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Abstract—Locating the source of harmful, flammable, or
polluting gas leaks is an important task in many practical
scenarios. A recently proposed localization approach is to use
a mobile robot equipped with a chemical sensor. The localization
algorithm guides the movement of the robot based on the
previous observations, with the objective of reaching the source
as quickly as possible. In this paper, we propose an approach
where the robot policy is represented by a neural network
combining convolutional and LSTM layers. The approach relies
on a gas dispersion model that takes into account obstacles, wind
direction, and molecular movement. We found that the trained
model provides a 47.34% higher success rate in finding the gas
source than an existing greedy approach on test cases with unseen
gas plumes and random obstacles.

Index Terms—Deep Q-Learning, LSTM, CNN, Gas source
localization, Mobile robot

I. INTRODUCTION

A mobile robot with a gas measurement sensor can mea-
sure gas concentrations at different locations in an unknown
environment. The gas might be leaking from a bomb, drugs,
or from a sub-sea pipeline [1]–[3]. It might be hazardous to
send a human to find the gas source. Therefore, using an
autonomous mobile robot that can find the source of the gas
leak would be a safer option. Most of the robotic gas source
localization studies have relied on unmanned ground vehicles
(UGVs) [4], [5]. An array of chemical sensor-enabled E-noses
are often placed on these ground robots, which can be used for
both indoor and outdoor applications. On the other hand, a few
studies have also used unmanned aerial vehicles (UAVs), aka
drones (both fixed and rotary-wing), for this application [6].

In this paper, we study the gas source localization problem
from a computational perspective. We propose a learning
algorithm that relies on the gas concentration measurements
by the robot’s onboard array of sensors, which makes our
presented solution robot-model agnostic. Most of the existing
GSL studies rely on environments with no obstacles [4], [5].
Unlike these, the proposed solution in this paper can gracefully
handle static obstacles such as walls that might affect the gas
flow. To this end, we propose a deep Q-learning technique
that takes the state of the environment as input and helps
the robot to take the best decision, i.e., moving towards the
source with minimum distance covered. Our proposed neural
network architecture uses three convolutional layers and two
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stacked recurrent layers (namely, LSTM [7]) – the CNN layers
are responsible for extracting meaningful features from the
spatial state information, e.g., measured gas concentrations
in the environments so far along with the corresponding
visited locations by the robot while the LSTM layers are
used to recognize patterns in the robot’s trajectory and gas
measurements across multiple timesteps. We use an existing
gas generation model from [1], which takes the wind and the
obstacles in the environment into account.

a) 5000 ep. b) 10,000 ep.

c) 15,000 ep. d) 30,000 ep.

Fig. 1: Gas source localization with a mobile robot using deep
Q-learning. Four test samples are shown after 5-, 10-, 15-, and
30,000 episodes with random walls (black cells) present. The
red cell indicates the source. Robot trajectories are shown with
their corresponding measured gas concentration intensities
(purple). One can observe that after only 5000 episodes (top
left), the robot takes a longer path to reach the source, whereas
it takes the shortest path to reach the target when tested with
a 30,000-episode-trained model.

We have trained the presented model for 30,000 episodes
with random walls, random gas sources, and/or random robot
start positions. Note that the robot start locations might have
zero gas concentration levels. Once the model is trained,
we deployed the trained model on 1000 randomly generated



test cases with various obstacles, robot start locations, and/or
gas source configurations. Results show that our proposed
technique achieves a high success rate in finding the gas
sources in the test environments. An illustrative example of
a few test cases at various checkpoints is presented in Fig.
1. Furthermore, we have compared our approach against a
standard existing gradient-ascent technique [8] and also a
random walk-based solution. Our learning algorithm has been
shown to outperform both of these baselines in terms of the
success rate in finding the gas source and the number of steps
needed to find the source.

II. RELATED WORK

Gas source localization (GSL) with an autonomous mobile
robot is a practical problem as it can help save humans from
hazardous exposures. A state-of-the-art review on robotic GSL
can be found in [4]. From the algorithmic point of view,
some of the earliest yet still relevant algorithms used chemical
gradients to find the source [8]. Algorithms for both indoor
and outdoor applications have been developed in the literature.
In indoor applications, primarily low-cost, small UGVs have
been used [9]. Similar to our setting, where the robot (e.g.,
UAV) can move on a 2D plane in four directions, have been
studied in [10]. The authors have proposed an informative path
planning approach to solve the GSL problem. Vision sensors
have also been used along with chemical sensing for the
studied problem [11]. In [5], the authors have used wind and
gas concentration information for their GSL solution. Along a
similar line, the authors in [12] have proposed a strategy for
such a search while taking the mean airflow over a period of
time into account. In our paper, we imitate this from a machine
learning perspective where the history of wind information and
robot trajectories are memorized and leveraged using a couple
of stacked LSTM layers. In robotics, LSTM has been used
extensively for deep Q-learning applications [13]. Recently,
there have been GSL-related studies that used deep learning-
based approaches. One of the closest studies to us is due to [1].
We model our gas distribution following their work. However,
as suggested in some of the prior work, we incorporate the
‘memory’ of the sensor measurements unlike [1]. In [14],
the authors have proposed a deep Q-learning model that can
find multiple gas sources with a mobile robot. The authors
achieved this by incorporating domain knowledge into their
model. Unlike all of the relevant studies mentioned here, we
utilize a combination of spatially as well as temporally deep
machine learning architecture that learns from the prior gas
concentrations, wind directions, and the robot’s path.

III. MODEL

A. Robot and Environment Model

The environment P is divided into grid cells, C. The source
of the gas is in cell cs ∈ C. We have a mobile robot r (e.g.,
an unmanned aerial robot) that is equipped with a gas sensing
sensor (e.g., CO2Meter’s S8 sensor for CO2 measurement or
an E-nose sensor). With the onboard sensor, r can measure
the gas concentration in its current cell c ∈ C. Once the gas

concentration in the current cell is measured, the robot can
move to any of its four neighbor cells unless the cell is blocked
by an obstacle (e.g., a wall). Therefore, r has four actions (i.e.,
up, down, left, right) in its action set A. Once the robot reaches
cs, it stops.

B. POMDP Model

We model the GSL problem as a partially observable
Markov Decision Process (POMDP) following [15]. The robot
cannot sense the gas concentrations in all the cells of the
environment. Therefore, the robot can not observe the global
dynamics of the gas dispersion and wind. A POMDP is defined
as a tuple ⟨S,A, T,O,R,Ω⟩, where S,A, T, and R have usual
meanings from MDP, i.e., state space, set of actions, state-
transition function, and reward respectively. Ω denotes the set
of observations. Finally, O represents the probability that the
observed state is sampled from the state space. The reward
function R is designed as follows. For any terminal action, if
it leads to success or failure, the robot gets a reward of 20
or −10 respectively. For non-terminal actions, the robot gets
−0.5 for being ‘alive’ as formally defined below.

R(a) =


20, success
−10, failure
−0.5, default

(1)

From here, Q-learning estimates how good an action is in
a given state s ∈ S. The recursive Q-value update function
follows from the Bellman update as the following.

Q(s, a) = Q(s, a) + α(R+ γmax
a′

Q(s′, a′)−Q(s, a)) (2)

where s′ is the next state to which the robot transitions
from s. However, maintaining and updating Q-values for all
possible S×A values might be prohibitive. Instead, the values
can be approximated by a deep neural network following [16].
A deep network such as designed by ours is maintained. Let
us parameterize it by θ (called a policy network). The network
will output the approximated Q-values for all available actions
(maximum 4 in our setting) for a given state. The parameter
set θ is tuned with experiences that the robot goes through
over time by using a loss function (Eq. 3). The experiences
(i.e., the transition tuples) are stored in an experience buffer
D. In every training iteration t, a batch of these is randomly
selected and the loss is calculated.

Lt(s, a, θt) = E[(y −Q(s, a, θt))
2],

y = R(a) + γmax
a′

Q(s′, a′, θ−t ) (3)

y is calculated from a deep network that is a copy of the
original network and is called the target network. The target
network is parameterized by θ− and only gets updated (i.e.,
θ− ← θ) every few episodes for stability.



C. Gas Generation Model

The gas plume generation model follows from [1] and our
experimentation is based on these generated gas types. The
equations 4−8 formally represent the gas generation process.

Equations 4 and 5 are responsible for gas concentration
coming from x and y directions respectively. Variables Aw

and Ad in Eq. 4 represent the plume width and diffusion
parameters. On the other hand, variable Ac in Eq. 5 represents
the gas particle decay parameter. Variable Ar in Eq. 6 is a
random walk parameter responsible for the probability that the
measured block is going to have more or less concentration
due to the random movement of the gas. λ in Eq.7 is the
general concentration measurement before noise is applied for
randomization. During this stage, an obstacle may block the
flow of the gas – then, only the rm parameter of the gas
distribution will be registered. As is the gas release rate from
the source. Ab indicator represents the state of the airflow – if
an obstacle blocks the airflow, it is set to 0; otherwise 1. Ao

is set to 1 if r’s current coordinate is in alignment with the
obstacle such that the gas would travel around it, otherwise it
is set to 0. C is the probability of hits for gas generated by
λ and is a sample from a Poisson distribution. The values of
these parameters in our experiments are kept the same as [1].

ry = exp

(
−2

(
y

Aw +Ad · x

)2)
(4)

rx =

{
1−Ac · x2 if 0 ≤ A

− 1
2

c

0 otherwise
(5)

rm =
1

Ar(x2 + y2 + 1)
(6)

λ = As

(
rxry ·Ab +

rx
2
·Ao + rm

)
(7)

C ∽ Poisson(λ) (8)

IV. PROPOSED METHODOLOGY

A. Neural Network Architecture

The neural network architecture proposed in this paper
consists of a series of three convolutional (CNN) layers and
then a stacked layer of LSTMs for decision-making. The input
to the CNN is 4 × L ×W tensor, where L and W are the
length and the width of the environment. The four layers in
this tensor together represent a state s ∈ S and these are shown
in Fig. 3. The state input remains identical to the one proposed
in [1], with robot trajectory, concentration measured, wind
direction, and the map of the environment. These inputs are
passed through three convolutional layers and rectified linear
unit (ReLu) activation functions. All three convolutional layers
have 16 output channels. The filter size differs between the first
CNN layer and the following, being 5 and 3 respectively with
stride being 1 for all convolutional layers. The output (of size
1× trace× 100) of the last convolutional layer is passed into
two stacked LSTM layers. The hidden cell size of the LSTM

layers is set to 128. The output from the LSTM layers is then
fed to a fully-connected linear layer with the output size of
|A|. These outputs are the Q-values of the |A| actions that the
robot can take. The proposed architecture is shown in Fig. 2.
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Fig. 3: An illustration of the state input. For brevity, an 8 ×
8 grid environment (L = W = 8) is used. This tensor is
passed to the neural network in Fig. 2. The 1 and the 0 in
the trajectory layer represent the current and the past robot
locations. The values in the measured concentration matrix
are the gas readings collected by the robot. The obstacle layer
contains binary values that represent obstacle/no-obstacle cells
in the environment.

B. Training

The overall training loop is similar to Double DQN [17]
with the exception of network optimization and state tensor
stacking. The pseudocode of our algorithm is presented in 1.

As mentioned earlier, we maintain two copies of the same
network as the policy network (Qθ) and the target network
for the purpose of stabilizing the learning process. At the
beginning of every episode, the environment is reset in one
of three pre-defined configurations. During each episode, r
selects an action using the ϵ-greedy strategy, i.e., depending
on the current epsilon value robot selects a random action with
(1− ϵ) probability or the best action calculated based on the
Q-values outputted by the policy network with ϵ probability.

To promote further exploration in the beginning, the first
500 episodes are purely exploratory. During these episodes,
the robot selects actions completely randomly (i.e., uniform
selection with each action having a probability of 0.25) from
the provided set of four actions, A. After taking the action
a ∈ A in state s, the robot transitions to state s′ and moves
to a new cell c in the grid. Next, the robot r records its
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Fig. 2: The proposed CNN-LSTM neural network architecture.

Algorithm 1: CNN-RNN-based robotic gas source
localization.

1 Initialize replay memory D, the policy and target
networks Qθ and Qθ− respectively;

2 while training not complete do
3 Initialize the environment with the robot placed;
4 for episode length do
5 s← current state (e.g., Fig. 3); Select action

a ∈ A using ϵ-greedy strategy;
6 Execute action a, transition to state s′, and

measure the gas concentration c(g) in the
current cell g;

7 Check if the source cs is reached, i.e., set done
to True if cs reached, otherwise False;

8 Receive reward R;
9 Store transition information

⟨s, a,R, s′, d, done⟩ in D;
10 if done = True then
11 break;

12 Sample minibatch of size m · trace experiences
from D;

13 Calculate the target value y and regress the
Q-network toward it;

14 Update the target network parameters θ− every T
episode.

trajectory and wind direction in cell c. After which it measures
gas concentration C(c) in that cell and checks if it is located
within one block (up, down, left, right) of the gas source cs.
Based on this check, r calculates the reward following Eq. 1.
The reward is then added to the running total of the episode
score. This score is maintained for tracking the performance
of the learning model.

Training the network happens after the robot takes an action,
transitions to a new state, makes an observation, and receives
a reward for it. We randomly select m transition batches of
length trace from D for training. Note that each such batch
is a set of trace number of consecutive experiences from a

single episode. We iterate over m batches while parsing each
of the trace transitions in it as their own batch and feed them
to the network. The target Q-values, y, are calculated using
Eq. 3, and the loss for the t-th training iteration is calculated.
The policy network parameters are then regressed to minimize
the loss value using the Adam optimizer method.

C. Testing

The testing phase consists of the robot conducting 1000
episodes of randomly generated environments in one of three
pre-defined different configurations, the configuration is the
same as the one that was used for training of the currently
tested neural network. During these 1000 episodes, the actions
are selected purely by the trained neural network. The testing
stage also removed the network training component as it has
been trained prior to this.

V. EXPERIMENTS AND RESULTS

A. Settings

The proposed technique is implemented in Python, with the
use of the PyTorch library. The main parameters used in the
experiments are listed in Table I. The environment size is 10×
10 m.2. We have three environment configurations that were
used for training and testing: 1) All random: robot location,
gas source, and the obstacles (walls) in the environment are
randomly generated every episode (see Fig. 1), 2) No walls:
there is no obstacle in the environment and the rest of the
setting is the same as ‘all random’, and 3) No walls set robot
position: the robot start position is fixed (cell (3, 3)) across
training and testing but the gas source is randomized.

We have compared our proposed algorithm against two
baselines: 1. Greedy. This baseline is similar to the algorithm
proposed in [8]. At every step, the robot moves to the neighbor
cell with the highest concentration. Due to the nature of the
gas generation algorithm, at times the greedy algorithm gets
stuck in the loop of going back and forth as the generated
concentration can be zero. 2. Random. This one lets the robot
choose a random action at every step. These baselines do not
require training, thus only our test results are compared with
their performance. The test data is based on 1000 test episodes.



TABLE I: List of parameters used in our experiments.

Parameters Values
State 4× 10× 10 tensor
Action Up, Down, Left, Right
Number of training episodes 30, 000
Episode length 100
Priority replay memory size 20, 000
Mini-batch size 32
Sample length 20
Discount factor 0.90
Learning rate 0.0001
Target network update frequency 20
Epsilon decay type Linear
Epsilon decay rate 0.0002
Epsilon start value 1.0
Epsilon end value 0.001
Loss function Mean Square Error
Optimizer Adam
Number of testing episodes 1, 000

Fig. 4: Training plots (1000-episode rolling average) for
reward and steps. Top: All random, Middle: No walls, and
Bottom row: No walls set robot position configuration.

B. Results

We are interested in investigating three main metrics to
evaluate the performance of the neural network algorithm:
reward (a higher reward indicates a shorter path found), steps
(the lower value indicates a more efficient trajectory), and suc-
cess rate (success % in locating the gas source). The training
results are presented in Fig. 4. As can be seen, the proposed
technique rapidly increases its efficiency with respect to the
episodic reward, which steadily goes up before converging
and the number of steps gradually decreases before it almost
converges. At around episode 5500, ϵ value of 0.001, resulting
in all of the actions taken past episode 5500 to primary
driven by the neural network proposed. The testing results

are presented in Fig. 5, and show improvement provided by
our proposed algorithm over the baselines in the three main
metrics. The data presented in Tables II, III, and IV show
averages for testing performance in three testing environments
along with standard deviation. Individually the results can be
misleading, for example in Table III, the random baseline
and Our proposed algorithm have similar average steps per
environment configuration, however, this alone does not draw
a meaningful conclusion. When combined with the reward and
success rate tables (Tables II and IV), we can understand that
the random movements might not have led the robot to the
gas source. Overall, across all configurations, our proposed
algorithm achieves a success rate of 91.67% in finding the
gas source, whereas the random and the greedy baselines yield
22.33% and 44.33% respectively.

TABLE II: Average reward gained during 1000-episode testing
on three different configurations

All Random No Walls Set Robot Position
Random −12± 13.31 −12± 14 −13± 18.57
Greedy −30± 34.48 −28± 34.76 −29± 35.02
Ours 6± 16.90 14± 8.40 13± 9.71

TABLE III: Average steps during 1000-episode testing on
three different configurations

All Random No Walls Set Robot Position
Random 14± 16.82 15± 17.64 23± 20.65
Greedy 64± 42.49 63± 42.68 64± 42.48
Ours 13± 14.38 14± 8.40 12± 11.72

TABLE IV: Average success rate (%) during 1000-episode
testing on three different configurations

All Random No Walls Set Robot Position
Random 16 20 31
Greedy 43 46 44
Ours 78 99 98

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of localization of a gas
source with a mobile robot. The robot is equipped with gas and
wind sensors, e.g., an E-nose, to measure gas concentration,
wind speed, and direction. We propose a deep recurrent Q-
learning technique that learns a policy from 30,000 episodes
of training. The employed reward function gives the robot a
positive reward if a training episode terminates successfully in
finding the gas source, a large penalty if it is an unsuccessful
training episode, and a small negative reward for any other
non-terminating state. We have tested our proposed learning
mechanism on environments with random obstacles, random
robot starts locations, and/or random gas sources. Results
show that our proposed approach achieves a high success
rate in finding the gas source in all types of environments
while outperforming a gradient ascent and a random-walk
baseline strategy. In the future, we will investigate more
efficient learning approaches. Furthermore, we are interested
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Fig. 5: Improvement of performance metrics (%) by our model on the baselines.

in employing our proposed learning technique on Gaussian
plume models.
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