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Abstract

Over the last three decades, many growth and yield systems developed for the southeast USA have incorporated methods to create a
compatible basal area (BA) prediction and projection equation. This technique allows practitioners to calibrate BA models using both
measurements at a given arbitrary age, as well as the increment in BA when time series panel data are available. As a result, model
parameters for either prediction or projection alternatives are compatible. One caveat of this methodology is that pairs of observations
used to project forward have the sameweight as observations from a singlemeasurement age, regardless of the projection time interval.
To address this problem, we introduce a variance–covariance structure giving different weights to predictions with variable intervals.
To test this approach, prediction and projection equations were fitted simultaneously using an ad hocmatrix structure.We tested three
different error structures in fitting models with (i) homoscedastic errors described by a single parameter (Method 1); (ii) heteroscedastic

errors described with a weighting factor wt (Method 2); and (iii) errors including both prediction (
�
ε ) and projection errors (ε̃) in the

weighting factor wt (Method 3). A rotation-age dataset covering nine sites, each including four blocks with four silvicultural treatments
per block, was used for model calibration and validation, including explicit terms for each treatment. Fitting using an error structure

which incorporated the combined error term (
�
ε and ε̃) into the weighting factorwt (Method 3), generated better results according to the

root mean square error with respect to the other two methods evaluated. Also, the system of equations that incorporated silvicultural
treatments as dummy variables generated lower root mean square error (RMSE) and Akaike’s index values (AIC) in all methods. Our
results show a substantial improvement over the current prediction-projection approach, resulting in consistent estimators for BA.

Keywords: prediction and projection models; weighted regression; dummy variables; silvicultural treatments; errors propagation; yield
models

Introduction

In forest management, growth and yield models are considered

essential tools for forest planning, providing insights into future

forest conditions (Vanclay 1994, Fortin and Langevin 2011).

These models aim to describe growth dynamics over the life

of a given stand, using mathematical relations between state

variables (dominant height,mortality, and basal area (BA)), whose

parameters are calibrated using statistical methods. A large

variety of growth and yield models exist that aim at explaining

stand-level transition functions, diameter class, or individual tree

changes over time (Burkhart and Tomé 2012). Over the last two

decades, there have been several attempts to summarize existing

studies on themoderation of forest growth and yield,with the aim

of consolidating models and adjustment methods for different

site conditions and species and generalizing their implementation

in simulation systems (Monserud 2003, Pretzsch et al. 2008). Most

approaches for forest modeling are grouped into three types:

empirical, process-based, and hybrid models (Sun et al. 2007).

One common objective of thesemodels is to quantify somemetric

related to stand productivity. As such, stand BA (the sum of cross-

sectional areas of stems at 1.37 meters on a per ha basis) and its

growth prediction are an essential part of stand-level equations

due to their ease of measurement and their strong correlation

with volume and forest growth (Sun et al. 2007, Burkhart et al.

2019). BA growth summarizes a big portion of forest dynamics

over time (i.e. growth, mortality, reproduction, and associated

changes at the stand level). This approach is widely used in forest

management for its ability to update inventories, predict future

yield, and to explore differentmanagement alternatives (Gao et al.

2018).

Along with the rapid development of advanced mathematical

statistics and computing technologies, parameter estimation for

stand-level BA models have seen several critical developments:

Sullivan and Clutter (1972) used ordinary least squares (OLS) to

estimate the parameters for a volume projection equation that

had a BA projection equation embedded in it, and these estimated

parameter values were then used to obtain numerically consis-

tent parameter estimates for the implied BA projection equation.

Eerikäinen (2002) implemented simultaneous equation methods,

while other researchers used difference-equation models (Carson

et al. 1999, Corona et al. 2002, Garcı́a and Ruiz 2003, Bravo-Oviedo

et al. 2004); artificial neural network techniques (Chuangmin Liu

et al. 2003), linear/nonlinear regression models (Nyland et al.

2000, Fang et al. 2001, Sharma et al. 2002,Wang 2003) and models
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expressed in matrix form to describe the system of equations for

modeling forest growth and yield (Stanton 2001, Hao et al. 2005,

Zhao et al. 2005).

One desirable property of a growth and yield system is the

compatibility between equations describing relations between

state variables at a given point in time and dynamic equations

that project these state variables forward. Compatibility between

prediction and projection equations was first introduced by

Clutter (1963) in the form of a derivative-integral relationship

such that the growth function, when integrated over a time

interval, would equal the yield predicted by the yield equation.

Matney and Sullivan (1982) selected compatible stand-level

projection equations similar to those presented by Clutter (1963),

later refined by Sullivan and Clutter (1972) because of their

demonstrated applicability. Burkhart and Sprinz (1984) used

simultaneous estimations to derive compatible volume and BA

projection equations invariant of projection length. Later, Borders

and Bailey (1986) reviewed parameter estimation procedures for

systems of interrelated linear equations. They used restricted

three-stage least squares as a theoretically sound estimation

procedure in their development of a system of compatible growth

and yield equations. These authors used three-stage least squares

methods to predict a compatible system of growth and yield

equations for slash pine. Appropriate ways to find parameters

for such a system involve fitting the equations at the same time,

ensuring a common error structure (non-zero covariances), even if

there are no endogenous variables on the right-hand side (Zellner

1962).

Depending on variable interrelationships and model struc-

tures, simultaneous estimation of the parameters of the mod-

els might be necessary in order to provide estimates that are

consistent and efficient. Hasenauer et al. (1998) compared an

individual tree BA increment model, a height increment model,

and a crown ratio model separately using OLS and simultane-

ously by applying two and three-stage least square. The results

indicated the simultaneous models fitted were more efficient,

while the separately determined OLS estimates were biased.More

recently, Scolforo et al. (2019) developed a stand-level growth

and yield model system using the simultaneous approach, while

accounting for water availability. They used a linear algebraic

technique to simultaneously fit a compatible set of prediction and

projection BA equations.

The simultaneous prediction-projection algorithm, designed to

calibrate compatible BA models, ensures compatibility. However,

the method doesn’t inherently account for the fact that longer

projection intervals might introduce higher variances. In its for-

mulation, it assigns weights to projections with different lengths

similar to those applied to one-time observations, potentially

introducing bias into the final model. Therefore, we hypothe-

size that assigning different weights to prediction and projection

parts of the system might be better for the overall prediction,

correctly weighting observations from a given year and those pro-

jected from variable length time intervals. Thus, in this research,

we evaluated the difference in the estimated coefficients and

goodness-of-fit of independently fitted and simultaneously fitted

BA prediction and projection models. We also tested three differ-

ent error structures in fittingmodels with (i) homoscedastic errors

described by a single parameter (Method 1); (ii) heteroscedastic

errors described with a weighting factor wt (Method 2); and (iii)

errors including both prediction (
�
ε ) and projection errors (ε̃) in

one parameter (Method 3). The database used for this analysis

included silvicultural treatments; therefore, here we illustrate

the use of each method, while including silvicultural treatment

effects through a dummy variable approach and compare their

performance in relation to a base model which does not include

the effect of silvicultural treatments.

Methods
Data
For this analysis, we used nine study sites established in 1987

throughout the state of Georgia in the southeastern USA. The

trial was installed by the Consortium for Accelerated Pine Produc-

tion Studies (CAPPS) and maintained by the Plantation Manage-

ment Research Cooperative (PMRC) to investigate site responses

to intensive silvicultural regimes. The study corresponds to a ran-

domized complete block design, with four 0.15-hectare treatment

plots with an interior 0.05-hectare measurement plot. There was

a range of four to six blocks per site.Within each site, blocks were

established in different years. Sites spanned two physiographic

regions: coastal plain and piedmont in the southeast USA. All

sites had an initial planting density of 1679 trees per hectare

(2.44 × 2.44 m). The PMRC field crew collected data annually

for the first 20 growing seasons, biennial measurements began

after age 21. Tree level measurements include diameter at breast

height, total stem height, and age. At the study establishment,

there were 80 trees in the interior measurement plots. At the plot

level, trees were summarized for total BA per hectare, dominant

height in meters, and the number of surviving trees per hectare.

To calculate the dominant height, local height equations were

developed to estimate heights from unmeasured trees within

each plot. The dominant and co-dominant trees were averaged

to estimate the dominant height. The silvicultural treatments

include a Control (C), Fertilization (F), Competition Control (H),

and the combination of Fertilization with Competition Control

(HF). The fertilization treatment was carried out in the spring

adding 280 kg ha−1 diammonium phosphate, 112 kg ha−1 potas-

sium chloride, a summer application of 56 kg ha−1 of ammonium

nitrate for the first two growing seasons, followed by early to mid-

spring application of 150 kg ha−1 ammonium nitrate in growing

seasons 3–9. Age 10 treatment was 336 kg ha−1 of ammonium

nitrate and 140 kg ha−1 triple super phosphate. Age 11 treatments

included 560 kg ha−1 super rainbow with added micronutrients,

and 168 kg ha−1 of ammonium nitrate in early spring. Growing

seasons 12 and onwards received 336 kg ha−1 of ammonium

nitrate in the early spring. For the competition control treatment,

there was repeated herbicide application to control herbaceous

and woody plants on the plots.

Model development
We formulated the system of compatible BA prediction and pro-

jection equations using the base models proposed by Pienaar

et al. (1985) and reformulated by Pienaar and Harrison (1989),

who incorporated the compatibility constraints. The model is

defined by two equations, one for within year prediction and

one for between years projection. We adopted a new notation to

discriminate between BA estimates derived from predicted values

and from the BA estimates derived from projected values; this

separation acknowledges the different errors resulting from either

measured or projected values:

�

Bt = e(β0+β1/A)Hβ2
t Nβ3

t (1)

B̃t = Bt−1

At−1
At · e

β0

(

1−
At−1
At

)
(

Ht

Ht−1
At−1/At

)β2
(

Nt

Nt−1
At−1/At

)β3

(2)
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Equations (1) and (2) correspond to the predicted (
�

B) and pro-

jected (B̃) BA estimates under a nonlinearmodel structure, respec-

tively. A is the age in years, H is the dominant height in meters,

and N is the stand density at either the reference time (t) or at the

previous time (t−1) in trees per hectare. β1,β2, ...,β(·) correspond to

the set of parameters to be estimated. Using a log transformation,

both equations are linearized and can be localized using general-

ized least squares:

ln

(

�

Bt

)

= β0 + β1A
−1

+ β2 ln (Ht) + β3 ln (Nt) +
�
ε (3)

ln
(

B̃t
)

=
At−1

At
ln (Bt−1) + β0

(

1 −
At−1

At

)

+ β2 ln

(

Ht

Ht−1
At−1/At

)

+

β3 ln

(

Nt

Nt−1
At−1/At

)

+ ε̃, (4)

These equations were considering as “base model” refering

to models proposed by Pienaar and Harrison (1989). Here,
�
ε is

the prediction equation error term and ε̃ the projection equation

error term. Since we have common terms, and a linear system,

we can utilize a matrix to solve it. To calibrate either model

simultaneously using a linear system, we created a matrix that

include both prediction and projection systems. We defined the

dependent variable as the list of left-hand side values from equa-

tion 3 for each observation in the database as ln (Bt−1), and for

the projection variable we used the left-hand side of equation (4)

minus the first term from the same equation.An example for such

vector for a single plot and using non-overlapping increments

looks as follows:

Y =

»

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

½

ln (B1)

ln (B2)

...

ln (Bt)

ln (B2) −
A1

A2
ln (B1)

ln (B3) −
A2

A3
ln (B2)

...

ln (Bt) −
At−1

At
ln (Bt−1)

¾

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

À

The right-hand side matrix for the same example data looks as

follows:

X =

»

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

¼

½

1 1/A1 ln
(

H1
)

ln
(

N1
)

1 1/A2 ln
(

H2
)

ln
(

N2
)

.

.

.

.

.

.

.

.

.

.

.

.

1 1/At ln
(

Ht
)

ln
(

Nt
)

1 − A1/A2 0 ln
(

H2
)

− A1/A2 ln
(

H1
)

ln
(

N2
)

− A1/A2 ln
(

N1
)

1 − A2/A3 0 ln
(

H3
)

− A2/A3 ln
(

H2
)

ln
(

N3
)

− A2/A3 ln
(

N2
)

.

.

.

.

.

.

.

.

.

.

.

.

1 − At−1/At 0 ln
(

Ht
)

− At−1/At ln
(

Ht−1
)

ln
(

Nt
)

− At−1/At ln
(

Nt−1
)

¾

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

¿

À

The precision matrix W is equal to:

Ŵ =
∑−1

=
1

σ 2
I,

with I the square identity matrix with size m × m.

The model was calibrated using a two-step least squares using

the following expression.

β̂GLS
=

(

XTŴX
)−1

XTŴy (5)

Where β̂GLS are the estimated parameters, Ŵ is a precision

matrix with correlations between the different elements in the

linear system. For the general case reported by Pienaar and

Shiver (1984) correlation between different observations was

not accounted for, therefore, the off-diagonal elements of the

Ŵ matrix were left as zero.

One inconveniance of this system is the assumption that both

prediction and projection errors share the same precision. How-

ever, it is expected that the observation error, when propagated

over time, will be at least proportional to the linear transfor-

mation. On top of that, there should be an error associated

with projection length due to random perturbations that are not

accounted for by the projection equation.

To address this problem, we implemented a variance–

covariance matrix as part of a generalized least squares

estimation that defines different variance depending on the

projection length. Since we have two sources of error,
�
ε and ε̃, we

need to specify them accordingly inside the variance–covariance

matrix. If we assume the observation errors to be the same, we

can estimate them on a first step, using only the observed values

at time t. The prediction error
�
ε t is dependent on the allometric

relation between the independent predictor’s age, height, and

number of trees per hectare.Age is assumed to be knownprecisely,

and height and number of trees per hectare help to improve the

relationship as auxiliary variables. For its part, process error ε̃

depends on the variance between measurement periods t − 1

as well. Therefore, a weight function wt should consider both

conditions; resulting in:

wt =

§

¨

©

1/σ 2
t ,

�

β = f
(

β̂, t
)

1/
(

σ 2
t + σ 2

t−1

)

, β̃ = f
(

β̂, t, t − 1
) (6)

In this way, the simultaneous fit incorporating weighting factor

wt for both prediction
�

β and projection β̃ models allows modeling

the BA and the uncertainty of the estimates in each phase.Models

(Burkhart et al. 2019) and (Gao et al. 2018) are the prediction

equations andmodels (Sullivan and Clutter 1972) and (Eerikäinen

2002) are projection equations incorporating silvicultural treat-

ments. Equations (8) and (10) are the linear transformations of

equations (7) and (9), respectively, and equations (8) and (10) were

further modified to accommodate the treatment effects using a

dummy variable coding (0,1) in amultiplicative way indicating the

presence of a given treatment.

�

Bt = e(β0+β1/At)Hβ2
t Nβ3

t · φC
IC · φF

IF · φH
IH · φHF

IHF (7)

ln

(

�
B t

)

= β0+β1/At+β2 lnHt+β3 lnNt+φ’CIC+φ’FIF+φ’HIH+φ’HFIHF+
�
ε t

(8)

B̃t =Bt−1

At−1
At · e

β0

(

1−
At−1
At

)
(

Ht

Ht−1
At−1/At

)β2
(

Nt

Nt−1
At−1/At

)β3

e
φCIC

(

1−
At−1
At

)

e
φFIF

(

1−
At−1
At

)

e
φHIH

(

1−
At−1
At

)

e
φHFIHF

(

1−
At−1
At

)

(9)
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ln
(

B̃t
)

=
At−1

At
ln (Bt−1) + β0

(

1 −
At−1

At

)

+ β2 ln

(

Ht

Ht−1
At−1/At

)

+ β3 ln

(

Nt

Nt−1
At−1/At

)

+

φC

(

1 −
At−1

At

)

IC + φF

(

1 −
At−1

At

)

IF + φH

(

1 −
At−1

At

)

IH + φHF

(

1 −
At−1

At

)

IHF + ε̃

(10)

For the prediction equation φ’i = lnφi. In the equations (7)–

(10), C, F, H, and FH correspond to dummy treatment effects for

presence or absence (0,1) in Control, Fertilization, Competition

Control, and both factors, respectively. The full model without

dummy coefficients represents the Fertilization with Competition

Control treatments. Thus, dummy variable for the treatment Fer-

tilization with Competition Control IHF = 1 when IC = IF = IH = 0,

therefore the parameter φHF has no estimation required.

Model calibration and evaluation
The approach of compatible prediction and BA projection models

has been frequently used since they were proposed by Pienaar

and Harrison (1989). Their main advantage is the simplicity of

their implementation and the consistency of the resulting mod-

els; however, the method does not incorporate the effects of

autocorrelation and heteroscedasticity of the information. Both

prediction and projection equations in the compatible system

were fit simultaneously using three different error structures:

Method 1: homoscedastic errors with a single variance param-

eter; Method 2: heteroscedastic errors using a time dependent

weighting factor wt = 1/σ 2
t ; and Method 3: a weighting function

that propagates variances at times t− 1 and combines them with

the variance at time t, wt = 1/
(

σ 2
t + σ 2

t−1

)

. The Method 1 assumes

homoscedasticity in the information, which is generally true only

in projection models, but not in prediction models. The Method

2 uses a traditional weighting factor in a two-phase generalized

least square adjustment that considers the error only in the

prediction instance t, assuming that there is no autocorrelation

of errors. The Method 3 incorporates a weighting factor using

the error from the prediction and projection models. This allows

incorporating the concept of error propagation as an element

in the estimator and implicitly considers the autocorrelation of

errors at time t − 1.

Furthermore, for eachmodel, the addition of silvicultural treat-

ments was also tested and compared with the base model, which

was described by Pienaar and Harrison (1989) and does not incor-

porate the effect of silvicultural treatments. Parameter calibration

was done solving the β̂GLS using matrix algebra in two steps. First

solving for the least square errors for prediction, next doing it

for the projection, and finally combining both. The data were

divided into a training set and a validation set, corresponding

to 80 and 20%, respectively, considering the complete series of

measurements for each plot, and this process was iteratively per-

formed 1000 times to determine the variation on model param-

eters. Model performance comparison was evaluated using the

root mean square error (RMSE), Akaike’s index (AIC), and BIAS

evaluated in the validation dataset.

RMSEk =

√

√

√

√

n
∑

i=1

(

yi − ŷi
)2

n − p

AICk = n ln (ssek/n) + 2p

BIASk = −
100%

n

n
∑

i=1

yi − ŷi
yi

Where yi and ŷi are the BA observed and predicted, n is the

sample number, p is the number of parameter of models. sse

is the sum square error define as
∑n

i=1

(

yi − ŷi
)2
. In RMSEk, AICk,

and BIASk the subscript denote the kth iteration out of a total of

1000. Thus, the results of these indicators were the average of the

iterations. All calibrations were implemented in R (R-CoreTeam

2022).

Results
Base model (no silvicultural treatments)
The base model with no silvicultural treatments showed an

improvement in fit statistics after the incorporation of the

weighting factor wt using Method 3 (Table 1). This effect was

observed for both the prediction only and the simultaneous

model formulations. In the independent fit for the prediction

model, the RMSE shows values of 7.55, 7.17, and 7.08 m2 ha−1

for Methods 1, 2, and 3, respectively. The projection model

shows RMSE values of 7.54, 7.50, and 7.49 m2 ha−1 for each

respective method. As expected, the simultaneous fit model

underperformed with respect to the independent fits (prediction

and projection functions fitted independently) for the three

methods tested. However, the performance improvement over

the validation data was noticeable. Constraining the parameters

in this case introduced a sub-optimal result from the error

standpoint. In this phase of simultaneous fit, the RMSE obtained

were 9.87, 9.69, and 8.12 m2 ha−1 for the estimation model in

fit Methods 1, 2, and 3, respectively. For the projection model the

RMSEwas 9.60, 9.47, and 9.45m2 ha−1 for each respectivemethod.

These results combined with the estimates of BIAS show that the

performance of BA model using the error in a weighting factor

wt generates more consistent predictions in both prediction and

projection functions.

Parameters estimated using these three modeling techniques

were similar when comparing the coefficients obtained from the

prediction model and from the simultaneous fit (Table 1). In the

simultaneous fit, parameters β0, β1, and β2 have a lower value

compared with the independent estimation function; contrasting

with parameter β3 that showed an increase. This is evidenced

in Methods 1 and 2, which correspond to the fit that assumed

homoscedasticity and heteroscedastic with weighting factor wt =

1/σ 2
t , respectively. Method 3 generates very similar coefficient

values. Weighting with the function wt = 1/
(

σ 2
t + σ 2

t−1

)

gener-

ates a better approximation to the independent estimation func-

tion, since at each time t of the estimation, the weight function

decreases the weight at projection between ages.

Method 3 incorporates the weighting factor 1/
(

σ 2
t + σ 2

t−1

)

,

which reduced the RMSE and AIC in relation to Methods 1 and 2

(Table 1). Here, the weighting factor incorporates in its calculation

the variance of the prediction at time t and for the projection

stage the variances at time t and t − 1. Overall, the weighting wt

results in an increase in accuracy, this effect being even greater in

the transition model, where the weighting factor significantly

corrects the error when projecting from very early ages. The

greatest uncertainty occurs when projecting BA growth across

wide age ranges. Thus, Method 3, which considers the sources of

error in the prediction and projection, contributes to reduce the

BIAS observed with Methods 1 and 2.

Model incorporating silvicultural treatments
The incorporation of silvicultural treatments via dummy vari-

ables resulted in an increase in model precision fitting only in the

projection models (Table 2). In the prediction model, there was

low precision, and this effect is evidenced in both independent

and simultaneous fit phases. From Table 2, the most accurate

model is the one that uses the fit technique that incorporates
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Table 1. Estimated parameters and goodness-of-fit indicators obtained in the models with the validation dataset in the three methods
without incorporation of silvicultural treatment effects. All values presented in the table correspond to the average of 1000 iterations.

Method Function Estimated parameters RMSE (m 2/ha) AIC BIAS (%)

β0 β1 β2 β3 Ind. Sim. Ind. Sim. Ind. Sim.

1 Pred. −4.5032

(0.1902)

4.0782

(0.1822)

1.8063

(0.0295)

0.6032

(0.0252)

7.55 9.87 9758.9 10698.4 −2.97 −3.01

Proj. 1.0258

(0.1566)

0.2269

(0.0309)

0.647

(0.0191)

7.54 9.60 9661.1 10522.8 −0.62 0.58

Sim. −4.2758

(0.1789)

3.2385

(0.1722)

1.7278

(0.0281)

0.6188

(0.0233)

2 Pred. −4.483

(0.2001)

4.0724

(0.1829)

1.8035

(0.0299)

0.6003

(0.027)

7.17 9.69 9582.8 10635.1 −2.96 −3.03

Proj. 1.0181

(0.1584)

0.2282

(0.0316)

0.6477

(0.0189)

7.50 9.47 9645.3 10474.8 −0.61 0.57

Sim. −4.2560

(0.1871)

3.225

(0.1700)

1.7249

(0.0283)

0.6163

(0.0248)

3 Pred. −4.4988

(0.1961)

4.086

(0.1828)

1.8058

(0.0294)

0.6023

(0.0261)

7.08 8.12 9539.5 9559.4 −2.72 −2.76

Proj. 0.9690

(0.2069)

0.2592

(0.0405)

0.6172

(0.0300)

7.49 9.45 5409.7 10305.0 −0.01 0.48

Sim. −4.4889

(0.2258)

4.0562

(0.2360)

1.8025

(0.0329)

0.6027

(0.0297)

Pred: prediction function, Proj: projection function, Ind: denotes the independent fit, Sim: denotes the simultaneous fit. All the parameters were significant at
an alpha-level of 0.05. The standard deviation is denoted in parenthesis.

Table 2. Estimated parameters and goodness-of-fit indicators obtained in the models with the validation dataset over the three
methods techniques incorporating the silvicultural treatment effects as dummy variables. All values presented in the table correspond
to the average of 1000 iterations.

Method Function Estimated parameters RMSE (m 2/ha) AIC BIAS (%)

β0 β1 β2 β3 φ1 φ2 φ3 Ind. Sim. Ind. Sim. Ind. Sim.

1 Pred. −3.8187

(0.2263)

2.173

(0.2449)

1.6002

(0.0368)

0.6313

(0.0273)

−0.1538

(0.0085)

−0.0504

(0.007)

−0.0259

(0.006)

1.97 1.99 8620.1 9597.2 −2.67 −2.88

Proj. 0.9102

(0.1433)

0.1967

(0.0298)

0.6828

(0.0166)

0.1326

(0.0219)

0.3529

(0.0268)

−0.1229

(0.0172)

3.98 2.98 10827.0 10982.2 −0.45 0.36

Sim. −3.5579

(0.2127)

1.2206

(0.2306)

1.5093

(0.0349)

0.6519

(0.0251)

−0.1733

(0.0083)

−0.0549

(0.0067)

−0.0371

(0.0059)

2 Pred. −3.8085

(0.2418)

2.1548

(0.2475)

1.5963

(0.0381)

0.6319

(0.0299)

−0.1548

(0.0086)

−0.0508

(0.0069)

−0.0268

(0.0058)

1.97 1.99 8422.9 9533.3 −2.68 −2.90

Proj. 0.9129

(0.1500)

0.1966

(0.0314)

0.6823

(0.0172)

0.1311

(0.0218)

0.3521

(0.0275)

−0.1229

(0.0173)

3.98 2.98 10822.0 10962.8 −0.45 0.37

Sim. −3.5450

(0.2260)

1.1989

(0.2355)

1.5057

(0.0364)

0.6518

(0.0271)

−0.1739

(0.0083)

−0.0551

(0.0067)

−0.0378

(0.0056)

3 Pred. −3.8139

(0.2375)

2.1707

(0.2448)

1.5984

(0.0381)

0.6313

(0.0287)

−0.154

(0.0085)

−0.0503

(0.0072)

−0.0257

(0.0058)

1.97 0.99 8535.9 8460.8 −2.66 −2.68

Proj. 0.9646

(0.1817)

0.1996

(0.0339)

0.6575

(0.0243)

0.1221

(0.0266)

0.2631

(0.0377)

−0.1077

(0.0219)

3.02 2.17 7316.3 10760.2 −0.01 0.45

Sim. −3.8011

(0.2365)

2.1282

(0.2487)

1.5938

(0.038)

0.6323

(0.0293)

−0.1548

(0.0091)

−0.0504

(0.0076)

−0.0260

(0.0069)

Pred: prediction function, Proj: projection function, Ind: denotes the independent fit, Sim: denotes the simultaneous fit. All the parameters were significant at
an alpha-level of 0.05. The standard deviation is denoted in parenthesis.

the weighting factor wt (Method 3), when incorporating the sil-

vicultural treatment effect. Method 3 remains the most accu-

rate compared with Methods 1 and 2 (Table 2). In Method 3, for

the independent fit phase projection model the RMSE decreases

from 7.49 to 3.02 m2 ha−1 and in the simultaneous fit phase it

decreases from 9.45 to 2.17 m2 ha−1. For the same method, in

the case of the prediction model, the RMSE decreases from 7.08

to 1.97 and from 8.12 to 0.99 m2 ha−1 in the independent and

simultaneous phase fit of the model, respectively. As in the base

models without the incorporation of the effects of silvicultural

treatments, a significant decrease in the BIAS of the estimateswas

observed.

As with the base model, the effect of the weighting factor

wt on the Method 3 resulted in a lower estimation error and

better parsimony, as evaluated by the RMSE and AIC (Table 2). The

improvement is greater in the projection model, in contrast to the

predictionmodel, where it is observed that the RMSE of themodel

fit in the independent phase is 3.98, 3.98, and 3.02 m2 ha−1 in

the Methods 1, 2, and 3, respectively; in that same order, in the

simultaneous fit phase, the RMSE is 2.98, 2.98, and 2.17 m2 ha−1.
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Figure 1. Relationship between predicted-observed BA and projected-observed BA for Method 3, both in simultaneous fitting incorporating
silvicultural treatments.

In the case of the prediction model, there is no clear tendency to

increase the precision in the fit of any method, we only observed

changes in the value of the RMSE for Method 3 (0.99 m2 ha−1) in

contrast to other two methods (1.99 m2 ha−1).

The simultaneous fit phase model generates consistent esti-

mates with respect to the independent phase-adjusted model

(Fig. 1). In the estimation model, an increase in the variation of

BA with increasing values of BA is observed relative to the 1:1

line, showing more variation in relation to the transition model,

indicating heteroscedasticity in the model. Here, the model fit

in both independent and simultaneous phases shows a slight

tendency to underestimate the BA between the range of 20 to

40 m2 ha−1, and to overestimate the BA after 40 m2 ha−1. Mean-

while, in the transition model, note that the 1:1 relationship

between the observed and estimated BA in two estimation phases

(independent and simultaneous phases) shows high accuracy and

homoscedastic variance.

When incorporating the effect of silvicultural treatments in the

BA models, the distribution of parameters increases among the

three methods (Figs 2 and 3). In the prediction model, the distri-

bution of parameters is similar among the three methods when

comparing the fitting with and without the incorporation of the

silvicultural treatment variables. On the other hand, in the pro-

jection model and in the simultaneous fitting, the distribution of

parameters changes when incorporating the effect of silvicultural

treatments. In the predictionmodel,Method 3 is where the largest

change in the distribution of parameters was observed. Here,

without incorporating silvicultural treatments, the distribution of

parameters β0, β2, and β3 varied in relation to Methods 1 and 2,

while when incorporating the effect of silvicultural treatments,

only the distribution of parameter β3 showed substantial changes.

In the simultaneous fit, changes in parameters β0, β1, and β2

were observed in Method 3, while the distribution of parameter

β3 is stable between methods and when incorporating the effect

of silvicultural treatments. In this comparison, changes in the

distribution of parameters β0, β1, and β2 were observed to be

greater when incorporating the effect of silvicultural treatments.

Discussion

Our study implemented a system of compatible equations similar

to the one proposed by Clutter (1963) almost 60 years ago. We

introduce a novel way to link prediction and projection variances

in a system of simultaneous equations that weights projections

differently, correctly addressing cumulative errors over longer

projection intervals. The benefit from our system rests in the

possibility to calculate long-termprojection uncertainty aswell as

to better localize equation parameters. Practitioners have relied

on the Clutter (1963) system for many years, with numerous

examples in the USA, such as the work by Burkhart and Sprinz

(1984),Clutter and Jones (1980), in loblolly pine, and Pienaar and

Shiver (1984), Pienaar et al. (1985) in slash pine. Other examples

can be found in Spain (Palahí et al. 2002), New Zealand (Woollons

and Hayward 1985), Finland, South Africa, and Portugal (Soares

et al. 1995). Bailey and Ware (1983) introduced the concept of

fitting both prediction and projection simultaneously, further

improving compatibility. Borders and Bailey (1986) introduced a

full system of equations using linear, and later, nonlinear systems.

Our model includes the addition of silvicultural treatments

as part of the base model as shown by Ramirez et al. (2022),

showing a consistent way to add these effects as they affect

either the asymptote or the slope of the relationship, resulting in

a reduction of RMSE and AIC with respect to the base model. The

system from Fang et al. (2001), which evaluated a simultaneous

equation system, similar to the one proposed by Borders

and Bailey (1986), also incorporated silvicultural treatments
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Figure 2. Distributions of estimated parameters in base models without incorporating silvicultural treatments. The line type, solid, long-dashed, and
short-dashed, denotes Methods 1, 2, and 3, respectively. The distribution of the estimated parameters generated from the 1000 iterations performed.

(chopping, burning, fertilizer, bedding, or herbicide) using

different types of soils as dummy variables inside of a mixed

effects model for slash pine. However, bias in prediction values

was not addressed in their study. Other studies that include

compatible terms between prediction and projection values

beyond the original work from Pienaar and Shiver (1984) and the

work by Pienaar et al. (1985) include McTague and Bailey (1987)

for loblolly pine plantations, and Pienaar and Harrison (1989) for

slash pine in Brazil.

Studies have shown that BA per hectare yield increases asymp-

totically with age and for its modeling the incorporation of site

quality is frequently included to improve estimates. In these

empirical models, algebraic differences have been incorporated

to improve the precision of the BA projection (Ochi and Cao 2003).

Other approaches have been developed from the projection of the

diameter distribution and its relationship with the BA (Zhang and

Duan 2004). Some approaches have incorporated climatic vari-

ables to improve the estimates and projections of BA. Woollons

et al. (1997) reported improvements of 10% in the precision of the

model using climatic variables. Snowdon et al. (1999) included

climatic variables in a temporal and spatial variation for Pinus

radiata in Australia. Makela et al. (2000) mentioned that the devel-

opment of BA yield projection models should go toward hybrid

models that incorporate climatic and empirical variables at the

tree level. Recently, Scolforo et al. (2019) incorporated information

on the water deficit related to the yield in BA, improving the

estimates with respect to the base model using the same base

model structure used in this study.

Due to the algebraic constraints on the parameters, the

increased RMSE of the simultaneous fitting system compared

with fitting the BA equations independently is not surprising. It

was expected to see a reduction in fit statistics when imposing

constraints to the model that require more than one equation

to be fit with additional parameters. This loss in precision was

already noted by several authors, but LeMay (1990) and Zhang

and Duan (2004) indicated that the improvements in stand level

model consistency offset the loss in model precision. That effect

has been previously reported andmost authors stress that the loss

of precision is compensated by allowing the system of compatible

equations to generate consistent projections (Fang et al. 2001).

Method 3, which incorporates the weight factor wt =

1/
(

σ 2
t + σ 2

t−1

)

to improve projection values, showed a reduction

in RMSE in comparison with Methods 1 and 2. These results

were the same for every regression model tested, and all

models were further improved through the incorporation of

silvicultural treatment effects (Table 2). Method 2, which incor-

porates the weight factor wt = 1/σ 2
t that accounts for variance

heteroscesedacity, did not significantly reduce the RMSE when

compared with Method 1 that assumes homoscedasticity. Using

the wt = 1/
(

σ 2
t + σ 2

t−1

)

weighting factor was the best choice to



632 | Sandoval et al.

Figure 3. Distributions of estimated parameters in models incorporating silvicultural treatments. The line type, solid, long-dashed, and short-dashed,
denotes Methods 1, 2, and 3, respectively. The distribution of the estimated parameters generated from the 1000 iterations performed.

correct variance heteroscedasticity as it includes both prediction

(
�
ε ) and projection variances (ε̃). Our system does not explicitly

account for time series autocorrelation. There are contrasting

views about the subject. Meng and Huang (2010) indicated that

growth and yield models should include an autocorrelation

structure due to the repeated measurements nature of the data.

LeMay (1990) indicate that a system of equations calibrated from

permanent sampling plots will produce a set of heteroscedastic

errors because BA corresponds to the expression of multiple

factors that cannot independently be measured, generating an

accumulated effect. Hall and Clutter (2004) indicated that a

system of equations fitted simultaneously should include a

term for time series autocorrelation in the covariance matrix.

However, error estimation using such a matrix is complex and

depends strongly on the structure of the correlation between each

equation. Fortin et al. (2007) indicate that an autocorrelation term

in the variance–covariance matrix improves the autocorrelation

problem, however this alone does not solve the problem of

heteroscedasticity in the prediction and the projection equation.

The compatible system estimates parameters all at once,

ensuring compatibility between the prediction and the projection

equations. This method, proposed by Bailey and Ware (1983),

had been used several times to derive BA equations. All these

equations had implemented the required constraints to ensure

compatibility, however according to Sun et al. (2007), these

methods have only increased the complexity, but the error

structure term has not been the subject of study. In fact, Wilson

et al. (2019) citing other authors indicate that the projection error

has seldom been part of further consideration. One exception

would be Meng and Huang (2010) who generated a BA model

including fixed and random effects using amixed effect modeling

approach. Results from this study show that the incorporation of

fixed and random effects does reduce the overall error, with small

effect in the parameters from the model when compared with

the fixed effects only methods. The results of our research show,

on one hand, a simple methodology to incorporate the errors

in a compatible fitting system between simultaneously fitted

prediction and projection models. Furthermore, we demonstrate

the effect of incorporating the estimation error at time t − 1 and

its effect at time t, which can be considered as a recognition of

the effect of error propagation in a projection system.

In our study, we also incorporated a distribution analysis of the

estimated parameters for the three methods evaluated. In gen-

eral, Methods 1 and 2 showed a similar distribution of parameters

in all cases of analysis. That is, in the models fitted independently

and the models fitted simultaneously. On the other hand, the

distribution of the parameters of Method 3 varied with respect

to Methods 1 and 2. Evidently, the difference was generated by

the incorporation of the weighting factor 1/
(

σ 2
t + σ 2

t−1

)

, which pro-

duces effects on the weighting of each of the parameters. Method
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3, in the simultaneous fit without the incorporation of dummy

variables (Fig. 2), parameters β1, and β2 are higher with respect to

their estimation in Methods 1 and 2. This indicates that Age and

Dominant Height are more significant, thus correcting the bias

that was observed in Methods 1 and 2. A similar trend is observed

with the distribution of the parameters in the fit incorporating the

dummy variables (Fig. 3). Here, the parameter β0 also decreases

with respect to Methods 1 and 2, which makes the BA prediction

curve fit better to the observed information. Another relevant

change occurs in parameter β3, which showed changes only in

the projectionmodel when compared between the threemethods.

Here, this parameter defines the mortality rate between two time

periods, and using the weighting factor 1/
(

σ 2
t + σ 2

t−1

)

in Method 3,

it was observed that this variable becomes more significant in the

BA projection process.

Method 3 generates the weight matrix (Wt) independently from

the prediction and the projection equation. In the simultaneous

fitting approach, the Wt for the prediction equation used the

reciprocal for the prediction variance (1/σ 2
t ) using the error gen-

erated with the observation at time t, while the projection factor

wt used the weighting factor 1/
(

σ 2
t + σ 2

t−1

)

that depends on the

projection error at time t − 1. Doing this, the weighting factor

now includes two sources of error. The result of this reduces

the effect of the projection values as the elapsed time between

two consecutive measurements increases, giving more weight to

the observation instead of the projection. This error propaga-

tion method has been studied before, using other techniques.

For example, McGarrigle et al. (2013) proposed a different type

of dynamic model using copulas derived from nearest neighbor

imputation; this method was called “informed random walks”.

Wilson et al. (2019) produced projections up to 40 years in length

for Pseudotsuga menziesii using a Bayesian probabilistic modeling

approach. According to Wilson et al. (2019), this technique allows

the inclusion of error propagation using Bayes’s theorem. How-

ever, it is important to note the limitations of the Markov Chain

Monte Carlo algorithm for parameter calibration when the num-

ber of series increase. Our results present a simpler framework

that can be easily implemented to estimate compatible equations

using a matrix formulation that is solved using simple two-stage

least squares or a generalized least squares formulation.

Conclusion

Incorporating the effects of silvicultural treatments as dummy

variables in the models improved the RMSE and AIC fit statis-

tics relative to the base model. This improvement was observed

over all three methods evaluated in this research. As expected,

the more restrictive simultaneous fit method of the prediction

and projection equations generated higher RMSE values on the

calibration data, showing that this type of fit generates a loss

of flexibility in the model. However it does ensure compatibility

between prediction and projection functions.OurMethod 3,which

incorporates the weighting factor wt, generated the best results

according to the RMSE in relation to the other two methods

evaluated in both independent and simultaneous fitting phases.

In Method 3, the Wt-weighted matrix was generated indepen-

dently for the prediction and projection functions. Thus, Method

3 proposed in this study showed advantages with respect to the

other two, because it considers the prediction and projection error

to generate the weighting factor. This method allows correcting

the effect of the autocorrelation generated in themodeling of seri-

ally correlated information. In this way, the Wt-weighted matrix

integrated the error sources of the prediction and projection

process, in addition to the σ 2
t−1 error assimilation term. The error

assimilation term decreases the weighting of the wt factor when

the BA yield projections are made between an initial age very

distant from the final projection age, and this effect was observed

with improved RMSE values in Method 3. Our results show the

importance of incorporating the error terms in the fitting system

of simultaneously compatible and fitted BA models. In addition

to improving the accuracy and BIAS indicators in the projections,

themain advantage of this methodology is that it is very simple to

implement, which only requires setting up the predictor matrices

in a weighted least squares approach.
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