

Endemism shapes viral ecology and evolution in globally distributed hydrothermal vent ecosystems

Marguerite V. Langwig^{1,2,6}, Faith Koester¹, Cody Martin^{1,3}, Zhichao Zhou¹, Samantha B. Joye⁴, Anna-Louise Reysenbach⁵, Karthik Anantharaman^{1,6*}

¹ Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA

² Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI, USA

³ Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA

⁴ Department of Marine Sciences, University of Georgia, Athens, GA, USA

⁵Department of Biology, Portland State University, Portland, OR, USA

⁶ Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA

* Correspondence: karthik@bact.wisc.edu (Karthik Anantharaman)

Abstract

Viruses are ubiquitous in deep-sea hydrothermal environments, where they exert a major influence on microbial communities and biogeochemistry. Yet, viral ecology and evolution remain understudied in these environments. Here, we identified 49,962 viruses from 52 globally distributed hydrothermal vent samples (10 plumes, 40 deposits, and 2 diffuse flow), and reconstructed 5,708 viral metagenome-assembled genomes (vMAGs), the majority of which were bacteriophages. Hydrothermal viruses were largely endemic. However, some viruses were shared between geographically separated vents, predominantly between the Lau Basin and Brothers Volcano in the Pacific Ocean. Geographically distant viruses often shared proteins related to core functions such as structural proteins, and rarely, proteins of auxiliary functions. Common microbial hosts of viruses included members of Campylobacterota, Alpha-, and Gammaproteobacteria in deposits, and Gammaproteobacteria in plumes. Campylobacterota- and Gammaproteobacteria-infecting viruses reflected variations in hydrothermal chemistry and functional redundancy in their predicted microbial hosts, suggesting that hydrothermal geology is a driver of viral ecology and coevolution of viruses and hosts. Our study indicates that viral ecology and evolution in globally distributed hydrothermal vents is shaped by endemism, and thus may have increased susceptibility to the negative impacts of deep-sea mining and anthropogenic change in ocean ecosystems.

33

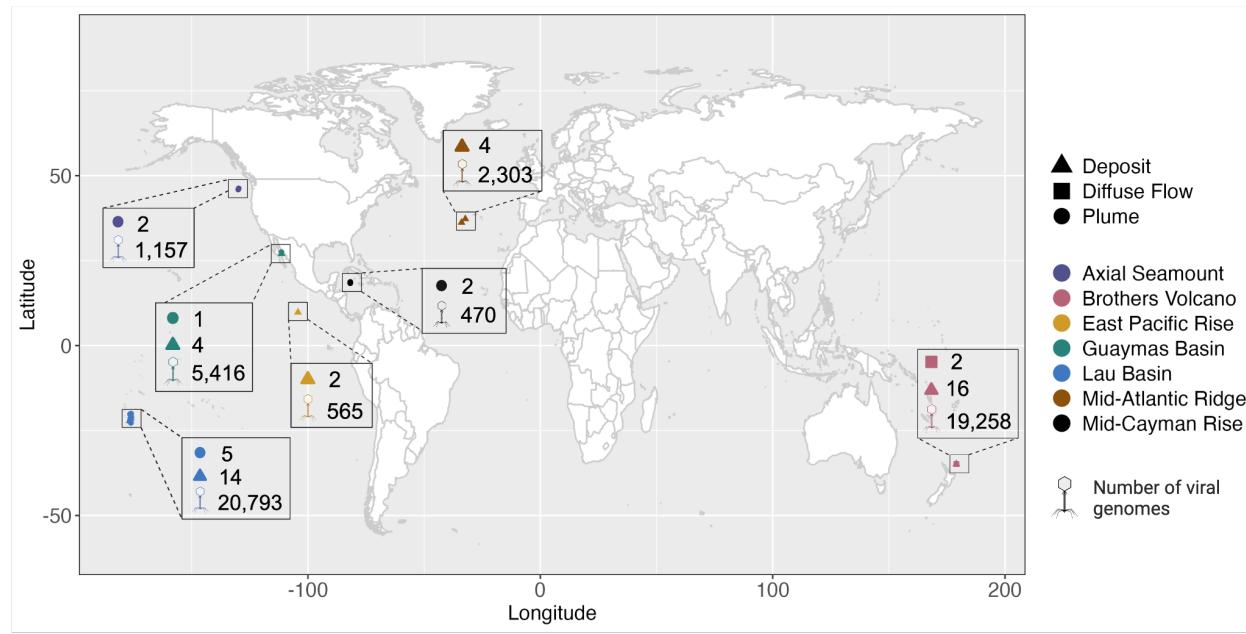
34

35 **Introduction**

36 An estimated 10^{30} viruses in the world's oceans are predicted to lyse and kill 20% of
37 microbial biomass daily¹. In marine systems, global sampling efforts have resulted in the recovery
38 of viruses at a broad scale, enabling investigations of their ecology, evolution, and biogeography^{2–}
39 ⁴. These studies have revealed that viruses in the epipelagic ocean are passively transported
40 through ocean currents⁵, distinct viral groups exist across five oceanic ecological zones⁴, and
41 there are broad differences in the protein content of viruses with depth⁶. Though these studies
42 provide valuable insights on viruses globally, they have mainly focused on comparative analyses
43 of photic and aphotic viruses. Investigations of viruses in the deep ocean are lacking.

44 In deep-sea hydrothermal vents, viruses are an important source of predation on
45 chemolithoautotrophic microorganisms that serve as the base of the food web in the absence of
46 sunlight⁷. As a result of these infections, viruses have the potential to change microbial community
47 composition and population sizes. Hydrothermal vent viruses are also capable of
48 “reprogramming” host metabolism using auxiliary metabolic genes (AMGs). For example, vent
49 viruses were the first viruses discovered to encode reverse dissimilatory sulfite reductase (rdsr),
50 which can be used to manipulate sulfur-based chemolithotrophy in the dark ocean⁸. To date, few
51 studies have conducted comparative analyses of hydrothermal vent viruses globally, and those
52 completed provide evidence that viruses are endemic to vent sites and habitat types at the genus
53 level, and that they infect ecologically important, abundant taxa such as Gammaproteobacteria
54 and Campylobacterota⁹. Other studies have suggested vent viruses are predominantly
55 lysogenic¹⁰, have limited dispersal, and narrow host ranges¹¹.

56 Despite these advances, the factors controlling hydrothermal vent virus biogeography,
57 ecology, and evolution remain poorly constrained. The biogeography of viruses is thought to be
58 determined by a complex interplay between abiotic factors, virus traits (e.g., life cycle, virion size,
59 burst size), and host traits (e.g., abundance, size, distribution)¹². Abiotic factors such as vent
60 geochemistry have been shown to dictate microbial community composition, where differences in
61 the geochemical profiles of geographically close vent sites can result in distinct microbial
62 communities^{13,14}. Given their dependence on microbial hosts, viral biogeography is intimately
63 linked to theories on microbial biogeography, however, these remain in their infancy^{15,16}.
64 Increasingly available hydrothermal vent metagenomic data presents opportunities to examine
65 vent viral biogeography, ecology, and evolution at a global scale. This, coupled with advances in
66 software for rapid, accurate comparison of metagenome-assembled genomes (MAGs)¹⁷ and the
67 generation of viral MAGs (vMAGs)¹⁸, promise to enable more accurate representations of
68 environmental viruses and allow finer resolution comparisons of their community structure and
69 ecology.


70 In this study, we catalog and describe viruses, largely from two types of hydrothermal vent
71 environments, on a global scale: high temperature hydrothermal deposits that host biofilms of
72 thermophilic bacteria and archaea, and hydrothermal plumes hosting psychrophilic and
73 mesophilic bacteria and archaea. These samples have previously been investigated for microbial
74 diversity^{13,14,19}, leaving their viral communities largely unexplored. Using 10 hydrothermal plume,
75 40 vent deposit, and 2 diffuse flow samples collected from seven distinct hydrothermal systems
76 in the Pacific and Atlantic Oceans (Guaymas Basin, Mid-Cayman Rise, Mid-Atlantic Ridge, Axial
77 Seamount, Brothers Volcano, East Pacific Rise, and the Lau Basin), we leveraged metagenomics

78 and statistical analyses to reconstruct viral genomes and study viral communities through inter-
79 and intra-vent comparative analyses.

80 **Results**

81 We identified 63,826 viral scaffolds from 10 hydrothermal plumes, 40 hydrothermal vent deposits,
82 and 2 diffuse flow samples (**Supplementary Table 1**). Following viral identification, we conducted
83 viral genome binning to reconstruct 5,708 vMAGs. The vMAGs comprise 19,572 viral scaffolds
84 (30.7% of scaffolds), leaving 44,254 unbinned viruses (69.3% of scaffolds). Thus, after viral
85 binning, we recovered a total of 49,962 viruses from globally distributed hydrothermal vents
86 (**Figure 1A**). Of these, 1,833 were characterized as medium-, high-quality, or complete
87 (**Supplementary Figure 1**) and 20,305 viruses encoded one or more viral hallmark genes
88 (**Supplementary Table 2**). Most of the hydrothermal vent viruses were classified as lytic rather
89 than lysogenic (47,571 lytic versus 2,391 lysogenic) and this remains true when only examining
90 viruses of medium-quality or better (1,505 lytic versus 328 lysogenic). In addition, 32,442 vent
91 viruses had a genome size range of 1-5 kb, while the remaining had genome sizes of 6-561 kb
92 (**Supplementary Figure 2**). Taxonomic predictions at the class-level showed that most viruses
93 are double-stranded DNA viruses within the realm *Duplodnaviria* (39,056), class *Caudoviricetes*
94 (**Supplementary Figure 3**). *Caudoviricetes* viruses were also the most abundant class of viruses
95 in the dataset based on relative abundance (**Figure 1B, Supplementary Table 3**). Most viruses
96 were reconstructed from deposit samples from Brother's Volcano and the Lau Basin (35,094
97 viruses). These sites produced some of the largest assemblies of the datasets analyzed here (up
98 to 1.2 Gb) and were the most intensively sampled compared to other sites.

99 **A.**

100
101

104 **Figure 1. Geographic distribution, abundance, and taxonomy of viruses identified in**
105 **globally distributed hydrothermal vents. A.** A world map showing the number of viruses identified
106 from different hydrothermal vents. Circles represent metagenomic samples
107 reconstructed from hydrothermal plumes, triangles are metagenomic samples reconstructed
108 from hydrothermal vent deposits, and squares are diffuse flow. Numbers next to the shapes represent
109 the number of samples for that vent field (52 total). Virus icons show the number of viruses
110 identified at a vent site (49,962 total). Colors represent the seven distinct hydrothermal vent fields
111 that are shown in the legend. **B.** A bubble plot of log-transformed virus relative abundance,
112 summed by viral class. Circles represent the log relative abundance, where larger relative
113 abundance is represented by larger, yellow circles, and smaller relative abundance is represented
114 by smaller, dark blue circles. Virus class names are shown on the top x axis and the horizontal
115 names above them show virus realms (determined using geNomad). Site names are shown on
116 the left y axis and the vertical names to the left of them show sample type.

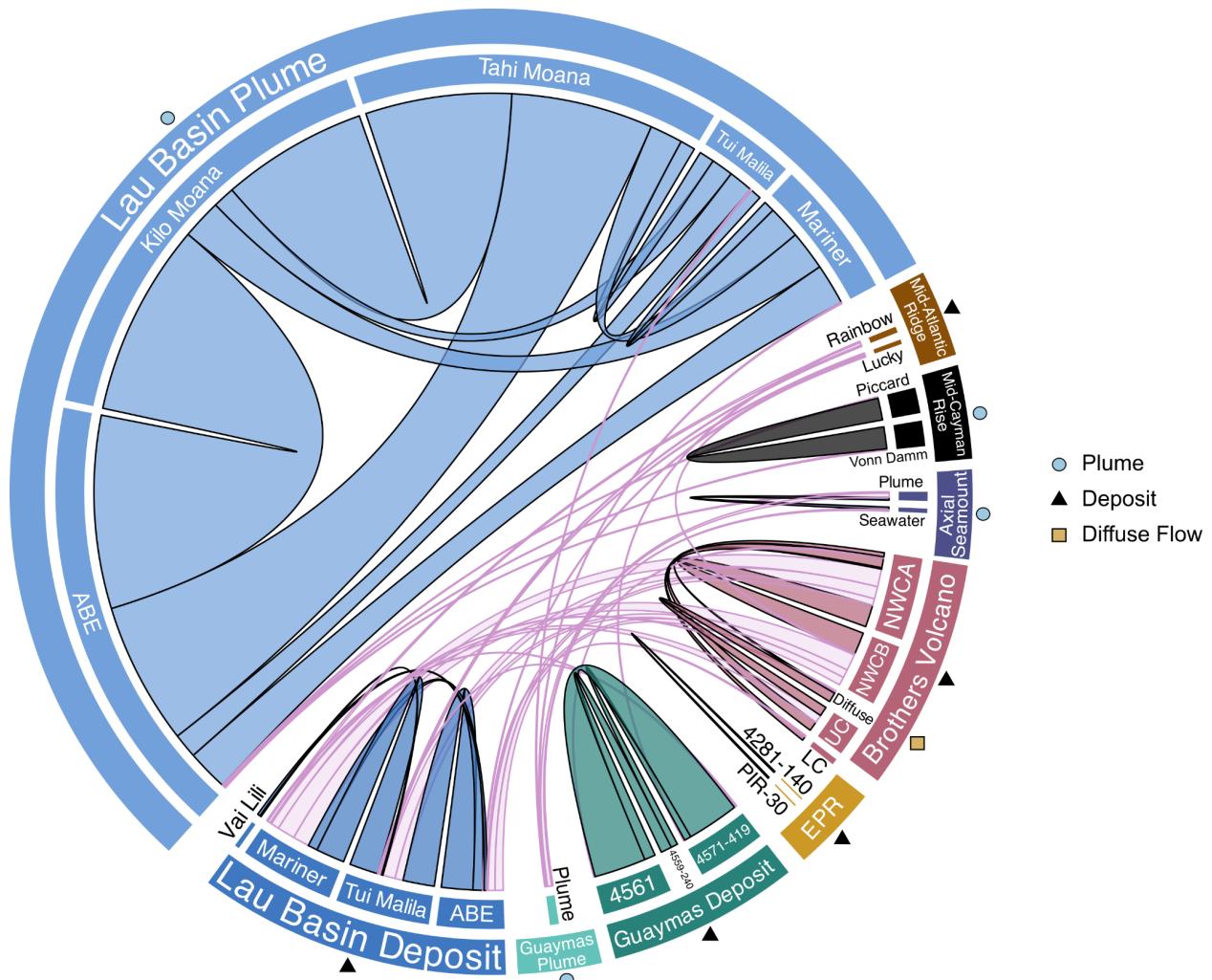
117 Geographically distant hydrothermal vents rarely share viruses

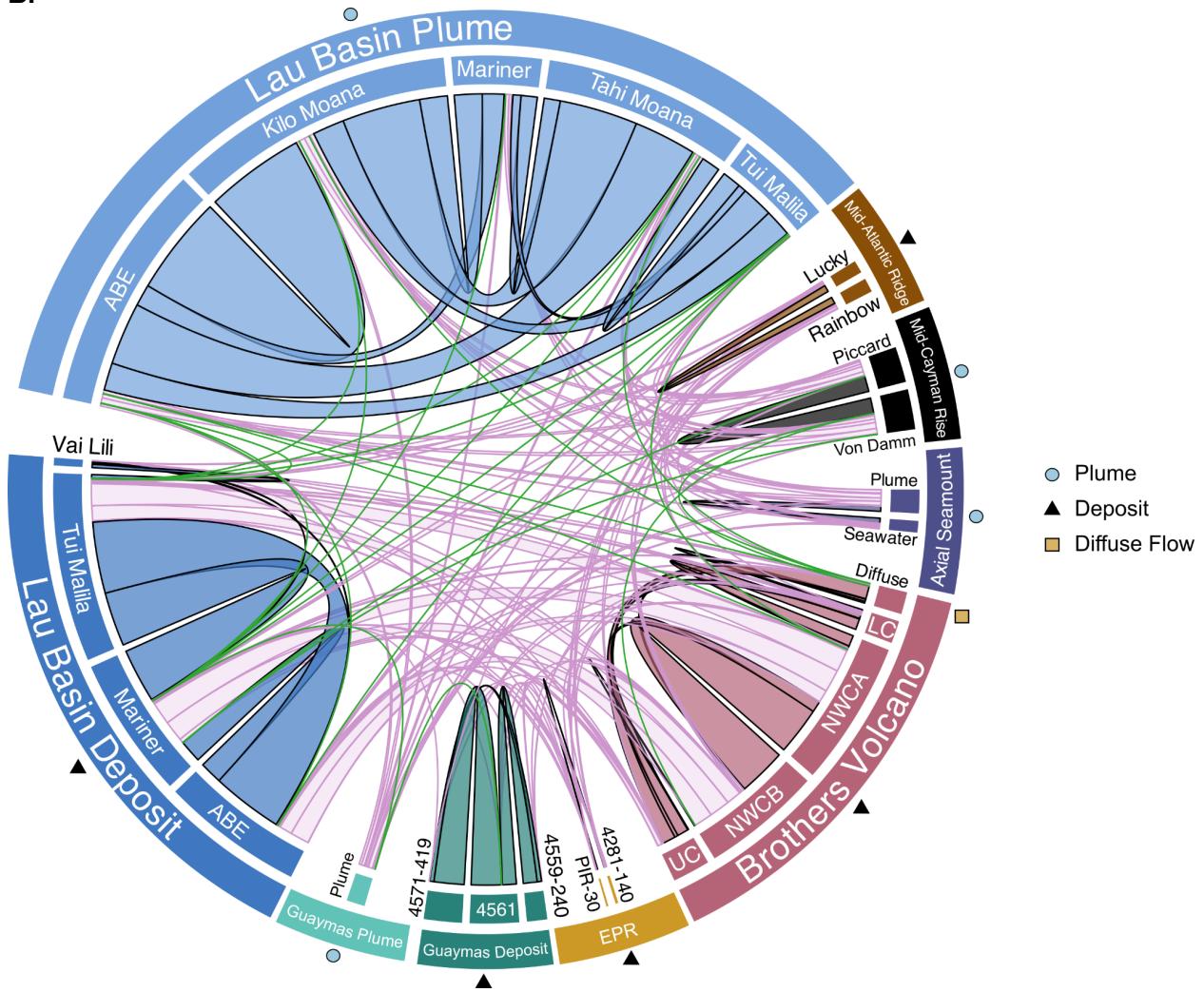
118 To understand how hydrothermal vent viruses are related, we conducted similarity
119 analyses of viruses across and within hydrothermal vents. These analyses included clustering
120 and network analysis based on average nucleotide identity (ANI), as well as read mapping of
121 genomes. Clustering of viral genomes identified 866 non-singleton clusters containing 1,950
122 viruses, and most clusters (687/866) were composed of two viral genomes (**Supplementary**
123 **Table 4**). Thus, most vent viruses were not included in ANI-based clusters, suggesting they have
124 low relatedness at the nucleotide level. In addition, no clusters contained viruses from both
125 hydrothermal plumes and hydrothermal deposits, indicating these habitats support distinct viral
126 communities. Interestingly, some viruses fell within the same nucleotide clusters, yet were
127 reconstructed from geographically distant sites (**Figure 2A**, red outlined ribbons). Specifically, 65
128 clusters contain 152 viruses from geographically distinct vent deposits, with an ANI ranging from
129 70-99%. When examining the clusters, we find that the predicted viral genome sizes,

130 completeness, hosts, and lifestyles are largely aligned. Most of the clusters (51/65) contained
131 viruses from the Lau Basin and Brothers Volcano, which are both located in the South Pacific
132 Ocean. Viral genomes in these clusters shared significant overlap even across geographically
133 separated vents in different ocean basins, such as between Mid-Atlantic Ridge in the Atlantic
134 Ocean and Brothers Volcano in the Pacific Ocean, or between Axial Seamount and Guaymas
135 Basin in the Pacific Ocean (**Supplementary Table 5**). Although viruses in the 65 geographically
136 distinct clusters are predominantly predicted to be low-quality, we determined that the regions of
137 overlap in these viruses are significant in length and/or annotation, and thus we find support for
138 shared viral genomic regions between geographically separated vents (**See Supplementary**
139 **Text**).

140 Some shared viruses may be missed when examining viruses identified from
141 metagenomes, because viral sequences may only be present in the reads and not the
142 assemblies. To address this issue, we used read mapping to identify viruses that were present in
143 multiple samples. While nucleotide clustering indicated that no viruses were shared between
144 hydrothermal vent plumes and deposits, read mapping-based detection identified 36 such viruses
145 (**Figure 2B, Supplementary Table 6**). Most of these were identified from Lau Basin (26/36)
146 deposits or plumes from the same or different sites in Lau Basin. This suggests that some viruses
147 may be shared between vent deposits and plumes.

148


149 **Viruses are more similar within a hydrothermal field**

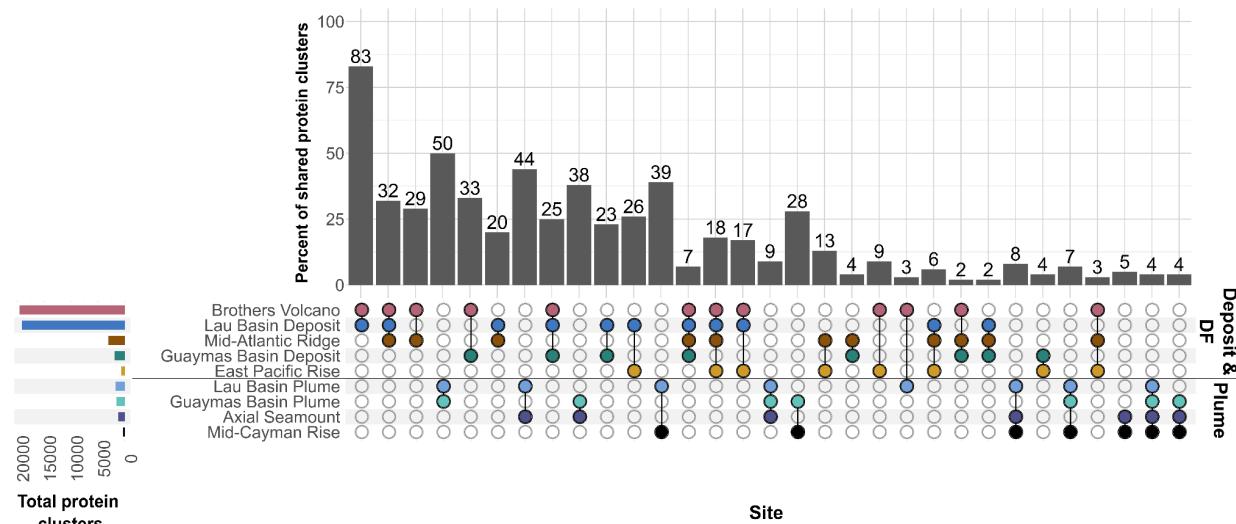

150 In addition to understanding how viruses are related between geographically distant vents,
151 we examined intra-vent (different sampling locations within the same vent field) viral relatedness,
152 where 417 clusters contained 992 viruses from distinct sites within a vent field (**Figure 2A**, grey
153 outlined ribbons, **Supplementary Table 4**). Just over half of the clusters (272/417) contained
154 viruses that were related between hydrothermal plumes in Lau Basin, including Lau Basin ABE,
155 Kilo Moana, Mariner, Tahi Moana, and Tui Malila. These plumes are at most separated by 1-2°
156 latitude (Supplementary Table 1). In the Lau Basin, 163/272 plume viral clusters had an average
157 intra-cluster ANI \geq 85% and 90/272 had an average ANI \geq 95%. This indicated that many of these
158 Lau Basin plume viruses were related at the genus and species level, or for those with 100%
159 identity and 100% completeness, were identical. Almost all the viruses in Lau Basin plume
160 clusters were predicted to be lytic and were represented by Microviridae, Caudoviricetes,
161 Inoviridae, Schitoviridae, Cressdnnaviricota, and Demerecviridae.

162 Lau Basin vent deposit samples had the next highest number of viral clusters shared
163 between different vent fields (94/417 clusters, **Supplementary Table 4**). Of the 94 clusters, 16
164 contained medium-quality or better viruses, and nearly all of these were Caudoviricetes. Guaymas
165 Basin and Brothers Volcano vent deposits, respectively, also contained many viral clusters shared
166 between different vent fields. In Guaymas Basin, most clusters are shared between the sites 4561
167 (380 and 384) and 4571-419 (38/47), which are geographically close but separated by a depth of
168 22 m. Similarly, in Brothers Volcano, many clusters were shared between Northwest Caldera Wall
169 A (NWC-A) and Northwest Caldera Wall B and Upper Caldera Wall (NWC-B+UCW) (13/30),
170 which are geographically close to each other (~1,570 m distance), though they have distinct
171 microbial communities¹³. Further, Mid-Cayman Rise, Axial Seamount, and the East Pacific Rise
172 also had some intra-vent related viruses. To complement our clustering analyses, we also
173 conducted read mapping-based detection which indicated that viruses were related between intra-

174 vent sites. We found that viruses from Lau Basin plumes were highly related (especially Kilo
175 Moana and Abe, Tahi Moana and Kilo Moana). We also identified many viruses as shared
176 between Lau Basin deposits (Tui Malila, ABE, and Mariner), as well as between Brothers Volcano
177 deposits (NWC-A and NWC-B), Guaymas Basin deposits (4571-419 and 4561), Mid-Atlantic
178 Ridge deposits (Lucky and Rainbow), and Mid-Cayman Rise plumes (Von Damm and Piccard).
179 Overall, read mapping-based detection reaffirmed viral relatedness between sites identified with
180 ANI clustering, but also identified numerous connections that were not observed with the ANI
181 clustering analysis. This was especially true for overlap between viruses in hydrothermal plumes
182 and deposits, viruses from the Mid-Atlantic Ridge, and viruses between more geographically
183 distant vent fields like Kilo Moana and Cayman Shallow plumes, since these patterns were
184 uniquely observed with read mapping.

185

193 **Figure 2. Biogeography of hydrothermal vent viruses A.** Viral relatedness based on average
 194 nucleotide identity of ≥ 3 kb viruses and mcl clustering. Ribbons signify clusters that have viruses
 195 shared between hydrothermal vent sites ($\geq 70\%$ ANI). The width of the ribbon represents the
 196 number of clusters containing viruses from each site. Ribbons outlined in light purple show
 197 clusters with viruses from geographically distinct vent sites while ribbons outlined in black with
 198 the fill color of the site indicate clusters with intra vent viruses (viruses from the same vent field
 199 but distinct vent locations). On the outer ring, circles show plume samples, triangles signify
 200 deposit samples and squares show the diffuse sample. **B.** Viral relatedness based on read
 201 mapping between all reads and all viral genomes ≥ 3 kb length and $\geq 70\%$ coverage. The width of
 202 the ribbon represents the number of times reads from one site mapped to a virus from another
 203 site. Ribbons outlined in light purple highlight reads that mapped between a vent and a virus from
 204 geographically distinct sites and ribbons outlined in green highlight reads that mapped between
 205 vent plumes and deposits. Ribbons outlined in black with the fill color of the site indicate instances
 206 where reads from a vent site mapped to viruses from the same vent field (intra-vent read
 207 mapping). On the outer ring, circles show plume samples, triangles signify deposit samples and
 208 squares show the diffuse sample.


210 **Hydrothermal vents share viral protein families dominated by proteins of unknown
211 function**

212 To understand how hydrothermal vent viruses are related at the protein level, we clustered all
213 595,416 vent virus proteins. This produced 74,940 clusters of two or more virus proteins
214 (**Supplementary Table 7**). Of these, 152 clusters contained proteins shared between vent
215 deposits and plumes (773 proteins), and 23,351 clusters have proteins shared between
216 geographically separated vents from different vent fields (84,223 proteins or 14.2% of the protein
217 dataset; **Figure 3**). Of the 84,259 total proteins shared across distant sites or sample types,
218 40,645 were annotated (48.2%), largely as hypothetical or uncharacterized functions, viral
219 terminases, DNA/RNA polymerases, capsid, baseplate, tail, and portal proteins. Of the 152
220 clusters shared between vent plumes and deposits, 89 contained proteins with annotations, and
221 the top annotation categories included helix-turn-helix domains, domains of unknown function,
222 phage tail tube protein, hypothetical proteins, nucleotide kinase, and essential recombination
223 function protein. The largest cluster of proteins from geographically separated vents had 88
224 proteins from deposit samples, including Brother's Volcano, the Lau Basin, and Mid-Atlantic
225 Ridge. This cluster contained a protein of unknown function that is known to often be encoded in
226 phage genomes (PF09343 or IPR011740). Several of the next largest protein clusters contained
227 proteins from the same sites (Brother's Volcano, Lau Basin, and Mid-Atlantic Ridge) that are of
228 unknown function or an AAA domain (PF13479). Many clusters with proteins from distant sites
229 were also functionally related to pyrimidine metabolism (e.g., dCTP deaminase, dTMP kinase,
230 and dUTP diphosphatase), purine metabolism (phosphoribosylformylglycinamidine cyclo-ligase
231 and phosphoribosylamine-glycine ligase (PurD), and nucleotide metabolism (ribonucleotide
232 reductase). Several clusters contained phosphate starvation inducible proteins (PhoH), which
233 have previously been identified as widespread in marine phages and proposed as a marker of
234 marine phage diversity²⁰. Interestingly, some protein clusters that were highly similar between
235 viruses from geographically distant vents contained proteins that do not have core functions,
236 including pyruvate formate lyases (PflA) and cobaltochelatase subunits CobS and CobT
237 (**Supplementary Table 8**).

238

239

240

241
242 **Figure 3. Shared viral proteins between geographically distant hydrothermal vents.** The bar
243 plot shows the percent of shared protein clusters, and the bottom matrix shows the identity of the
244 sites with shared protein clusters (filled, colored circles). The percent of shared protein clusters
245 was calculated as the number of shared protein clusters divided by the smallest number of total
246 protein clusters for a group, multiplied by 100. The leftmost bar plot shows the total number of
247 protein clusters per site. The black line through the matrix separates deposit and diffuse flow (DF)
248 samples, shown as the first five sites, from plume samples, the bottom four sites. Sites with fewer
249 than fifteen shared protein clusters were removed. All clusters are reported in Supplementary
250 Table 7.

251
252 **Hydrothermal viruses encode auxiliary metabolic genes associated with redox processes**
253 **and detoxification**

254 The presence of auxiliary metabolic genes, or AMGs, in viruses may increase a virus'
255 potential geographic range¹². Viruses that encode AMGs have an increased ability to boost
256 energy levels for viral progeny production or reduce the viral latent period, and thus should be
257 able to disperse more widely than viruses without AMGs. To investigate these dynamics, we
258 searched for AMGs in all viruses (Supplementary Table 8). We also verified that AMGs were
259 flanked by genes of viral or viral-like origin and were not present on the ends of genomic scaffolds.
260 Important AMGs in hydrothermal vents were involved in sulfur metabolism, arsenic metabolism,
261 nitrogen metabolism, and central carbon metabolism.

262 AMGs were rare in our dataset. According to DRAMv, 2,615 viruses encode one or more
263 AMGs, or ~5% of viruses recovered in this dataset. We identified a lytic *Caudoviricetes* virus
264 reconstructed from Brother's Volcano that encoded adenylylsulfate reductase (AprB, K00395),
265 which catalyzes the reduction of adenylyl sulfate to sulfite in the dissimilatory sulfate reduction
266 pathway, or the reverse reaction in dissimilatory sulfur oxidation. A lysogenic *Caudoviricetes* virus
267 from Lau Basin Mariner encoded an arsenate reductase (ArsC, K00537), which functions in
268 arsenate detoxification by reducing As(V) to an excretable form, arsenite or As(III)²¹. ArsC has
269 been identified in soil viruses, where there is evidence that *arsC*-encoding viruses may contribute
270 to metal resistance in their microbial host^{22,23}. In addition to arsenate metabolism, we identified a
271 virus encoding cytochrome bd ubiquinol oxidase subunit I and II (CydAB, K00425 and K00426),

272 which acts as a terminal electron acceptor in the electron transport chain of microorganisms
273 during respiration²⁴. Although *cydAB* has not been described in other viruses, phage integration
274 has been found to reprogram regulation of anaerobic respiration in *Escherichia coli*, and thus
275 CydAB may be another mechanism by which viruses manipulate host respiration²⁵. Finally, a
276 Caudoviricetes virus from Lau Basin deposits was predicted to encode a nitric oxide reductase
277 subunit B (NorB, K04561). NorB is the large subunit of nitric oxide reductase, which catalyzes the
278 reduction of nitric oxide to nitrous oxide, the penultimate step of the denitrification pathway. NorB
279 has previously been identified in viruses from an oxygen minimum zone in the Eastern Tropical
280 South Pacific Ocean²⁶.

281

282 **Viral biogeography is closely tied to the geographic distribution and abundance of their** 283 **hosts**


284 To explore microbial drivers of viral distribution, we predicted the microbial hosts and
285 calculated the relative abundance of all viruses and their microbial hosts (**Supplementary Table**
286 **2, 3, and 9**). Of the 49,962 total viruses, 14% had a predicted host (7,001 viruses, **Supplementary**
287 **Figure 4**). Virus infection range was largely narrow, where 6,387 viruses were predicted to infect
288 one host, and the remaining 614 viruses were predicted to infect >1 host. Most host predictions
289 were for deposit viruses (84.7%), which are predicted to infect a greater diversity and larger
290 number of microbial phyla compared to viruses in plumes (**Supplementary Text**). Among plume
291 viruses, most predicted hosts were members of the phyla Pseudomonadota (formerly
292 Proteobacteria, 44.6%) and Bacteroidota (17.2%), while in deposits most were members of
293 Campylobacterota (25%) and Pseudomonadota (21.2%, primarily Gamma- and
294 Alphaproteobacteria). This aligned with relative abundance data, where the most abundant plume
295 virus (Axial Plume, 1.3% relative abundance) infected a Proteobacteria in the class
296 Gammaproteobacteria, genus *Thioglobus*, or SUP05. This sulfur-oxidizing bacterium is abundant
297 in hydrothermal plumes globally^{27,28}. In deposits and diffuse samples, the most abundant virus
298 with a predicted host (Brothers Volcano site Diffuse, 0.9%) was predicted to infect a member of
299 Campylobacterota in the family Sulfurimonadaceae (genus CAITKP01). Bacteria in this family
300 and genus are the most abundant among all the deposit samples, and isolates in this family from
301 hydrothermal vents are known to be chemolithoautotrophic sulfur oxidizers^{14,29}.

302

303 **Hydrothermal geology and chemistry drive viral ecology and coevolution of viruses and** 304 **hosts**

305 In both deposits and plumes, microbial hosts from the phylum Pseudomonadota were
306 largely associated with the class Gammaproteobacteria. Previously, using the same
307 metagenomes in this study, functional redundancy was observed between members of
308 Gammaproteobacteria and Campylobacterota, where these taxa shifted as dominant community
309 members depending on the hydrothermal geology and chemistry. These microbial lineages have
310 similar metabolic potential, and thus their dominance at one hydrothermal vent site or another
311 was attributed to ecophysiological and growth differences, or distinct metabolic machinery for the
312 same metabolic pathway¹⁴. Given this observation and our findings of the ubiquity of viral hosts
313 from Gammaproteobacteria and Campylobacterota, we investigated patterns of relative
314 abundance in the viruses that infect them. We found that Gammaproteobacteria- and
315 Campylobacterota-infecting viruses reflected abundance patterns of the host they infect (**Figure**

316 4). For example, *Campylobacterota*-infecting viruses are abundant in vent deposits at Brothers
 317 Volcano site NWC-A, however, there is a shift to more abundant *Gammaproteobacteria*-infecting
 318 viruses at Brothers Volcano NWC-B (**Figure 4**), and this is also reflected in microbial abundance
 319 of the host taxa (**Figure 4**). We also identified 55 viruses in clusters from geographically separated
 320 vents that had a predicted host. Of these, 25 were predicted to infect *Campylobacterota* or
 321 *Gammaproteobacteria* (**Supplementary Table 4**), further underscoring the potential of these
 322 microorganisms to facilitate viral dispersal in hydrothermal vents. In contrast to these taxa, phyla
 323 such as *Aenigmatarchaeota*, *Micrarchaeota*, an unknown bacterial phylum (EX4484-52), and
 324 *Iainarchaeota* are low abundance microbial community members (less than 1% relative
 325 abundance at all sites; **Supplementary Table 9**). In line with this, the viruses predicted to infect
 326 these microorganisms are few in number (29 viruses total), were not present in the nucleotide
 327 clusters (inter or intra vent) and were low in relative abundance.
 328

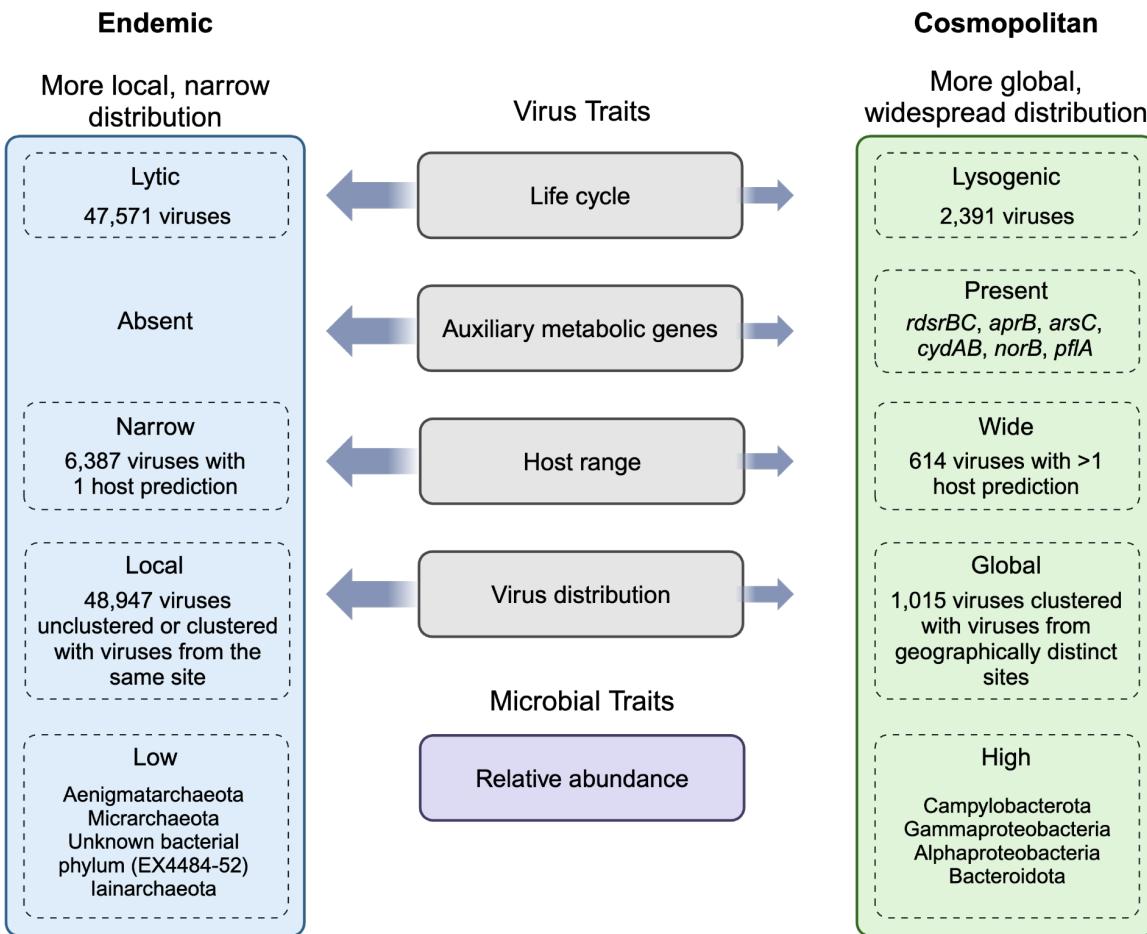
329
 330 **Figure 4. Viral abundance of *Gammaproteobacteria*- and *Campylobacterota*-infecting**
 331 **viruses mimics functional redundancy of the hosts.** The relative abundance of viruses

332 infecting Gammaproteobacteria and Campylobacterota is shown on the left, while the relative
333 abundance of Gammaproteobacteria and Campylobacterota MAGs is shown on the right. Both
334 abundances are the result of CoverM read mapping normalized by the number of reads in each
335 sample. Sites are shown on the y axis. Colors of the stacked bar plot show the type of host a virus
336 infects (left plot) or the microbial taxa (right plot) and shapes indicate the sample type.

337 Discussion

338 Hydrothermal vent viruses are known to be a key driver shaping microbial communities,
339 yet, they have remained understudied in these ecosystems. By analyzing viruses and microbes
340 recovered from 52 globally distributed hydrothermal vent metagenomes, we show that endemism
341 shapes viral ecology and evolution in deep-sea hydrothermal vents (**Figure 5**). Few prior studies
342 have investigated hydrothermal vent viruses at a global scale⁹, and this is the first comparison of
343 viral communities between hydrothermal vent chimney deposits and plumes.

344 Most viruses identified in this study were characterized as lytic, a viral trait that has been
345 suggested to limit a virus's distribution compared to lysogeny, where a virus can be dispersed
346 within a host¹². Though metagenomic-based life cycle predictions are influenced by virus genome
347 completeness, this finding is corroborated by the medium-quality or better viral genomes that we
348 recovered here. The lack of AMGs identified in this study would also limit viral dispersal, as viruses
349 without AMGs would not be as well-equipped to boost energy levels for viral progeny production
350 or reduce the viral latent period³⁰. Similarly, microbial host range was narrow for most viruses with
351 a predicted host, which is thought to be limiting in dispersal compared to a wide host range
352 (viruses able to infect >1 genera). Among microbial host traits, Campylobacterota and
353 Gammaproteobacteria MAGs were widespread and abundant, suggesting the viruses infecting
354 these hosts have a greater potential to disperse. Indeed, we found support for this in the relative
355 abundance of viruses infecting these taxa, as well as their presence in nucleotide clusters from
356 geographically separated vents. Conversely, viruses infecting low abundance microorganisms
357 were observed to be rarer and had limited dispersal. Thus, most hydrothermal vent viruses have
358 traits that have been previously hypothesized to promote a narrow, local distribution.


359 The viral characteristics observed in this study provide a more holistic view of the
360 hydrothermal vents analyzed here, which have previously been characterized for their microbial
361 diversity^{13,14,19}. In the hydrothermal plumes, prior studies showed that sulfur compounds
362 dominated as an energy source and plumes consisted of 14 core microbial genera, six of which
363 were within the class Gammaproteobacteria. In deposits, many bacterial and archaeal genera
364 were identified as endemic and Gammaproteobacteria and Campylobacterota were shown to
365 exhibit functional redundancy associated with energy metabolism including those of sulfur,
366 nitrogen, hydrogen, and oxygen. This was hypothesized to be due to differences in the
367 geochemical profiles of different vents, which then selected for ecophysiological and growth
368 differences between taxa^{13,14}. These observations are also reflected in the viruses recovered in
369 this study, where Gammaproteobacteria-infecting viruses were abundant in hydrothermal plumes
370 that are typically associated with lower concentrations of hydrothermal compounds such as
371 hydrogen sulfide, sulfur, and hydrogen, while Campylobacterota-infecting viruses were more
372 abundant in deposits that are associated with higher concentrations of reduced hydrothermal
373 compounds. The viral abundance patterns thus reflected the functional redundancy of
374 Campylobacterota and Gammaproteobacteria in hydrothermal systems. These results

375 underscore the influence of geological context in driving the evolution of microorganisms, and the
376 resulting coevolution of viruses with their microbial hosts. This coevolution likely contributes to
377 high host specificity and the high levels of endemism we observed among viral populations.

378 The unique viral communities we observed in hydrothermal plumes versus deposits is
379 consistent with previous microbial studies³¹, as well as viral studies that have shown differentiation
380 of viruses between sediments and plumes⁹. While microbial communities in deposits have been
381 found to correlate with geochemistry^{13,32,33}, there is evidence that plume microbial communities
382 do not³¹. Instead, microbial communities in plumes of the Lau Basin were shown to be similar,
383 despite differences in their geography, depth, and geochemistry. This aligns with our findings,
384 where the most intra-vent virus similarity was identified in Lau Basin plumes, despite the smaller
385 number of viruses recovered here compared to Brothers Volcano and Lau Basin deposits. Lau
386 Basin plume connectivity was suggested to be promoted by characteristics such as weak
387 stratification and diapycnal mixing over rough topography³¹. Greater sampling resolution is
388 needed within hydrothermal vent fields to dissect the role of local geography in promoting
389 connectivity through hydrothermal plumes. These studies should also be conducted temporally,
390 as hydrothermal systems are dynamic and can change drastically over short time periods based
391 on tectonic activity³⁴. Investigations of the same site over time will better elucidate how changes
392 in geology drive coevolution of viruses and microorganisms.

393 Functionally, viral proteins shared between different vents are predicted to be involved in genome
394 replication, viral structural components, viral infection, lysogeny, and often, are of hypothetical or unknown
395 function. Similar to previous work, our study is hampered by our inability to annotate a large number of viral
396 proteins³⁵, where less than half of the proteins shared between different vents were annotated. Poor protein
397 annotation rates inhibit our understanding of the mechanistic underpinnings of connectivity, and thus the unannotated proteins identified here may
398 represent interesting targets for future work to better understand the core proteome of hydrothermal vent viral
399 communities. Of those annotated, few of the proteins shared between geographically separated vents have auxiliary
400 functions, such as those related to microbial dissimilatory metabolism, and these genes were not common in the dataset overall. Thus,
401 although viral genes related to microbial energy metabolism pathways such as sulfur oxidation
402 are known to occur in hydrothermal vents⁸, these genes appear to be rare in these ecosystems.

403 The high levels of endemism identified in hydrothermal vent viral communities in this study
404 and prior work^{9,11}, combined with endemism identified in vent microorganisms and animals³⁶,
405 suggests these ecosystems could be especially negatively impacted by future disturbance³⁷. In
406 the face of deep-sea mining and anthropogenic climate change, microbial diversity, biomass, and
407 metabolic rates may be severely negatively impacted³⁸, and this in turn will be detrimental to viral
408 communities. The large number of unknown viral proteins highlights the vast biological potential
409 we stand to lose as a result. In the future, additional studies are needed to probe the functions of
410 unknown viral proteins, investigate biogeographic patterns on a temporal scale, and obtain a
411 better sampling resolution of hydrothermal vents. This will provide a better understanding of how
412 deep-sea mining and other anthropogenic influences will impact hydrothermal vent communities,
413 and how we can mitigate these disturbances.

416
417
418
419
420
421
422
423
424

Figure 5. Observed viral and microbial traits suggest endemism shapes the ecology and evolution of viruses in hydrothermal vents. Conceptual diagram showing the viral and microbial traits (center, grey and purple rectangles) observed in this study that contribute to viral biogeography in hydrothermal vents. Arrow width indicates magnitude of support for local versus global viral distribution based on the findings in this study (large width signifies high support, small width indicates low support). The left, blue rectangle shows traits associated with a more local, narrow distribution and the right, green rectangle shows traits associated with a global, widespread distribution. Figure adapted from Chow and Suttle (2015)¹².

425 **Methods**

426 **Sample collection.** Hydrothermal plume samples were collected from the corresponding cruises
427 (Supplementary Table 1): R/V New Horizon in Guaymas Basin, Gulf of California (July 2004)^{39–}
428⁴¹, R/V Atlantis in Mid-Cayman Rise, Caribbean Sea (Jan 2012)⁴⁰, R/V Thomas G Thompson in
429 the Eastern Lau Spreading Center (ELSC) western Pacific Ocean (May-July 2009)^{8,40}, and R/V
430 Thomas G Thompson in Axial Seamount, Juan de Fuca Ridge, northeastern Pacific Ocean (Aug
431 2015)⁴².

432 Guaymas Basin plume samples were collected by “tow-yo” casts using a CTD rosette in
433 10 L Niskin bottles⁴¹. This water was then filtered onto 142 mm 0.2 µm polycarbonate filters by N₂
434 gas pressure filtration and preserved in RNAlater⁴³. Mid-Cayman plume samples were collected
435 using a Suspended Particle Rosette Sampler (SUPR) by filtering 10-60 L plume water onto 142
436 mm 0.2 µm SUPOR membranes⁴⁰. These samples were then preserved in RNAlater *in situ*. In
437 Lau Basin, SUPR-collected samples were filtered onto 0.2 and 0.8 µm pore size SUPOR
438 polyethersulfone membranes *in situ* and preserved in RNAlater-flooded vials³¹. In Axial
439 Seamount, plume samples were collected by a Seabird SBE911 CTD and 10 L Niskin bottles⁴².
440 Samples of 3 L were then transferred into cubitainers and filtered through 0.22 µm Sterivex filters.
441

442 Hydrothermal deposit samples were collected from the corresponding cruises: R/V
443 Thomas G Thompson in Brothers Volcano, western Pacific Ocean (March 2018)¹³, R/V Roger
444 Revelle (April and May 2015)¹³ and R/V Melville (April 2005)¹⁴ in the ELSC, western Pacific
445 Ocean, R/V Atlantis in Guaymas Basin, Gulf of California (Nov and Dec 2009)^{14,44}, R/V Atlantis in
446 the Mid-Atlantic Ridge, Atlantic Ocean (July 2008)¹⁴, and R/V Roger Revelle in the East Pacific
447 Rise, Pacific Ocean (March 2004 and December 2006)¹⁴. Once on ship, deposit samples were
448 subsampled with the outer few millimeters (up to approximately 5 mm) kept separate from the
449 bulk sample. These exterior samples were homogenized and stored at -80°C for subsequent
450 DNA extraction³³.

451 **DNA extraction and sequencing.** For Guaymas Basin, Mid-Cayman Rise, and Lau Basin plume
452 samples, DNA was extracted from 1/4 filters using chemical and physical lysis methods as
453 described in Dick and Tebo (2010)³⁹ and Li and Dick (2015)⁴⁰, and sequenced with Illumina
454 HiSeq2000 at the University of Michigan DNA Sequencing Core. Axial Seamount plume samples
455 were extracted using a phenol chloroform extraction and metagenomic libraries were constructed
456 using the Ovation Ultralow Library DR multiplex system⁴². Sequencing was completed using a
457 NextSeq 500 at the W.M. Keck sequencing facility, Marine Biological Laboratory, in Woods Hole,
458 MA.

459 For Brothers Volcano and ELSC (2015) deposit samples, DNA was extracted from
460 homogenized deposits using the DNeasy PowerSoil kit (Qiagen) and metagenomic libraries were
461 constructed using Nextera DNA Library Prep kits (Illumina), as described in Reysenbach et al.,
462 (2020)¹³. Sequencing was completed at the Oregon State University Center for Genome
463 Research and Computing on an Illumina HiSeq 3000. For ELSC (2005), MAR, EPR, and
464 Guaymas Basin, DNA was extracted using the Ultra Clean Soil DNA Isolation Kit (MoBio
465 Laboratories, Carlsbad, CA, USA)³³. Metagenomic libraries were prepared and sequenced at the
466 Department of Energy, Joint Genome Institute (JGI)¹⁴.
467

468 **Metagenomic assembly and microbial binning.** Hydrothermal plume assemblies and microbial
469 MAGs were generated as described in Zhou et al., 2023¹⁹. Briefly, metagenomic assemblies were
470 constructed from QC-processed reads with MEGAHIT v1.1.2⁴⁵ using the following parameters: --
471 k-min 45 --k-max 95 --k-step 10. Plume assemblies from Mid-Cayman Rise, Lau Basin Abe,
472 Mariner, and Tahi Moana represent combined plume and background seawater. In other words,
473 for these samples, plume reads were co-assembled with background seawater reads. Microbial
474 MAGs were generated using MetaBAT v0.32.4⁴⁶ using 12 combinations of parameters, followed

475 by DAS Tool v1.0⁴⁷ to generate consensus MAGs. Following MAG refinement and contaminant
476 removal, only MAGs with >50% completeness and <10% contamination were retained, as
477 determined by CheckM v1.0.7⁴⁸.

478 Hydrothermal deposit assemblies and microbial MAGs were generated as described in
479 Zhou et al., 2022¹⁴. Briefly, reads from Brothers volcano and ELSC (2015) were quality-filtered
480 using FastQC v0.11.8 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and de novo
481 assembled using metaSPAdes v3.12.0⁴⁹ with the parameters: -k 21,33,55,77,99,127 -m 400 –
482 meta. Reads from ELSC (2005), MAR, EPR, and Guaymas Basin were assembled by the
483 Department of Energy, Joint Genome Institute (JGI) using metaSPAdes v3.11.1⁴⁹ with the
484 following parameters: -k 33,55,77,99,127 –only-assembler –meta. MetaWRAP v1.2.2⁵⁰ was used
485 to generate microbial MAGs with parameters –metabat2 –metabat1 –maxbin2. DAS Tool v.1.0⁴⁷
486 was then used to generate consensus MAGs.

487
488 **Virus identification and binning.** VIBRANT v1.2.1⁵¹ was run with default parameters to identify
489 viruses from the genomic assemblies of the 52 hydrothermal vent samples, resulting in 64,220
490 viral scaffolds. Viral scaffolds were binned using vRhyme v1.1.0 on each of the 52 hydrothermal
491 vent samples with default parameters and bam files¹⁸. The sorted bam files used in binning were
492 generated by mapping the fastq reads for a particular sample to the genomic assembly
493 reconstructed for the same sample. Specifically, a custom python script was used to run BWA-
494 MEM v0.7.17⁵² to map reads to assemblies and samtools v1.7⁵³ to convert sam files to bam format
495 and then obtain sorted bam files. In total, we reconstructed 38,014 viral genomes. vMAGs were
496 screened for high protein redundancy and binning of lytic and lysogenic viruses, where those with
497 ≥2 redundant proteins and/or ≥2 lysogenic scaffolds were broken back into individual scaffolds
498 and retained in the dataset as unbinned viruses. Finally, vMAGs >10 scaffolds were retained in
499 the dataset as unbinned viruses.

500 For finalized vMAGs, the vRhyme script link_bin_sequences.py was used with default
501 parameters to generate one scaffold vMAGs, where each scaffold is linked by 1,500 Ns. This is
502 required by some downstream tools that expect viral genomes to be on one scaffold (e.g.,
503 CheckV, iPHoP) as described below. Viral genome size was determined using SeqKit v2.6.1 on
504 unbinned viral scaffolds and binned viruses without N-links⁵⁴. To visualize the number of viruses
505 reconstructed from each site, Figure 1 was generated using a custom R script available at:
506 https://github.com/mlangwig/HydrothermalVent_Viruses/tree/main/SitesMap. Viruses were
507 designated as lytic or lysogenic based on VIBRANT, which uses the presence/absence of
508 integrase or the excision of a viral region from metagenomic scaffolds to determine whether a
509 virus is lytic or lysogenic. For vMAGs that had lytic and lysogenic scaffolds binned into one
510 genome, the genome was designated as lytic
511 (https://github.com/mlangwig/HydrothermalVent_Viruses/blob/main/VentVirus_Analysis/VentVirus_Analysis.R).
512

513
514 **Virus taxonomy, marker genes, and quality.** Virus taxonomy was determined using geNomad
515 v1.5.1⁵⁵, which utilizes taxonomically informed marker genes to determine the most specific taxon
516 supported by most of the viral genes in the genome. Taxa are defined according to the
517 International Committee on the Taxonomy of Viruses (ICTV)⁵⁶. The end_to_end pipeline was run
518 with default parameters. This also allowed us to determine the number of viral hallmarks encoded
519 by each viral genome. Virus genome quality was determined using the CheckV v0.8.1 end_to_end
520 pipeline with default parameters⁵⁷. For both geNomad and CheckV, vMAGs were input with
521 scaffolds concatenated by 1,500 Ns.

522
523 **Virus nucleotide clustering.** The average nucleotide identity (ANI) of ≥3kb viruses was
524 calculated with skani v0.2.0¹⁷ and clustered using the Markov Clustering Algorithm (mcl, release
525 14-137)⁵⁸. Vskani v0.0.1 (available at <https://github.com/cody-mar10/skani-vMAG>) was used to

526 run skani and mcl, treating vMAGs as genomes and unbinned viruses as single scaffolds, with
527 the following parameters: vskani skani -c unbinned_PlumeVent_viruses.fna -d fna_vMAGs -x
528 .fasta -m 200 -cm 30 -s 70 -f 50 -ma .7. Option -m signifies the number of marker k-mers used
529 per bases, and was lowered to 200 from the default 1,000 due to the smaller genome size of
530 viruses compared to microorganisms. The compression factor (parameter -cm, equivalent to -c
531 or --slow in skani) was lowered from the default of 125 to 30 to provide more accurate estimates
532 of aligned fractions (AF) for distantly related viral genomes. The screen parameter (-s) removed
533 pairs with less than 70% identity, while the minimum aligned fraction parameter (-f) kept ANI
534 values where one genome had an aligned fraction greater than or equal to 50%. Finally, -ma
535 signifies minimum ANI, which was lowered to 70% from the default 95% to capture a broader
536 range of viral relatedness (the the family and genus level). Mcl clustering was completed using
537 default parameters.

538 The resulting table of skani-produced ANI and AF values was manipulated using a bash
539 script, where ANI was normalized by the lowest AF (ANI*AF/100²), filtered for $\geq 70\%$ ANI (now
540 corrected for AF), and formatted as input for the mxload function of mcl
541 (https://github.com/mlangwig/HydrothermalVent_Viruses/blob/main/ANI_clustering/ANI_clust.R).
542 Mcl clustering was then run with default parameters. The resulting cluster file was then input into
543 R to calculate the average ANI per cluster, map metadata to the clusters, and determine which
544 clusters contain viruses from geographically distinct sites
545 (https://github.com/mlangwig/HydrothermalVent_Viruses/blob/main/ANI_clustering/ANI_clust.R).

546 To identify the regions of overlap between low-quality viruses, BLASTN v2.14.1⁵⁹ was run
547 per cluster on all viruses within a cluster. First, a blast database was made for each cluster with
548 the following command: makeblastdb -in -out -dbtype nucl. Then, blastn was run on each cluster
549 with the following command: blastn -query -db -out -outfmt "6 qseqid sseqid evalue bitscore
550 length pident qstart qend sstart send" -max_target_seqs 2 -max_hsps 1. The aligned coordinates
551 were obtained from these output files. Finally, bedtools⁶⁰ was used to extract these coordinates
552 from the amino acid-format virus genome files with the following command: bedtools intersect -a
553 bed_GeoDistinct_VirusClusts.tsv -b bed_PlumeVent_viruses.tsv -wa -wb > result.txt. The -a bed
554 file contains the coordinates from the blastn results and the -b bed file contains the coordinates
555 of all the ORFs in all the viral genomes. This allowed us to obtain the gene annotations of the
556 regions of the viral genomes that had identical nucleotides.
557

558 **Virus protein clustering.** Mmseqs2 (v15.6f452)⁶¹ was used to cluster viral proteins. First, the
559 createdb option was used to create an mmseqs database of the 595,416 hydrothermal vent virus
560 proteins. Next, the cluster option was used with the following parameters: -cov-mode 0 --min-seq-
561 id 0.75. These options signify that the alignment covers at least 80% of the query and of the target,
562 and that the minimum sequence identity is 75%. The default clustering algorithm, greedy set cover
563 algorithm, was used. This algorithm iteratively selects the node with the most connections and all
564 its connected nodes to form a cluster, and repeats this process until all nodes are within a cluster.
565 Next, the createtsv option was used to generate a tsv file of the cluster output. This file was parsed
566 and analyzed in R
567 (https://github.com/mlangwig/HydrothermalVent_Viruses/blob/main/ANI_clustering/Protein_clustering.R).
568

569 **Protein annotations.** Viral proteins were annotated using VIBRANT⁵¹, which employs
570 hmmsearch to annotate viral proteins with KEGG, VOG, and pfam HMM databases. To determine
571 the best supported VIBRANT hits from the three databases, the annotation with the highest bit
572 score was chosen, followed by the lowest e-value, and finally the highest viral score. Viruses were
573 also annotated using DRAMv v1.4.6⁶² to identify potential AMGs. To run DRAMv, VIBRANT-
574 identified viruses were input into Virsorter2 v2.2.4⁶³ to obtain the input file needed for the DRAMv
575 software. Because Virsorter2 was used for downstream analyses and not viral discovery, we used
576

577 the following parameters: virsorter run --keep-original-seq --prep-for-dramv --include-groups
578 dsDNAPhage,NCLDV,RNA,ssDNA,lavidaviridae --provirus-off --viral-gene-enrich-off --min-score
579 0.0. DRAMv annotate was run with the default parameters. DRAMv distill was run with default
580 parameters to obtain annotations that are supported as AMGs.
581

582 **Read mapping.** All 49,962 viral genomes were mapped to all 163 paired-end fastq reads using
583 CoverM v0.6.1 (<https://github.com/wwood/CoverM>) with the options --methods count
584 relative_abundance --min-covered-fraction 0. For read mapping used to determine connectivity
585 between vents, the output was filtered in R to only retain viruses where reads mapped to $\geq 70\%$
586 of the viral genome
(https://github.com/mlangwig/HydrothermalVent_Viruses/blob/main/Read_Mapping/CoverM_circos.R). To obtain normalized relative abundance, the number of reads mapped to a virus from
588 each sample was divided by the number of reads in that respective sample. This methodology
589 was repeated with the microbial MAGs to obtain their normalized relative abundances.
590

591 **Host prediction.** iPhoP v1.3.3 was used to identify virus-host links between hydrothermal vent
592 viruses and a custom database of 3,872 MAGs reconstructed from the same sites^{14,19,64}. Before
593 building the custom database, BLASTN⁵⁹ was used to search all viruses against all microbial
594 MAGs with the following command: nohup blastn -query -db -out -outfmt "6 qseqid length qlen
595 slen pident bitscore stitle". Hits with 100% identity and 100% coverage were considered viral
596 contamination and were removed from microbial MAGs. Following this step, the custom MAG
597 database was created using the add_to_db option and iPhoP was run using the following
598 parameters: iphp predict --db_dir --no_qc. The input file included unbinned viral scaffolds and
599 vMAGs concatenated into one scaffold using 1,500 Ns to enable one prediction per vMAG.

600 **Data Availability**

601 Genomic assemblies and microbial metagenome-assembled genomes were previously published
602 through NCBI BioProject IDs PRJNA488180 and PRJNA821212. Viral genomes are available at
603 https://figshare.com/articles/dataset/Hydrothermal_Vent_Viruses/25968037. Scripts used in this
604 work are available at https://github.com/mlangwig/HydrothermalVent_Viruses.

605 **Author contributions**

606 MVL, ALR, and KA conceptualized the project. KA supervised the project. KA and ALR obtained
607 and sequenced the hydrothermal samples. ZZ performed metagenomic assembly and binning.
608 MVL identified viruses from the assemblies, performed viral binning, and all downstream
609 analyses. MVL and FK analyzed viral AMGs. CM developed software for analyses. MVL
610 conducted data validation, curation, analysis, created visualizations, and administered the project.
611 MVL and KA wrote the manuscript. All authors reviewed the results, edited, and approved the
612 manuscript.

613 **Acknowledgements**

614 This research was supported by the National Science Foundation under grant numbers
615 DBI2047598 (to KA), OCE2049478 (to SBJ, KA) and OCE-0728391, OCE-0937404, OCE-
616 1558795 (to ALR). CM was funded by a National Science Foundation Graduate Research
617 Fellowship. We thank the crew of the R/V *Roger Revelle*, R/V *Atlantis*, R/V *Thomas G. Thompson*,
618 HOV *Alvin*, and the ROV *Jason* for assistance in collecting these samples. Thank you to Spencer
619 R. Keyser for your help with data wrangling in R.

620

References

- 621 1. Suttle, C. A. Marine viruses--major players in the global ecosystem. *Nat. Rev. Microbiol.* **5**,
622 801–812 (2007).
- 623 2. Neri, U. *et al.* Expansion of the global RNA virome reveals diverse clades of
624 bacteriophages. *Cell* **185**, 4023–4037.e18 (2022).
- 625 3. Dominguez-Huerta, G. *et al.* Diversity and ecological footprint of Global Ocean RNA
626 viruses. *Science* **376**, 1202–1208 (2022).
- 627 4. Gregory, A. C. *et al.* Marine DNA Viral Macro- and Microdiversity from Pole to Pole. *Cell*
628 **177**, 1109–1123.e14 (2019).
- 629 5. Brum, J. R. *et al.* Ocean plankton. Patterns and ecological drivers of ocean viral
630 communities. *Science* **348**, 1261498 (2015).
- 631 6. Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery
632 transforms marine virology. *Nat. Rev. Microbiol.* **13**, 147–159 (2015).
- 633 7. Ortmann, A. C. & Suttle, C. A. High abundances of viruses in a deep-sea hydrothermal vent
634 system indicates viral mediated microbial mortality. *Deep Sea Res. Part I* **52**, 1515–1527
635 (2005).
- 636 8. Anantharaman, K. *et al.* Sulfur oxidation genes in diverse deep-sea viruses. *Science* **344**,
637 757–760 (2014).
- 638 9. Cheng, R. *et al.* Virus diversity and interactions with hosts in deep-sea hydrothermal vents.
639 *Microbiome* **10**, 235 (2022).
- 640 10. Williamson, S. J. *et al.* Lysogenic virus-host interactions predominate at deep-sea diffuse-
641 flow hydrothermal vents. *ISME J.* **2**, 1112–1121 (2008).
- 642 11. Thomas, E., Anderson, R. E., Li, V., Rogan, L. J. & Huber, J. A. Diverse Viruses in Deep-
643 Sea Hydrothermal Vent Fluids Have Restricted Dispersal across Ocean Basins. *mSystems*
644 **6**, e0006821 (2021).
- 645 12. Chow, C.-E. T. & Suttle, C. A. Biogeography of Viruses in the Sea. *Annu Rev Virol* **2**, 41–66
646 (2015).
- 647 13. Reysenbach, A.-L. *et al.* Complex subsurface hydrothermal fluid mixing at a submarine arc
648 volcano supports distinct and highly diverse microbial communities. *Proc. Natl. Acad. Sci.*
649 *U. S. A.* **117**, 32627–32638 (2020).
- 650 14. Zhou, Z., St John, E., Anantharaman, K. & Reysenbach, A.-L. Global patterns of diversity
651 and metabolism of microbial communities in deep-sea hydrothermal vent deposits.
652 *Microbiome* **10**, 241 (2022).
- 653 15. Mestre, M. & Höfer, J. The Microbial Conveyor Belt: Connecting the Globe through
654 Dispersion and Dormancy. *Trends Microbiol.* **29**, 482–492 (2021).
- 655 16. Martiny, J. B. H. *et al.* Microbial biogeography: putting microorganisms on the map. *Nat.*
656 *Rev. Microbiol.* **4**, 102–112 (2006).
- 657 17. Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse
658 chaining with skani. *Nature Methods* 1661–1665 (2023).
- 659 18. Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables
660 binning of viral genomes from metagenomes. *Nucleic Acids Res.* (2022).
- 661 19. Zhou, Z. *et al.* Sulfur cycling connects microbiomes and biogeochemistry in deep-sea
662 hydrothermal plumes. *ISME J.* (2023).
- 663 20. Goldsmith, D. B. *et al.* Development of phoH as a novel signature gene for assessing
664 marine phage diversity. *Appl. Environ. Microbiol.* **77**, 7730–7739 (2011).
- 665 21. Tang, X. *et al.* Bacteriophages from Arsenic-Resistant Bacteria Transduced Resistance
666 Genes, which Changed Arsenic Speciation and Increased Soil Toxicity. *Environmental*
667 *Science & Technology Letters* (2019).
- 668 22. Zhang, H. *et al.* Dissecting the metal resistance genes contributed by virome from mining-
669 affected metal contaminated soils. *Front. Environ. Sci. Eng. China* **11**, 1182673 (2023).

670 23. Tang, X. *et al.* The arsenic chemical species proportion and viral arsenic biotransformation
671 genes composition affects lysogenic phage treatment under arsenic stress. *Sci. Total*
672 *Environ.* **780**, 146628 (2021).

673 24. Borisov, V. B. *et al.* Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of
674 Unique Structure, Function, and Utility As Drug Targets. *Antioxid. Redox Signal.* **34**, 1280–
675 1318 (2021).

676 25. Carey, J. N. *et al.* Phage integration alters the respiratory strategy of its host. *Elife* **8**,
677 (2019).

678 26. Gazitúa, M. C. *et al.* Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic
679 waters. *ISME J.* **15**, 981–998 (2021).

680 27. Sunamura, M., Higashi, Y., Miyako, C., Ishibashi, J.-I. & Maruyama, A. Two bacteria
681 phylotypes are predominant in the Suiyo seamount hydrothermal plume. *Appl. Environ.*
682 *Microbiol.* **70**, 1190–1198 (2004).

683 28. Dick, G. J. *et al.* The microbiology of deep-sea hydrothermal vent plumes: ecological and
684 biogeographic linkages to seafloor and water column habitats. *Front. Microbiol.* **4**, 124
685 (2013).

686 29. Wang, S. *et al.* *Sulfurimonas sediminis* sp. nov., a novel hydrogen- and sulfur-oxidizing
687 chemolithoautotroph isolated from a hydrothermal vent at the Longqi system, southwestern
688 Indian ocean. *Antonie Van Leeuwenhoek* **114**, 813–822 (2021).

689 30. Hellweger, F. L. Carrying photosynthesis genes increases ecological fitness of cyanophage
690 in silico. *Environ. Microbiol.* **11**, 1386–1394 (2009).

691 31. Sheik, C. S. *et al.* Spatially resolved sampling reveals dynamic microbial communities in
692 rising hydrothermal plumes across a back-arc basin. *ISME J.* **9**, 1434–1445 (2015).

693 32. Sylvan, J. B. *et al.* Low temperature geomicrobiology follows host rock composition along a
694 geochemical gradient in lau basin. *Front. Microbiol.* **4**, 61 (2013).

695 33. Flores, G. E. *et al.* Inter-field variability in the microbial communities of hydrothermal vent
696 deposits from a back-arc basin. *Geobiology* **10**, 333–346 (2012).

697 34. Mullineaux, L. S. *et al.* Prolonged recovery time after eruptive disturbance of a deep-sea
698 hydrothermal vent community. *Proc. Biol. Sci.* **287**, 20202070 (2020).

699 35. Brum, J. R. *et al.* Illuminating structural proteins in viral “dark matter” with metaproteomics.
700 *Proc. Natl. Acad. Sci. U. S. A.* **113**, 2436–2441 (2016).

701 36. Goffredi, S. K. *et al.* Hydrothermal vent fields discovered in the southern Gulf of California
702 clarify role of habitat in augmenting regional diversity. *Proc. Biol. Sci.* **284**, (2017).

703 37. Stella Manes, Mark J. Costello, Heath Beckett, Anindita Debnath, Eleanor Devenish-
704 Nelson, Kerry-Anne Grey, Rhosanna Jenkins, Tasnuva Ming Khan, Wolfgang Kiessling,
705 Cristina Krause, Shobha S. Maharaj, Guy F. Midgley, Jeff Price, Gautam Talukdar, Mariana
706 M. Vale. Endemism increases species’ climate change risk in areas of global biodiversity
707 importance. *Biol. Conserv.* **257**, 109070 (2021).

708 38. Orcutt, B. N. *et al.* Impacts of deep-sea mining on microbial ecosystem services. *Limnol.*
709 *Oceanogr.* **65**, 1489–1510 (2020).

710 39. Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas Basin
711 deep-sea hydrothermal plume. *Environ. Microbiol.* **12**, 1334–1347 (2010).

712 40. Li, M. *et al.* Genomic and transcriptomic evidence for scavenging of diverse organic
713 compounds by widespread deep-sea archaea. *Nat. Commun.* **6**, 8933 (2015).

714 41. Gregory J. Dick, Brian G. Clement, Samuel M. Webb, F. Joel Fodrie, John R. Bargar,
715 Bradley M. Tebo. Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the
716 Guaymas Basin deep-sea hydrothermal plume. *Geochim. Cosmochim. Acta* **73**, 6517–6530
717 (2009).

718 42. Fortunato, C. S., Larson, B., Butterfield, D. A. & Huber, J. A. Spatially distinct, temporally
719 stable microbial populations mediate biogeochemical cycling at and below the seafloor in
720 hydrothermal vent fluids. *Environ. Microbiol.* **20**, 769–784 (2018).

721 43. Lesniewski, R. A., Jain, S., Anantharaman, K., Schloss, P. D. & Dick, G. J. The
722 metatranscriptome of a deep-sea hydrothermal plume is dominated by water column
723 methanotrophs and lithotrophs. *ISME J.* **6**, 2257–2268 (2012).

724 44. St John, E., Flores, G. E., Meneghin, J. & Reysenbach, A.-L. Deep-sea hydrothermal vent
725 metagenome-assembled genomes provide insight into the phylum Nanoarchaeota. *Environ.*
726 *Microbiol. Rep.* **11**, 262–270 (2019).

727 45. Dinghua Li, Ruibang Luo, Chi-Man Liu, Chi-Ming Leung, Hing-Fung Ting, Kunihiko
728 Sadakane, Hiroshi Yamashita, Tak-Wah Lam. MEGAHIT v1.0: A fast and scalable
729 metagenome assembler driven by advanced methodologies and community practices.
730 *Methods* **102**, 3–11 (2016).

731 46. Kang, D. D. *et al.* MetaBAT 2: an adaptive binning algorithm for robust and efficient
732 genome reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

733 47. Sieber, C. M. K. *et al.* Recovery of genomes from metagenomes via a dereplication,
734 aggregation and scoring strategy. *Nature Microbiology* **3**, 836–843 (2018).

735 48. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM:
736 assessing the quality of microbial genomes recovered from isolates, single cells, and
737 metagenomes. *Genome Res.* **25**, 1043–1055 (2015).

738 49. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile
739 metagenomic assembler. *Genome Res.* **27**, 824–834 (2017).

740 50. Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-
741 resolved metagenomic data analysis. *Microbiome* **6**, 158 (2018).

742 51. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and
743 curation of microbial viruses, and evaluation of viral community function from genomic
744 sequences. *Microbiome* **8**, 90 (2020).

745 52. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
746 transform. *Bioinformatics* **25**, 1754–1760 (2009).

747 53. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
748 2079 (2009).

749 54. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for
750 FASTA/Q File Manipulation. *PLoS One* **11**, e0163962 (2016).

751 55. Camargo, A. P. *et al.* Identification of mobile genetic elements with geNomad. *Nat.*
752 *Biotechnol.* (2023).

753 56. Walker, P. J. *et al.* Recent changes to virus taxonomy ratified by the International
754 Committee on Taxonomy of Viruses (2022). *Arch. Virol.* **167**, 2429–2440 (2022).

755 57. Nayfach, S. *et al.* CheckV assesses the quality and completeness of metagenome-
756 assembled viral genomes. *Nat. Biotechnol.* **39**, 578–585 (2021).

757 58. Van Dongen, S. Graph Clustering Via a Discrete Uncoupling Process. *SIAM J. Matrix Anal.*
758 *Appl.* (2008).

759 59. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 1–9
760 (2009).

761 60. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
762 features. *Bioinformatics* **26**, 841–842 (2010).

763 61. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the
764 analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).

765 62. Shaffer, M. *et al.* DRAM for distilling microbial metabolism to automate the curation of
766 microbiome function. *Nucleic Acids Res.* **48**, 8883–8900 (2020).

767 63. Guo, J. *et al.* VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA
768 and RNA viruses. *Microbiome* **9**, 37 (2021).

769 64. Roux, S. *et al.* iPHoP: An integrated machine learning framework to maximize host
770 prediction for metagenome-derived viruses of archaea and bacteria. *PLoS Biol.* **21**,
771 e3002083 (2023).