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Abstract

Text simplification (TS) systems rewrite text to
make it more readable while preserving its con-
tent. However, what makes a text easy to read
depends on the intended readers. Recent work
has shown that pre-trained language models
can simplify text using a wealth of techniques
to control output simplicity, ranging from spec-
ifying only the desired reading grade level, to
directly specifying low-level edit operations.
Yet it remains unclear how to set these control
parameters in practice. Existing approaches
set them at the corpus level, disregarding the
complexity of individual inputs and consider-
ing only one level of output complexity. In
this work, we conduct an empirical study to
understand how different control mechanisms
impact the adequacy and simplicity of text sim-
plification systems. Based on these insights, we
introduce a simple method that predicts the edit
operations required for simplifying a text for a
specific grade level on an instance-per-instance
basis. This approach improves the quality of
the simplified outputs over corpus-level search-
based heuristics.

1 Introduction

In the NLP task of text simplification, systems are
asked to rewrite, restructure or modify an original
text such that it improves the readability of the
original text for a target audience while preserving
its meaning. However, text can be simplified in
many different ways and what makes a text simple
to read depends on the reader. Replacing complex
or specialized terms with simpler synonyms might
help non-native speakers (Petersen and Ostendorf,
2007; Allen, 2009), restructuring text into short
sentences with simple words might better match the
literacy skills of children (Watanabe et al., 2009).
Acknowledging that text simplification is highly
audience-centric (Stajner, 2021), recent work has
focused on developing techniques to control the
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Original: Paracho, the “guitar capital of Mex-
ico,” makes nearly 1 million classical guitars a
year, many exported to the United States.

Grade 5: Paracho is known as the “guitar cap-
ital of Mexico.” The town makes nearly 1 mil-
lion classical guitars a year, with many exported
to the United States.

w):1.19

Dependency Tree Depth Ratio

Word Length Ratio
(pTD): 1.50

Grade 3: Paracho is known as the “guitar capi-
tal of Mexico.” The town makes many guitars
and sells some in the United States.

w): 0.96

Dependency Tree Depth Ratio

Word Length Ratio
(pTD) : 1.00

Figure 1: Simplified texts can be obtained by either
specifying the target audience (via grade level) or by
using low-level control tokens to define the T'S operation
to be performed relative to the complex text (W, DTD).

degree of simplicity of the output at different lev-
els. At a high level, one can simply specify the
desired reading grade level of the output (Scarton
and Specia, 2018; Kew and Ebling, 2022). At a
low level, one can control complexity by describ-
ing the nature of simplification operations to be
performed (Mallinson and Lapata, 2019; Martin
et al., 2020). For example (Figure 1), one could ob-
tain two distinct simplifications of the same inputs
by indicating that they are intended for a grade 6
vs. grade 3 audience, or by specifying values for
low-level control tokens such as the word length
ratio (W) between the source and the target and
the maximum dependency tree depth (DTD) ratio
between the source and the target. For an original
complex text at grade 8, when simplifying to grade
5, the low-level control values indicate a conserva-
tive rewrite, whereas, for grade 3, the properties
encoded by the control tokens reflect a relatively
more lexical and structural change.
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While specifying a reading grade level might
be more intuitive for lay users, it provides weaker
control over the nature of simplification to be per-
formed. On the other hand, controlling the outputs’
simplicity by setting several low-level properties,
such as the number of words or dependency tree
depth, provides finer-grained control but can be
cumbersome to set by readers, teachers, or other
users. As a result, it remains unclear how to op-
erationalize the control of text simplification in
practice. Prior work sets low-level control values
(Iength, degree of paraphrasing, lexical complex-
ity, and syntactic complexity) at the corpus level
by searching for control token values on a devel-
opment set. This is done via maximizing a utility
computed using an automatic evaluation metric,
SARI, a metric designed to measure lexical sim-
plicity (Xu et al., 2016). While this approach is ap-
pealing in its simplicity, it remains unclear whether
this approach actually helps control complexity for
individual inputs, as the control token values are
always set at the corpus level.

This work presents a systematic empirical study
of the impact of control tokens on the degree and
quality of simplifications achieved at the instance
level as measured by automatic text simplifica-
tion metrics. Our empirical study shows that most
corpus-level control tokens have an opposite im-
pact on adequacy and simplicity when measured
by BLEU and SARI respectively. As a result, se-
lecting their values based on SARI alone yields
simpler text at the cost of misrepresenting the orig-
inal source content. To address this problem, we
introduce simple models to predict what control
tokens are needed for a given input text and a de-
sired grade level, based on surface-form features
extracted from the source text and the desired com-
plexity level. We show that the predicted low-level
control tokens improve text simplification on a con-
trollable TS task compared to corpus-level search-
based optimization.

2 Background on Controllable Text
Simplification

While text simplification has been primarily framed
as a task that rewrites complex text in simpler lan-
guage in the NLP literature (Chandrasekar et al.,
1996; Coster and Kauchak, 2011; Shardlow, 2014;
Saggion, 2017; Zhang and Lapata, 2017), in practi-
cal applications, it is not sufficient to know that the
output is simpler. Instead, it is necessary to target

the complexity of the output language to a specific
audience (Stajner, 2021). Controllable Text Sim-
plification can be framed as a conditional language
modeling task, where the source text X is rewritten
as an output Y that presents attributes V' as scored
by a model P(Y|X, V) (Prabhumoye et al., 2020).
In sequence-to-sequence models, techniques to con-
trol the properties V' during generation fall under
two categories depending on whether they modify
the training process (Sennrich et al., 2016; Holtz-
man et al., 2018; Dathathri et al., 2019; Li et al.,
2022) as described below, or are supplied as con-
straints during inference (Hokamp and Liu, 2017;
Ghazvininejad et al., 2017; Kumar et al., 2021). 1

Control Token Mechanisms A straightforward
method to capture a target attribute, V, in text gen-
eration models is to represent it as a special token
appended to the input sequence, [V'; X], which acts
as a side constraint Sennrich et al. (2016). These
constraints can be appended to the source or the
target sequence.” The encoder learns a hidden rep-
resentation for this token as for any other vocabu-
lary token, and the decoder can attend to this rep-
resentation to guide the generation of the output
sequence. This simple strategy has been used to
control second-person pronoun forms when trans-
lating into German (Sennrich et al., 2016), formal-
ity when translating to French (Niu et al., 2018), the
target language in multilingual scenarios (Johnson
et al., 2016) and to control style, content, and task-
specific behavior for conditional language models
(Keskar et al., 2019).

We provide an overview of the control tokens
introduced in prior work for text simplification in
Tables 1 and 2. Coarse-grained control over the
degree and the nature of the simplification, e.g. via
source and target grade levels is easier to inter-
pret by end users (Table 1, [1-6, 12]), whereas
controlling multiple low-level attributes (Table 1,
[7-11]) that map text simplification operations
to specific properties of the input and the output
text can provide better control over the generated
text. However, it is unclear how those low-level
control values should be set during inference as
these could vary significantly based on the source

'Please refer to Prabhumoye et al. (2020) for a full review
on controllable text generation techniques.

It is important to note that the term “control” used in
this paper does not imply strict constraint enforcement on the
model’s output. Rather, the control tokens or side constraints
merely serve as inputs that influence the model’s behavior and
encourage the generation of outputs with desired properties.
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PAPER-ID PAPER

CONTROL TOKENS

Target Grade and/or Operations

How TO SET?
User-defined or Predicted

User-defined

L, WR, DTD}

Corpus-level Optimization with SARI

Average over the training dataset

[1] Scarton and Specia (2018)

[2] Nishihara et al. (2019)

[3] Agrawal et al. (2021)

[4] Yanamoto et al. (2022) Target Grade (TG)
[5] Zetsu et al. (2022)

[6] Agrawal and Carpuat (2022) + Source Grade
[71 Martin et al. (2020) ACCESS {c,
[8] Sheang and Saggion (2021) + W

[9] Martin et al. (2022) — L+ RL

[10] Maddela et al. (2021) cc

[11] Qiao et al. (2022)

[12] Kew and Ebling (2022)

10 Psycho-linguistic Features

) per grade-level

Corpus-level Optimization with SARI

Hyperparameter Tuning with SARI

Table 1: Control tokens define the nature and degree of simplifications either at a coarse-grained level such as
specifying a target grade or via multiple low-level attributes like ACCESS. The control values are typically provided

by the users or are set apriori during inference.

ID NAME

C NbChars
L LevSim

DESCRIPTION

character length ratio between source and target.

character-level Levenshtein similarity (Levenshtein, 1966) be-

tween source and target.

WR WordRank

target.
DTD DepTreeDepth

W NbWords
RL  Replace-only LevSim

ratio of log-ranks (inverse frequency order) between source and

maximum depth of the dependency tree of the source divided by
that of the target.

word length ratio between source and target.
character-level Levenshtein similarity only considering replace

operations between source and target.

cc  Copy Control

percentage of copying between source and the target

Table 2: Control Tokens introduced in prior work cover a wide range of TS edit operations.

text and the degree of simplification required. In
all prior work (Martin et al., 2020, 2022; Sheang
et al., 2022; Qiao et al., 2022), these values are set
and evaluated at the corpus level. This is achieved
by doing a hyperparameter search, optimizing for
a single metric SARI on the entire validation set.
SARI measures the lexical simplicity based on
the n-grams kept, added, and deleted by the sys-
tem relative to the source and the target sequence.
We identify two key issues with this corpus-level
search-based strategy for setting control values as
described below:

Input Agnostic Control Setting these control
values at the corpus level disregards the nature and
complexity of the original source text. It does not
account for what can and should be simplified in
a given input (Garbacea et al., 2021) and to what
extent. We show that the control values are indeed

dependent on all these factors as exhibited by a
large variation observed in the values of the con-
trol tokens both at the corpus level (Figure 7) and
individual target grade levels (Figure 9).

Costly Hyperparameter Search Searching for
control tokens value at the corpus-level is an ex-
pensive process. Martin et al. (2022) use the One-
PlusOne optimizer with a budget of 64 evaluations
using the NEVERGRAD library to set the 4 AC-
CESS hyperparameters (up to 2 hours on a single
GPU). Sheang et al. (2022) select the values that
achieve the best SARI on the validation set with
500 runs. This takes >= 3 days when training the
model takes only 10-15 hours. As these values are
domain and corpus-specific, optimizing these val-
ues even at the corpus level for multiple datasets is
computationally expensive.
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We provide an analysis of the impact of these
control values defined at the corpus level on the
degree and nature of TS performed at the instance
level in the next section.

3 How do Control Tokens Impact TS?

Study Settings We study the impact of setting
the low-level control values at the corpus level on
the instance-level simplification observed using au-
tomatic text simplification metrics. We conduct our
analysis on the Newsela-grade dataset (Agrawal
and Carpuat, 2019), which consists of news arti-
cles associated with multiple reference simplifi-
cations for diverse reading grade levels, and thus
lets us analyze the degree and nature of simplifica-
tion observed across inputs and target readability
levels. This data is collected from Newsela,? an
instructional content platform meant to help teach-
ers prepare a curriculum that matches the language
skills required at each grade level and has been
used in prior work to benchmark controllable TS
models (Scarton and Specia, 2018; Nishihara et al.,
2019). It includes up to 4 text rewrites at various
complexity levels (defined by U.S. reading grade
levels 2-12) for an originally complex text. We use
the control tokens defined in Sheang et al. (2022)
(see Table 2 [1-51]) added to the source text as a
side constraint in the format, W_{} C_{} IL_{}
WR_{} DTD_{} {Source_text}.

Instance-Level Findings Following prior work
(Martin et al., 2020), we select the control tokens
that maximize SARI on the Newsela-grade devel-
opment set. We measure the complexity of the
outputs generated and compare them with the com-
plexity of the Newsela references by computing the
Automatic Readability Index (Senter and Smith,
1967, ARI, Refer Equation 1).

As can be seen in Figure 2, control tokens set at
the corpus level using SARI tend to over or under-
simplify individual input instances. When the refer-
ence distribution exhibits diversity in the degree of
the simplification performed, setting corpus-level
values is sub-optimal: outputs are frequently over-
or under-simplified as illustrated by the difference
in the reference and predicted grade levels.

Corpus-Level Findings Figure 3 shows the cor-
relation between 100 sets of control values set at the
corpus level and automatic TS metrics computed
using the outputs generated: SARI, BLEU, and FR

‘newsela.com

Predicted ARI
w
°

-2.5 e e
0 5 10 15 20 25

Reference ARI

Figure 2: ARI accuracy on the Newsela-grade Devel-
opment Set: 12%. Setting corpus-level control values
results in over or under-simplification.

(Flesch Reading Ease): Most control tokens have
an opposite impact on SARI and BLEU, except the
character length ratio, (C) . This suggests that set-
ting their values by optimizing for SARI alone at
the corpus level can be misleading, as a high SARI
score can be achieved at the expense of a lower
adequacy score. These findings are consistent with
the observation of Schwarzer and Kauchak (2018)
who note a similar negative correlation between
human judgments of simplicity and adequacy and
caution that: “improvement in one metric and not
the other may be due to this inverse relationship
rather than actual system performance”. These re-
sults lead us to concur with the recommendation of
Alva-Manchego et al. (2021), which advocates for
always augmenting SARI with an adequacy metric
for text simplification evaluation.

Overall, this analysis highlights important lim-
itations of the simplification abilities provided by
setting control tokens based on optimizing SARI
at the corpus level. We propose instead a simple
method to predict these values based on each input
instance and the desired output complexity.

4 Grade-Specific Text Simplification with
Instance-Level Control

Since the simplification for a given instance should
depend on the original source text, its complexity,
and the desired target complexity, we introduce
a Control Predictor module (CP) that predicts a
vector of control token values V' for each input
X at inference time. Figure 4 shows the overall
inference pipeline for generating the simplified text
using the control token values predicted using C' P.
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Figure 3: Adequacy-Simplicity Tradeoff on the Newsela-Grade development set when using 100 different control
tokens set at the corpus level: Most control tokens have an opposite impact on BLEU and SARI, suggesting that

setting their values on SARI alone can be misleading.

Feature
Source Text » Extraction »

Target Grade mp

Control

Predictor

,

3B ¥ TS Model

DTD

WR

® Output

Figure 4: At inference time, low-level control tokens are first estimated via the control predictor using the source
text and a user-defined target grade level. The low-level tokens are then fed as input to the TS generation model to

produce a simplified output.

Predicting Control Tokens We thus directly
train a Control Predictor (CP(#): X — V) to pre-
dict the control vector given features extracted from
an input text and the input and output grade levels.
Let {x;,y;} € D represent a complex-simple pair,
and the ACCESS controls associated with this pair
be V; = {W;,C;, Li, WR;, DT D, }. We propose
both single and multi-output regression solutions
for predicting V' as described below:

1. CP-Single: The model is trained to predict
the individual control tokens, resulting in one
model per control value.

2. CP-Multi: The model is trained to optimize
the mean RMSE error over all the control
dimensions.

We train a simple feature-based Gradient Boost-
ing Decision Trees classifier # to predict the control
values, V' using the CatBoost library using several
surface-form features extracted from the source
text as described below:

1. Number of Words

*https://catboost.ai/en/docs/

2. Number of Characters

3. Maximum Dependency Tree Depth

4. Word Rank

5. Mean Age of Acquisition (Schumacher et al.,

2016)

We incorporate the source and target grade levels
as attributes to accommodate the differences in
control token values resulting from the level of
simplification needed.

TS Model Training Given a source text (x)
and a control vector v, the controllable TS model
P(y|x,v), istrained to generate a simplified out-
put (y) that conforms to v in a supervised fashion,
by setting v to oracle values derived from the refer-
ence and optimizing the cross-entropy loss on the
training data.

5 Experimental Settings

Data We use the Newsela-grade dataset (Agrawal
and Carpuat, 2019) with 470k/2k/19k samples for
training, development and test sets respectively.

Metrics We automatically evaluate the truecased
detokenized system outputs using:
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1. SARI (Xu et al., 2016), which measures the
lexical simplicity based on the n-grams kept,
added, and deleted by the system relative to
the source and the target. >

2. BERTSCORE (Zhang et al.) for assessing
the output quality and meaning preservation

3. ARI-Accuracy (Heilman et al., 2008) that
represents the percentage of sentences where
the system outputs’ ARI grade level is within
1 grade of the reference text, where ARI is
computed as:

chars words

ARI = 4.71(

)+0.5( )—21.43.

(D

words sents

4. 9% Unchanged Outputs (U) The percentage
of outputs that are unchanged from the source
(i.e., exact copies).

We evaluate the fit of the control predictor in pre-
dicting V using RMSE and Pearson Correlation
with the gold ACCESS values.

Model Configuration We finetune the T5-base
model following Sheang et al. (2022) with default
parameters from the Transformers library except
for a batch size of 6, maximum length of 256, learn-
ing rate of 3e-4, weight decay of 0.1, Adam epsilon
of 1e-8, 5 warm-up steps, and 5 epochs. For gen-
eration, we use a beam size of 8. We train all our
models on one GeForce RTX 2080Ti GPUs. Train-
ing takes 7-8 hours to converge.

We use a learning rate of 0.1 and a tree depth
of 6 for training all the control predictor models
which takes approximately 5-10 minutes.

Controllable TS Variants We compare the
prediction-based TS models above with two vari-
ants:

* GRADE TOKENS: a model that uses high-
level control token values, i.e. the source
grade (SG) and the target grade (TG) levels
when finetuning the generation model (Scar-
ton and Specia, 2018).

* AVG-GRADE: a simple approach that sets con-
trol values with the average of the values ob-
served for the source-target grade pair.

Shttps://github.com/feralvam/easse

Controllable TS Baselines We compare our
approach with the corpus-level hyperparameter
search strategy (CORPUS-LEVEL) used in prior
work that selects the best low-level control values
based on SARI only (Martin et al., 2020).

Source Grade at Inference While the desired
target grade level is known during inference, we
automatically predict the grade level of each source
sentence using the ARI score in all the settings.

6 Results

We first discuss the accuracy of the Control pre-
dictor in estimating the ACCESS control values
on the Newsela-Grade dataset and then show the
impact of using the predicted control tokens as
constraints towards controlling the degree of sim-
plification in the generated outputs.

6.1 Intrinsic Evaluation of Control Predictor

CORRELATION
CONTROL M RMSE (|)
W C LevSim WR DTD
CP-SINGLE 0.405 0.407 0.567 0.398 0.567 0.197
CP-MuLTI  0.420 0.422 0.568 0.393 0.570 0.196

Table 3: CP-Multi improves correlation (averaged
over 10 runs) with ground truth low-level control token
values (W, C) on Newsela-grade development set over
CP-Single.

Table 3 shows the correlation and RMSE of pre-
dicted values with gold low-level control tokens.
Training the model to jointly predict all values,
V' improves correlation (4-0.015) for W, C over
training independent models (CP-Single) for
individual control tokens. We show that this can
be attributed to the correlation amongst the target
control values in Figure 5. Both (W, C) exhibit
moderate correlation with DTD. There is a drop
in correlation for WR when training a joint model
which is expected as WR is a proxy for lexical com-
plexity and is the most independent control token.

The correlation scores for the control tokens (W,
C, DTD, LevSim, WR) range from —0.33
(S_W, W) to0.49 (TG, LevSim). The mod-
erate correlation between the source features
(prepended with S) and the low-level tokens sug-
gests that the source text influences the nature of
simplification that can be performed. Additionally,
LevSim controls the degree of simplification as
suggested by its moderate-high correlation with
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Figure 5: Correlation between source features and con-
trol token values on the Newsela-Grade training set.

the target grade level and can be considered the
most prominent token for balancing the adequacy-
simplicity tradeoff.

6.2 Overall Grade-Specific TS Results

We show how the different control tokens as side
constraints influence the degree and the nature of
simplification in the generated outputs in Table 4.

CONTROL BERTSCORE SARI %Acc %U
Low-level

CORPUS-LEVEL 0.922 42.19 3.1 0
AVG-GRADE 0.945 44.09 32.7 0
CP-SINGLE 0.946 45.54 36.3 2
CP-MULTI 0.946 45.65 36.3 3
High-level

GRADE TOKENS 0.955 43.02 39.8 34

ORACLE 0.955 5353 567 12

Table 4: Results on the Newsela-grade dataset: using
source-informed tokens (CP-x) significantly improves
SARI over alternative control mechanisms. All dif-
ferences are significant except the difference between
CP-Single and CP-Multi with p-value of 0.00.

Setting corpus-level control for grade-specific
TS is suboptimal. Optimizing SARI alone for
selecting the low-level control tokens and setting
corpus-level control values is suboptimal for match-
ing the desired complexity level. This is indicated
by the low ARI accuracy of only 3.1%.

Predictor-based instance-level control outper-
forms grade or corpus-level control. Predictor-

based models (CP-Single, CP-Multi) that
set control tokens for each instance based on
source features improve simplicity scores com-
pared to using Avg-Grade, which only uses
grade information to set control values. These
models show improvements in SARI (+1.4-1.5)
and ARI (+3.6%) scores, highlighting the impor-
tance of setting control tokens at the instance level
rather than relying solely on just the grade in-
formation. Furthermore, setting control tokens
based on the average values observed for a given
source-target grade pair, i.e., Avg—Grade sig-
nificantly improves both BERTSCORE and ARI-
based metrics across the board compared to the
Corpus—level approach.

Grade-level (high) and operation-specific (low)
control tokens exhibit different adequacy and
simplicity tradeoffs. Low-level control tokens
offer more precise control over the simplicity of
outputs, resulting in improved SARI scores by
at least 2 points compared to Grade Tokens.
However, this advantage comes at the cost of lower
adequacy (BERTScore) and control over desired
complexity (ARI Accuracy). The models trained
with low-level control values exhibit lower grade
accuracy scores partly due to the limited repre-
sentation of the need for text simplification (Gar-
bacea et al., 2021) during the generation process
as suggested by a lower percentage of exact copies
in the output compared to Grade Tokens (Ex-
act copies in references: 12%). On the subset of
the test set with no exact matches between the
source and the reference text, Grade Tokens
and CP-Multi receive ARI accuracy of 34.2 and
34.0 respectively. Furthermore, we hypothesize
that the models trained with low-level control ex-
hibit low meaning preservation because none of the
control tokens directly encourage content addition
during text simplification. And, while the model
learns to perform an appropriate content deletion, it
does not generate a fitting substitution or addition
as required to preserve the meaning of the original
source text. We show a detailed operation-specific
analysis in the following section.

6.3 Impact of Control Tokens on TS Edit
Operations

Predicting control tokens for individual in-
stances improves coverage over the range of con-
trol values exhibited by the oracle. We show
the distribution of control values observed by differ-
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Figure 6: Edit Operations by Target Grade Levels: CP-Single performs correct and diverse edits as suggested by the
high Add-F1 and Del-P scores for all target grade levels > 4.

ent ways of setting the low-level control values in
Figure 7. The high variance in the range of oracle
values confirms that the control tokens vary based
on the source texts’ complexity and desired output
complexity. Where Corpus—1level fails to even
match the mean distribution, CP-Multi is able to
cover a wider range of control values. We show
that this trend holds across all target grade levels in
the Appendix Figure 9.

6 U B Corpus-level
. I Avg-Grade
B CP-multi
5 ¢ I Oracle
¢
’ s .

Control Value
w

-

$
o
g e

Control Type

Figure 7: Distribution of control values for different
control mechanisms: CP-multi provides a broader
coverage of control values as observed in the oracle
distribution over Corpus—level and Avg-Grade.

Simplified outputs generated using predicted
control tokens exhibit diverse edit operations.
Figure 6 shows the distribution of the KEEP-F1,
DEL-P, and ADD-F1 scores by target grade level
for the models trained with different control types,
where ADD-F1 computes the F1 score for the n-
grams that are added to the system output relative
to the source and the reference text. The model’s
deletion capability is measured by the F1 score for
n-grams that are kept (KEEP-F1) and the precision
of deletion operation (DEL-P) with respect to the
source and the reference.

CP-Multi consistently achieves better or com-
petitive DEL-P across all target grade levels over
alternative control mechanisms, suggesting that set-
ting control values informed by both the source
and desired complexity level improves the model’s
ability to appropriately delete redundant informa-
tion. The former also generally improves ADD-F1
scores, highlighting that the model also appropri-
ately performs lexical substitution or content addi-
tion as required across different grade levels (ex-
cept grades 2 and 10). Moreover, low-level control
tokens (CP-Multi, Avg—Grade) exhibit more
diverse and correct modifications compared to high-
level control (Grade Tokens), as evident from
their better ADD-F1 and DEL-P scores for grade lev-
els > 3, where the latter prioritizes meaning preser-
vation (high KEEP-F1).

7 Conclusion

We present a systematic analysis of the impact of
control tokens set at the corpus level on the degree
and quality of simplification achieved by control-
lable text simplification models at the instance level.
Our findings show that control tokens exhibit an
opposite correlation with adequacy and simplic-
ity. Hence, selecting their values at the corpus
level based on SARI alone leads to over or under-
simplifying individual instances. This motivates a
new approach to set low-level control tokens during
inference by predicting them given a source text
and desired target grade level. We show that this
approach is effective at improving the quality and
controlling the degree of simplification in gener-
ated outputs based on automatic evaluation. Fur-
thermore, predicted low-level control tokens yield
more diverse edit operations than alternative ways
of setting control on the Newsela-grade dataset.
Our proposed simple solutions improve the in-
ference capability of the controllable TS model
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for grade-specific TS and reduce the gap with the
oracle over a corpus-level baseline approach. How-
ever, more sophisticated techniques can benefit the
design and prediction of low-level control values
and their usage during inference which we leave to
future work.

Limitations

We note a few limitations of our work. While
our proposed strategies are simple and improve
the controllability over the generated simplified
texts during inference, the models trained with low-
level control tokens struggle to identify when a text
needs to be simplified compared to the model that
uses high-level weak supervision. These results
open space for further research in designing end-
to-end controllable TS models that are able to take
advantage of both high and low-level control to-
kens for controlling both the degree and the nature
of simplification.

Our work is also limited to one dataset and one
language (English) and hence studies the mapping
between U.S grade level to low-level edit opera-
tions. It remains an open question to study how the
control predictor would generalize in other settings,
datasets, and language pairs.
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A Impact of Training Data Size on Control Predictor
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Figure 8: Correlation scores for all low-level control tokens with varying training dataset sizes.

We vary the size of the dataset used to train the single and multi-regressor control predictors and show
the correlation for all the control values, V, in Figure 8. While correlation for CP-SINGLE saturates with
100 — 150K instances, CP-MULTI is able to take advantage of correlation amongst tokens and additional
training dataset to further improve the prediction of ACCESS control tokens.
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Figure 9: Distribution of control token values for different model variants by Target Grade level.
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