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Abstract: Cholesterol, an important lipid in animal membranes, binds to hydrophobic pockets
within many soluble proteins, transport proteins and membrane bound proteins. The study of
cholesterol-protein interactions in aqueous solutions is complicated by cholesterol’s low solubility
and often requires organic co-solvents or surfactant additives. We report the synthesis of a biotinylated
cholesterol and immobilization of this derivative on a streptavidin chip. Surface plasmon resonance
(SPR) was then used to measure the kinetics of cholesterol interaction with cholesterol-binding
proteins, hedgehog protein and tyrosine phosphatase 1B.

Keywords: cholesterol; cholesterol-binding proteins; surface plasmon resonance; binding kinetics;
biotinylated cholesterol

1. Introduction

Cholesterol is a sterol found in all animal cell membranes serving as a key determinant
of biomembrane structure, dynamics and function [1]. This small lipophilic molecule binds
to hydrophobic pockets within more than 250 soluble proteins, transport proteins and
membrane bound proteins [2-4]. For example, cholesterol-binding proteins and hedgehog
(Hh) proteins are key molecules in patterning various types of tissues, which carry a
cholesterol ester at the C-terminus of their signaling domain [5]. It is well known that the
mutations in Hh and its related signaling molecules are associated with numerous cancers
and other diseases. Protein tyrosine phosphatase 1B (PTP1B) is a well-known regulator
of the insulin and leptin signaling pathways and it has become an attractive therapeutic
target for diabetes, obesity, and breast cancer [6]. Although the role of PTP1B in regulating
cholesterol levels is unclear, a cholesterol-binding domain has previously been identified in
the C-tail of PTP1B [7].

Previous work has been published on characterizing the interactions of cholesterol
with various proteins. Some studies used modified proteins to study their interactions.
Kumar reported a tetraethylorthosilicate film modified with protein to study the interaction
with cholesterol [8]. Others used protein biotinylation and streptavidin (SA) precipita-
tion methods to study their interaction [9-11]. The modification of cholesterol mainly
includes radiolabeled cholesterol [9-12], fluorescent labelled cholesterol [13], spin-labelled
cholesterol (using nuclear magnetic resonance (NMR) spectra) [14] and photoreactive
cholesterol [15].

The study of cholesterol-protein interactions in aqueous solutions is complicated
by cholesterol’s low solubility and often requires organic co-solvents or surfactant addi-
tives [16]. In biological systems, cholesterol is most frequently found within the lipid bilayer
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of cell membrane and, thus, solution-phase binding measurements may not be the most
biologically relevant method to study cholesterol-protein interactions. The modification
of cholesterol is less tedious than modifying each of the 250 cholesterol-binding proteins.
The modifications of cholesterol, described above [9-15], do not support the use of surface
plasmon resonance (SPR) to investigate kinetic interactions. While methods such as nuclear
magnetic resonance spectroscopy or X-ray crystallography provide molecular-level data on
ligand-protein binding, they are material-consuming processes [17,18] and less useful for
understanding binding kinetics and thermodynamics.

SPR is a quantitative method for the real-time analysis of biomolecular interactions to
characterize binding affinity, specificity, and kinetics [19-21]. When SPR is used to study
the interaction between a ligand and its binding protein, the smaller ligand is usually
immobilized on the surface of the SPR chip to obtain the greatest possible response to
binding, the best curve fitting, and the most accurate binding kinetics [22,23]. Although
several covalent chemistries are used to immobilized ligands to SPR chips, the non-covalent
binding of biotinylated ligand to SA is among the most reliable methods for preparing
bioactive chip surfaces for SPR [24,25]. SPR offers a method to study the kinetics of the
interaction of a protein with a small surface-bound lipophilic with low aqueous solubility in
the absence of co-solvents. Sensor chip L1 (is a commercial chip designed for lipid—protein
interaction analysis in Biacore™ systems) has been used in SPR analysis on lipid—protein
interactions. The sensor surface is dextran-coated and modified with lipophilic substances
such as alkyl chains. The immobilization of liposomes is accomplished by their diffusion
to the dextran surface, and they are attached directly to the sensor surface. Although
this kind of lipid surface mimics biological membranes and can be used in studies of
membrane systems, it has stability issue, and the vesicles can be either intact or fused to a
lipid bilayer [26].

In the current study, we report the convenient synthesis of a biotinylated cholesterol
for easy immobilization on a SA chip. SPR was then used to measure the kinetics of
cholesterol interaction with cholesterol-binding proteins, Hh protein and PTP1B. These
two proteins were selected for this study because they are both known to bind cholesterol
and their cholesterol binding kinetics currently require characterization. The results of
this study also provide a novel and reusable cholesterol SA chip, with an advantage for
studying the binding kinetics for various proteins while only requiring a small amount (in
the nanomolar range) of materials to obtain real-time results.

2. Materials and Methods
2.1. Materials

SPR measurements were performed on a Biacore T200 SPR (Cytiva, Uppsala, Sweden).
Streptavidin sensor chips and HBS-EP+ buffer were purchased from Cytiva.

2.2. Synthesis of Biotinylated Cholesterol

Commercially available 27-alkyne cholesterol (800 nug, 2 tM) and Azide-PEG3-biotin
(400 pg, 0.9 pM) were mixed in 100 mL dimethyl sulfoxide (DMSO) and water solution
(v/v: 1/1). DMSO/water (50 puL, v/v: 1/1) containing CuSOy (0.25 uM) and sodium
L-ascorbate (0.5 pM) was added in the reaction mixture. The solution was incubated at
room temperature under Ny protection for 12 h. The reaction mixture was filtered and
the filtrate was concentrated under reduced pressure. The product was purified using a
reversed-phase high performance liquid chromatography (HPLC) instrument (Shimadzu,
Kyoto, Japan) equipped with an SPD-M40 photo diode array detector (Shimadzu, Ky-
oto, Japan and an Agilent poroshell 120 EC-C;g column (2.7 mm, 4.6 x 250 mm), using
water/methanol/formic acid = 20/80/0.1 (v/v/v) as the mobile phase, at a flow rate of
0.3 mL/min to afford biotinylated cholesterol as a white solid powder. The structure
of the resulting biotinylated cholesterol conjugate was characterized by an 800 MHz nu-
clear magnetic resonance spectroscopy (Bruker Corporation, Rheinstetten, Germany) an
LTQ-Orbitrap XL FI-MS spectrometer (Thermo Scientific, Bremen, Germany).
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2.3. Expression and Purification of Hedgehog Protein

The cholesterol-binding Drosophila melanogaster hedgehog protein, HhC autoprocessing
mutant (H72A), was expressed as a C-terminal fusion to SUMO-HISg from a modified
PET30 vector using Escherichia coli strain BL21 (DE3) and purified by immobilized metal
affinity chromatography (IMAC). The H72A mutant includes the native HhC cholesterol-
binding domain but autoprocessing activity toward cholesterol is deactivated [27].

D. melanogaster Hh HINT (D46H) domain, a truncated mutant that lacks the cholesterol-
binding region, was expressed with an N-terminal His-tag from the pET45 vector using E.
coli strain BL21 (DE3) and purified by IMAC, as described previously [28].

2.4. Expression and Purification of PTP1B

Bacterially expressed His-PTP1B (residues 1-321) was purified by Ni-NTA (nitrilotri-
acetic acid) as previously described [29]. Briefly, bacterial pellets were solubilized in lysis
buffer (20 mM NaH;PO4 (pH 8), 300 mM NaCl, 1 mM TCEP, protease inhibitor cocktail
tablet (Roche)) and lysed using a sonicator at 40% amplitude. Lysates were centrifuged
at 4000 rpm for 1 h at 4 °C, and supernatants were incubated with Ni-NTA beads on a
clinical rotator for 1 h at 4 °C. The Ni-NTA column was washed with 5 volumes of buffer
A (20 mM NaH,POy (pH 8), 300 mM NaCl, 1 mM TCEP, 20 mM imidazole) and proteins
were eluted with buffer B (20 mM NaH,POy (pH 8), 300 mM NaCl, 1 mM TCEP, 250 mM
imidazole). Eluted proteins were buffer exchanged and stored at 4 °C in buffer C (50 mM
HEPES (pH 8), 150 mM NaCl, 5 mM TCEP) to prevent post-purification oxidation.

2.5. Immobilization of Biotinylated Cholesterol on SA Sensor Chip

In brief, a solution of biotinylated cholesterol (0.1 mg/mL) in HBS-EP+ buffer (0.01 M
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 0.15 M NaCl, 3 mM ethylenediaminete-
traacetic acid (EDTA), 0.05% surfactant P20, pH 7.4) with addition of 10% DMSO (for solu-
bilizing biotinylated cholesterol) was injected over flow cells 2, 3, 4 (FC2, FC3, FC4) of the
SA chip for 2 min at a flow rate of 10 uL/min, respectively. The successful immobilization
of cholesterol was confirmed by the observation of a ~800 resonance unit (RU) increase in
the sensor chip. The control flow cell (FC1) was prepared by an injection of saturated biotin
solution for 1 min at the same flow rate.

A reference surface (FC1) was used to discriminate from non-specific binding. Biotin
was added to FC1, while FC2, FC3, FC4 was immobilized with the biotinylated cholesterol
to closely match the reference surface to the other surfaces on the chip. The analyte was
flowed over all four flow channels and then FC2, FC3, and FC4 was subtracted by FC1 to
remove any non-specific binding. Salt, detergent (P20), EDTA, and DMSO were also tested
to further minimize non-specific binding,.

2.6. Binding Kinetics and Affinity Measurement of Cholesterol-Protein Interaction

Hh protein was dissolved in an eluent buffer (50 mM phosphate, 50 mM NaCl, 5 mM
TCEP, pH 7.0) and thus was used as the sample buffer on the SPR. Different concentrations
of HhC protein (500, 100, 20, 4, and 0.8 nM) were injected at a flow rate of 30 uL/min for
3 min. At the end of the sample injection, the same buffer was flowed over the sensor
surface to facilitate dissociation. After a 3 min dissociation time, the sensor surface was
regenerated by injecting 30 pL with 0.5% SDS. The response was monitored as a function
of time (sensorgram) at 25 °C.

PTP1B protein was diluted in HBS-EP+ buffer. Different concentrations of PTP1B
protein (2000, 1000, 500, 250, and 125 nM) were injected at a flow rate of 30 pL/min for 60 s.
At the end of the sample injection, the same buffer was flowed over the sensor surface to
facilitate dissociation. After a 3 min dissociation time, the sensor surface was regenerated
by injecting 30 puL with 0.25% SDS. The response was monitored as a function of time
(sensorgram) at 25 °C.
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a reverse phase HPV@seplrase EM[(Shimatraze i {ohtankgran keqetip pedhn)i tqaip SEDWSin SPD-M40
photo diode arfodediade Srashdetastaydmpgban) KSeparlpanvaspanaiied sxssaraied out on an
Agilent Poroshell 120 EC-Cyg column (2.7 pm, 4.6 x 250 mm) using water/methanol/formic
acid =20/80/0.1 (v/v/v) as the mobile phase, at a flow rate of 0.3 min/min. The structure
of the resulting biotinylated cholesterol conjugate was characterized by nuclear magnetic
resonance spectroscopy (Figure 2A): Selected I'H NMR (800 MHz, CDCl3): d 7.95 (s, 1H,
H-triazole), 5.32-5.28 (m, 1H, H-a), 4.79-4.71 (m, 2H, H-biotinj, k), 4.07—4.03 (m, 2H, H-e),
3.64-3.44 (m, 2H, H-PEG, H-b) and electrospray ionization-mass spectrometry (Figure 2B):
[M+H]* calcd. for C4H77NgOgS m/z 841.5620, found m/z 841.5665.
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proper functionality.As controls to assess the specificity of binding to the cholesterol chip, we used the Hh
truncation mutant, Hh HINT, a fragment of the full Hh protein that lacks the necessary
domain that binds to cholesterol as a negative binding control and as a positive binding
control, HhC, the full-length C-terminal cholesterol-binding domain of Hh was used. No
binding signal was observed from Hh HINT (500 nM injection), while Hh (500 nM injection)
shows strong binding (Figure 4). The lack RU increase with the injection of HINT protein
suggests the specificity of cholesterol-binding proteins. The RU increase of ~700 with the
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Figure 4. Hedgehog (FHh) protein constructs shows cholesterol chip binding specificity. SPK sensor-
gram of Hh C-terminal cholesterol-binding domain (HhC) at 500 nM shows ~650 RU binding (red)
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The results obtained for the two cholesterol-binding proteins examined, Hh and
PTP1B, are significant since they provide information on their kinetics of interaction with
cholesterol. The ratio of their k;/k, affords their binding constants (Kp). Both proteins show
nanomolar Kp values, providing critical information for future binding studies relying on
NMR methods.

4. Conclusions

In this study, biotinylated cholesterol was successfully synthesized and immobilized
on an SA chip. SPR was applied to confirm the cholesterol chip’s functionality and to
measure the kinetics of cholesterol interaction with two cholesterol-binding proteins, Hh
protein and PTP1B. This novel approach provides a means to obtain kinetic information
of cholesterol-binding proteins that previously could not be measured, which opens a
new avenue for researchers to gain more insight into cholesterol-protein interactions.
The major advantage of this method compared to other methods, such as NMR or X-ray
crystallography, is that SPR only requires a small amount of material to obtain results in
real-time, and should also be generally useful in the study of the binding of cholesterol and
other steroids to their protein ligands.
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