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Abstract—A fundamental small-noise sensitivity analysis of
spike localization in the presence of adversarial perturbations
and an arbitrary point spread function (PSF) is presented. The
analysis leverages the local Lipschitz property of the inverse
map from measurement noise to parameter estimate. In the
small noise regime, the local Lipschitz constant converges to the
spectral norm of the noiseless Jacobian of the inverse map. An
interpretable upper bound in terms of the minimum separation of
spikes, norms, and flatness of the PSF and its derivative, as well
as the distribution of spike amplitudes is provided. Numerical
experiments highlighting the relevance of the theoretical bound
as a proxy to the local Lipschitz constant and its dependence on
the key attributes of the problem are presented.

Keywords— spike localization, local Lipschitz property, sensitivity
analysis, adversarial noise.

I. INTRODUCTION

The localization of spikes convolved with a known point spread
function (PSF) arises in various applications, including imaging,
array processing, radar, and communications. While this problem
has a long history in signal processing [1], recent progress in super-
resolution established theory and computational methods for the
spike localization against or even below the Rayleigh resolution limit
(e.g. [2]-[6]). Yet, most of the literature assumes the point spread
function (PSF) is a Dirac distribution, or the noise is stochastic,
typically modeled as Gaussian. However, there are many practical
applications in which the target pulse signal is convolved with a
non-Dirac PSF and is corrupted with a structured or an adversarial
noise. This yields a gap between the classical theoretical guarantees on
super-resolution and their applicability in real-world use cases. Given
a fixed noise energy, structured noise can deteriorate the estimation
performance more than random noise. For example, the spike injection
framework [7] considers spurious adversarial spikes consuming the
entire noise energy. The error estimate on the parameters under this
noise model has been shown to be related to the distance between the
true and the faked signal components and can yield a significantly
greater error estimate on the true signal parameter than random
perturbation. This found interest in the context of physical layer
security, where an agent transmitted over a wireless channel seeks to
conceal her physical location from an eavesdropper. When the spike
injection pattern is known to the receiver, the physical location can
be preserved without degrading the decoding of legitimate parties. In
surface electromyography (EMG) modality [8], the signal is given as
the convolution of spikes representing neural activations and patient-
dependent PSF, known as motor unit action potential (MUAP). In
this application, structural noise arises in the form of cross-talk,
constituting neural signals from neighboring muscles and introducing
additional peaks in the signal reading. This peak can be misinterpreted
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as the activation of the muscle under observation and can cause the
EMG acquisition algorithm to make a wrong inference.

Contributions: This paper establishes a fundamental analysis of
the localization of spikes in the presence of non-Dirac PSF and
adversarial noise. We are particularly interested in characterizing the
phase transition between two regimes where stable estimation of the
spikes is feasible and unfeasible. We will quantify the phase transition
condition given in an interpretable form depending on the minimum
separation of the spikes, PSF characteristics, and amplitude dynamic
range. Our approach to the sensitivity analysis is based on the local
Lipschitz property of the inverse map that maps an arbitrary noisy
instance to a least squares estimator. This local Lipschitz property
describes how smoothly a function behaves in the vicinity of any
point within its domain. Essentially, it implies that within any small
neighborhood around a point, the change in the function’s output does
not exceed a certain rate when compared to the change in the input.
This framework enables the worst-case analysis in terms of the noise
pattern. To the best of the authors’ knowledge, we have not found
prior work on the fundamental analysis of spike localization in this
worst-case scenario.

We focus on an asymptotic scenario of a small noise where the
signal-to-noise ratio is sufficiently high. In this regime, the Lipschitz
constant of the inverse map converges to the spectral norm of its
noiseless Jacobian, which we use as a proxy to characterize the
sensitivity of the model. We start by providing an analytical expression
of the noiseless Jacobian of the inverse map. In order to better highlight
its dependency on the key attribute of the problem, such as the
minimum separation between the pulses, the shape of the PSF, and
the dynamic range of the amplitudes, we derive in Theorem III.2 a
novel simple and interpretable upper estimate of its spectral norm. To
achieve this goal, we rely on the recent advances characterizing the
spectrum of weighted Vandermonde matrices [9], [10] through the
analytical properties of the extremal solution of generalized Beurling—
Selberg type approximation problems [11]-[14].

The fundamental sensitivity analysis in this paper contrasts with the
classical Cramér-Rao bound in the following perspectives. While the
Cramér-Rao bound applies only to the class of unbiased estimators,
most of the practical estimators for spike localization are biased.
Furthermore, except for a few examples, including the additive white
Gaussian model, the computation of the Cramér-Rao bound is not
easy. On the contrary, our fundamental analysis provides a unique
characterization in the worst-case noise model and applies regardless
of the noise distribution, even to adversarial noise cases.

Mathematical Notations: Vectors and matrices are written in small
boldface a and capital boldface A, respectively. A* denotes the
conjugate transpose of matrix A. The notations || Al|, || A ||, [|A]l 45— 5
refer to the spectral norm, Frobenius norm, and the largest £2 norm
of the columns of a matrix A. The maximum eigenvalue and singular
value of A are denoted Amax(A) Or omax(A), respectively. The
shorthand notation [n] denotes the set of integers {1,...,n}. The
number j is the basis of imaginary numbers, j2 = —1.For T > 0,
the K-dimensional torus is written TX ~ (R/T'Z)*.



Organization: Section II lays the formulation of the problem statement
and the signal model. Section III presents the main sensitivity analysis
and provides the supporting lemmas and the main theorem. Section IV
proposes a sketch of the proof of the main results. Section V presents
the validation for the theoretical analysis. Finally, we conclude with
Section VL

II. PROBLEM STATEMENT

Consider the parameter estimation of pulses from multiple snap-
shots. The observed signal in the /th snapshot is written as

K
ye(t) = . wheg(t —m), Le[L]:={1,...,L}.
k=1

The signal consists of a superposition of K pulses of known PSF g
centered at common locations {7 }f_; < T with varying amplitudes
across snapshots. The goal of the problem is to estimate the unknown
locations in 7 = [r1,...,7x]" from the noisy Fourier transform
coefficients of y, sampled at frequencies in {f; = Z=N=1 . ¢
[Nl} across L snapshots. Define v — <I>Igy e CN*K by [®4]ik =
e 2™ wfi where v = [y1,...,vx]" € TX. Let Y € CV*¥ collect
all measurements so that [Y']; ¢ denotes the Fourier transform g (f) =
§ o Ve (t)e 327t qt at frequency f;, corrupted with additive noise,
for i € [N] and £ € [L]. Then Y is compactly written as

Y=G®-X+2Z

where G = diag (¢(f1),...,9(f~)) is a diagonal matrix, where g
denotes the Fourier transform of g, X € C**% satisfies [X]x.¢ =
Tk, and Z € CNV*L denotes additive noise. We assume that G' has
at least K nonzero diagonal entries. Then G®, has full column rank.
We consider the least squares estimator given by
minimize  ||Y — G®, Y|}

~eTK , YeCKxL

Given -, the optimal Y is given by (G@W)TY. Therefore, the same
optimal estimator of 7 is obtained by

2
minimize HPjYH (1
~eTK F
where Py := Iy — G®,(G®.)" denotes the projection onto the
orthogonal complement of the column space of G®-,. Let T denote
a minimizer to (1). In the noise-free scenario (Z = 0) under the
sufficient condition that N > 2K, the estimate is uniquely determined
as the ground-truth 7. The objective is to study the perturbation of
the least-squares estimator as a function of worst-case additive noise
Z.

III. LOCAL SENSITIVITY ANALYSIS

For the purpose of analysis, we assume up to a scaling of the
pulse location and the PSF that 7" = 1. We present a fundamental
sensitivity analysis that is based on the local Lipschitz property of
the inverse map 1), which takes the noise perturbation Z as input
and outputs the least-squares estimate 7. To elucidate the dependence
on additive noise Z, we rewrite the optimization in (1) as

minimize ¢(~v, Z)
~eTK

where )
U, Z) = HPj(G@TX + Z)HF.

@

Then there exists a nonlinear mapping 1 : cNxL 1K given by

YP(Z) € argmin {(vy, Z).

The inverse map % is locally Lipschitz continuous at 0 € CN*L if
there exists a neighborhood A of 0 and a constant C' > 0 such that

l¥(Z1) — 9(Z2)l,
121 — Z2||

SC, VZl,Zzeszl # Zs. (3)

The local Lipschitiz constant L. nr denotes the smallest C' > 0
satisfying (3) and is characterized via the spectral norm of the Jacobian
matrix of ) as

Ly = sup ||[Vuz)¥(2)|
ZeN

Re(vec(Z))
Im(vec(Z))
vec(Z) e CV is obtained by stacking all columns of Z vertically.
Note that ¢ is an isometric bijection.

For an arbitrary Z, the Jacobian V,(z)1(Z) of the inverse map
1 at Z has entries given as multivariate polynomials in ¢(Z) where
the order depends on N. Let N' = CY*% be a Frobenius-norm
ball of radius » > 0. Since ‘|VL(Z)1/:(Z)|| is a continuous function
in ¢(Z), in the limit of » — 0, the local Lipschitz constant L. s
will converge to HVL< Z)¢(0)||- Therefore, one may deduce that
HVL( 2y (0) H describes the asymptotic sensitivity of the estimation
process in the small-noise regime.

The following provides a closed-form expression of HVL( z)¥%(0) H
It was derived by extending pre-existing results on the differentiation
of pseudo-inverse and projection [15] to the case of complex-valued
matrices. The statement can be verified with appropriate modification
on the transpose operators. Let g denote the partial gradient of the
loss function ¢ in (2) with respect to ~, i.e. g(v, Z) = VAL(7, 2).
Then it has been shown [16] that the implicit function theorem [17]
(also see [16, Theorem 6]) can be utilized to express the Jacobian of
the inverse map v as

Vi) $(Z) = — (Vvq($(Z2), 2)) " (Vuza($(Z2),2)). &)

At zero noise, 1¥(Z) is reduced to ground-truth parameter 7. Hence,
the quantities on the right-hand side of (4) can be explicitly computed
as shown in the following lemma.

with ¢ : C**Y — R2EN defined by «(Z) = [ ] where

Lemma III.1. The Jacobian matrices in the right-hand side of (4)
at Z = 0 are written as

V~q(T,0) = 2Re (YXT 0 @iA*G*PﬁGA«I:,) (52)
and T
_[Re (X" P}GA®,)

where O and * respectively denote the Hadamard and Khatri-Rao
products, and A € RVN*"N is a diagonal matrix satisfying [Al;: =
—j2m f; for i € [N].

In the zero-noise case, a closed-form expression for Jacobian
norm ”VL( Z)z/:(O) , which characterizes the model sensitivity can
be obtained by plugging in (5a), (5b) to (4). However, it does not
explicitly explain how the sensitivity depends on key attributes like
minimal separation and PSF characteristics. Therefore, we next present
our main result to derive an upper estimate of HVL< Z)zp(O)ﬁ in an
interpretable form. To state the main theorem, we introduce relevant
notation. Let Fy and E; be the bandlimited energy of the PSF and

its derivative in the bandwidth Jy := [— &1 ¥=1] 50 that

2

. ©)

Lo

Bo:= gL}, Eii=|

.é\/]lJN’

where 1;, is the indicator function of the interval Jy and g’
denotes the Fourier transform of the first-order derivative of g.
Given Cy the space of continuous functions of the real variable,
the total variation norm |||, of a measure g is defined as



+0
lgllov = sup f h(f)dq(f). In the sequel define p as the
heCq —o0
Iy, <1
maximum of the normalized total variations of g and ¢’ in the
bandwidth Jy, i.e.

197 oy 197 o]

p 1= max By , iR

@)

Intuitively, p measures the “flatness” of the power spectral densities
of g and ¢’ within the interval Jy. It decreases as the PSF g and its
derivative g’ gets narrower in the time domain.

Theorem IIL.2. Suppose that mingy infjez |7 — 7, + j| = A.
L,

Let k := mln(dlag(XX*))
amplitudes. If A > 3pl*€, then

> 1 be the dynamic range of the spike

ol < 1X1y/1+ 2pA-t
= VE; min(diag(X X *)) (1—2prA-1)"

The parameter A represents the minimal separation between any
two pulse locations in the support; it has been known since the work

[Vuz)y

®

of Rayleigh on diffraction to drive the harness of estimating 7 [18].

Additionally, when the spike amplitudes are drawn according to a
statistical model, the dynamic range parameter  is determined by the
empirical covariance X X * of the spike amplitudes. In the asymptotic
number of snapshots, X X * converges to the true covariance. When
the amplitudes are uncorrelated, s reduces to the dynamic range of
variances of the spike amplitudes. In the other extreme case of a
single snapshot, x will be larger with nonzero off-diagonal entries in
X X*. In this perspective, x also explains how multiple snapshots
contribute to mitigating the sensitivity of the parameter estimation.

Note that the right-hand side of (8) is inversely proportional to the
scaling of g and X. Next, we present a corollary of Theorem I11.2
and the following lemma, providing an appropriate normalization of
the estimation error by the observation energy.

Lemma IIL.3 ([19, Theorem 1]). For any A > 0, we have

Omax (G¢T) < \/EO (1 + %pA_l )

IG®, X2 p
— oz en in
I

To state our result, let us introduce SNR :=
the limit of SNR — o0, we have

1%(2) = 7], < |[Vuz)$(0

The next corollary presents a non-asymptotic upper bound on the
noise propagation factor in (9).

)| - IG®+ X - SNR™2. (9)

Corollary II1.4. Suppose that the hypothesis of Theorem II1.2 holds.
Then

ny/(1+3pA1) (L+ 1pa1)

\/7 (17 fp/-sA )

Vi $(0)]| - G- X <

10
XX [l (10

where 1) 1= o G (X X))

Corollary II1.4 describes how the adversarial noise propagates to the
estimate by the inverse map 1. The parameter 7 is another measure
of the dynamic range of the spike amplitudes. Similar to k, the
asymptotic number of snapshots is determined by the true covariance
matrix. When the amplitudes are uncorrelated, 7 is proportional to
VK.

The result also suggests improved stability of the inverse map to
small-noise for small values of p. Provided sufficient flatness of the
power spectrum densities of g and g’, one would expect p to be

inversely proportional to the bandwidth [Jx| = N, i.e. p = O(N ™).
For example, p ~ 8/N when g is a Dirac function.

IV. PROOF OF THE MAIN RESULTS
A. Proof of Theorem 1.2

Using (4) and by the properties of the spectral norm, we have

[Vuza(r.0)|
Imin (V14(7,0))”

To simplify the notation, we let in the sequel S the positive definite
Hermitian matrix S = ®*A*G* PXGA®... We continue the proof
by controlling the denominator and the numerator on the right-hand
side of (11) separately in terms of the quantity ||S — E1Ik]|| from
their expression provided by Lemma III.1.

To provide a lower bound on the denominator on the right-hand
side of (5a), we write

[V $ () < (an

%V-,q(‘r, 0) = Re (YXT ® S)
= Re (YXT OE Ik + XX"O(S - ElIK))
= B XX OIx + Re (YXT oS — EIIK)) ,

where the last identity holds since X X' ® Ik is a diagonal matrix
with nonnegative entries. By [20, Theorem 1], we have

HRe (YXT oS — EJK)) H < HXXT oS - ElIK)H
< HYXTHOHQHS— EiIx|.

By substituting the expression of A and S, we obtain

L runin(Vya (7, 0))

5 > E; min(diag(X X*))

— I8 — EuIx| - || X X*| (12)

On the other hand, the numerator on the right-hand side of (11)
can be upper-bounded with the inequality || A = B|| < || Al - ||B]| for
any matrices A and B of the same number of columns. This yields

SIVazatr o) < 11X |
<IX1-IS15* < I1X1) - By + 1S = Br Il

13)

Lemma IV.1 proposes a bound on the quantity ||S — E1Ik]| in
terms of the separation between the pulses A and the PSF-related
parameters F; and p defined in Equations (6) and (7). These bounds
are derived via a generalization of the Beurling—Selberg approximation
by Vaaler [11]. Its proof is deferred to Section IV-B for readability.

Lemma IV.1. Assume that g(t) € L2(R) is derivable with g'(t) €
L3(R) then for A > 2p, we have
IS — EiIk| < ElpA L (14)

One immediately concludes on the desired statement with
Lemma IV.1, and by substituting Equation (14) into Equations (12)
and (13). |

B. Proof of Lemma IV.1

Leta =4/ g—é be a scaling factor, define U = [aG®,, AGP,],

and M = U*U. By a direct calculation, we have the block
decomposition

?PEG*GP,

M AP G*AGD,
T |a®iGFA*GD, :

PEG*A*AGD,
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Figure 1. Empirical realization of the quantities || S — E1Ik || (in red/solid),
||[M — E1Ik] (in black/dash-dot), and of theoretical upper bound Equa-
tion (14) from Lemma IV.1 (in blue/dotted), for varying A. Herein, N = 501.

By the linear independence of trigonometric polynomials and their
derivatives, and since G has at least 2K non-zero diagonal entries, the
matrices G®,, AGP,, and U are full column rank. This implies
the matrix M, and its two diagonal blocks are invertible. Hence, from
the Schur block inversion formula, we have

-1 _ * *
M= [ S_l] ,
where we neglected the derivation of blocks marked with an asterisk.
Since M, S and their inverse are positive-definite, one may write

)\max (M_l) = )\max (S_l) 9 Amin (M_l) < )\min (S_l) .

It comes With Amin(Q™1) = Amax(Q)7%, and Amax(Q™Y) =
Amin(Q) ™! for any positive definite matrix @ on the inequalities

)\max (M) = )\max (S) 5 )\min (M) < )\min (S) . (]5)

With (15), we seek to bound the extremal eigenvalues of M. Relevant
bounds are provided in the following Lemma, recalled from [19]
eigenvalues of M, and rely on the Beurling—Selberg extremal
approximation of functions with bounded variation.

Lemma IV.2. For any A > % pK, one has the inequalities

>\min (M) = El(l_pA_l), )\max (M) = El(l“rpA_l)

One concludes immediately with (15) and Lemma IV.2. [ |

V. NUMERICAL ILLUSTRATION

In this section, we numerically validate the effectiveness of our

sensitivity analysis for the case of Dirac and Gaussian PSFs. The

2
\/2170 exp <72f7>, where the

Gaussian PSF is given by g(t) =

parameter ¢ > 0 determines the effective width of the support. In
this numerical illustration, we set the number of spikes to K = 3
and the number of Fourier measurements to N = 501. The spike
locations are generated randomly so that the minimum separation is
no smaller than the parameter A. The observation is maximized over
50 realizations in the Monte Carlo to simulate the worst-case scenario.
The spike amplitudes are chosen at random and normalized to satisfy
%X X* = I, which corresponds, provided the spike amplitudes
are uncorrelated, to the asymptotic case of an infinity of snapshots
goes to infinity.

Figure 1 compares empirical realization of the quantities
IS — E1Ik| and |[M — E1Ik|| with their theoretical upper bound
given by Equation (14) in Lemma IV.1. For both PSFs, the spectral
distance between S and the scaled identity F1Ix improves with the
time-bandwidth product NA, suggesting better conditioning. This
observation corroborates with the Lemma IV.1, which provides a valid
upper bound for large enough values of NA, and exhibits similar
trends in the asymptotic. We also note that the empirical conditioning
of the matrix S and the established theoretical bound are higher for

0.1 . 1

0.08 : 0.8

0.06 : 0.6 :
0.04 : 0.4 :
0.02 5 02 L %

| SEERLLTTPEPPTPN P A NSE—LTTY
0 10 20 30 40 0 10 20 30 40
NA NA

(a) Dirac PSF (b) Gaussian PSF (o = 0.02)
Figure 2. Empirical realization of the noise propagation factor ||VL( Z>¢(0) H .
|G®+X||p (in red/solid), and the upper bound (10) in Corollary IIL.4 (in
blue/dotted) per varying A.
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Figure 3. Illustration of the noise propagation factor (in red/solid) and its
upper bound in Corollary 1.4 (in blue/dotted) for the Gaussian PSF per
varying o (N = 501, A = 0.25, NA ~ 125).

the Gaussian PSF than for the Dirac, the latter being a concentrated
pulse with a lower spectral flatness factor p.

Next, we validate the statement of Corollary III.4 throughout
numerical simulations. Figure 2 compares the noise propagation factor
and its upper bound for both Dirac and Gaussian PSF. The empirical
realization of the noise propagation factor (NPF) steeply increases
when NA is smaller than a threshold around 1, which corresponds to
the Rayleigh resolution limit, indicating a highly sensitive regime. On
the other hand, the NPF converges to a constant value as VA increases,
landing on the stable estimation regime. The dependence on the factor
N A for the stability of pulse-localization has been widely studied for
stochastic noise. This experiment illustrates a similar phenomenon for
adversarial noise. Meanwhile, the bound by Corollary II1.4 provides a
valid upper bound for sufficiently large NA. It is also larger than the
target quantity by a constant factor. Besides this conservativeness, the
upper bound reflects the overall trend of NPF and is useful since it
provides a simple interpretable relation to minimum separation, PSF
characteristics, and spike amplitudes. Figure 3 pictures the NPF and
its theoretical upper bound as a function of the width o of a Gaussian
PSF. It confirms the intuition that wider convolution kernels are more
sensitive to adversarial noise.

VI. CONCLUSION

This paper presents a fundamental sensitivity analysis of the spike
localization problem in the presence of adversarial noise and arbitrary
PSE. The analysis is based on the local Lipschitz property of the
inverse map that controls the effect of the measurement noise on
parameter estimation error and quantifies the high and low noise
sensitivity regions. We focused on the high-SNR scenario where
the local Lipschitz converges to the spectral norm of the noiseless
Jacobian of the inverse map. This setting serves as a baseline measure
of stability. Our main result derives an interpretable upper bound
on this quantity in terms of the minimum separation, the shape of
the PSF, and the spike amplitude distribution. The numerical section
bolsters the efficacy of the derived bounds.
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