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Lower-limb exoskeletons have the potential to transform the way we move' ™, but
current state-of-the-art controllers cannot accommodate the rich set of possible
human behaviours that range from cyclic and predictable to transitory and

unstructured. We introduce a task-agnostic controller that assists the user on the
basis of instantaneous estimates of lower-limb biological joint moments froma
deep neural network. By estimating both hip and knee moments in-the-loop, our
approach provided multi-joint, coordinated assistance through our autonomous,
clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic
locomotion to unstructured tasks (for example, passive meandering and high-speed
lateral cutting), the network accurately estimated hip and knee moments with an
average R? of 0.83 relative to ground truth. Further, our approach significantly
outperformed abest-case task classifier-based method constructed from splines

and impedance parameters. When tested on ten activities (including level walking,
running, lifting a 25 Ib (roughly 11 kg) weight and lunging), our controller significantly
reduced user energetics (metabolic cost or lower-limb biological joint work depending
onthetask) relative to the zero torque condition, ranging from 5.3 t0 19.7%, without
any manual controller modifications among activities. Thus, this task-agnostic
controller can enable exoskeletons to aid users across abroad spectrum of human
activities, anecessity for real-world viability.

Lower-limb exoskeletons promise to reinvent human mobility by
augmenting our capability and increasing longevity"'¢. However,
within powered exoskeleton technology lies a critical limitation: the
controllers—which in many cases were optimized through extensive
experimentation—only work for asingle task or small set of tasks, offer-
ing little adaptability beyond passive devices”, Switching between
tasks typically requires a ‘high-level’ task classification (for example,
level walking, incline walking and stair ascent) often toggled manu-
ally or in some cases by an autonomous classifier***, Within each
class, a‘mid-level’ controller computes desired exoskeleton assistance,
which is often tuned on a user- and task-specific basis*"**. For highly
repetitive cyclic tasks, assistance is often designed as a function of
time or phase*°?, For some gravity-fighting non-cyclic tasks, such
as squats or sit-to-stand, impedance controllers assist, removing any
dependence on time?* %, Although this approach has worked well for
many laboratory-based experiments, this highly constrained discre-
tization contrasts with the fluidity of natural human movement; we
shuffle and side-step as we navigate a busy kitchen, stop our jog to
take in a scenic view and regather our balance to again try the door
that was heavier than we had anticipated. Our median walking bouts
are amere four steps®. Unstructured, non-cyclic and transitory tasks
make up a large portion of our movements and interactions with the
environment, but current exoskeleton controllers are incapable of

recognizing or assisting these tasks. In fact, the expansion of traditional
classification-based high-level control architectures to encompass
these unstructured movementsis intractable owing to the sheer num-
ber of movements that must be defined.

We have developed a task-agnostic exoskeleton controller that
short-circuits the need for high-level task classification or gait phase
estimation by basing assistance on a fundamental, continuous physi-
ological state: the human’s biological joint moment (Fig. 1a and Sup-
plementary Video1). Biologicalmoment can be calculated using optical
motion capture and high-fidelity force plates to measure interactions
with the ground® but cannot be measured or solved for analytically
throughavailable wearable sensors, owing to sensor noise and incom-
pleteinformation (particularly shear forces with the ground). Instead,
biological joint moments can be estimated from wearable sensor data,
often by including optimization or learning methods to account for
incomplete sensor information™>'**3¢ but very few studies have begun
to explore the implications of using this technology in the control
loop™™*353¢ In these previous works, however, using instantaneous
biological joint moment estimates in the control loop has shown sub-
stantial promise. Gasparri et al.”* developed a joint moment-based
ankle exoskeleton controller, which has shown large metabolic benefits
across inclines and declines, stairs and mixed terrain in both unim-
paired individuals and those with cerebral palsy™>*-*°. Additionally,
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Fig.1| Task-agnostic exoskeleton control withaclothing-integrated
exoskeleton. a, The proposed approach continuously and seamlessly provides
assistive torque to the hip and knee using an estimate of the user’s biological
jointmoments fromadeep neural network. By basing assistance offacontinuous
physiological variable, no task classificationis required; the same control

law can effectively assist across the full range of human movement. The time
seriesshownillustrates the average performance of our control approach
withrepresentative participant-averaged curves on the tasks shown. ext.,
extension. b, An autonomous hip-knee exoskeleton system was constructed to

energy shaping methods®?° promise joint moment-based control
agnostic to a specific lower-limb joint. Further, our previous work*
presented a deep learning-based approach that significantly reduced
user metabolic cost during both level and incline walking using a hip
exoskeleton; this approach demonstrated similar or even better out-
comesthanusing previously optimized, spline-based assistance (that
is, the previous standard of exoskeleton control) depending on the
condition.

Although these past studies demonstrate the efficacy of exoskeleton
control using real-time biological joint moment estimates, they do not
yetrealize the key benefit of this approach: the potential for generaliz-
ability across the broad spectrum of human movement. In fact, these
previous studies are almost entirely limited to the domain of level walk-
ing, ramps and stairs (domains that have been studied in exoskeleton
control for decades™") aside from the sit-stand task investigated by
Lin et al.*. Further, this approach could autonomously coordinate
assistance across many lower-limb joints, a key component of gener-
alizing exoskeleton technology across tasks that depend on different
joints; however, significant augmentation of user energetics using a
multi-joint exoskeleton controlled by joint moment estimates remains
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tobe demonstrated. In this study, we introduce a task-agnostic control-
ler enabled by aneural network-based joint moment estimator, which
runs onboard an autonomous, hip-knee exoskeleton. By training the
network on a diverse dataset of time-synced exoskeleton sensor data
and ground-truthjoint moments, we found that it accurately estimated
user joint moments during 28 cyclic and non-cyclic human activities
when deployed online (corresponding dataset released with this study).
Further, we found that the resulting controller significantly reduced
metabolic cost (four activities tested) and lower-limb biological joint
work (six activities tested) relative to a no-assistance conditionin all
tested activities without any manual user or experimenter intervention
between activities. This work provides a path to generalizing assistance
across human behaviour, a critical link for the adoption of exoskeleton
technology in the real world.

Clothing-integrated robotic exoskeleton

We developed anew exoskeleton with the capacity to assist an extensive
range of movements, witha particular focus on under-appreciated func-
tional movements that are critical toindependence, but can be difficult



for many populations, such as older adults. The clothing-integrated
research exoskeleton presented here (Fig. 1b-d), was designed at X,
The Moonshot Factory and combines the advantages of rigid exoskel-
etons with the comfort of soft textiles for the human-exoskeleton
interface'®*° (Fig. 1c). Compact quasi-direct drive actuators (AK80-9
T-Motor, Nanchang) mounted coaxially with the hip and knee pro-
vided up to 15 N m of assistance at each joint. The semirigid structure
consisted of carbon fibre and 3D printed nylon orthotics on which
the actuators and sensors were mounted. Six inertial measurement
units (IMUs), joint encoders on the hips and knees, and a pair of wire-
less force-sensitive insoles provided real-time human movement
data for the joint moment estimator (Fig. 1b) with the IMUs being the
most important for joint moment estimation (Extended Data Fig. 1).
Sagittal-plane actuation is provided at the hip and knee whereas pas-
sive degrees of freedom at the hip (translation and rotation) provide
flexibility (Fig. 1d). This new exoskeleton architecture gave the user
the flexibility and range of motion needed to perform a diverse range
of structured and unstructured activities and represents a vital step
forwardin designing exoskeletoninterfaces that are compliant, com-
fortable and adjustable.

Lower-limb joint moment estimation

To train the joint moment estimator, we collected exoskeleton sensor
data time-synced with motion capture and ground reaction forces
(GRFs) while users performed a wide range of tasks. Standard Open-
Siminverse dynamics (detailed in the Supplementary Information)
were used to calculate hip and knee moments**?, providing the
ground-truth labels (Fig. 2a). To achieve both task generalizability
and user-independence, our extensive dataset consisted of 15 healthy
participants performing 28 different activities consisting of 66 total
conditions (Extended Data Fig. 2). We categorized the 28 activities
as cyclic (Supplementary Video 2), impedance-like (Supplementary
Video 3) or unstructured (Supplementary Video 4) on the basis of nor-
mative joint biomechanics* (Fig. 2b). Using this dataset, we trained a
temporal convolutional network (TCN) with optimized hyperparam-
eters (see Extended Data Table 1) to estimate hip and knee moments
from19 of the 28 tasks, with the 19 tasks chosen by aforward selection
algorithm to promote task generalization within the model (Fig.2cand
Extended Data Fig.3a). The most helpful data for model generalization
(aside from the seed task of level-ground walking whose importance
cannot be assessed) was aseries of static standing poses, allowing the
model tolearn the static characteristics of the humanbody (for exam-
ple, standing upright requires near zero moment), which is critical
for generalization (Extended Data Fig. 3b). Other critical tasks, such
asjump and cut, are extremely high-effort tasks that probably helped
establish the bounds of the system dynamics and thus are alsoimpor-
tantfor generalization. These previously understudied activitiesin the
exoskeleton domain, many of which are not suitable for gait phase or
impedance control, were the most critical for training amodel to infer
joint moments across real-world tasks.

The joint moment estimates were mapped to applied exoskeleton
torque by a continuous transformation (Fig.2a). Hip and knee moments
were scaled to 20 and 15% of the total estimated biological moments,
respectively. Thesescaling factors were established in pilot experiments
and provided comfortable assistance while preventing substantial satu-
ration and overheating of the motors during high-torque movements.
Hip moment estimates were delayed by 100 ms to maximize positive
work done by the exoskeleton** and to potentially minimize user meta-
bolic cost™. Furthermore, the delay between knee moment estimates
and theresulting assistance was set to the minimum achievable by the
system (a delay of 50 ms), on the basis of single-blinded pairwise pref-
erence tuning® during pilot testing. Finally, the delayed joint moment
estimates were lowpass filtered to better match the frequency content
of human movement*® and increase user comfort.

The model was validated online with ten participants to assess its
ability to accurately estimate human joint moments while providing
assistance. No user-specific data were included in training to keep
the tests user-independent. Furthermore, we developed a best-case
baseline method based on current state-of-the-art exoskeleton control
to compare against our joint moment estimator (details in the Sup-
plementary Information); for cyclic activities, the baseline method
estimated the user- and stride-averaged hip and knee moments from
each activity (for example, for level walking, the baseline used the
average level walking curve) and for ‘impedance-like’ activities (for
example, jumping in place), the baseline method estimated the hip
and knee moments by estimating zero moment whenin swing or flight
and by using a linear spring-damper model fit to each activity during
stance (Fig.3a). Unstructured activities were omitted from the baseline
because of their lack of phase orimpedance-like behaviour, which high-
lights thelimitations of current exoskeleton control. We implemented
the baseline method post hoc with perfect gait phase estimates and task
classification (thatis, aperfectly accurate classifier of 28 classes), thus
representing the theoretical best possible performance achievable by
this type of control architecture.

Our deep neural network estimated hip and knee moments signifi-
cantly better than the baseline method for both cyclic (hip R? 0.79,
knee R? 0.86) and impedance-like activities (hip R? 0.81, knee R* 0.87)
without any participant-specific calibration (Fig. 3b,c). Representative
time series are shown in Fig. 3d-f. Comparing within each activity, our
estimator significantly outperformed the baseline method for 12 of the
19 total comparisons of R? at the hip and 13 of the comparisons at the
knee (Extended Data Fig.4a,b), with similar resultsin root mean-square
error (r.m.s.e.) (cyclic hip and knee r.m.s.e. 0.15and 0.13N m kg,
impedance-like hip and knee r.m.s.e. 0.21and 0.16 N mkg™) and in
normalized mean absolute error (MAE) (cyclic hip and knee normalized
MAEs 7.3 and 5.5%; impedance-like hip and knee normalized MAEs 7.1
and 6.0%) (Extended Data Figs.4c-fand 5a-d). The baseline method did
not significantly outperform our approach on any individual activity
in R?, r.m.s.e. or normalized MAE. In reality, the high-level state esti-
mators required for the baseline method (that s, a task classifier, gait
phase estimator and pose estimator) also have non-zero error>2023%,
further detracting from this approach and highlighting the benefits
of our regression-based method. We also found that during unstruc-
tured tasks that were not well-defined as cyclic orimpedance-like, our
approachmaintained performance with an average hip R?of 0.80 and
knee R?of 0.82 (Fig. 3b). Thus, our task-agnostic controller mimicked
the natural behaviours of human movement, seamlessly modulating
assistance throughout the transient motions common in daily life?.

Given the black box nature of our approach it is possible that the
neural network could generate large, erroneous joint moments leading
to undesirable exoskeleton assistance. To analyse model under- and
overestimation, we computed the normalized hip and knee estimate
errorateach timeinstance as the difference between the absolute value
ofthejointmoment estimate and the absolute value of the ground-truth
label, normalized by the peak-to-peak range of the ground-truth label.
Extended Data Fig. 5e depicts the distribution of the normalized hip
and knee error from the online validation trials (representing roughly
10 millioninstances total), in which negative and positive values corre-
spond tounder-and overestimates, respectively. Asshowninthe figure,
large under- and overestimates were uncommon with means close to
zero (hipmean -2.7%; knee mean —1.3%) and standard deviations of 7.8
and 6.6% for the hip and knee, respectively. Furthermore, time series
examples of the most severe instances of under- and overestimation
fromthe joint moment estimator are shown in Extended Data Fig. 5f.

Ofthe 28 evaluated activities, nine were withheld fromthe training set
(detailsin Methods). The average R? of our estimator on these held-out
tasks was 0.83 and 0.85for the hip and knee, respectively, demonstrat-
ing the ability of the network to generalize to the hold-out tasks. To
furtherinvestigate estimator generalization, three users also completed
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Fig.2|Deep neural network training and deployment for joint moment
estimation. a, Lower-limb joint moment labels were calculated in OpenSim
using optical motion capture, force plate data and user-specific musculoskeletal
models; a TCN was trained to predict these joint moment labels from time-
synchronized exoskeleton sensor data. During deployment, toimprove power
delivery and user comfort, the estimates were transformed into commanded
exoskeleton torque through a continuous function consisting of ascale,
delay and alowpassfilter. est., estimate. b, Users wore the exoskeleton while
performing a wide range of cyclic,impedance-like and unstructured tasks.

eight completely new tasks, described in Extended Data Table 2, that
had not been previously tested or analysed (Supplementary Fig.1and
Supplementary Video 5). These tasks were intentionally designed to
be highly unique from the original dataset to push the limits of our
approach, including burpees, mimicking a basketball layup and walk-
ing on a split belt treadmill with differing belt speeds. Our approach
generalized well to the tasks reflective of typical human movement,
and when pushed to extremely dynamic behaviours outside of the
training set, our approach provided directionally correct assistance,
but the magnitude and shape lost accuracy (R? ranged from 0.24 to
0.92atthe hipand from 0.32to 0.91at the knee for the eight new tasks;
Supplementary Fig. 1c,d). These results demonstrate the ability of the
estimator to generalize to never-before-seen activities but highlights
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5% of the best model accuracy with all the tasksincluded. This task set was used
totrainthereal-time models used in the rest of this study. For reference, peak-to-
peak hip and knee moments ranged from 2to 4 N m kg™ for mostactivities in the
dataset. Results were computed from leave-one-participant-out cross-fold
validationusing al2-participant dataset (error bars omitted for clarity).

that task-specific training data is beneficial for activities with highly
different dynamics (for example, when offloading bodyweight through
the hands on the ground). Extra details and discussion comparing our
joint moment estimator relative to previous methods and regarding
its performance during new tasks are provided in the Supplementary
Information.

Augmenting user energetics across tasks

To quantify theimpact of our task-agnostic controller on the user, we
measured user metabolic cost during four activities under three assis-
tance conditions: wearing the exoskeleton with our task-agnostic con-
troller (exo on), without wearing the exoskeleton (no exo) and wearing
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Fig.3|Onlinejoint moment estimation performance. a, We compared our
neural network-based joint moment estimator (deployed online) to abest-case
baseline method (computed offline) that relied on perfect task classification
and gait phase. b, Our approachssignificantlyimproved R*at the hip by
0.13+0.04 (19 + 6%, P=2x107)and at the knee by 0.25+ 0.04 (40 + 7%, P<107%)
compared to the baseline method during cyclic activities. Forimpedance-like
tasks, our approachimproved R?by 0.31+0.05 (63 £10%, P=4 x107") at the hip
and by 0.32+0.02 (57 +3%, P<107") at the knee compared to the baseline
method. Black squares depictinter-participant mean, coloured boxes depict
interquartile range, horizontal lines within boxes depictinter-participant
mediananderror bars depictinter-participant minimumand maximum
(n=10). ¢, Estimator R?is shown per task for our approach and the baseline
method. Each marker corresponds to the inter-participant average per single

the exoskeleton without assistance (zero torque). The task-agnostic
controller significantly reduced metabolic cost for all four tasks
compared to zero torque (P < 0.05) with relative reductions ranging
from 8.0% during the lift weight task to 19.7% during 5° inclined walk-
ing (Fig. 4a). Relative to no exo, our approach significantly reduced
user metabolic cost during the weight lifting task and during running
(P<0.05); however, our approach increased metabolic cost during
level-ground walking (P < 0.05). Given the similarity in level walking
estimator accuracy and metabolic cost reduction relative to zero
torque in our previous work, which did reduce metabolic cost rela-
tive to no exo using a lighter weight hip-only exoskeleton', it is likely
that the increase in metabolic cost in this study was due to the added
mass penalty of the hip—knee exoskeleton, not the controller itself*.
Nevertheless, these results demonstrate the ability of our approach to
autonomously modulate assistance across tasks in abeneficial manner,
acritical hurdle in developing task-agnostic exoskeleton controllers.

task (n=10, except for the run condition where n=9).d, Representative strides
fromvarious cyclic tasks are shown. The baseline method required a different
task classification for each depicted ambulation mode, whereas our approach
did notrequire any discrete switching. e, Representative trials are shown when
squattingto the left, right and symmetrically. Theimpedance control-based
approach failed to capture changesinjoint moments by relying solely on
kinematics. Instead, our approach accurately modified joint moments with
the changeinweightdistributionacrosstheuser’slegs. f, Arepresentative
trial during leftward cuttingis shown, depicting the ability of our approach to
seamlessly modulate assistance during highly unstructured behaviours. Asitis
unclear how to extend the baseline method to these types of activity, it was
omitted. Estimator R?relative to ground truthis shown for our approach (ours)
and the baseline method (base) above each representative trial.

To further quantify the effect of the device during transient tasks,
we measured metabolic cost for three participants performingavary-
ing speed and incline circuit that ranged from walking to running with
inclines ranging from 0° to 15°. During this highly transient trial, our
approachreduced user metabolic cost by 12.9% relative to zero torque
and by 1.6% relative to no exo (Fig.4b). Thus, our approach seamlessly
accommodated these transient behaviours so common to daily life?
without any extra tuning or calibration.

Furthermore, positive lower-limb biological joint work of the user
was also evaluated during six extra tasks described in Extended Data
Table 3, which provided insight into the joint-level effects of our con-
troller™**3-5° and was less taxing on the participants than the metabolic
trials. Total positive lower-limb biological joint work was computed
as the sum of the components computed at the hip, knee and ankle.
Positive biological joint work was computed by integrating the posi-
tive biological power at each joint, which involved subtracting the
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Fig.4 |Human outcome performance. a, Participant metabolic cost was
measured during four activities while wearing the exoskeleton using the
task-agnostic controller (exo on), without wearing the exoskeleton (no exo) and
while wearing the exoskeleton without assistance (zero torque). Tasks other
thanrunning were conducted using 6 min trials and a counter-balanced design
(ABCCBA). Owingto the strenuous nature of the running trials, conditions
were only completed once (ABC) and each trial only lasted 3.5 min. Below each
activityisthe cycle-averaged commanded torque during exo onas afunction
of movement percentage. The shaded region around each curve depicts
+1standard deviation about the mean. b, Three participants returned and
performedavaryingspeed andincline protocol while metabolic cost was
measured. Individual traces are provided for each participant as well as the

exoskeleton torque from the ground-truth total joint moment from
inverse dynamics (further details are provided in the Methods section).
Our controller significantly reduced positive lower-limb biological joint
work of the user during all six tasks compared to zero torque (P < 0.05)
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average. The detailed variations in speed and incline are shown below the
activity. ¢, The average positive biological joint work per movement cycle
summed across each participant’s hip, knee and ankle are shown. Participants
completed thesix activities under the same three assistance conditions as the
metabolictrials. Again, the cycle-average commanded torque during exo on for
eachactivityisshownasafunction of movement percentage whereas the shaded
region around each curve depicts +1standard deviation about the mean. Each
black square depicts theinter-participant mean, each coloured box depicts
theinterquartile range, each horizontal line within the boxes depicts the inter-
participant median and each error bar depicts the inter-participant minimum
and maximum. Asterisks indicate statistical significance (P < 0.05; exact
Pvalues are providedin Supplementary Datal).

with decreases ranging from 5.3 to 15.7% (Fig. 4c). During four of the
six tasks, our controller also reduced positive joint work compared to
no exo with significant decreases ranging from 8.5t022.3%. The other
two tasks, stair ascent and step up, showed no significant difference.



Furthermore, participantlower-limb kinematics showed little variation
across exoskeleton conditions (Supplementary Fig. 2), suggesting that
reductions in biological joint work were achieved primarily through
reductions in biological joint moments as opposed to modified kin-
ematics (detailsin the section ‘Exoskeleton effects on user kinematics’
inthe Supplementary Information).

With further improvements to the exoskeleton, such as reducing
exoskeleton mass, relocating knee actuators more proximal to the
body*, and increasing the maximum magnitude of assistance, we
anticipate substantially greater capacity for our approach toenhance
human performance across activities compared to this first evalu-
ation. Furthermore, it is likely that our mid-level controller was not
optimal for all tasks and similarly may not be optimal for populations
outside of young, able-bodied individuals. Further optimization
of the mid-level controller*®*", consideration of how this approach
could generalize to extra populations and investigation of the physi-
ological mechanisms that drive the relationship between exoskeleton
assistance and user outcomes could result in further improvements
in user outcomes and expand the scope of this approach. Neverthe-
less, these comparisons demonstrate the efficacy of our task-agnostic
controller to dynamically and beneficially modulate assistance with
changing user behaviour without user- or task-specific tuning, which
is a critical component for exoskeleton controllers deployed in the
real world.

Conclusion

By relying oninternal physiological state estimates rather than human-
engineered gait parameterizations, control is given back to the user
and the exoskeleton can respond to that user’s specific, real-time joint
moments without any user-specific calibration or hand-engineered
state machine criteria. Whereas recent work has demonstrated how to
leverage instantaneous joint moment estimates as a promising alter-
native for exoskeleton control during walking™'**?¢ here we present
the missing piece: task generalization. Specifically, our deep neural
network approach to exoskeleton control provides a task-agnostic
framework, capable of seamlessly augmenting human effort by coor-
dinating exoskeleton assistance across joints during both structured
and unstructured tasks. Building from these advances, we believe
this technology will become paramount in many industries, allowing
researchers to test new hypotheses during natural, less-structured
behaviours, relieving worker exhaustion in manual labour industries
and enabling disaster relief teams to act with extra endurance in
time-sensitive missions.
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Methods

Autonomous robotic hip-knee exoskeleton

In this study, we used the clothing-integrated robotic exoskeleton
developed at X, which was designed to enhance human mobility by
providing powered sagittal-plane assistance to the hips and knees
(designrationale provided inthe supplementary section ‘Why the hip
and knee and not the ankle?’). ARaspberry Pi 4B (RPi) (Raspberry Pi)
served asthe primary onboard computer that ran the exoskeleton con-
trolloop at 55 Hz. The RPimanaged Controller Area Network (CAN) Bus
and Bluetooth communication with peripherals, saved experimental
data locally and provided all functions other than joint moment esti-
mates.Joint moment estimates were generated on amachine learning
coprocessor (NVIDIA Jetson Nano) also mounted onboard the device;
thus, all computation was fully onboard the exoskeleton. The Jetson
Nano provided alow power consumption (5V, 2 A) coprocessor, easily
integrated into the exoskeleton by means of ethernet connectionand
commonly available portable charging banks. Actuated hip flexion and
extension and knee flexion and extension was provided by quasi-direct
driveactuators (T-Motor AK80-9s, Nanchang), with a peak intermittent
torque constrained to15 N m. Open-loop torque commands were sent
to the actuators from the RPi over CAN and encoder measurements
werereturned to the RPi. Encoder velocity was lowpass filtered using a
second-order Butterworth filter witha10 Hz cut-offfrequency. Six-axis
IMUs (OpenIMUA) were mounted to the shank and thigh struts and
communicated withthe RPiby means of CAN. Pressure-sensitive insoles
(Moticon) measured vertical GRF and centre of pressure (COP) and
had an embedded six-axis IMU. They communicated with the RPi by
Bluetooth and were powered by coin-cell batteries. The RPiand actua-
tors were powered by two 20V, 3 Ah drill batteries (DeWalt) connected
in parallel, providing power for roughly 2 h of continuous walking at
aminimum. The RPi interfaced through WiFi with alaptop for data
visualization using a custom user interface.

The human-robotinterface was designed to be as compliant, com-
fortable and adjustable as possible, while maintaining the minimal
structure required for effective transfer of actuator torques to the body.
The semirigid structureincluded thin, waterjet-cut carbon fibre plates
inthe thigh struts that were compliantin ab- or adduction and internal
or external rotation of the hip, but supported flexion and extension
torques. A passive translational degree of freedom allowed the shorten-
ing of the thigh strut required for hip ab- oradduction. The 3D printed
nylonshinstruts, shin cuffs and pelvic orthosis were designed to apply
the assistance to comfortable sections onthe shinand pelvis. The cus-
tomtrousers provided tightintegration of the semirigid structure with
the body, preventing buckling of the thin thigh struts. Quick release
snaps, adjustable with Velcro, connected the pelvic orthosis and thigh
orshank struts to the trousers. Woven zero-stretch fabric on the thigh
andshank allowed slop-free transfer of the applied exoskeleton torque
tothelegthrough a‘hammocking’ effect. Knit fabric, with some stretch
and elasticity, around the knee and hip allowed free range of motion
and was used on the lateral sides of the trousers to allow variation in
sizing between users. Zippers on the shank allowed tight integration
ofthe fabric with the lower shank while allowing don and doff over the
heel. Overall, the entire exoskeleton added roughly 7 kg to the user
depending on the exoskeleton size worn during the experiment. Fur-
thermore, although comfort was akey consideration of the exoskeleton
design, some participants voiced discomfort regarding the shape of
the backplate and the load-bearing seams of the soft textile trousers.

Real-time joint moment estimation

To deploy the joint moment estimator within the exoskeleton control-
ler, we integrated the machine learning coprocessor (that s, the Jetson
Nano) into the device using an asynchronous TCP/IP connection over
wired ethernet with the RPi. With each control loop, sensor data were
measured from the actuators, IMUs and pressure insoles. The sensor

data were sent from the RPi to the coprocessor, which returned esti-
mates of the total hip and knee flexion or extension moments fromthe
neural network. Biological joint moment estimates were then computed
by subtracting the measured actuator torques from the previous loop
fromeach correspondingjoint moment estimate.

Desired torque assistance was computed from the resulting biologi-
cal joint moment estimates using three steps. (1) The biological joint
moments at the hip and knee were scaled by 20 and 15%, respectively,
to maximize assistance while maintaining safe operating regions for
the device hardware (15 N mateachjoint). (2) The scaled hip and knee
moments were then delayed by 100 and 50 ms, respectively. This delay
was chosen at the knee because 50 ms was the minimum possible delay
toguarantee aconsistent relationship betweenbiological joint moment
estimates and exoskeleton assistance owingto limitationsinloop rate
reliability of the exoskeleton. Hip assistance was further delayed by an
extra 50 ms because this approach can maximize the positive work
done by the exoskeleton during walking, which can lead to further
benefits for the user***. (3) The exoskeleton assistance was lowpass
filtered using a second-order 10 Hz Butterworth filter to preserve the
frequency content of human motion**"** while removingjitter from
the estimator™. This filter added an extra delay of 25 ms, resulting in a
total hip delay of 125 ms and knee delay of 75 ms. In the case in which
the resulting assistance was larger than the peak exoskeleton torque,
commanded torque was clamped to the peak exoskeleton torque.

Because the exoskeleton controller intentionally delayed the hip
moment estimates by an extra 50 ms relative to the minimum achiev-
able system delay with our system, we chose to train the network to
estimate hip moments delayed by 50 msrelative tothe input sequence.
Our previous work found that delaying joint moment estimates relative
to the input sequence can further improve model accuracy**, and we
found that this approach resulted in an extra 5% improvement in hip
moment validation MAE for this study.

Neural network architecture optimization

Inour previous work, we achieved state-of-the-art accuracy in estimat-
ing user joint moments with a TCN®2**, In this study, we implemented
the TCN as originally introduced by Bai et al.> and modified for joint
moment estimation in our previous work™****, The TCN input consisted
of asequence of unilateral hip and knee encoder data, thigh, shank
and foot IMU data, and pressure insole data (vertical GRF and COP).
Owingtothe exoskeleton loop rate of 55 Hz, the data were upsampled
in real-time to 200 Hz to match the sampling frequency previously
used for the TCN. Each of the model inputs were also normalized using
their corresponding mean and standard deviation computed from
the training set. The TCN was designed with two output heads for the
instantaneous estimates of the total hip and knee flexion or extension
moments (thatis, the sum of exoskeleton torque and human biological
moment).Joint moment labels in the training set were scaled by par-
ticipantbody mass during training, such that the model was trained to
estimate joint moments in units of N m kg™ (refs. 32,54). Furthermore,
wetrained the TCN to estimate the totaljoint moments to maintain the
relationship between exoskeleton sensor dataand TCN joint moment
outputs, regardless of the specific parameters of the exoskeleton con-
troller, such as assistance magnitude. We then computed biological
joint moments later in the control framework by subtracting the exo-
skeleton torque from the total estimated moment.

In our previous work, we conducted a thorough hyperparameter
optimization of the TCN for estimating sagittal-plane hip moments®,
however, this approach did not consider model generalizability (that
is, during the hyperparameter optimization the model training set
and validation set consisted of the same ambulation modes). Further-
more, this optimization was conducted under different conditions
(only sagittal-plane hip moments, cyclic ambulatory activities and
kinematic sensors). Thus, we conducted a rigorous hyperparameter
optimization using a multi-stage approach, specifically targeting model
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generalizability under conditions consistent with this study (Extended
DataTablel).Instage1ofthe optimization, we used our previous data-
set of human lower-limb biomechanics during cyclic and non-cyclic
activities** to optimize alarge, 11-dimensional hyperparameter space
using Bayesian optimization implemented in Vizier*® (training and
testing more than 10,000 models). Instage 2, we finetuned the network
hyperparameters using actual exoskeleton sensor data from phases
1and 2 of the experimental protocol (details below) over a smaller,
six-dimensional search space that could be rigorously optimized using
grid search (training and testing 1,440 models). The six-dimensional
space was constructed to finetune the most sensitive network hyperpa-
rameters determined from the marginal and conditional results of the
stage 1optimization. Theresulting network hyperparameters (shown
inExtended Data Table1) resulted inan 8% improvementin MAE using
leave-one-participant-out cross-fold validation compared to using the
original hyperparameters from Molinaro et al.>.

Task optimization for generalizability

Because the collection of actuated, motion capture-labelled datais
difficult and costly, we first sought to discover a subset of tasks that
could allow a user-independent lower-limb joint moment estimator
to generalize to the rest of human activities. To determine the subset
of training activities that best promoted generalization, we used the
same dataset used for stage 1 of the hyperparameter optimization to
conduct a forward activity selection optimization (Extended Data
Fig.3a). During each optimization step, the TCN was trained and tested
using leave-one-participant-out validation to compute the expected
model performance when evaluated on anew participant. First, model
performance was computed by training the model using only the
level-ground walking databut tested onall activities. The TCN was then
iteratively trained from random initialization, including one activity
from the candidate task set into the training set at atime. On the ith
optimization step, the relative improvement in generalizability s, [{]
associated with including a candidate activity (g) into the training set
(thatis, the relative improvement in model performance on all activi-
ties beside g) was computed as

I = , o
sglil=——= ) eg ;li-11-¢,;lil, j*g, @
n-15

g*lil=argmaxs,[i] VgeGlil, )
g

wherenisthe totalnumber of tasks and eg;lilis the MAE of estimating
joint moments during the jth task when trained using the updated
training set over the first i — 1 optimization steps and the extra candi-
date task g. Thus, s, [{] evaluated the overall improvement in model
performance across all activities, excluding the relativeimprovement
ofthetaskathand. Furthermore, g*[i] was the activity associated with
the largest improvement score, which was then added to the training
set for all further optimization steps and removed from the set of can-
didatetasks Gtobeselected inthe next optimization step. This process
was repeated until all tasks were selected.

We defined the activity set that saturated model generalization as
the minimum set of selected activities that contributed more than
95% of the sum total of relative improvement in generalizability across
the complete optimization. After the first seven tasks, the model had
reached this threshold, indicating that further tasks failed to substan-
tially improve the model’s ability to estimate joint moments on other
tasks (Extended DataFig.3b). Aside from level-ground walking, which
was used to seed the optimizer, none of the selected tasks was cyclic
and four were unstructured.

Although model generalization saturated rapidly, task-specific data
continued toimprove user-independent, task-specific validation error
(Fig.2c). The overallmodel performance required 19 selected activities

before validation MAE fell within 5% of the validation MAE when trained
onallactivities. This demonstrates that there was added benefit to be
gained from training on task-specific data even after generalization
saturated. For all further analyses, the TCN was trained using the data
fromthese 19 selected tasks unless otherwise stated.

Sensor contribution to moment estimation

Previous joint moment estimation studies often use datafromIMUs and
jointencoders as model inputs™****5+5758; however, the relative impor-
tance of each of these sensors (and others) onmodel performanceis less
explored. Furthermore, the sensitivity of model performance relative
to sensor dropout (for example, from sensor disconnection) is also a
critical real-world consideration. To investigate these two topics, we
trained several extramodels under two different conditions: first, using
different subsets of available sensors and second, simulating sensor
disconnection during model deployment. We tested the performance
of these models offline on the data from the ten participants used to
test our approach online. For the first condition, two of the sensor
sets were inspired by common exoskeleton design choices: (1) remov-
ing the GRF and COP contributed by the insoles (that s, -insoles) and
(2) removing all foot mounted sensing (that s, -insoles, -foot IMU). The
other three sensor sets were chosen to demonstrate the contribution
from each unique sensor modality: (1) only using the thigh and shank
IMUs (IMU only), (2) only using the hip and knee encoders (encoder
only) and (3) only using the GRF and COP from the foot insole (insole
only). Forthe second condition, asingle sensor was effectively dropped
outduring model testing, by zeroing that respective sensor’sinputs to
simulate asensor losing connection during device deployment. These
comparisons are presented in Extended Data Fig. 1.

In the first condition, removing the GRF and COP resulted in a 0.03
and a 0.07 reduction in R*at the hip and knee, respectively, demon-
strating the moderate benefit of adding kinetic based sensing, withan
additional penalty when removing the foot IMU. The ‘IMU only’ condi-
tionresultedinafurther dropin performance;the benefitgained from
the encodersindicated that our six-axis IMUs did not fully capture the
relevant kinematic input information. Overall, the IMUs contributed
the most to the accuracy of the model, followed by the encoders and,
last, the insole. Previous work has shown that kinematic sensors can
be effectively used to estimate GRFs, indicating a potential reason the
IMUs contributed the most to the model***. Likewise, because the
insoles initially measure pressure, from which the GRF is calculated, the
amount of information provided to the model may be less than other
more accurate sensors, such as in-ground force plates.

In the second condition, dropping out different sensors showed
thereliance of our network on each sensor. Ingeneral, loss of asensor
resultedinasignificant dropinaccuracy, indicating that the model gen-
erally used all available sensing inputs in the neural network weights.
The loss of the knee encoder, however, was much worse for estimat-
ing knee joint moments and, similarly, the loss of the hip encoder was
much worse for estimating hip joint moments. The losses of the thigh
IMU and foot insole were likewise much more consequential to model
accuracy when compared to the loss of the shank or foot IMU. These
resultsindicate that our trained network learned torely on each sensor
for generatingjoint moment estimates, underscoring the importance
ofthe need for high-quality hardware and sensor integration; however,
further analyses could explore training the network with synthesized
sensor dropout to potentially improve robustness.

Experimental data collection

The dataused inthis study were collected over three phasesto facilitate
model training and online testing of the joint moment estimator. Over
the three phases, atotal of 22 able-bodied participants participatedin
the study protocol. Participants provided writteninformed consent to
participatein the study under Georgia Institute of Technology Institu-
tional Review Board protocol H21184. Consent to publish participant
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images was also obtained. In each phase, participants completed aset
of 28 cyclicand non-cyclicactivities, consisting of 66 total conditions
asdetailed inScherpereel et al.* and outlined in Extended DataFig. 2.
During these activities, retroreflective markers on both the body and
exoskeleton were tracked using a motion capture system at 200 Hz
(Vicon Motion Systems). Furthermore, overground force plates and
an instrumented treadmill (Bertec) were used to measure GRFs at
1,000 Hz. Owing to software limitations early in this study, motion
capture data collected for two participants during phase 1 were col-
lected at 120 Hz and subsequently upsampled to 200 Hz.

Tosyncthe exoskeleton datawith the participants’ ground-truth joint
biomechanics, the exoskeleton data were first upsampled to 200 Hz to
match the frequency of the motion capture data. At the start of each
exoskeleton trial when motion capture and GRF data were collected,
participants kicked three times with their right leg while exoskeleton
actuation was off. On the basis of this movement, the exoskeleton data
were time shifted to maximize the R? between the right knee encoder
and the resulting right knee joint kinematics computed from the bio-
mechanical model.

Phase1:initial data collection

In phase 1, ten participants (six males, four females, age of
23.7 £ 2.0 years, height 0f176.3 + 8.7 cmand body mass of 76.5 + 13.3 kg)
participated in a single day protocol collecting exoskeleton data and
ground-truth human joint moments during the 28 cyclicand non-cyclic
activities. As we could not deploy the task-agnostic controller until
initial training data were collected, participants completed all activi-
ties with exoskeleton assistance turned off while sensor data were
collected. To further increase the richness of our training data, we
also hand-designed activity-specific controllers to collect actuated
datafor 46 out of the 66 total experimental conditions. Spline-based
assistance wasimplemented as afunction of gait phase when possible
using eight- and six-node piecewise cubic Hermite interpolating poly-
nomials at the hip and knee, respectively. Gait phase was estimated
inreal-time using the duration of the previous two strides measured
fromthe pressureinsole data'®. The splines were shaped on the basis of
thebiological hip and knee moments reported in our previous work*.
Furthermore, animpedance-based stance-swing state machine was
used during several non-cyclic,impedance-like activities to control the
device. Stance and swing phase were determined using the vertical GRF
datameasured fromthe pressure insoles. During leg swing, assistance
was set to zero. During stance, the exoskeleton commanded torques
using a spring-mode with a stiffness of 5N m rad™" and an equilibrium
angle of 0°, which allowed all tasks to be completed without exceeding
the actuator capabilities. These controllers were not intended to pro-
vide optimal assistance, butinstead were used to collect arich dataset
for model training that included actuated exoskeleton data as well as
the unactuated data.

Phase 2: training data with pilot model

In phase 2, five new participants (four males, one female, age of
23.4 4.9 years, height of 171.4 £ 7.4 cmand body mass of 68.0 + 12.7 kg)
participatedin asingle day protocol similar to phase 1. However, during
phase 2 we deployed the task-agnostic controller on the exoskeleton
using a preliminary joint moment estimator trained using the phase 1
dataset. Each participant completed all 28 tasks while the exoskeleton
provided assistance, which generated a dataset closely representing
the controller to be deployed in the final phase.

Phase 3: online accuracy and user outcomes

In phase 3, ten participants (seven males, three females, age of
21.8 +2.5years, height of 174.8 £ 8.5 cmand body mass of 71.7 £ 10.2 kg)
participated in a multi-day protocol consisting of three sessions each
centred onaspecific outcome metric: model accuracy, metabolic cost
and lower-limb biological joint work. Model accuracy was assessed with

R?,r.m.s.e. and normalized MAE with respect to ground-truth total hip
and knee moments®?**°, Normalized MAE was normalized to the
peak-to-peak range of the corresponding ground-truth joint moments
per task. Metabolic cost and lower-limb biological joint work provided
anindication of the exoskeleton’s impact on user effort>¢¢%, with
metabolic cost more directly related to user energetics but only possible
tomeasure and fairly compare during long bouts of repetitive tasks with
consistent mechanical work requirements. During each session, the
exoskeleton was controlled using the task-agnostic controller informed
by the model trained on phase 1and 2 data. Three of the participants
werealready enrolled in previous phases of the protocol. To ensure that
the controller was evaluated on a participant-independent basis, we
retrained separate models from randomiinitialization for each of these
participants while withholding the participant-specific data from the
training set, ensuring that each participant was truly new to the network.

The network accuracy session was performed using the same pro-
tocol as phase 2 in which the exoskeleton was powered on for all 28
activities. During each condition, motion capture and GRF data were
collected to compute ground-truth joint moments, which were then
used to evaluate model performance. Each participant completed this
session first, which served as a training session for the participant to
adapt tothe exoskeletonassistance, acritical component to evaluating
human-exoskeleton interactions®. Owing to anerror when exporting
the segmented trials, data for the run task from one participant was
notincludedin thisstudy. Additionally, three participants returned to
perform eight truly new tasks while collecting the same datato compare
estimates to ground-truth moments (Extended Data Table 2).

During the lower-limb biological joint work session, participants
completed six tasks detailed in Extended Data Table 3. These tasks
were selected for our joint work analysis as measuring their resulting
metabolic cost wasinfeasible owing to participant fatigue and time con-
straints. Each activity was repeated under three conditions: (1) wearing
the exoskeleton with the task-agnostic controller providing assistance
(exoon), (2) without wearing the exoskeleton (no exo) and (3) wearing
the exoskeleton without actuation (zero torque). The order of these
conditions was randomized; however, to minimize the time taken to
complete the experimental protocol, the no exo condition was always
placed either at the beginning or at the end, and all of the no exo activi-
tieswere completed insuccession, whereas the zero torque and exo on
were alternated between each activity. Lower-limb positive biological
joint work of the participant was computed by summing the average
positive biological joint work from the hip, knee and ankle joints. Posi-
tive biological joint work for each joint was computed as the integral
of the positive biological joint power for each joint, which was calcu-
lated as the product of the biological joint velocity and the biological
jointmoment (thatis, the joint moment computed from ground-truth
inverse dynamics after subtracting exoskeleton assistance torque).
Results are presented as the average right leg positive joint work per
repetition or stride. Owing to abugin the exoskeleton datalogger dur-
ingthe experimental protocol, stair ascent results for one participant
and lunging results for one participant were notincluded in this study.
Further, although this analysis quantified changes in the energetics of
thebiological joints, it did not account for muscle-level changes, such
as muscle cocontraction.

At the beginning of the metabolic cost session, each participant
completed a habituation protocol to reacclimate to the device. The
habituation protocol consisted of level-ground walking on the tread-
mill at 1.25 m s™ while wearing the exoskeleton controlled with the
task-agnostic controller. Exoskeleton assistance was sequentially
ramped upinfour evenly spaced increments every 2 min until the par-
ticipant reached full torque assistance. The participant then walked
at full assistance (20 and 15% of the estimated biological hip and knee
moments, respectively) for 5 min to complete the habituation protocol.

During each metabolic trial, oxygen intake (V0,)and carbon dioxide
exhaust (VCO,) from each breath were measured using a metabolic
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measurement system (TrueOne 2400, ParvoMedics). User metabolic
cost was computed from the VO, and VCO, measurements using the
modified Brockway equation'®. These measurements were taken
during four activities: level-ground walking at 1.25 m s, lifting a25 1b
weight, 5° incline walking at 1.25 m s and running on level ground at
2.5ms . Forthelift weight trials,ametronome played atone at 10 bpm
and participants were instructed on each tone to use both hands to lift
all kg (251b) kettle bell off a shelf at waist height, touch the weight to
theground between their feet and then replace the weight on the shelf
before returning to neutral standing and waiting for the next tone. For
eachactivity, we tested the same three conditions as those of the joint
work protocol: no exo, exo onand zero torque. Furthermore, the basal
metabolic rate for each participant was measured froma 6 minstand-
ing trial while not wearing the exoskeleton. Owing to experimental
time constraints, motion capture data were not collected during the
metabolic experiments.

Thelevel-ground walking, lift weight and incline walking trials were
each completed using a within-participant counter-balanced design
(ABCCBA)™. Each condition lasted 6 min, and steady-state metabolic
cost for each trial was computed as the average of the last 3 min of
data'™*®. Owing to the strenuous nature of running, especially during
zerotorque, the running conditions were only completed once (ABC)
and lasted 3.5 min. Steady-state metabolic cost was then computed
from the output of a first-order model fit to the running data™*®. The
basal metabolic rate measured for each participant was subtracted
from the steady-state metabolic cost of each condition to compute
the user’s net metabolic rate required to complete each activity. Within
each activity, the order of conditions was pseudorandomized, with
the no exo condition eitherinthe A or C position to minimize donand
doff time. Owing to improper calibration of the metabolic system,
the metabolic data for one participant were omitted from this study.

To further understand the effect of our approach on user metabolic
cost during transient activities, we developed an extra protocol in
which we recorded metabolic cost during a varying speed and incline
treadmill circuit for three of the participants. Each 6 min trialinvolved
walking at speeds varying from 0.6 to 1.5 m s and running speeds of
2.0,2.25and 2.5 ms™. The speed of the treadmill was changed according
to the profile shown in Fig. 4b. Similarly, the treadmill incline varied
between 0°and 15° throughout thetrial (Fig.4b). The speed and incline
profile of the treadmill was designed to decrease walking speeds at
higher inclines, to keep the participant within an acceptable aerobic
respiration range for valid metabolic cost measurements. Similar to
the outcomes testing described above, the participants completed
arandomized ladder protocol consisting of no exo, exo on and zero
torque conditions (ABCCBA™ as above) while wearing a metabolic
measurement system (TrueOne 2400, ParvoMedics). Owing to an
exoskeleton malfunction, one trial of data from one participant had
to be removed; however, this trial was part of the C condition within
the protocol, which should mitigate any adverse ordering effects from
the removed datapoint. As described above, metabolic cost was com-
puted using the Brockway equation and averaged across the last three
minutes of the treadmill trial. This represents a consistent snapshot of
metabolic cost across varying conditions.

Whereas qualitative feedback from participants about exoskeleton
assistance was not formally collected, itisimportant to note that some
participants expressed that the knee extension assistance did not feel
helpful duringlevel-ground walking and occasionally felt uncomfort-
able. Otherwise, the overall response from participants about the exo-
skeleton assistance was quite positive across the trials used to evaluate
metabolic cost and lower-limb biological joint work.

Data availability

All of the exoskeleton sensor data and time-synced ground-truth bio-
mechanics used for training and evaluating our joint moment estimator

have been released with this publication. The data and details are
available at https://doi.org/10.35090/gatech/75759. The training data
includes15 users performing all 66 conditions from the 28 task groups
(Extended DataFig.2). Thefirst10 usersinclude both unactuated data
for all tasks and actuated data for those that could be mimicked with
a heuristic controller. The following five users include actuated data
for all tasks using a preliminary joint moment estimation model. The
validation dataincludes ten users performing the same 66 conditions
from the 28 task groups. The exoskeleton was actuated for all activi-
ties using the final model. Overall, this dataset includes more than 22
million labels of ground-truth moments across the left and right legs
per lower-limb joint. Furthermore, the Pvalues and corresponding
participant count for all statistical tests are available inthe Supplemen-
tary Dataand adetailed description of our statistical testsis provided
in the Supplementary Information.

Code availability

A Python package containing the code to deploy and test the models
trained in this study using our corresponding dataset is available at
https://doi.org/10.24433/C0.7641031.v2.
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Extended DataFig.1|Sensor ablations and dropouts forjoint moment
estimation. Rfor (a) hip and (b) knee joint moment estimation was compared
across five conditions where different combinations of sensors were removed.
RZfor (c) hip and (d) knee joint moment estimation was compared across six
conditions where differentindividual sensor signals were set to zero to
simulate sensor dropout. A one-way ANOVA was used to test for amain effect at
the hipandknee, and for eachjoint, a post-hoc multiple comparisons test with a
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Bonferronicorrection was conducted to evaluate comparisons between the
Allcondition and each ablation or dropout condition. The bar height depicts
theaverage performance across all 28 tasks and 10 participants. Error bars
depict+lstandard deviationacross participants. Therelative decreasein
performanceis depicted relative to the model trained on all sensors and
without artificial sensor dropout. Asterisks indicate statistical significance
(P<0.05).ExactPvalues are provided in Supplementary Datal.
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validation data. (b) Therelative improvementin generalization for each were computed from leave-one-subject-out cross-fold validation using

selected taskisshown. With each new task, the model was retrained and the al2-participant dataset; however, error bars were omitted for clarity.
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The MAE results are normalized to their corresponding peak-to-peak range of
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Extended DataFig. 5| Online joint moment estimation RMSE, normalized
MAE, and analysis of under- and overestimation. (a) Our approach
significantly reduced RMSE at the hip by 0.04 + 0.02Nm/kg (22 +10%, P = 0.03)
and at the knee by 0.07 + 0.02Nm/kg (35 + 8%, P =3 x107%) compared to the
baseline method during cyclicactivities. Forimpedance-like tasks, our
approachreduced RMSE by 0.11+ 0.03Nm/kg (35+ 9%, P =8x107) at the hip
andby 0.14 + 0.03Nm/kg (47 + 9%, P =3x107) at the knee compared to the
baseline method. (b) Estimator RMSE is shown per task for our approach and
thebaseline method. (c) Our approach significantly reduced normalized

MAE at the hip by 22.2% +11.8% (P =6 x10) and by 34.1% + 8.9% (P =6 x107)
atthe knee compared to the baseline method during cyclicactivities. For
impedance-like tasks, our approach reduced normalized MAE by 34.4% + 8.0%
(P=3x10"%) atthe hip and by 50.2% +14.2% (P =8 x 10™*) at the knee compared

tothebaselinemethod. (d) Estimator normalized MAE is shown per task for our
approachand the baseline method. (e) Histograms depicting the distribution
of under- and overestimation of the hip and knee moments relative to ground-
truth are shown. (f) Time series depicting the most severe example of
underestimation and overestimation across all validation trials are shown
(both of which occurred at the hip). In the box plots, black squares depict
inter-subject mean; colored boxes depict the interquartile range; horizontal
lines within boxes depict the inter-subject median; error bars depict the
inter-subject minimum and maximum (n=10). Asterisks indicate statistical
significance (P <0.05; exact P values are providedin Supplementary Datal).
Inthescatter plots, each marker corresponds to the inter-subject average
result forasingle task (n=10 expect for the Run condition wheren=9).



Extended Data Table 1| TCN hyperparameter optimization

Hyperparameter Stage 1 Search Space Stage 2 Search Space  Selected Value
# of Filters per 8, 16, 24, 32, 48, 56, 64, 56. 64, 72. 80 20
Layer 72, 80
# of Residual
Blocks (2 2,3,4,5,6 5,6 5
Convolutional
Layers per Block)
Kernel Size 2,3,4,5,6,7,8,9,10 2,4,5 5
Activation Function B GEL.U’ ReLU, ELU, ReLU, Swish ReLU
Swish — D
Learning Rate [le-6, 1e-3] Se-6, le-5, Se-5 Se-5
Block Batch Normalfzatpn, Batch Normalization, Weight
N Layer Normalization, . . T on
Normalization . L Weight Normalization Normalization
Weight Normalization
Dropout Type Element-Wise, Spatial Spatial Spatial
Dropout Probability [0, 0.3] 0:15 0.15
L1 Kernel
Regularization [le-5.1e3] 0 0
L2 Kernel
Regularization IHe=gte= 0 0
L2 Bias
Regularization [Ye=5;,Le=3] 0 0

Values shown without brackets were optimized categorically. Arrays shown with closed brackets were optimized on the closed interval. Hyperparameter combinations resulting in an input

sequence greater than 250 were omitted due to limitations in the simulated data at the bounds of each trial. In Stage 2, kernel and bias regularization were turned off since Stage 1 optimization

generally minimized these values across multiple optimization instances.
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Extended Data Table 2 | Activities for testing exoskeleton performance on entirely novel tasks

Task

Description

Burpees

Cart Walk

Crouch Walk

Dizzy Walk

Steep Incline/Decline Walk (15°)

Layup

Mountain Climbers

Split Walk

Participants were instructed to place their hands
on the ground and step back into a push up
posture. Then they stepped forward to return to
standing. This was performed 3 times leading with
the right leg and 3 with the left.

Participants were instructed to push a stationary
rod (simulating a heavy cart) while walking on the
treadmill at 0.8 m/s for 20 seconds. They then
performed the same task while pulling on the rod
and walking backward.

Participants were instructed to walk on the
treadmill at 0.8 m/s while in a crouched posture
for 20 seconds.

Participants spun around for 10 seconds and then
walked back and forth across the force plates until
no longer showing signs of dizziness.

Participants were instructed to walk up a 15°
incline at 1.2 m/s for 20 seconds. They then
repeated this while walking down the same
decline.

Participants were instructed to run up to the force
plates, plant a single foot, and jump to maximum

vertical height while landing with both feet on the
force plates. This was performed 3 times for both
right and left legs.

Participants were instructed to assume a push-up
posture and then alternate bringing each knee up
toward their chest as quickly as possible. This was
performed for 20 seconds.

Participants walked on a treadmill with the right

leg belt at 1.6 m/s and the left leg belt at 0.8 m/s

for 20 seconds. They then repeated this task with
the left belt at 1.6 m/s and the right at 0.8 m/s.




Extended Data Table 3 | Activities for testing exoskeleton effects on lower-limb biological joint work

Task

Speed

Description

Lift & Place Weight

Squat

Lunge

Sit & Stand

Right Leg Step Up

Stair Ascent

12 lifts per min

15 squats per minute

15 lunges per minute

12 sit & stands per minute

12 step ups per min

Self-selected speed

Participants were instructed to
lift a 251b weighted bag with
both hands. On the first tone,
participants started from
standing and lifted the bag to
waist height. They then paused
for the second tone, at which
they set the bag back on the
floor and then returned to
standing.

Participants were instructed to
squat with the 251b weight until
they barely touched a pillow
resting on a low stool. Then
they returned to standing.

Participants were instructed to
lunge with their right leg
forward until their left knee
barely touched a pillow laid on
the ground. Then they returned
to standing.

Participants were instructed to
alternate sitting down and
standing up on the tone without
using their arms for assistance.

Participants were instructed to
step up onto a 46 cm box with
their right leg. On the first tone,
participants stepped up with
their right leg and paused
standing on one foot. On the
second tone they stepped back
down to have both feet on the
ground.

Participants were instructed to
complete four bouts of walking
up a six-step staircase at their
natural walking pace.
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