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Abstract—This paper presents a state-of-health (SOH)
estimation algorithm and hardware platform for lithium-ion
batteries. Based on features obtained from the battery’s
electrochemical impedance spectroscopy (EIS), an artificial neural
network (ANN)-based SOH algorithm is developed. EIS
measurements collected at different aging levels are utilized to
train and test the SOH estimation algorithm. The minimum
impedance magnitude and the impedance magnitude at zero phase
show correlations with the battery SOH level and can be utilized
to indicate the SOH value. The SOH estimation algorithm
performance is evaluated, and the performance evaluation results
indicate that the SOH estimation algorithm can be utilized to
estimate the SOH.
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1. INTRODUCTION

Lithium-ion battery technology is widely adopted in many
applications such as electric vehicles [1, 2], utility-scale energy
storage [3], and consumer electronics [4]. To meet the demand
for high performance battery systems, developing efficient
battery management systems (BMS) became crucial. BMS
functions include, but are not limited to, protection, thermal
management, and estimation of state of charge (SOC) and state
of health [5, 6]. The SOH level (remaining battery capacity) can
be utilized to predict early failure of batteries and to trigger
protection functions. In addition, it can be used to adjust the
charging/discharging strategies to prolong the battery’s life [7].

The SOH value can be defined as the ratio between the
available battery capacity Qavailabie and the nominal battery
capacity Onominal (battery capacity when it is new as provided in
the manufacturer datasheet) as expressed in (1).

SOH = Qavailable (1)

Qnominal

The battery capacity is the amount of charge a fully charged
battery can provide as it discharges from its maximum voltage
to its minimum voltage. By discharging the battery from its
maximum voltage to its minimum voltage, the available capacity
QOavailable can be obtained.

Various SOH estimation techniques are reported in the
literature, and their classifications are based on, but not limited
to, the need for direct measurement and whether a physical
and/or equivalent circuit models are utilized. Generally, SOH
estimation techniques can be classified into model-based
techniques and experimental techniques as illustrated in Fig. 1.
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Fig. 2: Simplified equivalent circuit model for a battery.

Experimental SOH estimation techniques are either based
on direct measurements (such as Coulomb counting [8] and
internal resistance [9]) or indirect analysis (such as incremental
capacity analysis and differential voltage analysis [10], and
ultrasonic analysis [11]). Model-based techniques are classified
into adaptive algorithms (such as Extended Kalman Filter
“EKF” [12] and Particle Filter “PF” [13]) and data-driven
techniques [14]. Data-driven SOH estimation methods have
gained more interest as there is no need to know the underlying
aging mechanisms that lead to SOH deterioration [14]. Features
extracted from battery historical data (e.gs., charging curves,
discharging curves, and impedance) can be utilized to estimate
the SOH [14]. Battery impedance spectrum changes (e.g.,
impedance magnitude increases) as the battery ages and hence
can be utilized to estimate the SOH value [15, 16]. Fig. 2 shows
a simplified equivalent circuit model (Thevenin model) for a
battery. The parameter Voc represents the battery’s open circuit
voltage and is correlated with the battery SOC level where V; is
the terminal voltage when the battery is under charge/discharge
condition. The ohmic resistance is represented by R, where the
RC parallel branch represents the battery’s transient behavior.

This paper presents a data-driven SOH estimator based on
some of the features extracted from the battery’s
electrochemical impedance spectroscopy (EIS). In addition, the
architecture of a hardware platform for obtaining EIS
measurements and SOH estimation in real-time is presented.
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Fig. 3: Typical battery EIS curve with Zmin and Zzero-phase marked.

II.  SOH ESTIAMTION ALGORITHM

The SOH estimation algorithm in this paper utilizes some of
the features in the battery EIS curve, namely, minimum
impedance magnitude Zmin and the impedance magnitude when
the impedance phase value is equal to 0° Zerophase. Fig. 3
illustrates how both Zyin and Z,ero-phase can be obtained from a
typical EIS curve. Both of these features’ values change as the
battery ages (as the SOH value decreases). Fig. 5 through Fig. 8
illustrate how each of Zmin and Z,ero-phase change with SOH value
at different state of charge (SOC) levels for two Tenergy ICR
18650 battery cells (nominal capacity C=2.6 Ah[17]) [18]. Both
Zminand Zero-phase Values increase as the SOH decreases, showing
nonlinear relations. SOH and EIS curves for the two battery cells
were obtained from continuous discharging and charging
(cycling). Each battery is discharged at 1 C (2.6 A) until the cell
voltage reaches the minimum allowable value (2.7 V). The
battery cell is charged at constant current (CC) equivalent of a 1
C (2.6 A) until the cell voltage reaches the maximum value (4.2
V). Then, the battery is charged at constant voltage until the
battery charging current drops below the end-of-charging
current recommended by the manufacturer (50 mA for the
battery cells in this paper). Every 30 cycles, the battery capacity
is calibrated by measuring the amount of changes (Ah) it
provides when discharged from the maximum voltage (4.2 V) to
the minimum voltage (2.7 V). Then, the EIS is curve is measured
using Gamry 5000E interface potentiostat [19]. The overall
flowchart for the SOH estimator presented in this paper is

battery (Battery#2) is used to test the trained SOH estimator.
Different indices are used to evaluate the prediction accuracy of
the adopted machine learning algorithm. The following indices
are used: root mean square error (RMSE) and mean absolute
error (MAE). The two indices are expressed in (3)-(4) where n
is the number of the outputs, A(i) is the actual output (true
value), and P(7) is the predicted value.

RMSE = [LE1,(A() - P())? 3)

MAE = % n1AG) = P()] “4)

Neural network (NN) is utilized to map the nonlinear
relationship between the battery health features (Zmin and Zero-
phase) and the battery SOH. Two neural networks were trained
and evaluated using the training and testing data at two SOC
levels (100% and 60%). The neural networks adopted in this
paper include one input layer of 2 inputs, two hidden layers of 5
neurons each, and one output layer. The neural network is
trained using deep learning toolbox in Matlab. Mean square
error (MSE), expressed in (5) is used as a loss function in the
NN training where y(i) is the actual battery SOH in the training
dataset and y'(7) is the estimated SOH for the " training sample.
The training algorithm used for the NN training is Levenberg-
Marquardt [20].

MSE = =3 ly() =y () )

After training the NN using Battery#1 data, the parameters of
the neural network (which are obtained using the training
process), are used to predict the capacity of Battery#2. The
prediction accuracy of the trained neural network are then
evaluated using the error indices in (3) and (4). The performance
evaluation results are summarized in Table I in page 4. The
predicted SOH values using the SOH estimator at 100% and
60% SOC levels are plotted against the true SOH values in Fig.
9 and Fig. 10. As shown, the SOH estimator is capable of
accurately estimating the SOH value using the input features
(Zmin and chro—phasc)-
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Fig. 5: SOH vs. Zmin at different SOC levels for Battery#1.
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Fig. 6: SOH vs. Zzero phase at different SOC levels for Battery#1.
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Fig. 7: SOH vs. Zmin at different SOC levels for Battery#2.
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Fig. 8: SOH vs. Zzero phase at different SOC levels for Battery#2.
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Fig. 9: Estimated SOH vs. True SOH when the SOH estimator is
trained and tested using data at SOC=100%.
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Fig. 10: Estimated SOH vs. True SOH when the SOH estimator is
trained and tested using data at SOC=100%
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Fig. 11: SOH estimation platform.
Table I: SOH estimator performance ACKNOWLEDGEMENT

RMSE MAE
SOC=100% 0.060 0.050
SOC=60% 0.072 0.063

III. SOH ESTIMATION PLATFORM

To measure the EIS curve while the battery is connected in
the system, the online impedance measurement method in [21]
is utilized. Fig. 11 shows a block diagram for the SOH platform.
The battery is connected to a DC-DC converter whose output
voltage is controlled. Perturbing the converter’s output voltage
V, around its reference (average) value results in voltage and
current responses at the battery side. Then, Fourier analysis is
applied to the battery’s voltage and current responses to obtain
voltage Vacfo and current iacfo harmonic components which can
be used to calculate the impedance magnitude and phase at the
frequency f; at which the converter’s output voltage is perturbed
as expressed in (6) where 6,4 is the impedance phase at the
frequency f,. By perturbing the converter’s output at different
frequency values, the EIS spectrum can be obtained
Zgo = e ef0nr0 ©)

lac-fo

Then, SOH features obtained from the EIS curve (Zmin and
Z sero-phase 10 this paper) are extracted and fed into the pre-trained
NN to estimate the battery SOH value. Conclusion

IV. CONCLUSION

This paper presented a SOH estimation algorithm for
lithium-ion batteries. The SOH estimators utilizes features
extracted from the battery’s impedance curve (minimum
impedance magnitude value and the impedance magnitude value
when the impedance phase is equal to zero) to estimate the SOH
value. The performance of the presented SOH estimation
algorithm is evaluated and it shows that the selected features
from the battery impedance curve can be utilized for battery
SOH estimation.

This material is based upon work supported in part by the
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opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
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