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Abstract

Iron hydrides are proposed reactive intermediates for N2 and CO conversion in industrial and
biological processes. Here, we report a reactivity study of a low-coordinate di(¢-hydrido)diiron(II)
complex, Fea(u-H)2L, where L* is a bis(B-diketiminate) cyclophane, with isocyanides, which have

related electronic structures to N2 and CO. The reaction outcome is influenced by the isocyanide



substituent, with 2,6-xylyl isocyanide leading to Hz loss, to form a bis(u-1,1-isocyanide)diiron(I)
complex, whereas all the other tested isocyanides insert into the Fe-H bond to give (u-1,2-
iminoformyl) complexes. Steric bulk of the isocyanide substituent determines the extent of
insertion (i.e., into one or both Fe-H-Fe units) with zert-butyl isocyanide reacting to yield the
mono-(u-1,2-iminoformyl)diiron(Il) complex, exclusively, and isopropyl- and methyl-
isocyanides affording the bis-(u-1,2-iminoformyl)diiron(Il) products. Treatment of Fez(u-1,2-
CHNtBu)(u-H)L with 2,6-xylyl isocyanide (or XyINC) yields Fez(u-XyINC):L and yields the

aldimine, tBuNCH: as one of the organic products.
Introduction

Activation of dinitrogen and carbon monoxide remain active areas of chemical research, given
relevance to biological and industrial N2 fixation and the Fischer-Tropsch process, respectively.
Metal hydrides are proposed as reactive intermediates in these processes, with particular interest
in the reactivity of iron hydrides insofar as this metal is common to catalysts for both N2 and CO
activation. For example, proposed dissociative adsorption of H2 and either N2 or CO on catalyst
surfaces for the Haber-Bosch or Fischer-Tropsch processes, respectively, lead to NHs or
hydrocarbon formation.' In homogeneous systems, metal hydrides serve as a type of protecting
group for low-valent metal centers as H: reductive elimination unmasks the reduced metal
centers.*® Isocyanides are a useful proxy for CO and N2 for reactivity studies; these three
molecules have a pair of accessible m-accepting orbitals, albeit with differences in the ¢ donor
strength and m-acidity.” Unsurprisingly then, isocyanides are competent inhibitors or alternative
substrates for N2 in the catalytic systems noted above.*!%!! In contrast to N2, the steric bulk of the
isocyanide substituent provides an additional handle to limit the metal coordination number, and

stabilize structural analogs of proposed reactive intermediates otherwise inaccessible using CO or



N2.!2°15 Typically, isocyanides react with metal hydrides by migratory insertion into the M—H bond
to yield iminoformyl (-C(H)NR) or aminocarbyne (—CN(H)R) complexes or by Hz reductive
elimination followed by isocyanide coordination in terminal or u-1,1 modes depending on complex
nuclearity.'®2° Notably, Rosenberg and coworkers observed differences in the site of migratory
insertion (viz. C or N) in the reaction of a triosmium dihydride cluster with isocyanides as a
function of the isocyanide substituent,?! and similar results were reported for Wa(u-H)2(CO)a(n’-
Cp)2.* Comparable control of insertion vs. reductive elimination can be afforded by tuning the

steric demands of the ancillary ligands in the dimanganese di(u-hydride) complexes?! (Scheme 1).
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Scheme 1. Prior reports of reactivity of polynuclear transition metal hydrides with isocyanides
demonstrating dependence on isocyanide substitiuent or ancillary ligand.

Previously, our group reported that a di(u-hydrido)diiron complex, Fex(u-H)2L (L3~ = bis(B-
diketiminate)cyclophane) reacts with CO to reductively eliminate H> and yield a di(u-
carbonyl)diiron(I) complex, Fex(u-CO):L (Scheme 2).** Here, we extend that work towards
reaction with isocyanides and observe a substituent-dependent reductive elimination of Hz or
migratory insertion. Varying the equivalents of isocyanide used or the substituent from methyl to
tert-butyl results in retention of one u-hydride ligand to yield the (u-hydrido)(u-xC:xN-

iminoformyl) diiron product instead of the bis(iminoformyl) diiron(Il) complex observed for



reaction with 2 equiv. of methyl and isopropyl isocyanides. Reaction of Fex(u-HCNtBu)(u-H)L
with xylyl isocyanide effects aldimine loss, and is a rare example of isocyanide to aldimine
conversion.'? The substituent controls over the extent of insertion as well as over reductive

elimination, which is observed here is distinct from precedent.
Experimental Methods

General Considerations. All manipulations were performed within an Ar-filled Vigor glovebox
unless otherwise stated. Tetrahydrofuran (THF), benzene, toluene, n-hexane, and diethyl ether
were purchased from Sigma-Aldrich, dried using an Innovative Technologies solvent purification
system (now Inert, Amesbury, MA, USA), transferred to the glovebox, and stored over activated

3 A molecular sieves (200 °C, < 20 mT) for at least 24 h prior to use, with water contents below
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Scheme 2. Synthesis of the reported complexes from Fez2(u-H)2L by treatment with isocyanides.

Complexes are abbreviated as the diiron core with L? omitted for clarity.



25 ppm determined using a Mettler Toledo C20 Coulometric Karl-Fischer titrator. C¢Ds was
purchased from Cambridge Isotope Laboratories, dried at reflux over CaH:, then distilled,
degassed, transferred to the glovebox, and stored over activated 3 A molecular sieves. 2,6-
dimethylphenyl-, phenyl-, tert-butyl- and isopropyl- isocyanides were purchased from Oakwood
Chemical (Estill, SC, USA). Methyl isocyanide and Fex(u-H):L were prepared as reported
elsewhere.?*?° 'H Nuclear Magnetic Resonance (\H NMR) spectra were recorded on a Bruker 400
MHz spectrometer or an Inova 500 MHz equipped with a three-channel indirect detection probe
with z-axis gradients. 'TH NMR spectra of paramagnetic complexes were collected with a 0 s
relaxation delay, an acquisition time of 0.3 s, and for 256 scans. 'H NMR spectra of organic
diamagnetic products were collected using a 1.0 s relaxation delay, a 3.6 s acquisition time, and
averaged over 16 scans. Chemical shifts were reported in 6 (ppm) and were referenced to residual
internal C¢DsH resonance at on = 7.16 ppm for benzene-ds. FT-IR spectra were collected on drop-
cast samples using a ThermoFisher Scientific Nicolet iS5 spectrometer with an iD7 ATR stage
operated by the OMNIC software package with a 1.0 cm™ resolution and 32 scans per sample.
Mass spectrometry data were collected on an Agilent 6230 ESI-TOF for which the flow lines were
extensively rinsed with anhydrous air-free THF prior to use, in positive mode by direct injection
of samples as anhydrous THF solutions, and with a gas temperature and a fragmentation voltage
of 350 °C and 125.0 V, respectively.

X-ray Crystallography. Low-temperature X-ray diffraction data for 1-Xyl, 2-iPr, and 3-tBu
were collected on a Rigaku XtalLAB Synergy diffractometer coupled to a Rigaku Hypix detector
using CuKoa radiation (A = 1.54184 A) from a PhotonJet micro-focus X-ray source at 100 K. The
diffraction images were processed and scaled using the CrysAlisPro software.?® The structures

were solved through intrinsic phasing using SHELXT and refined against F? on all data by full-



matrix least squares with SHELXL following established refinement strategies.>’ 2’ All non-
hydrogen atoms were refined anisotropically. All hydrogen atoms bound to carbon were included
in the model at geometrically calculated positions and refined using a riding model. The isotropic
displacement parameters of all hydrogen atoms were fixed to 1.2 times the Ueq value of the atoms
they are linked to (1.5 times for methyl groups). In the structure of 3-tBu, the #-butyl group and
one ethyl group of the arene cap in L? ancillary ligand are disordered over two sites with refined
occupancy yielding 0.587(5):0.413(5) and 0.55(3):0.45(3) respectively (Figure S26). To preserve
reasonable geometry of disordered fragments, various distance and angle restraints were used.
Details of the data quality and a summary of the residual values of the refinements are listed in
Tables S2, S3, and S5 for 1-Xyl, 2-iPr and 3-tBu, respectively.

The X-ray measurement of 3-iPr and 3-Me were performed at 100(1) K and 180(1) K
respectively on a BRUKER D8 Venture with PHOTON III four-circle diffractometer system
equipped with a INCOATEC IpS 3.0 micro-focus X-ray tube (MoKa, A = 0.71073 A) and a
HELIOS multilayer optics monochromator. Frames were collected with Bruker APEX3 program.
30 The frames were integrated with the Bruker SAINT software package using a narrow-frame
algorithm.>!' Data were corrected for absorption effects using the Multi-Scan method (SADABS).*?
The structure of 3-iPr was solved through the intrinsic phasing method and refined using the
Bruker SHELXTL software package.?®** The structure is disordered with part of the molecule
including phenyl moiety with substituents distributed over two positions with a refined occupancy
ratio yielding 0.565(6):0.435(6) (Figure S26). A number of distance and angle restraints were used
to preserve reasonable geometry of disordered fragment. All non-hydrogen atoms (including
disordered groups) were refined anisotropically with applied restraints for modelling ADPs of

some disordered atoms. All hydrogen atoms, except the hydride ligand, were placed in calculated



positions and refined within the riding model. Coordinates and temperature factor of the hydride
ligand are fully refined. Temperature factors of all C-bound H atoms were not refined and were
set to be either 1.2 or 1.5 times larger than Ueq of the corresponding heavy atom. Details of the
data quality and a summary of the residual values of the refinements are listed in Tables S4. The
structure of 3-Me was solved through direct method using the Bruker SHELXTL software
package.?®** The structure is disordered with part of the molecule, including one Fe site, one
phenyl moiety with substituents and the coordinated imine, distributed over two positions with
refined occupancy ratio of 0.576(14):0.424(14) (Figure S26). As for prior structure solutions,
distance and angle restraints were employed to preserve a reasonable geometry of the disordered
fragment. All non-hydrogen atoms (including disordered groups) were refined anisotropically with
applied restraints for modelling ADPs of some disordered atoms. All hydrogen atoms, except for
the hydride, were placed in calculated positions and refined within the riding model. The hydride
ligand coordinated to the Fe centers is disordered over three positions and located between the
heavy atoms. Coordinates of the disordered hydride ligands are refined with Fe-H distance
restraints. Temperature factors of all H atoms were not refined and were set to be either 1.2 or 1.5
times larger than Ueq of the corresponding heavy atom. Details of the data quality and a summary

of the residual values of the refinements are listed in Table S6.

Fez(u-XyINC):L, 1-Xyl. To a solution of Fe2(x-H)2L (50.0 mg in PhMe, 73.4 pmol) stirred with
a Pyrex-coated magnetic stir bar 2,6-xylyl isocyanide (20.2 mg in 2 mL PhMe, 154 pmol) was
added dropwise. The reaction was stirred at ambient temperature for 3 h over which the reaction
mixture gradually changed from dark brown to reddish-brown. The solvent was removed under
reduced pressure to afford 1-Xyl as a dark red solid (57.6 mg, 83.4%). Single crystals suitable for

X-ray diffraction were grown by cooling a saturated solution of as-isolated 1-Xyl in PhMe to -



33°C for 2 d to afford dark brown crystals (8.0 mg, 12.6%). The solution was saturated at 60 °C
and filtered through a Celite plug, which was pre-rinsed with anhydrous PhMe. 'H NMR (400
MHz, C¢Ds, 298 K) 6 (ppm): 101.47, 24.43, 6.96-7.39, 2.11, 2.01, 0.27, -40.20, -45.16, -80.54,
and -90.41. ATR-IR (cm™): 2960, 2925, 2867, 1854, 1820, 1605, 1563, 1525, 1460, 1428, 1399,
1372,1328,1012, 763. Anal. Calc. for CseH72NeFe2-0.4 THF (%): C 71.49,H 7.71, N 8.93. Found:

C 70.97, H 7.90, N 8.49. perr= 6.9(2) pp

Fex(u-kC:xN-HCNiPr):L, 2-iPr. Fex(u-H):L (50.0 mg, 73.4 pmol) was dissolved in 4 mL
PhMe taken in a 20 mL scintillation vial. The sample was stirred using a PTFE stir bar and cooled
to -33 °C. To this sample, 1.5420 mL of a 0.1 M stock solution of iPrNC in PhMe precooled to -
33 °C was added dropwise. The resulting dark red solution was stirred for 12 h at ambient
temperature. Volatiles were removed under reduced pressure to yield 2-iPr as a dark brown solid
(49.6 mg, 83.1%). Single crystals suitable for X-ray diffraction analysis were grown by layering
hexanes on a saturated PhMe solution of 2-iPr at -33 °C for 2 d (8.0 mg, 13.3%). The PhMe
solution was saturated by heating to 60 °C briefly (< 30 s) and then filtered through a Celite plug,
which was pre-rinsed with anhydrous PhMe. '"H NMR (400 MHz, CsDs, 298 K) & (ppm): 82.94,
70.54, 58.19, 54.54,4.22,2.12,0.83,0.31, 0.30, -2.22, -9.61, -20.74, -22.18, -26.15, -28.15. ATR-
IR (cm™): 2960, 2925, 2868, 1515, 1466, 1429, 1397, 1372, 1325, 1016 Anal. Calc. For

CasH7oNeFe2 (%): C 67.47, H 8.62, N 10.26. Found: C 67.20, H 8.23, N 9.16. pefr=5.7(2) us

Fe2(u-kC:xN-HCNiPr)(u-H)L, 3-iPr. Fex(u-H):L (10.0 mg, 14.6 pmol) was added to a 20 mL
scintillation vial containing a Teflon magnetic stir bar and 4.0 mL PhMe, and the solution cooled
to -33 °C. To this solution, iPrNC in PhMe (147.0 pL, 0.1 M solution, 14.7 umol) cooled to -33
°C was added dropwise and stirred at ambient temperature for 12 h. The solvent was then removed

under reduced pressure to afford a brownish-red solid (10.1 mg, 91.0 %). Single crystals suitable



for X-ray diffraction were obtained by the dissolution of the brownish-red solid in benzene (70
°C), followed by the slow evaporation of the solvent into mineral oil at ambient temperature after
7 d. "TH NMR (400 MHz, CsDs, 298 K): & (ppm): 104.39, 101.11, 93.29, 84.14, 78.12, 9.31, 5.41,
1.38,1.26,-3.51,-5.29,-16.79, -33.17, -35.13, -39.40, -47.84. ATR-IR (cm™): 2961, 2924, 2868,
1520, 1457, 1430, 1394, 1372, 1322, 1249, 1014. Anal. Calc. for C42He3NsFe2 (%): C 67.29, H

8.47,N 9.34. Found: C 66.89, H 8.57, N 9.02. pterr= 5.4(2) ps

Fez(u-kC:xN-HCN7Bu)(u-H)L, 3-tBu. To a 20 mL scintillation vial charged with Fex(u-H):L
(150.0 mg, 220.0 umol), 4.0 mL PhMe, and a PTFE magnetic stir bar at ambient temperature,
tBuNC (27.5 mg, 330.0 umol) dissolved in 2.0 mL PhMe was added dropwise. The reaction
mixture was stirred at ambient temperature for 3 h after which the solvent was evaporated under
reduced pressure affording 3-tBu as a dark red solid (134.7 mg, 80.2%). Single crystals for XRD
diffraction were obtained as described for 2-iPr (13.9 mg, 8.2%). '"H NMR (400 MHz, CsDs, 298
K): & (ppm): 94.17, 87.58, 74.81, 65.20, 9.56, 8.86, 4.64, 0.87, -2.77, -15.48, -27.86, -30.60. ATR-
IR (cm™): 2961, 2924, 2868, 1520, 1457, 1430, 1394, 1372, 1322, 1249, 1014. Anal. Calc. for

Ca3HesNsFe2 (9%): C 67.63, H 8.58, N 9.17. Found: C 67.38, H 8.69, N 9.05. petr=5.6(2) us

Fex(u-kC:xN-HCNMe)(u-H)L, 3-Me. A 20 mL scintillation vial was charged with Fex(u-H):L
(5.0 mg, 7.3 umol), 4 mL PhMe, and a Pyrex magnetic stir bar, and then cooled to -33 °C. To this
solution, MeNC (36.7 uL, 0.1 M in PhMe, 3.7 umol) pre-cooled to -33 °C was added dropwise.
The reaction was stirred at -33 °C for 12 h, and then at ambient temperature for 30 min. The
reaction was then cooled to -33 °C, followed by dropwise addition of a second portion of MeNC
(36.7 uL, 0.1 M in PhMe, 3.7 umol). As before, the reaction was stirred at -33 °C for 12 h, and

then for 30 min at ambient temperature. NOTE: Sequential addition of 0.5 equivalent of MeNC is



required as addition of one equivalent affords a mixture of the 1 equiv. and 2 equiv. products, and
unreacted Fe:(u-H):L. All volatile species were removed under reduced pressure to yield a dark
brown solid (4.9 mg, 6.8 umol). Single crystals suitable for X-ray diffraction were obtained by
slow evaporation from a saturated solution in diethyl ether at ambient temperature.!H NMR (400
MHz, C¢Ds, 298 K) 6 (ppm): 96.25, 92.28, 90.40, 89.67, 81.62, 9.60, 2.11, 0.12, -3.17, -7.40, -
16.55, -18.69, -34.54, -36.03. ATR-IR (cm™!): 2959, 2927, 2869, 1527, 1459, 1428, 1398, 1372,
1329, 1019. Anal. Calc. for C40Hs9NsFe2-1 C4H100 (%): C 66.41, H 8.74, N 8.80. Found: C 66.05,
H 8.48, N 9.17. petr=4.2(2) uB

Reaction of Fey(u-H):L with 2 equiv. MeNC. This reaction was performed as described for the
1 equiv. reaction above, except that MeNC was added in four separate portions (4 x 36.7 uL, 0.1
M in PhMe, 4 x 3.7 umol). The dark, red-colored reaction mixture was then dried in vacuo to yield
a dark brown solid (5.3 mg,7.0 pmol)."H NMR (400 MHz, CsDs, 298 K) & (ppm): 121.23, 119.63,
94.62, 84.95, 62.24, 20.71, 0.77, -0.57, -3.91, -7.14, -39.92, -43.64, -48.95, -51.32, -79.76. ATR-
IR (cm™):2958, 2923, 2867, 1512, 1459, 1427, 1394, 1371, 1319, 1015.

Reaction of Fez(u-H):L with 2 equiv. PhNC. Fex(u-H):L (53.7 mg, 78.9 umol) was dissolved
in 4.0 mL PhMe. To the scintillation vial containing this mixture, a solution of PANC (2.1350 mL,
77.58 mM in PhMe, 165.7 umol) was added dropwise resulting in a color change to reddish brown
upon mixing. The reaction was stirred for 90 min at ambient temperature, and then dried under
reduced pressure to yield a brown solid (66.1 mg). 'H NMR (400 MHz, CsDs, 298 K) § (ppm):
90.24, 83.84, 69.16, 65.07, 16.55, 9.51, 4.26, 2.09, 1.16, 0.44, -2.10, -7.28, -27.40, -30.80. ATR-

IR (cm™): 2959, 2925, 2867, 1592, 1518, 1458, 1429, 1393, 1372, 1322, 1018.

Results and Discussion
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Treating Fea(u-H)2L with 2 equiv. of 2,6-xylyl isocyanide (XyINC) in toluene at ambient
temperature afforded a C2y symmetric species, 1-Xyl, and Hz (§ = 4.50 ppm), based on 'H NMR
spectra of product mixture (Figure S1, S4). IR spectra recorded on 1-Xyl have strong absorptions
at 1820 cm™ and 1853 cm, consistent with bound RNC ligands (Figure S3).3* A transient species
was observed by NMR spectroscopy 10 min after the addition of XyINC at ambient temperature
(Figure S5). Resonances for this transient disappear as the reaction proceeds with those for 1-Xyl
concomitantly increasing in intensity, consistent with, but not confirmatory of, this transient as a
reaction intermediate. Reaction of 1 with fewer equiv. of XyINC results in unreacted Fea2(u-H)2L
and 1-Xyl. The solid-state structure of 1-Xyl contains a diiron core with one isocyanide bound in
a u-n':n* fashion and between the ligand arene rings, and a second isocyanide coordinated in a u-
1,1 mode (Figure 1). The observed solid state Cs symmetry of 1-Xyl differs from the solution phase
Cavy symmetry, implying that the isocyanide coordination modes are fluxional on the NMR
timescale at ambient temperature or the observed asymmetry arises from crystal packing effects.
The -5 :5*-xylylisocyanide N=C bond length is longer as compared to that of the u-1,1-isocyanide
(viz. 1.275(1) A vs. 1.189(1) A, respectively), as expected given the greater extent of formal sp?
hybridization based on the C=EN—Cxylyi bond angle (viz. 138.4(9)° vs. 158.6(1)°, respectively).?>*
Typically, the u-n':17* mode is observed for N2 and isocyanides bound to reduced early transition
metals and is rarely observed for late 3d metals, including the few examples of heterometallic
dinuclear complexes of Fe and a 4d transition metal.**>°> The only structurally characterized
examples of a u-n':p*-isocyanide in a homometallic dinuclear 3d metal complex are the
dimanganese(0) and dititanium(III) complexes reported by Balch and Cloke, respectively.’®>” A
holistic comparison of the reported N=C, M—#*:C, and M—;*:N bond distances and the assigned

vNe energies and those for 1-Xyl highlight that the bond metrics are poorly correlated with the IR
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data (Table SI). For example, the N=C bond distance in Mn2(u-n'm>p-
CH3C6¢H4NC)(Ph2PCH2PPh2)2(CO)4 of 1.2479(2) A is comparable to that in 1-Xyl, yet the vnc is
observed at 1661 cm™ vs. 1820 cm™! for 1-Xyl.°**” Nonetheless, the trend that 1-Xyl exhibits less
activation of the isocyanide agrees with the greater electronegativity of Fe vs. metals in other
reported examples and is consistent with IR data for a heterometallic dinuclear complex containing
an 5*-isocyanide bound to an Fe center.?® In contrast to the local pseudo-tetrahedral geometry (T4
= 0.72 and 0.85) at each iron center of 1-Xyl, a previously reported mononuclear bis(isocyanide)

Fe(I) B-diketiminate complex exhibits square planar geometry, likely a consequence of the

1.2908(1) _ 1.504(2)

2.0431(1)

‘\ & 2.0345(1)
. |
: > - \2.0310(1)

{ 1.2944(1)
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2-iPr 3-iPr 3-tBu

Figure 1. Crystal structures of 1-Xyl, 2-iPr, 3-iPr and 3-tBu with thermal ellipsoids at 50%
probability level from left to right, respectively (top). Solvent molecules and hydrogen atoms
removed for clarity. Primary coordination spheres of Fe ions in 1-Xyl, 2-iPr, 3-iPr and 3-tBu
respectively, with pertinent bond lengths in A (bottom). H, C, N and Fe atoms are shown as green,
grey, dark blue and orange ellipsoids, respectively. The t-butyl group and one ethyl moiety in 3-
tBu, and one of the ethyl substituents and the one of the phenyl rings in 3-iPr were positionally
disordered; the depicted structures represent the models with >50% occupancy for the disordered

fragment.
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geometric constraints afforded by the cyclophane ligand used here.!® The mononuclear complex
can also accommodate a third isocyanide donor to form a tris(isocyanide) Fe(I) complex, which is
similar to the related polycarbonyl Fe(I) B-diketiminate complexes.’® By contrast, NMR spectra of
1-Xyl were unchanged upon the addition of excess XyINC, even with heating to 60°C for 24 h. >
Together with prior observations for CO and N2 coordination to diiron complexes of this ligand,
we conclude that the L* ligand effectively controls the coordination number and the local
coordination geometry of each metal center within the complex.

We then reacted Fex(u-H)2L with 2 equiv. of isopropyl isocyanide (iPrNC), which yielded a Cs
symmetric product 2-iPr lacking the IR-absorptions in the 1700-2200 cm™' range (Figure S6, S8).
In the solid-state structure of 2-iPr, insertion of an iPrNC into each u-hydride affords the bis[u-
KC:kN-(isopropyl)iminoformyl]diiron complex (Figure 1). Longer C—N bond lengths of 1.2908(1)
A and 1.2944(1) A and more acute C—-N—Cipr bond angles (121.90(1)° and 122.45(1)°) compared
to those in 1-Xyl support decreased CN bond order.®®** The nominally coplanar B-diketiminate
arms in 2-iPr with a dihedral angle between BDI planes of 172.951(1)° as compared to 1-Xyl and
to other complexes of L2 reveals the flexibility of this cyclophane ligand to accommodate the
steric demands of the iPr group.?+®*

Formation of 2-iPr is expected to be stepwise, traversing a (u-hydrido)(u-iminoformyl)
complex. Then, reaction of Fex(u-H):LL with 1 equiv. of iPrNC expectedly generated the (u-
hydrido)(u-kC:kN-iminoformyl) diiron(II) complex, 3-iPr, based on 'H-NMR, IR, and single
crystal X-ray diffraction (XRD) data (Figure 1, S9, S11). From XRD data on single crystals of 3-
iPr, the u-1,2-iminoformyl bridges the Fe centers outside of the cyclophane arene cavity,
consistent with the greater steric accessibility of this hydride as compared to the hydride within

the ligand cavity (Figure 1). Addition of a second equiv. of iPrNC to 3-iPr yielded 2-iPr,
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corroborating the stepwise formation of 2-iPr from Fez2(u-H):L (Figure S12). Ligand flexibility is
again evident with substantial pinching of the cyclophane cavity—the arene-arene dihedral angle
is 19.752(2)°— attributed to the relative differences in steric demands of hydride vs. the
(isopropyl)iminoformyl (Figure S24).

To probe steric effects of the isocyanide substituent on the reaction, Fea(u-H):L was treated
reacted with methyl- or phenyl isocyanide, which yielded product mixtures with 'H-NMR and IR
spectra consistent with migratory insertion products (Figure S16-S18, S20-S23). The crystal
structure for the product of the reaction with 1 equiv. methyl isocyanide (MeNC), 3-Me, evidences
insertion of MeNC into the /ess accessible hydride within the cyclophane cavity, implying that the
internal hydride is more reactive (Figure. S19). Selective formation of 3-iPr and 3-tBu (vide infra)
in which the isocyanide insertion is at the more accessible hydride indicates that the site of reaction
is finely balanced between substrate and ligand steric effects and electronic factors. Insertion
reactivity for PANC as for the alkyl isocyanides implies that the steric consequences of the two
ortho-methyl groups in XyINC precludes migratory insertion and leads to reductive elimination
instead. Steric clashes from the two ortho-methyl groups in the xylyl group and the iminoformyl
(if formed) would orient the iminoformyl out-of-plane with the xylyl ring, introducing steric
conflicts between the ligand arene or Et groups.®*7!

Similarly, reaction of Fex(u-H):L with 1 equiv. of tert-butyl isocyanide (tBuNC) at ambient
temperature afforded 3-tBu, the tert-butyl analog of 3-iPr, with comparable 'H-NMR, IR, and
XRD data (Figure 1, S13, S15). In contrast to the reaction of Fex(u-H):L with iPrNC, reaction of
either Fe2(u-H):L with more than 2 equiv. fBuNC or of 3-tBu with additional equiv. of fBuNC
results only in 3-tBu, even with heating to 60 °C for 1 d. We conclude then that, the steric demands

of the tBu- group preclude migratory insertion of a second equiv. of tBuNC. A similar outcome
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was recently reported by Crimmin and coworkers for a tetrameric magnesium hydride cluster for
which reaction with XyINC results in insertion into two of the Mg-(u-H) bonds whereas MeNC
inserted into all four hydride sites.”” The XRD structure of 3-tBu is isostructural with that of 3-
iPr, with comparable positions of the bridging iminoformyl outside of the cyclophane cavity
(Figure 1) Electron density corresponding to the bridging hydride was evident in and could be
readily modeled from the XRD data of 3-tBu. The dihedral angle between the BDI arms in 3-tBu
and that in 3-iPr (viz. 147.218(1)° and 131.972(3)°, respectively), suggest that the steric demands
of the tert-butyl group in 3-tBu are relieved by an outward rotation of the BDI arms.

The steric effects observed can arise from an initial associative step followed by either reductive
elimination or migratory insertion. Therefore, we qualitatively evaluated the differences in overall
reaction rate as a function of substituent. Assuming that the form of the rate laws for migratory
insertion are substrate independent, we reacted solutions of Fe2(u«-H)2L (20.61 mM) and methyl-,
isopropyl-, and t-butyl isocyanides (43.30 mM), and recorded NMR spectra at different time points
at ambient temperature after mixing. In all cases, the first insertion was complete prior to the first
recorded measurement at ~10 min after mixing, with complete consumption of Fe2(u-H):L (Figure
S27-S29). However, a rate difference was observed for the second insertion with 2-iPr requiring
~48 min to completely convert to 3-iPr whereas the double insertion reaction with MeNC was
complete within 15 min (Figure S20-S21 and S28-S29).

The retained hydrides in complexes 3 are presumed competent for migratory insertion given the
conversion of 3-iPr to 2-iPr. However, we were keen to explore reaction with substrates for which
insertion is unlikely. Treating 3-tBu with XyINC at ambient temperature in a J-Young NMR tube
with CeDe as the solvent, surprisingly yielded 1-Xyl as the only observable paramagnetic product

by 'H-NMR spectroscopy (Figure S30). To explore the fate of the iminoformyl ligand, we recorded
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"H NMR and mass spectra of the volatile species in this product mixture (Figure S31, S32). Of the
chemical shifts observed in the volatile species NMR spectrum, the resonances at 6 = 1.14 and
3.79 ppm are consistent with 1,3,5-tri-tert-butylhexahydro-1,3,5-triazine, which is one reported
product of oligomerization of tert-butylaldimine.” ESI-HRMS(+) of the volatile products showed
an ion envelope at m/z = 86.0969, as expected for tert-butylaldimine, tBuNCH: (Figure. S31). The
aldimine likely forms by the reductive elimination of iminoformyl and hydride ligands in 3-tBu
although such a transformation remains rare given the propensity of isocyanides to readily insert
into metal-hydrogen and metal-carbon bonds.!” However, the presence of other as yet unidentified
volatile organic products suggests other pathways are possible for the reaction of 3-tBu with an
isocyanide incapable of inserting into the Fe-(«-H)-Fe bond.

Aware that detailed kinetic studies are needed to support an associative or dissociative
mechanism for the reaction of isocyanides with between Fex(u-H):L, the coordinatively
unsaturated metal centers in Fex(u-H)2L hint at an associative mechanism (Scheme 3). We cannot
exclude an equilibrium between Fex(u-H)2L and a Kubas complex, although work on a related
system suggests such a Kubas complex must bind Hz strongly or exhibit facile oxidative addition.”
H: elimination is not also observed from Fez2(u-H)2L upon heating or UV irradiation (280 nm or
360 nm), suggesting reductive elimination is disfavored in the absence of substrate.”” Prior
reactivity studies by our group on the related tri(pu-hydrido)triiron(II) cluster supported on a tris([3-
diketiminate) cyclophane suggested that bridging hydrides can readily change coordination modes
from 2 to semi-bridging, 4 or terminal.”*’®7” Taken together, we propose an associative pathway
wherein isocyanide coordination leads to isomerization of the hydride coordination modes (A to
B). Binuclear reductive elimination is symmetry forbidden implying that isomerization is

necessary to generate a terminal hydride competent for elimination.”® We speculate that the
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transient species observed in NMR spectroscopy could be one of the structures corresponding to
intermediates A, B, or C, with the identity being dependent on the rates of isomerization, reductive
elimination, and strength of the Fe—H: interaction. Prior work by Hong, et al, on the related
trinucleating cyclophane suggest that isomerization should be facile and the structure of B is
reminiscent of the N2 bridged complex reported by Torres, et al, supporting Intermediate B as a

preferred assignment.®> Where insertion is preferred over reductive elimination, migratory

2+
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~
H -
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2+ 2+ R 2+
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Scheme 3. Proposed reaction mechanism for the reaction of the isocyanides with Fe2(u-H)2L.
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insertion may occur from intermediate A to directly access the iminoformyl product. An analogous
second insertion, if sterically accessible, then affords the bis(iminoformyl) complexes.

Our observations here of xylyl isocyanide resulting in Hz elimination whereas other isocyanides
undergoing migratory insertion to the iminoformyl contrasts with Riera and coworkers’ report
(Scheme 1).?? In that report, the steric demands of the ancillary ligand (i.e. phosphine donor)
control reductive elimination versus migratory insertion, with a more sterically encumbered
ancillary ligand yields insertion products whereas a less encumbering ligand affords reductive
elimination products.?? Similar to our observations of substrate steric effects dictating reaction
outcome, Alt and coworkers’ report that reaction of a di(hydrido)ditungsten complex with tBuNC
effects Hz reductive elimination whereas treatment with MeNC gives a 1,2-insertion product
(Scheme 1).% The discrimination for elimination observed here, however, is reserved only to xylyl
isocyanide, and may arise from the unique steric conflicts imposed by the two ortho-methyl
groups, whereas steric bulk of the isonitrile substituent correlates with whether one or both
hydrides are competent for insertion.”

The semi-hydrogenation of tBuNC to tBuNCH:2 by a diiron dihydride cluster is reminiscent of
the MeNC reduction products produced by the nitrogenase cofactors.!? Contrastingly, the proposed
reaction pathway for the nitrogenase cofactor traverses an aminocarbene transient vs. the
iminoformyl observed here. To our knowledge, aldimine reductive eliminations are exceedingly
rare and only observed for late 3d metal hydrides. The prior report from Figueroa and coworkers
results from the steric crowding at the metal center because of the sterically demanding terphenyl
isocyanides.'? Ligand steric conflicts here are manifested by cavity shape and size, with the former
limiting the rotation of the xylyl group needed for migratory insertion and the latter controlling the

extent of insertion (i.e., one vs. two hydrides). With respect to aldimine elimination then,
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coordination of the m-acidic xylyl isocyanide electronically primes the metal centers for reductive
elimination, likely proceeding by a mechanism involving cluster core reorganization similar to the
proposed isomerization of Intermediate A to Intermediate B. Similar structural changes to local
environment of the iron centers have been previously noted in dinitrogen and CO coordination to

related complexes.?+6%76

Conclusions

In conclusion, the reactivity of a low-coordinate di(u-hydrido)diiron(II) complex, Fea(u-H):L,
with various isocyanides leads to reductive elimination of Hz for XyINC or to migratory insertion
for all other isocyanides tested. Migratory insertion can be arrested by either control of reaction
equivalents or by the steric demands of the isocyanide substituent. Analogous to the elimination
of Hz from Fez(u-H)2L when treated with CO or XyINC, the reductive elimination of tert-butyl
aldimine is also accessible with release of tBuNCH2. The reactivity of these monohydride
complexes as well as other transformations involving isocyanides are currently under
investigation.
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SYNOPSIS

Here, we report the reactivity of isocyanides with a di(p-hydrido)diiron(Il) complex supported
on a weak-field B-diketiminate ligand and observed that the reactivity was influenced by the
identity of the substituent on the isocyanide. The results learned from this study can be used to
understand the interaction of isocyanides and isoelectronic molecules (CO and N2) with the

catalysts with similar structural units.
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