for each participant was subtracted 
from the steady-state metabolic cost of each condition to compute 
the user’s net metabolic rate required to complete each activity. Within 
each activity, the order of conditions was pseudorandomized, with 
the no exo condition either in the A or C position to minimize don and 
doff time. Owing to improper calibration of the metabolic system, 
the metabolic data for one participant were omitted from this study.

To further understand the effect of our approach on user metabolic 
cost during transient activities, we developed an extra protocol in 
which we recorded metabolic cost during a varying speed and incline 
treadmill circuit for three of the participants. Each 6 min trial involved 
walking at speeds varying from 0.6 to 1.5 m s−1 and running speeds of 
2.0, 2.25 and 2.5 m s−1. The speed of the treadmill was changed according 
to the profile shown in Fig. 4b. Similarly, the treadmill incline varied 
between 0° and 15° throughout the trial (Fig. 4b). The speed and incline 
profile of the treadmill was designed to decrease walking speeds at 
higher inclines, to keep the participant within an acceptable aerobic 
respiration range for valid metabolic cost measurements. Similar to 
the outcomes testing described above, the participants completed 
a randomized ladder protocol consisting of no exo, exo on and zero 
torque conditions (ABCCBA12 as above) while wearing a metabolic 
measurement system (TrueOne 2400, ParvoMedics). Owing to an 
exoskeleton malfunction, one trial of data from one participant had 
to be removed; however, this trial was part of the C condition within 
the protocol, which should mitigate any adverse ordering effects from 
the removed datapoint. As described above, metabolic cost was com-
puted using the Brockway equation and averaged across the last three 
minutes of the treadmill trial. This represents a consistent snapshot of 
metabolic cost across varying conditions.

Whereas qualitative feedback from participants about exoskeleton 
assistance was not formally collected, it is important to note that some 
participants expressed that the knee extension assistance did not feel 
helpful during level-ground walking and occasionally felt uncomfort-
able. Otherwise, the overall response from participants about the exo-
skeleton assistance was quite positive across the trials used to evaluate 
metabolic cost and lower-limb biological joint work.

Data availability
All of the exoskeleton sensor data and time-synced ground-truth bio-
mechanics used for training and evaluating our joint moment estimator 

have been released with this publication. The data and details are 
available at https://doi.org/10.35090/gatech/75759. The training data 
includes 15 users performing all 66 conditions from the 28 task groups 
(Extended Data Fig. 2). The first 10 users include both unactuated data 
for all tasks and actuated data for those that could be mimicked with 
a heuristic controller. The following five users include actuated data 
for all tasks using a preliminary joint moment estimation model. The 
validation data includes ten users performing the same 66 conditions 
from the 28 task groups. The exoskeleton was actuated for all activi-
ties using the final model. Overall, this dataset includes more than 22 
million labels of ground-truth moments across the left and right legs 
per lower-limb joint. Furthermore, the P values and corresponding 
participant count for all statistical tests are available in the Supplemen-
tary Data and a detailed description of our statistical tests is provided 
in the Supplementary Information.

Code availability
A Python package containing the code to deploy and test the models 
trained in this study using our corresponding dataset is available at 
https://doi.org/10.24433/CO.7641031.v2.
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Extended Data Fig. 1 | Sensor ablations and dropouts for joint moment 
estimation. R2 for (a) hip and (b) knee joint moment estimation was compared 
across five conditions where different combinations of sensors were removed. 
R2 for (c) hip and (d) knee joint moment estimation was compared across six 
conditions where different individual sensor signals were set to zero to 
simulate sensor dropout. A one-way ANOVA was used to test for a main effect at 
the hip and knee, and for each joint, a post-hoc multiple comparisons test with a 

Bonferroni correction was conducted to evaluate comparisons between the  
All condition and each ablation or dropout condition. The bar height depicts 
the average performance across all 28 tasks and 10 participants. Error bars 
depict ±1 standard deviation across participants. The relative decrease in 
performance is depicted relative to the model trained on all sensors and 
without artificial sensor dropout. Asterisks indicate statistical significance  
(P < 0.05). Exact P values are provided in Supplementary Data 1.



Extended Data Fig. 2 | Task breakdown of our exoskeleton dataset labeled 
with ground-truth biomechanics. The 28 tasks were binned into three 
categories: cyclic, impedance-like, and unstructured based on their normative 

biomechanics. Additionally, many tasks contained multiple experimental 
conditions (66 conditions total).
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Extended Data Fig. 3 | Forward task selection algorithm and results. (a) To 
determine the set of activities most important for model generalizability, tasks 
were iteratively added into the model training set, scored, and subsequently 
selected based on their contribution to overall model generalizability on the 
validation data. (b) The relative improvement in generalization for each 
selected task is shown. With each new task, the model was retrained and the 

relative improvement in its ability to predict biological hip and knee moments 
across all other (27) tasks was computed (average improvement shown). 
Saturated generalization was reached when the sum of the relative improvement 
reached 95% of the total sum from adding in all of the activities. Results  
were computed from leave-one-subject-out cross-fold validation using  
a 12-participant dataset; however, error bars were omitted for clarity.



Extended Data Fig. 4 | Detailed online joint moment estimation 
performance. The resulting (a) hip R2, (b) knee R2, (c) hip RMSE, (d) knee RMSE, 
(e) hip normalized MAE, and (f) knee normalized MAE of our joint moment 
estimator is shown for each activity and is compared to the baseline method. 
The MAE results are normalized to their corresponding peak-to-peak range of 

the ground-truth joint moments. The bars depict the inter-subject mean across 
10 subjects except for the Run condition where n = 9, and the error bars depict 
±1 standard deviation. Asterisks indicate statistical significance (P < 0.05; 
exact P values are provided in Supplementary Data 1).
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Extended Data Fig. 5 | Online joint moment estimation RMSE, normalized 
MAE, and analysis of under- and overestimation. (a) Our approach 
significantly reduced RMSE at the hip by 0.04 ± 0.02 Nm/kg (22 ± 10%, P = 0.03) 
and at the knee by 0.07 ± 0.02 Nm/kg (35 ± 8%, P = 3 × 10−8) compared to the 
baseline method during cyclic activities. For impedance-like tasks, our 
approach reduced RMSE by 0.11 ± 0.03 Nm/kg (35 ± 9%, P = 8 × 10−7) at the hip 
and by 0.14 ± 0.03 Nm/kg (47 ± 9%, P = 3 × 10−15) at the knee compared to the 
baseline method. (b) Estimator RMSE is shown per task for our approach and 
the baseline method. (c) Our approach significantly reduced normalized  
MAE at the hip by 22.2% ± 11.8% (P = 6 × 10−5) and by 34.1% ± 8.9% (P = 6 × 10−7)  
at the knee compared to the baseline method during cyclic activities. For 
impedance-like tasks, our approach reduced normalized MAE by 34.4% ± 8.0% 
(P = 3 × 10−9) at the hip and by 50.2% ± 14.2% (P = 8 × 10−14) at the knee compared 

to the baseline method. (d) Estimator normalized MAE is shown per task for our 
approach and the baseline method. (e) Histograms depicting the distribution 
of under- and overestimation of the hip and knee moments relative to ground- 
truth are shown. (f) Time series depicting the most severe example of 
underestimation and overestimation across all validation trials are shown 
(both of which occurred at the hip). In the box plots, black squares depict 
inter-subject mean; colored boxes depict the interquartile range; horizontal 
lines within boxes depict the inter-subject median; error bars depict the 
inter-subject minimum and maximum (n = 10). Asterisks indicate statistical 
significance (P < 0.05; exact P values are provided in Supplementary Data 1). 
 In the scatter plots, each marker corresponds to the inter-subject average 
result for a single task (n = 10 expect for the Run condition where n = 9).



Extended Data Table 1 | TCN hyperparameter optimization

Values shown without brackets were optimized categorically. Arrays shown with closed brackets were optimized on the closed interval. Hyperparameter combinations resulting in an input 
sequence greater than 250 were omitted due to limitations in the simulated data at the bounds of each trial. In Stage 2, kernel and bias regularization were turned off since Stage 1 optimization 
generally minimized these values across multiple optimization instances.
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Extended Data Table 2 | Activities for testing exoskeleton performance on entirely novel tasks



Extended Data Table 3 | Activities for testing exoskeleton effects on lower-limb biological joint work
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