
SOH Estimation Algorithm and Hardware Platform 

for Lithium-ion Batteries  

Mohammad K. Al-Smadi, Student Member, IEEE and Jaber A. Abu Qahouq, Senior Member, IEEE 

The University of Alabama  

Department of Electrical and Computer Engineering  

Tuscaloosa, Alabama 35487, USA 

Abstract—This paper presents a state-of-health (SOH) 

estimation algorithm and hardware platform for lithium-ion 

batteries. Based on features obtained from the battery’s 

electrochemical impedance spectroscopy (EIS), an artificial neural 

network (ANN)-based SOH algorithm is developed. EIS 

measurements collected at different aging levels are utilized to 

train and test the SOH estimation algorithm. The minimum 

impedance magnitude and the impedance magnitude at zero phase 

show correlations with the battery SOH level and can be utilized 

to indicate the SOH value. The SOH estimation algorithm 

performance is evaluated, and the performance evaluation results 

indicate that the SOH estimation algorithm can be utilized to 

estimate the SOH.  
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I. INTRODUCTION 

Lithium-ion battery technology is widely adopted in many 
applications such as electric vehicles [1, 2], utility-scale energy 
storage [3], and consumer electronics [4]. To meet the demand 
for high performance battery systems, developing efficient 
battery management systems (BMS) became crucial. BMS 
functions include, but are not limited to, protection, thermal 
management, and estimation of state of charge (SOC) and state 
of health [5, 6]. The SOH level (remaining battery capacity) can 
be utilized to predict early failure of batteries and to trigger 
protection functions. In addition, it can be used to adjust the 
charging/discharging strategies to prolong the battery’s life [7].  

The SOH value can be defined as the ratio between the 
available battery capacity Qavailable and the nominal battery 
capacity Qnominal (battery capacity when it is new as provided in 
the manufacturer datasheet) as expressed in (1).  

𝑆𝑂𝐻 =
𝑄𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙
                         (1) 

The battery capacity is the amount of charge a fully charged 
battery can provide as it discharges from its maximum voltage 
to its minimum voltage. By discharging the battery from its 
maximum voltage to its minimum voltage, the available capacity 
Qavailable can be obtained. 

Various SOH estimation techniques are reported in the 
literature, and their classifications are based on, but not limited 
to, the need for direct measurement and whether a physical 
and/or equivalent circuit models are utilized. Generally, SOH 
estimation techniques can be classified into model-based 
techniques and experimental techniques as illustrated in Fig. 1. 

 Experimental SOH estimation techniques are either based 
on direct measurements (such as Coulomb counting [8] and 
internal resistance [9]) or indirect analysis  (such as incremental 
capacity analysis and differential voltage analysis [10], and 
ultrasonic analysis [11]). Model-based techniques are classified 
into adaptive algorithms (such as Extended Kalman Filter 
“EKF” [12] and Particle Filter “PF” [13]) and data-driven 
techniques [14]. Data-driven SOH estimation methods have 
gained more interest as there is no need to know the underlying 
aging mechanisms that lead to SOH deterioration [14]. Features 
extracted from battery historical data (e.gs., charging curves, 
discharging curves, and impedance) can be utilized to estimate 
the SOH [14]. Battery impedance spectrum changes (e.g., 
impedance magnitude increases) as the battery ages and hence 
can be utilized to estimate the SOH value [15, 16]. Fig. 2 shows 
a simplified equivalent circuit model (Thevenin model) for a 
battery. The parameter VOC represents the battery’s open circuit 
voltage and is correlated with the battery SOC level where Vt is 
the terminal voltage when the battery is under charge/discharge 
condition. The ohmic resistance is represented by Ro where the 
RC parallel branch represents the battery’s  transient behavior.  

This paper presents a data-driven SOH estimator based on 
some of the features extracted from the battery’s 
electrochemical impedance spectroscopy (EIS). In addition, the 
architecture of a hardware platform for obtaining EIS 
measurements and SOH estimation in real-time is presented.  

 
Fig. 1: Battery SOH estimation techniques. 

 
Fig. 2: Simplified equivalent circuit model for a battery. 

 



 

II. SOH ESTIAMTION ALGORITHM 

The SOH estimation algorithm in this paper utilizes some of 
the features in the battery EIS curve, namely, minimum 
impedance magnitude Zmin and the impedance magnitude when 
the impedance phase value is equal to 0º Zzero-phase. Fig. 3 
illustrates how both  Zmin and Zzero-phase can be obtained from a 
typical EIS curve. Both of these features’ values change as the 
battery ages (as the SOH value decreases). Fig. 5 through Fig. 8 
illustrate how each of Zmin and Zzero-phase change with SOH value 
at different state of charge (SOC) levels for two Tenergy ICR 
18650 battery cells (nominal capacity C=2.6 Ah [17]) [18]. Both 
Zmin and Zzero-phase values increase as the SOH decreases, showing 
nonlinear relations. SOH and EIS curves for the two battery cells 
were obtained from continuous discharging and charging 
(cycling). Each battery is discharged at 1 C (2.6 A) until the cell 
voltage reaches the minimum allowable value  (2.7 V). The 
battery cell is charged at constant current (CC) equivalent of a 1 
C (2.6 A) until the cell voltage reaches the maximum value (4.2 
V). Then, the battery is charged at constant voltage until the 
battery charging current drops below the end-of-charging 
current recommended by the manufacturer (50 mA for the 
battery cells in this paper). Every 30 cycles, the battery capacity 
is calibrated by measuring the amount of changes (Ah) it 
provides when discharged from the maximum voltage (4.2 V) to 
the minimum voltage (2.7 V). Then, the EIS is curve is measured 
using Gamry 5000E interface potentiostat [19]. The overall 
flowchart for the SOH estimator presented in this paper is 

illustrated in Fig. 4. The dataset of one battery (Battery#1) is 
used for to train the SOH estimator and the dataset of the other 
battery (Battery#2) is used to test the trained SOH estimator. 
Different indices are used to evaluate the prediction accuracy of 
the adopted machine learning algorithm. The following indices 
are used: root mean square error (RMSE) and mean absolute 
error (MAE). The two indices are expressed in (3)-(4) where n 
is the number of the outputs, A(i) is the actual output (true 
value), and P(i) is the predicted value. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴(𝑖) − 𝑃(𝑖))2𝑛
𝑖=1                                                      (3) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴(𝑖) − 𝑃(𝑖)|𝑛
𝑖=1                                                           (4) 

Neural network (NN) is utilized to map the nonlinear 
relationship between the battery health features (Zmin and Zzero-

phase) and the battery SOH. Two neural networks were trained 
and evaluated using the training and testing data at two SOC 
levels (100% and 60%). The neural networks adopted in this 
paper include one input layer of 2 inputs, two hidden layers of 5 
neurons each, and one output layer. The neural network is 
trained using deep learning toolbox in Matlab. Mean square 
error (MSE), expressed in (5) is used as a loss function in the 
NN training where y(i) is the actual battery SOH in the training 
dataset and yʹ(i) is the estimated SOH for the ith training sample. 
The training algorithm used for the NN training is Levenberg-
Marquardt [20].  

𝑀𝑆𝐸 =
1

𝑛
∑ |𝑦(𝑖) − 𝑦́(𝑖)|𝑛
𝑖=1                                                           (5) 

After training the NN using Battery#1 data, the parameters of 
the neural network (which are obtained using the training 
process), are used to predict the capacity of Battery#2. The 
prediction accuracy of the trained neural network are then 
evaluated using the error indices in (3) and (4). The performance 
evaluation results are summarized in Table I in page 4. The 
predicted SOH values using the SOH estimator at 100% and 
60% SOC levels are plotted against the true SOH values in Fig. 
9 and Fig. 10. As shown, the SOH estimator is capable of 
accurately estimating the SOH value using the input features 
(Zmin and Zzero-phase).  

 
Fig. 3: Typical battery EIS curve with Zmin and Zzero-phase marked. 

 
Fig. 4: Overall flowchart of SOH estimation. 



 

 
Fig. 8: SOH vs. Zzero phase at different SOC levels for Battery#2. 

 
Fig. 9: Estimated SOH vs. True SOH when the SOH estimator is 

trained and tested using data at SOC=100%.  

 

Fig. 10: Estimated SOH vs. True SOH when the SOH estimator is 

trained and tested using data at SOC=100%  

 
 

 

 

 

 
Fig. 5: SOH vs. Zmin at different SOC levels for Battery#1. 

 
Fig. 6: SOH vs. Zzero phase at different SOC levels for Battery#1. 

 
Fig. 7: SOH vs. Zmin at different SOC levels for Battery#2. 

 

 



III. SOH ESTIMATION PLATFORM 

To measure the EIS curve while the battery is connected in 
the system, the online impedance measurement method in [21] 
is utilized. Fig. 11 shows a block diagram for the SOH platform. 
The battery is connected to a DC-DC converter whose output 
voltage is controlled. Perturbing the converter’s output voltage 
Vo around its reference (average) value results in voltage and 
current responses at the battery side. Then, Fourier analysis is 
applied to the battery’s voltage and current responses to obtain 
voltage vac-fo and current iac-fo harmonic components which can 
be used to calculate the impedance magnitude and phase at the 
frequency fo at which the converter’s output voltage is perturbed 
as expressed in (6) where θz-fo is the impedance phase at the 
frequency fo. By perturbing the converter’s output at different 
frequency values, the EIS spectrum can be obtained 

𝑍𝑓𝑜 =
𝑣𝑎𝑐−𝑓𝑜

𝑖𝑎𝑐−𝑓𝑜
𝑒𝑗𝜃𝑧−𝑓𝑜                                 (6)  

Then, SOH features obtained from the EIS curve (Zmin and 
Zzero-phase in this paper) are extracted and fed into the pre-trained 
NN to estimate the battery SOH value. Conclusion 

IV. CONCLUSION 

This paper presented a SOH estimation algorithm for 
lithium-ion batteries. The SOH estimators utilizes features 
extracted from the battery’s impedance curve (minimum 
impedance magnitude value and the impedance magnitude value 
when the impedance phase is equal to zero) to estimate the SOH 
value. The performance of the presented SOH estimation 
algorithm is evaluated and it shows that the selected features 
from the battery impedance curve can be utilized for battery 
SOH estimation.  
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