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Abstract—Sparse max-affine regression is introduced as a
solution to variable selection for non-linear learning problems. A
non-asymptotic local convergence analysis for Sparse Gradient
Descent (Sp-GD) is presented when covariates are independent
and identically distributed Gaussian random vectors. If at most
s out of d covariates are actively contributing to the explanation
of the target variable and the max-affine model combines a
fixed number of linear models, then a suitably initialized Sp-
GD linearly approaches the optimal solution and the true active
covariates given n = O (s log[(n ∨ ed)/s]) noise-free samples.
Numerical Monte Carlo results corroborate these theoretical
findings on the phase transition of exact parameter recovery.

Keywords— variable selection, non-linear regression, sparsity,
max-affine

I. INTRODUCTION

This paper introduces a sparse max-affine model in an effort
to solve variable selection for non-linear regression problems. The
unique piece-wise linear geometry of the combination of linear
models via the max function allows the modeling of non-linear de-
pendencies between covariates and the target variable. Therefore, the
max-affine model proved useful in several areas of signal processing
and statistics such as clustering, classification, convex regression,
and auction problems [1]. Simpler max-affine models have also been
used in phase retrieval and neural networks with the Rectified-Linear
Unit (ReLU) activation function family. In regression models where
the number of available covariates is large, employing all variables
for learning can lead to lower estimation accuracy especially when
the covariates exhibit undesirable statistical properties (e.g. high
covariate covariance or low covariate-target cross-covariance). The
variable selection that refines covariates into a smaller subset of most
contributing variables can mitigate such issues [2]. Indeed, there are
applications in finance and economics in which targets are modeled as
nonlinear mappings from a subset of many available covariates. One
particular example is the high-dimensional non-linear wage equation
from labor economics where variable selection has been shown to be
of major significance [3], [4]. Therefore, it is beneficial to assume
that a subset of covariates is sufficient to approximate real-life non-
linear multivariate functions with the max-affine model. However, the
extension of max-affine regression to sparse covariates has not yet
been explored.

Variable selection is well explored in the literature when the
covariate-target dependence is modeled as linear [2], [5]. The usual
approach is to apply a regularizer to the loss function to force the
sparsity of the weight vector (e.g. Lasso and basis pursuit). Other
approaches to linear modeling propose feature selection algorithms
via statistical analysis such as analyzing the conditional covariance
of the covariates [6]. In practical applications, the covariate-target
dependence often exhibits non-linearity not captured by linear mod-
els. There have been extensions of the variable selection to certain
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nonlinear models via basis change [7], [8]. In other words, the
non-linear dependence is modeled as a combination of non-linear
basis functions (e.g. spline basis [7]) as an attempt to reformulate
the regression problem as linear. Then, variable selection in this
context refers to limiting the number of newly defined covariates
from the over-parameterized list. This approach is similar to the well-
known order selection for polynomial regression [9]. Their model
is restricted to decoupled nonlinearities applying separately to each
covariate. However, the sparse max-affine model provides a way to
study the joint nonlinear dependence on all covariates which has not
been yet explored in the literature.

On the other hand, a line of research developed statistical analysis
and efficient computational methods for max-affine regression [1],
[10]–[12]. Ghosh et al. [13] established a non-asymptotic analysis of
the alternating minimization (AM) algorithm under random covariates
with independent stochastic noise. A subsequent work [14] proposed
solving the max-affine regression using first-order methods including
Gradient Descent (GD) and Stochastic Gradient Descent (SGD). It is
shown that SGD converges faster than AM with comparable sample
complexities.

This paper studies sparse max-affine regression via a computation-
ally efficient Sparse Gradient Descent (Sp-GD) method. We present
non-asymptotic convergence guarantees under the assumption that the
covariates follow the standard Gaussian model, and only s out of a
total of d covariates contribute to the target-covariate dependence.
When the number of combined linear models k is fixed, Sp-GD
linearly converges to the ground-truth regression parameters given
O(s log(ed/s)) noise-free data. Furthermore, the dependence on k
remains the same compared to the previous result without sparsity
[14]. All in all, this paper accomplishes a joint and efficient solu-
tion for simultaneous variable selection and max-affine regression.
Additionally, Monte Carlo simulations are provided under different
covariate models to corroborate the theoretical guarantees.

In this paper, lightface characters denote scalars, lowercase bold-
face characters denote column vectors, and uppercase boldface
denotes matrices. We also adopt the symbols for the max and
min operators in the lattice theory, i.e. a ∨ b = max(a, b) and
a ∧ b = min(a, b) for a, b ∈ R.

II. SPARSE MAX-AFFINE REGRESSION

Suppose that target variable y ∈ R is expressed by s-sparse
covariates x ∈ Rd via a piece-wise-linear multivariate function given
by the max-affine model

y = max
j∈[k]

(
⟨x,θ⋆

j ⟩+ b⋆j
)
, (1)

where [k] ≜ {1, . . . , k}, and {(θ⋆
j , b

⋆
j )}kj=1 denote the ground-truth

coefficients of the (d+1)-dimensional hyper-planes. Note that (1) can
be seen as a rank-k tropical polynomial under the max-plus algebra
[15]. Moreover, the covariate sparsity is equivalent to the condition
that the parameter vectors {θ⋆

j }kj=1 are jointly s-sparse. Sparse max-
affine regression refers to the estimation of the parameters of the
model in (1) from (noisy) dataset {(xi, yi)}ni=1.



III. SPARSE GRADIENT DESCENT ALGORITHM

This section explains the projected gradient descent algorithm for
sparse max-affine regression. To simplify notation, we reparametrize
the max-affine model in (1) into a max-linear model

y = max
j∈[k]
⟨ξ,β⋆

j ⟩, (2)

where β⋆
j ≜ [θ⋆

j ; b
⋆
j ] and ξ ≜ [x; 1] with the semicolon denoting

vertical concatenation. Similarly, the concatenated covariate samples
are given by ξi = [xi; 1] for i ∈ [n] ≜ {1, . . . , n}. Let β ≜
[β1; . . . ;βk] denote the vertical concatenation of all k hyper-plane
coefficient vectors {βj}kj=1 ⊂ Rd+1. We consider the estimator β̂
that minimizes the Mean Squared Error (MSE) loss function

ℓ (β) ≜
1

2n

n∑
i=1

(
yi −max

j∈[k]
⟨ξi,βj⟩

)2

, (3)

under the constraint that β̂ belongs to Γs defined by

Γs ≜

[α1; . . . ;αk] ∈ R
k(d+1) :

∥∥∥∥∥∥
(

k∑
j=1

[αj ]
2
l

)d

l=1

∥∥∥∥∥∥
0

≤ s

 , (4)

where ∥·∥0 counts the number of nonzero entries and [x]l denotes
the l-th entry of the original vector. In other words, each element in
Γs is rearranged into (d+1)×k matrix with at most s nonzero rows
except the last row. That is, the last row is fixed to 1 as coefficients
of the bias terms {b⋆j}kj=1.

Sp-GD is a variant of the projected gradient descent algorithm
to pursue the above estimators, where the gradient is substituted by
the generalized gradient [16] and the step size varies across blocks
adaptively with the iterates. We introduce a geometric object to
describe the Sp-GD algorithm. Consider a partition of Rd determined
by β = [β1; . . . ;βk] ∈ Rk(d+1) as

k⋃
j=1

Cj(β) ∪ V(β) = R
d,

Cj(β) ≜ {x ∈ R
d : ⟨[x; 1],βj⟩ > max

l∈[k]\{j}
⟨[x; 1],βl⟩},

V(β) ≜ {x ∈ R
d : ⟨[x; 1],βj⟩ = ⟨[x; 1],βl⟩, ∀ l ̸= j ∈ [k]},

Cj(β) ∩ Cl(β) = ∅, Cj(β) ∩ V(y) = ∅, ∀ l ̸= j ∈ [k].

The partition sets {Cj(β)}kj=1 are called as tropical open cells in the
max-plus algebra [15] and V(β) denotes the tropical zero-set which
corresponds to the boundary of the partition.

The algorithm starts by applying the block-wise gradient step

αt+1
j = βt − µj(β

t)∇βjℓ
(
βt) , j ∈ [k],

where the partial generalized gradient with respect to the variables
in the jth block βj is written as

∇βj ℓ(β) =
1

n

n∑
i=1

1{xi∈Cj(β)}

(
⟨ξi,βj⟩ −max

j∈[k]
⟨ξi,β⋆

j ⟩
)
ξi,

as presented in [14, Equation 7]. The step size used for updating the
jth block is determined from the current iterate βt as

µj(β
t) =

(
1

n

n∑
i=1

1{xi∈Cj(βt)}

)−1

. (5)

Next, the projection step is applied using the orthogonal projector
Ψs onto the set Γs defined in (4), i.e.

Ψs(α) = argmin
α̃∈Γs

∥α− α̃∥22.

Then Ψs enforces the joint s-sparsity assumption on the hyperplane
parameters (excluding the last row which is always set to 1) by
selecting the optimal minimizer from Γs under the ℓ2-norm. Algo-
rithm 1 outlines the projected gradient descent algorithm. This update
rule applies recursively until the algorithm converges by satisfying
∥βt+1 − βt∥2 ≤ γ∥βt∥2 for a small numerical constant γ > 0.

Algorithm 1: Sparse Gradient Descent (Sp-GD)
Input: dataset {xi, yi}ni=1, sparsity level s, model rank k,

step size µ, and initial estimate β0

while stop condition is not satisfied do
for (j = 1; j ≤ k; j = j + 1) do

αt+1
j ← βt

j − µt
j(β

t)∇βjℓ
(
βt
)

βt+1
j ← Ψs(α

t+1)

end
t← t+ 1

end
Output: final estimate β̂ ← [βt

1; . . . ;β
t
k]

IV. THEORETICAL RESULTS OF SP-GD
In this section, we present a local convergence analysis of Sp-GD

under the standard Gaussian covariate assumption. One important
performance-related parameter is πmin ∈ (0, 1

k
) that controls the

separation of the component affine models in (1) by imposing
minimal probability measure on the maximizer set of each model,
i.e.

min
j∈[k]

P (x ∈ Cj(β⋆)) ≥ πmin. (6)

Another performance-related parameter κ > 0 enforces the discrep-
ancy among the hyperplane coefficient vectors by

min
j′ ̸=j∈[k]

∥[β⋆
j ]1:d − [β⋆

j′ ]1:d∥2 ≥ κ. (7)

Now we state the main theorem under these two conditions.

Theorem IV.1. Suppose that {xi}ni=1 are independent copies of the
standard Gaussian random vector x ∼ N (0, Id). Let the certainty
measure δ ∈ (0, 1) be fixed. Then there exist absolute constants
C,R > 0 and ρ ∈ (0, 1), for which the following statement holds
for all s-sparse β⋆ satisfying (6) and (7) with probability at least
1 − δ. If the initial estimate β0 belongs to a neighborhood of β⋆

given by

N (β⋆) :=

{
β ∈ R

k(d+1) : max
j∈[k]

∥βj − β⋆
j ∥2 ≤ κρ

}
with

ρ :=
Rπ

3
4
min

4k2
· log−1/2

 k2

Rπ
3
4
min

 ∧ 1

4
,

and

n ≥ C
[
(s log(ed/s) + log(k/δ)) ∨ s log(n/s)

]
k4π−12

min ,

then the sequence
(
βt
)
t∈N

generated by Sp-GD with the step size in
(5) satisfies

k∑
j=1

∥∥βt
j − β⋆

j

∥∥
2
≤ ρt

k∑
j=1

∥∥β0
j − β⋆

j

∥∥
2
, ∀t ∈ N.

Theorem IV.1 implies local linear convergence of Sp-GD in the
noiseless case when the algorithm is properly initialized for the
Gaussian covariate model. The sample complexity scales linearly with



-2.5

-2

-1.5

-1

-0.5

0

50 100 200 250 300 400

0

0150

100

050

100

0

0150

100

050

100

Fig. 1. Median of E(β̂) for different (n,d) pairs using 50 Monte Carlo
iterations for k = 3 and s = 25 with Gaussian (top) and Uniform (bottom)
covariate distributions.

s ≪ d significantly improving analogous results without variable
selection [13], [14]. Importantly, Sp-GD does not inflate the degree
of dependence on the model rank number and dataset imbalance
parameter and maintains the same order k4π−12

min as plain GD and
SGD. Therefore, Sp-GD outperforms these algorithms regardless of
the presence of sparsity in the max-affine model.

V. NUMERICAL RESULTS

This section presents the numerical results of the Sp-GD algo-
rithm to corroborate the theoretical guarantees presented in IV. The
estimation performance is evaluated via the median of the relative
error between the true model coefficients β⋆ ≜ (β⋆

j )
k
j=1 and the

estimated coefficients β̂ ≜ (β̂j)
k
j=1. The relative error is defined via

the optimal permutation of model indices as

E(β̂) ≜ min
π∈Perm([k])

log10

(
k∑

j=1

∥β̂π(j) − β⋆
j ∥22/

k∑
j=1

∥β⋆
j ∥22

)
.

Fig. 1 shows the empirical phase transition by Sp-GD per the total
number of covariates d when the number of active covariates is
fixed to s = 25 with k = 3. The phase transition occurs when
n scales as a logarithmic function of d, corroborating the sample
complexity in Theorem IV.1. Although Section IV presents theoretical
guarantees under the Gaussian covariate assumption, Sp-GD provides
a similar empirical phase transition under the uniform distribution of
covariates as shown in the bottom of Fig. 1. Next, Fig. 2 shows
the empirical phase transition by Sp-GD per the number of sparsely
active covariates s when the total number of covariates is fixed to
d = 400 with k = 3. This figure corroborates that the numerical
complexity required for Sp-GD to work is indeed linearly dependent
on s.

There is a spurious peak on the empirical phase transition boundary
at s = 10 in both plots in Fig. 2. This phenomenon is due to
the random generation of the ground-truth parameters in Monte
Carlo simulations. If s is small, particularly, smaller than k, then
the randomly generated parameter vectors {β⋆

j }kj=1 have non-trivial
correlations leading to a subset of similar linear component models
in the max-affine model. It results in an imbalanced dataset, i.e.
πmin < 1/k. In contrast, for large s, randomly generated {β⋆

j }kj=1

are almost orthogonal with high probability and πmin ≈ 1/k
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Fig. 2. Median of E(β̂) for different (n,s) pairs using 50 Monte Carlo
iterations for k = 3 and d = 400 with Gaussian (left) and Uniform (right)
covariate distributions.

providing a balanced dataset. This technical issue can be avoided
if one explicitly controls generating the ground-truth parameter as an
equiangular frame.

VI. PROOF SKETCH OF THEOREM IV.1

Considering the space limit of this conference paper, we only
provide a sketch of the proof of Theorem IV.1. The proof is obtained
by showing that each update in Sp-GD monotonically decreases the
distance to the ground truth by a numerical constant factor, i.e.

k∑
j=1

∥∥βt+1
j − β⋆

j

∥∥
2
≤ ρ

k∑
j=1

∥∥βt
j − β⋆

j

∥∥
2
, ∀t ∈ N ∪ {0}. (8)

Define the support sets S⋆ and St
j ⊂ [d + 1] as the indices of the

nonzero coefficients in β⋆
j and βt

j with Θt
j ≜ S⋆ ∪ St

j , respectively.
Let Θt+1

j ≜ S⋆∪St+1
j for all j ∈ [k]. For S ⊂ [d], the corresponding

coordinate projection operators, ΠS : Rd → Rd and Π̃S : Rd+1 →
Rd+1 are defined as

[ΠSx]j =

{
[x]j if j ∈ S,

0 otherwise,
Π̃S =

[
ΠS 0
0 1

]
.

Then each summand in the left-hand side of (8) is rewritten as

∥βt+1
j − β⋆

j ∥2 =
∥∥∥Π̃Θt+1

(
βt+1

j − β⋆
j

)∥∥∥
2

≤
∥∥∥Π̃Θt+1

(
βt+1

j −αt+1
j

)∥∥∥
2
+ ∥Π̃Θt+1

(
αt+1

j − β⋆
j

)
∥2

≤ 2∥Π̃Θt+1

(
αt+1

j − β⋆
j

)
∥2

= 2
∥∥∥Π̃Θt+1

(
βt

j − µt
j∇βj ℓ(β

t)− β⋆
j

)∥∥∥
2
, (9)

where the second inequality holds since
∥Π̃Θt+1

(
βt+1

j −αt+1
j

)
∥2 ≤ ∥Π̃Θt+1

(
αt+1

j − β⋆
j

)
∥2, which

follows from the fact that β⋆ ∈ Γs and βt+1 is the projection of
αt+1 into Γs. We proceed with the following shorthand notations:
ht

j ≜ βt
j − β⋆

j , vt
jj

′ ≜ βt
j − βt

j
′ , and v⋆

jj
′ ≜ β⋆

j − β⋆
j
′ . Due

to the sparsity of the iterates and the ground-truth, we have
ht

j = Π̃Θtht
j = Π̃Θt+1ht

j + Π̃Θt\Θt+1ht
j , and v⋆

jj
′ = Π̃S⋆v⋆

jj
′ .



For brevity, we introduce a shorthand notation Ctj ≜ Cj(βt) for all
j ∈ [k]. Then the partial gradient in (9) can be decomposed as

Π̃Θt+1∇βj ℓ(β
t)

=
1

n

n∑
i=1

1{xi∈Ct
j}

(
⟨ξi,βt

j⟩ −max
j∈[k]
⟨ξi,β⋆

j ⟩
)
Π̃Θt+1ξi

=
1

n

n∑
i=1

1{xi∈Ct
j}
⟨Π̃Θt+1ξi, Π̃Θt+1h

t
j⟩Π̃Θt+1ξi︸ ︷︷ ︸

a

+
1

n

n∑
i=1

1{xi∈Ct
j}
⟨Π̃Θt\Θt+1ξi, Π̃Θt\Θt+1h

t
j⟩Π̃Θt+1ξi︸ ︷︷ ︸

b

+
1

n

∑
j′:j′ ̸=j

n∑
i=1

1{xi∈Ct
j∩C⋆

j′}
⟨Π̃S⋆ξi, Π̃S⋆v⋆

jj′⟩Π̃Θt+1ξi︸ ︷︷ ︸
c

. (10)

Plugging (10) into (9) yields

1

2
∥Π̃Θt+1h

t+1
j ∥2 ≤ ∥Π̃Θt+1h

t
j − µt

ja∥2 + µt
j (∥b∥2 + ∥c∥2) .

(11)

We derive a probabilistic upper bound on each summand on the right-
hand side of (11) by leveraging the following result. Let πj ≜ P(x ∈
Cj) and π⋆

j ≜ P(x ∈ C⋆j ). Then similar to [14, Lemma 7.6] we can
show that with high probability

βt ∈ N (β⋆) =⇒ (1− η) ≤ πj

π⋆
j

≤
(

1− η

1− 2η

)
(12)

for a small numerical constant η > 0 . Furthermore, due
to the Vapnik-Chervonenkis theory [17], the empirical measure
1
n

∑n
i=1 1{xi∈Cj} concentrates around the expectation, πj . There-

fore, with high probability, we can have using (12)

µj ≜
1

1
n

∑n
i=1 1{xi∈Cj}

≤ 1

πj − ϵ
≤ 1

(1− η)π⋆
j − ϵ

.

With high probability, the first factor on the right-hand side is upper-
bounded by

∥Π̃Θt+1

(
ht

j − µa
)
∥2

∥Π̃Θt+1ht
j∥2

≤ µjϵ,
µj∥b∥2

∥Π̃Θt+1ht
j∥2
≤ µjϵ.

The vector c in the last term of (10) is factorized as c = EΘt+1v,
where EΘt+1 ≜

[
ξ1,Θt+1 , . . . , ξn,Θt+1

]
and

v ≜
∑

j′:j′ ̸=j


1{x1∈Ct

j∩C⋆
j′}
⟨Π̃S⋆ξ1,v

⋆
jj′⟩

...
1{xn∈Ct

j∩C⋆
j′}
⟨Π̃S⋆ξn,v

⋆
jj′⟩

 .

Moreover, by the restricted isometry property of a standard Gaussian
matrix [18], we obtain

∥c∥2 ≤
(1 + ϵ)∥v∥2√

n
.

We can also obtain

1

n
∥v∥22 =

1

n

n∑
i=1

∑
j′:j′ ̸=j

1{xi∈Ct
j∩C⋆

j′}
⟨Π̃S⋆ξi,v

⋆
jj′⟩2

≤ 2

5e

(πmin

16

)3
︸ ︷︷ ︸

λ

k−1
∑

j′:j′ ̸=j

∥vt
jj′ − v⋆

jj′∥22

= λk−1
∑

j′:j′ ̸=j

∥ht
j − ht

j′∥22

≤ λk−1
∑

j′:j′ ̸=j

(
∥ht

j∥22 + ∥ht
j′∥22

)
,

where the first inequality follows from invoking [14, Lemma 7.7]
with ζ = 1/2, γ = e, and d substituted by s along the union bound
argument over all possible

(
d
s

)
supports. Note that this substitution

will inflate the error probability δ by log
((

n
s

))
≤ s log

(
en
s

)
.

Therefore, this lemma holds for

n ≥ C2k
4π−12

min [s log(ed/s) + log(k/δ)] ∨ [s log(n/s)] ,

for some absolute constant C2 > 0. Since the ℓ1 norm dominates the
ℓ2 norm, we can write

1√
n
∥v∥2 ≤

√
λ

k

∑
j′:j′ ̸=j

(
∥ht

j∥2 + ∥ht
j′∥2

)
.

Finally plugging the above upper bounds into (11) yields
k∑

j=1

∥Π̃Θt+1h
t+1
j ∥2

≤
k∑

j=1

[(
ϵ

(1− η)π⋆
j − ϵ

)(
∥Π̃Θt+1h

t
j∥2 + ∥Π̃Θt\Θtht

j∥2
)

+ 4
ϵ

(1− η)π⋆
j − ϵ

(k − 1)(1 + ϵ)

√
λ

k
∥ht

j∥2
]

≤ ϵ

(1− η)π⋆
min − ϵ

(√
2 + 4(k − 1)(1 + ϵ)

√
λ

k

) k∑
j=1

∥ht
j∥2

≜ ρ

k∑
j=1

∥ht
j∥2,

where the second inequality follows from

∥Π̃Θt+1h
t
j∥2 + ∥Π̃Θt\Θt+1h

t
j∥2 ≤

√
2∥Π̃Θtht

j∥2,

and that trivially π⋆
j ≥ πmin ∀j ∈ [k]. Finally, for a suitably chosen

ϵ > 0 one can have ρ < 1 which verifies the assertion in (8).

VII. CONCLUSION

This paper introduced sparse max-affine regression as a solution to
variable selection for non-linear learning problems. A non-asymptotic
local convergence analysis for Sparse Gradient Descent (Sp-GD) is
presented when covariates are independent copies of the Gaussian
random vector x ∼ N (0, Id). To bypass the non-convexity of this
optimization problem a suitable initialization method is employed.
Then Sp-GD linearly approaches the optimal solution and the appro-
priate active covariates given n = O (s log[(n ∨ ed)/s]) noise-free
samples when only s out of d covariates are actively contributing
to the explanation of the target variable and the max-affine model
combines a fixed number of linear models. Numerical Monte Carlo
results corroborate these theoretical findings on the phase transition of
exact parameter recovery for both Gaussian and uniform covariates.
Finally, Sp-GD maintains the sample complexity dependence on the
model rank number k and the dataset imbalance parameter πmin as
plain GD and SGD. Therefore, regardless of sparsity in the max-affine
model, Sp-GD always outperforms these algorithms.
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