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Abstract

Over the last three decades, many growth and yield systems developed for the southeast USA have incorporated methods to create a
compatible basal area (BA) prediction and projection equation. This technique allows practitioners to calibrate BA models using both
measurements at a given arbitrary age, as well as the increment in BA when time series panel data are available. As a result, model
parameters for either prediction or projection alternatives are compatible. One caveat of this methodology is that pairs of observations
used to project forward have the same weight as observations from a single measurement age, regardless of the projection time interval.
To address this problem, we introduce a variance—covariance structure giving different weights to predictions with variable intervals.
To test this approach, prediction and projection equations were fitted simultaneously using an ad hoc matrix structure. We tested three
different error structures in fitting models with (i) homoscedastic errors described by a single parameter (Method 1); (ii) heteroscedastic
errors described with a weighting factor w: (Method 2); and (iii) errors including both prediction (¢) and projection errors (¢) in the
weighting factor w; (Method 3). A rotation-age dataset covering nine sites, each including four blocks with four silvicultural treatments
per block, was used for model calibration and validation, including explicit terms for each treatment. Fitting using an error structure
which incorporated the combined error term (¢ and &) into the weighting factor w; (Method 3), generated better results according to the
root mean square error with respect to the other two methods evaluated. Also, the system of equations that incorporated silvicultural
treatments as dummy variables generated lower root mean square error (RMSE) and Akaike’s index values (AIC) in all methods. Our
results show a substantial improvement over the current prediction-projection approach, resulting in consistent estimators for BA.

Keywords: prediction and projection models; weighted regression; dummy variables; silvicultural treatments; errors propagation; yield

models

Introduction

In forest management, growth and yield models are considered
essential tools for forest planning, providing insights into future
forest conditions (Vanclay 1994, Fortin and Langevin 2011).
These models aim to describe growth dynamics over the life
of a given stand, using mathematical relations between state
variables (dominant height, mortality, and basal area (BA)), whose
parameters are calibrated using statistical methods. A large
variety of growth and yield models exist that aim at explaining
stand-level transition functions, diameter class, or individual tree
changes over time (Burkhart and Tomé 2012). Over the last two
decades, there have been several attempts to summarize existing
studies on the moderation of forest growth and yield, with the aim
of consolidating models and adjustment methods for different
site conditions and species and generalizing their implementation
in simulation systems (Monserud 2003, Pretzsch et al. 2008). Most
approaches for forest modeling are grouped into three types:
empirical, process-based, and hybrid models (Sun et al. 2007).
One common objective of these models is to quantify some metric
related to stand productivity. As such, stand BA (the sum of cross-
sectional areas of stems at 1.37 meters on a per ha basis) and its
growth prediction are an essential part of stand-level equations

due to their ease of measurement and their strong correlation
with volume and forest growth (Sun et al. 2007, Burkhart et al.
2019). BA growth summarizes a big portion of forest dynamics
over time (i.e. growth, mortality, reproduction, and associated
changes at the stand level). This approach is widely used in forest
management for its ability to update inventories, predict future
yield, and to explore different management alternatives (Gao et al.
2018).

Along with the rapid development of advanced mathematical
statistics and computing technologies, parameter estimation for
stand-level BA models have seen several critical developments:
Sullivan and Clutter (1972) used ordinary least squares (OLS) to
estimate the parameters for a volume projection equation that
had a BA projection equation embedded in it, and these estimated
parameter values were then used to obtain numerically consis-
tent parameter estimates for the implied BA projection equation.
Eerikdinen (2002) implemented simultaneous equation methods,
while other researchers used difference-equation models (Carson
et al. 1999, Corona et al. 2002, Garcia and Ruiz 2003, Bravo-Oviedo
et al. 2004); artificial neural network techniques (Chuangmin Liu
et al. 2003), linear/nonlinear regression models (Nyland et al.
2000, Fang et al. 2001, Sharma et al. 2002,Wang 2003) and models
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expressed in matrix form to describe the system of equations for
modeling forest growth and yield (Stanton 2001, Hao et al. 2005,
Zhao et al. 2005).

One desirable property of a growth and yield system is the
compatibility between equations describing relations between
state variables at a given point in time and dynamic equations
that project these state variables forward. Compatibility between
prediction and projection equations was first introduced by
Clutter (1963) in the form of a derivative-integral relationship
such that the growth function, when integrated over a time
interval, would equal the yield predicted by the yield equation.
Matney and Sullivan (1982) selected compatible stand-level
projection equations similar to those presented by Clutter (1963),
later refined by Sullivan and Clutter (1972) because of their
demonstrated applicability. Burkhart and Sprinz (1984) used
simultaneous estimations to derive compatible volume and BA
projection equations invariant of projection length. Later, Borders
and Bailey (1986) reviewed parameter estimation procedures for
systems of interrelated linear equations. They used restricted
three-stage least squares as a theoretically sound estimation
procedure in their development of a system of compatible growth
and yield equations. These authors used three-stage least squares
methods to predict a compatible system of growth and yield
equations for slash pine. Appropriate ways to find parameters
for such a system involve fitting the equations at the same time,
ensuring a common error structure (non-zero covariances), even if
there are no endogenous variables on the right-hand side (Zellner
1962).

Depending on variable interrelationships and model struc-
tures, simultaneous estimation of the parameters of the mod-
els might be necessary in order to provide estimates that are
consistent and efficient. Hasenauer et al. (1998) compared an
individual tree BA increment model, a height increment model,
and a crown ratio model separately using OLS and simultane-
ously by applying two and three-stage least square. The results
indicated the simultaneous models fitted were more efficient,
while the separately determined OLS estimates were biased. More
recently, Scolforo et al. (2019) developed a stand-level growth
and yield model system using the simultaneous approach, while
accounting for water availability. They used a linear algebraic
technique to simultaneously fit a compatible set of prediction and
projection BA equations.

The simultaneous prediction-projection algorithm, designed to
calibrate compatible BA models, ensures compatibility. However,
the method doesn’t inherently account for the fact that longer
projection intervals might introduce higher variances. In its for-
mulation, it assigns weights to projections with different lengths
similar to those applied to one-time observations, potentially
introducing bias into the final model. Therefore, we hypothe-
size that assigning different weights to prediction and projection
parts of the system might be better for the overall prediction,
correctly weighting observations from a given year and those pro-
jected from variable length time intervals. Thus, in this research,
we evaluated the difference in the estimated coefficients and
goodness-of-fit of independently fitted and simultaneously fitted
BA prediction and projection models. We also tested three differ-
ent error structures in fitting models with (i) homoscedastic errors
described by a single parameter (Method 1); (ii) heteroscedastic
errors described with a weighting factor w: (Method 2); and (iii)
errors including both prediction (¢) and projection errors (§) in
one parameter (Method 3). The database used for this analysis
included silvicultural treatments; therefore, here we illustrate
the use of each method, while including silvicultural treatment

effects through a dummy variable approach and compare their
performance in relation to a base model which does not include
the effect of silvicultural treatments.

Methods
Data

For this analysis, we used nine study sites established in 1987
throughout the state of Georgia in the southeastern USA. The
trial was installed by the Consortium for Accelerated Pine Produc-
tion Studies (CAPPS) and maintained by the Plantation Manage-
ment Research Cooperative (PMRC) to investigate site responses
to intensive silvicultural regimes. The study corresponds to a ran-
domized complete block design, with four 0.15-hectare treatment
plots with an interior 0.05-hectare measurement plot. There was
a range of four to six blocks per site. Within each site, blocks were
established in different years. Sites spanned two physiographic
regions: coastal plain and piedmont in the southeast USA. All
sites had an initial planting density of 1679 trees per hectare
(2.44 x 2.44 m). The PMRC field crew collected data annually
for the first 20 growing seasons, biennial measurements began
after age 21. Tree level measurements include diameter at breast
height, total stem height, and age. At the study establishment,
there were 80 trees in the interior measurement plots. At the plot
level, trees were summarized for total BA per hectare, dominant
height in meters, and the number of surviving trees per hectare.
To calculate the dominant height, local height equations were
developed to estimate heights from unmeasured trees within
each plot. The dominant and co-dominant trees were averaged
to estimate the dominant height. The silvicultural treatments
include a Control (C), Fertilization (F), Competition Control (H),
and the combination of Fertilization with Competition Control
(HF). The fertilization treatment was carried out in the spring
adding 280 kg ha~! diammonium phosphate, 112 kg ha~! potas-
sium chloride, a summer application of 56 kg ha=! of ammonium
nitrate for the first two growing seasons, followed by early to mid-
spring application of 150 kg ha~! ammonium nitrate in growing
seasons 3-9. Age 10 treatment was 336 kg ha=! of ammonium
nitrate and 140 kg ha~" triple super phosphate. Age 11 treatments
included 560 kg ha~! super rainbow with added micronutrients,
and 168 kg ha~! of ammonium nitrate in early spring. Growing
seasons 12 and onwards received 336 kg ha~' of ammonium
nitrate in the early spring. For the competition control treatment,
there was repeated herbicide application to control herbaceous
and woody plants on the plots.

Model development

We formulated the system of compatible BA prediction and pro-
jection equations using the base models proposed by Pienaar
et al. (1985) and reformulated by Pienaar and Harrison (1989),
who incorporated the compatibility constraints. The model is
defined by two equations, one for within year prediction and
one for between years projection. We adopted a new notation to
discriminate between BA estimates derived from predicted values
and from the BA estimates derived from projected values; this
separation acknowledges the different errors resulting from either
measured or projected values:

By = eorp/A 2N (1)

B2 B3
~ Ag B _ A Ht Nt
By = By 5. P() ) (e )
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Equations (1) and (2) correspond to the predicted (E) and pro-
jected (B) BA estimates under a nonlinear model structure, respec-
tively. A is the age in years, H is the dominant height in meters,
and N is the stand density at either the reference time (t) or at the
previous time (t—1) in trees per hectare. 1, 8o, ..., B(, correspond to
the set of parameters to be estimated. Using a log transformation,
both equations are linearized and can be localized using general-
ized least squares:

In (ﬁt) =B+ FA T +BInH)+BInN) +¢ (3)

N A Ar H
In (Bt) = ;\1 In (Bi_1) + Bo (17 /;ti)ﬂszln (Hﬁ)Jr
t—1

t

Ni ~
Bz ln (71\11571&71/}\t ) +e, (4)

These equations were considering as “base model” refering
to models proposed by Pienaar and Harrison (1989). Here, ¢ is
the prediction equation error term and & the projection equation
error term. Since we have common terms, and a linear system,
we can utilize a matrix to solve it. To calibrate either model
simultaneously using a linear system, we created a matrix that
include both prediction and projection systems. We defined the
dependent variable as the list of left-hand side values from equa-
tion 3 for each observation in the database as In(B;_1), and for
the projection variable we used the left-hand side of equation (4)
minus the first term from the same equation. An example for such
vector for a single plot and using non-overlapping increments
looks as follows:

In (By)
In (By)

In (By)
In (By) - 4 In (B)
In (B;) — 42 In (By)

In (B;) — % In (Bi-y)

The right-hand side matrix for the same example data looks as
follows:

1 1/Aq In (Hq) In (Nq)
1 1/A9 In (HQ) In (NQ)

‘o 1 1/A¢ In (Hy) In (Ny)
1-Aq1/A9 0 In (Hz)fAl/Az In (Hl) In (Nz) —A1/AyIn (Nl)
1-Ay/A3 0 In (H3)7A2/A3 In (Hz) In (N3) —Ap/A3ln (NZ)

1-Ar_1/At 0 In(Hp)—Arq/ArIn(H_q) In(Nt) - Ar_q/AtIn (Ne_q)

The precision matrix W is equal to:

A -1 1
W=>" =51

with I the square identity matrix with size m x m.

The model was calibrated using a two-step least squares using
the following expression.

AL — (XTWX)_leWy 5)

Where ¢S are the estimated parameters, W is a precision
matrix with correlations between the different elements in the
linear system. For the general case reported by Pienaar and
Shiver (1984) correlation between different observations was
not accounted for, therefore, the off-diagonal elements of the
W matrix were left as zero.

One inconveniance of this system is the assumption that both
prediction and projection errors share the same precision. How-
ever, it is expected that the observation error, when propagated
over time, will be at least proportional to the linear transfor-
mation. On top of that, there should be an error associated
with projection length due to random perturbations that are not
accounted for by the projection equation.

To address this problem, we implemented a variance-
covariance matrix as part of a generalized least squares
estimation that defines different variance depending on the
projection length. Since we have two sources of error, ¢ and &, we
need to specify them accordingly inside the variance-covariance
matrix. If we assume the observation errors to be the same, we
can estimate them on a first step, using only the observed values
at time t. The prediction error ¢, is dependent on the allometric
relation between the independent predictor’s age, height, and
number of trees per hectare. Age is assumed to be known precisely,
and height and number of trees per hectare help to improve the
relationship as auxiliary variables. For its part, process error &
depends on the variance between measurement periods t — 1
as well. Therefore, a weight function w; should consider both
conditions; resulting in:

1/‘7t2: E:f ﬁ,t)

2. 2 5 ; (6)
1/((’t +(7t—1)v B=f ﬁ,t,t—l)

Wt =

In this way, the simultaneous fit incorporating weighting factor
w; for both prediction E and projection g models allows modeling
the BA and the uncertainty of the estimates in each phase. Models
(Burkhart et al. 2019) and (Gao et al. 2018) are the prediction
equations and models (Sullivan and Clutter 1972) and (Eerikdinen
2002) are projection equations incorporating silvicultural treat-
ments. Equations (8) and (10) are the linear transformations of
equations (7) and (9), respectively, and equations (8) and (10) were
further modified to accommodate the treatment effects using a
dummy variable coding (0,1) in a multiplicative way indicating the
presence of a given treatment.

B = eWHAATHEIND - pclc - g™ - g™ - s 7)

In (Bt) = Bo+B1/Ar+P InHe+ B3 InNe+¢'clo+ plp+¢ uln+¢ melur+ e ¢
(8)

. A A B2 B3 A
By op, ) (e N\ ()
HtilAlfl/Al NtilAtfl/AL

At

e¢FIF( *Aﬁ\%l)e'ﬁHIH( *Aﬁ%)edmﬂm( *Tt) (9)
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5 A1 A1 H Nt
In (Bt) = I + o (1 S ) +pIn (7&_1&71/& ) +psln (ﬁ_lm/Ar ) +

A1 At A1 At1 -
[ (1* Tt)lc + ¢F (1* TI)IF‘FQ’H (1* A )IH+¢HF (1* TI)IHF+€
(10)

For the prediction equation ¢’; = Ing¢;. In the equations (7)-
(10), C, F, H, and FH correspond to dummy treatment effects for
presence or absence (0,1) in Control, Fertilization, Competition
Control, and both factors, respectively. The full model without
dummy coefficients represents the Fertilization with Competition
Control treatments. Thus, dummy variable for the treatment Fer-
tilization with Competition Control Iy = 1 whenIc =Ip = Iy =0,
therefore the parameter ¢yr has no estimation required.

Model calibration and evaluation

The approach of compatible prediction and BA projection models
has been frequently used since they were proposed by Pienaar
and Harrison (1989). Their main advantage is the simplicity of
their implementation and the consistency of the resulting mod-
els; however, the method does not incorporate the effects of
autocorrelation and heteroscedasticity of the information. Both
prediction and projection equations in the compatible system
were fit simultaneously using three different error structures:
Method 1: homoscedastic errors with a single variance param-
eter; Method 2: heteroscedastic errors using a time dependent
weighting factor wy = 1/0#; and Method 3: a weighting function
that propagates variances at times t — 1 and combines them with
the variance at time t, w; = 1/ (o2 + 02 ;). The Method 1 assumes
homoscedasticity in the information, which is generally true only
in projection models, but not in prediction models. The Method
2 uses a traditional weighting factor in a two-phase generalized
least square adjustment that considers the error only in the
prediction instance t, assuming that there is no autocorrelation
of errors. The Method 3 incorporates a weighting factor using
the error from the prediction and projection models. This allows
incorporating the concept of error propagation as an element
in the estimator and implicitly considers the autocorrelation of
errors at time t — 1.

Furthermore, for each model, the addition of silvicultural treat-
ments was also tested and compared with the base model, which
was described by Pienaar and Harrison (1989) and does not incor-
porate the effect of silvicultural treatments. Parameter calibration
was done solving the %5 using matrix algebra in two steps. First
solving for the least square errors for prediction, next doing it
for the projection, and finally combining both. The data were
divided into a training set and a validation set, corresponding
to 80 and 20%, respectively, considering the complete series of
measurements for each plot, and this process was iteratively per-
formed 1000 times to determine the variation on model param-
eters. Model performance comparison was evaluated using the
root mean square error (RMSE), Akaike’s index (AIC), and BIAS
evaluated in the validation dataset.

RMSEy, =

Where y; and y; are the BA observed and predicted, n is the
sample number, p is the number of parameter of models. sse

is the sum square error define as >, (y; —)?i)z. In RMSEy, AICy,
and BIAS; the subscript denote the kth iteration out of a total of
1000. Thus, the results of these indicators were the average of the
iterations. All calibrations were implemented in R (R-CoreTeam
2022).

Results
Base model (no silvicultural treatments)

The base model with no silvicultural treatments showed an
improvement in fit statistics after the incorporation of the
weighting factor w; using Method 3 (Table 1). This effect was
observed for both the prediction only and the simultaneous
model formulations. In the independent fit for the prediction
model, the RMSE shows values of 7.55, 7.17, and 7.08 m? ha~!
for Methods 1, 2, and 3, respectively. The projection model
shows RMSE values of 7.54, 7.50, and 7.49 m? ha~! for each
respective method. As expected, the simultaneous fit model
underperformed with respect to the independent fits (prediction
and projection functions fitted independently) for the three
methods tested. However, the performance improvement over
the validation data was noticeable. Constraining the parameters
in this case introduced a sub-optimal result from the error
standpoint. In this phase of simultaneous fit, the RMSE obtained
were 9.87, 9.69, and 8.12 m? ha~! for the estimation model in
fit Methods 1, 2, and 3, respectively. For the projection model the
RMSE was 9.60, 9.47, and 9.45 m? ha~? for each respective method.
These results combined with the estimates of BIAS show that the
performance of BA model using the error in a weighting factor
w; generates more consistent predictions in both prediction and
projection functions.

Parameters estimated using these three modeling techniques
were similar when comparing the coefficients obtained from the
prediction model and from the simultaneous fit (Table 1). In the
simultaneous fit, parameters Bo, B1, and B, have a lower value
compared with the independent estimation function; contrasting
with parameter B; that showed an increase. This is evidenced
in Methods 1 and 2, which correspond to the fit that assumed
homoscedasticity and heteroscedastic with weighting factor w, =
1/02, respectively. Method 3 generates very similar coefficient
values. Weighting with the function w; = 1/ (o2 +02,) gener
ates a better approximation to the independent estimation func-
tion, since at each time t of the estimation, the weight function
decreases the weight at projection between ages.

Method 3 incorporates the weighting factor 1/ (o +02,),
which reduced the RMSE and AIC in relation to Methods 1 and 2
(Table 1). Here, the weighting factor incorporates in its calculation
the variance of the prediction at time t and for the projection
stage the variances at time t and t — 1. Overall, the weighting w;
results in an increase in accuracy, this effect being even greater in
the transition model, where the weighting factor significantly
corrects the error when projecting from very early ages. The
greatest uncertainty occurs when projecting BA growth across
wide age ranges. Thus, Method 3, which considers the sources of
error in the prediction and projection, contributes to reduce the
BIAS observed with Methods 1 and 2.

Model incorporating silvicultural treatments

The incorporation of silvicultural treatments via dummy vari-
ables resulted in an increase in model precision fitting only in the
projection models (Table 2). In the prediction model, there was
low precision, and this effect is evidenced in both independent
and simultaneous fit phases. From Table 2, the most accurate
model is the one that uses the fit technique that incorporates
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Table 1. Estimated parameters and goodness-of-fit indicators obtained in the models with the validation dataset in the three methods
without incorporation of silvicultural treatment effects. All values presented in the table correspond to the average of 1000 iterations.

Method Function Estimated parameters RMSE (m 2/ha) AIC BIAS (%)
Bo B1 B2 B3 Ind. Sim. Ind. Sim. Ind. Sim.
1 Pred. —4.5032 4.0782 1.8063 0.6032 7.55 9.87 9758.9 10698.4 —2.97 -3.01
(0.1902) (0.1822) (0.0295) (0.0252)
Proj. 1.0258 0.2269 0.647 7.54 9.60 9661.1 10522.8 —0.62 0.58
(0.1566) (0.0309) (0.0191)
Sim. —4.2758 3.2385 1.7278 0.6188
(0.1789) (0.1722) (0.0281) (0.0233)
2 Pred. —4.483 4.0724 1.8035 0.6003 7.17 9.69 9582.8 10635.1 —2.96 -3.03
(0.2001)  (0.1829)  (0.0299)  (0.027)
Proj. 1.0181 0.2282 0.6477 7.50 9.47 9645.3 10474.8 —0.61 0.57
(0.1584) (0.0316)  (0.0189)
Sim. —4.2560 3.225 1.7249 0.6163
(0.1871)  (0.1700)  (0.0283)  (0.0248)
3 Pred. —4.4988 4.086 1.8058 0.6023 7.08 8.12 9539.5 9559.4 —2.72 —2.76
(0.1961)  (0.1828)  (0.0294)  (0.0261)
Proj. 0.9690 0.2592 0.6172 7.49 9.45 5409.7 10305.0 —0.01 0.48
(0.2069) (0.0405)  (0.0300)
Sim. —4.4889 4.0562 1.8025 0.6027
(0.2258)  (0.2360)  (0.0329)  (0.0297)

Pred: prediction function, Proj: projection function, Ind: denotes the independent fit, Sim: denotes the simultaneous fit. All the parameters were significant at

an alpha-level of 0.05. The standard deviation is denoted in parenthesis.

Table 2. Estimated parameters and goodness-of-fit indicators obtained in the models with the validation dataset over the three
methods techniques incorporating the silvicultural treatment effects as dummy variables. All values presented in the table correspond

to the average of 1000 iterations.

Method  Function Estimated parameters RMSE (m 2/ha) AIC BIAS (%)
Bo B1 B2 B3 é1 ¢2 ¢3 Ind. Sim. Ind. Sim. Ind. Sim.
1 Pred. —3.8187 2.173 1.6002  0.6313  —-0.1538 —-0.0504 -0.0259 1.97 1.99 8620.1  9597.2 —2.67 —2.88
(0.2263) (0.2449) (0.0368) (0.0273) (0.0085) (0.007)  (0.006)
Proj. 0.9102 0.1967  0.6828  0.1326  0.3529  -0.1229 3.98 2.98 10827.0 10982.2 —0.45 0.36
(0.1433) (0.0298) (0.0166) (0.0219) (0.0268) (0.0172)
Sim. —3.5579 12206 15093 0.6519 -0.1733 -0.0549 -0.0371
(0.2127) (0.2306) (0.0349) (0.0251) (0.0083) (0.0067) (0.0059)
2 Pred. —3.8085 2.1548 15963 0.6319 -0.1548 -0.0508 —-0.0268 1.97 1.99 84229 95333 —2.68 —2.90
(0.2418) (0.2475) (0.0381) (0.0299) (0.0086) (0.0069) (0.0058)
Proj. 0.9129 0.1966  0.6823  0.1311  0.3521  -0.1229 3.98 2.98 10822.0 10962.8 —0.45 0.37
(0.1500) (0.0314) (0.0172) (0.0218) (0.0275) (0.0173)
Sim. —3.5450 1.1989  1.5057 0.6518 —-0.1739 -0.0551 -0.0378
(0.2260) (0.2355) (0.0364) (0.0271) (0.0083) (0.0067) (0.0056)
3 Pred. —-3.8139 21707 15984 0.6313  -0.154 —-0.0503 -0.0257 1.97 0.99 85359  8460.8 —2.66 —2.68
(0.2375) (0.2448) (0.0381) (0.0287) (0.0085) (0.0072) (0.0058)
Proj. 0.9646 0.1996 0.6575 0.1221  0.2631  -0.1077 3.02 2.17 7316.3  10760.2 —0.01 0.45
(0.1817) (0.0339) (0.0243) (0.0266) (0.0377) (0.0219)
Sim. —3.8011 21282 15938 0.6323  —-0.1548 -0.0504 -0.0260
(0.2365) (0.2487) (0.038)  (0.0293) (0.0091) (0.0076) (0.0069)

Pred: prediction function, Proj: projection function, Ind: denotes the independent fit, Sim: denotes the simultaneous fit. All the parameters were significant at

an alpha-level of 0.05. The standard deviation is denoted in parenthesis.

the weighting factor w: (Method 3), when incorporating the sil-
vicultural treatment effect. Method 3 remains the most accu-
rate compared with Methods 1 and 2 (Table 2). In Method 3, for
the independent fit phase projection model the RMSE decreases
from 7.49 to 3.02 m? ha~! and in the simultaneous fit phase it
decreases from 9.45 to 2.17 m? ha~'. For the same method, in
the case of the prediction model, the RMSE decreases from 7.08
to 1.97 and from 8.12 to 0.99 m? ha~! in the independent and
simultaneous phase fit of the model, respectively. As in the base
models without the incorporation of the effects of silvicultural

treatments, a significant decrease in the BIAS of the estimates was
observed.

As with the base model, the effect of the weighting factor
w; on the Method 3 resulted in a lower estimation error and
better parsimony, as evaluated by the RMSE and AIC (Table 2). The
improvement is greater in the projection model, in contrast to the
prediction model, where it is observed that the RMSE of the model
fit in the independent phase is 3.98, 3.98, and 3.02 m? ha~! in
the Methods 1, 2, and 3, respectively; in that same order, in the
simultaneous fit phase, the RMSE is 2.98, 2.98, and 2.17 m? ha~".
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Figure 1. Relationship between predicted-observed BA and projected-observed BA for Method 3, both in simultaneous fitting incorporating

silvicultural treatments.

In the case of the prediction model, there is no clear tendency to
increase the precision in the fit of any method, we only observed
changes in the value of the RMSE for Method 3 (0.99 m? ha~') in
contrast to other two methods (1.99 m? ha™').

The simultaneous fit phase model generates consistent esti-
mates with respect to the independent phase-adjusted model
(Fig. 1). In the estimation model, an increase in the variation of
BA with increasing values of BA is observed relative to the 1:1
line, showing more variation in relation to the transition model,
indicating heteroscedasticity in the model. Here, the model fit
in both independent and simultaneous phases shows a slight
tendency to underestimate the BA between the range of 20 to
40 m? ha™!, and to overestimate the BA after 40 m? ha~!. Mean-
while, in the transition model, note that the 1:1 relationship
between the observed and estimated BA in two estimation phases
(independent and simultaneous phases) shows high accuracy and
homoscedastic variance.

When incorporating the effect of silvicultural treatments in the
BA models, the distribution of parameters increases among the
three methods (Figs 2 and 3). In the prediction model, the distri-
bution of parameters is similar among the three methods when
comparing the fitting with and without the incorporation of the
silvicultural treatment variables. On the other hand, in the pro-
jection model and in the simultaneous fitting, the distribution of
parameters changes when incorporating the effect of silvicultural
treatments. In the prediction model, Method 3 is where the largest
change in the distribution of parameters was observed. Here,
without incorporating silvicultural treatments, the distribution of
parameters Bo, B2, and B3 varied in relation to Methods 1 and 2,
while when incorporating the effect of silvicultural treatments,
only the distribution of parameter 83 showed substantial changes.
In the simultaneous fit, changes in parameters Bo, 1, and B2
were observed in Method 3, while the distribution of parameter

B3 is stable between methods and when incorporating the effect
of silvicultural treatments. In this comparison, changes in the
distribution of parameters Bo, 1, and B, were observed to be
greater when incorporating the effect of silvicultural treatments.

Discussion

Our study implemented a system of compatible equations similar
to the one proposed by Clutter (1963) almost 60 years ago. We
introduce a novel way to link prediction and projection variances
in a system of simultaneous equations that weights projections
differently, correctly addressing cumulative errors over longer
projection intervals. The benefit from our system rests in the
possibility to calculate long-term projection uncertainty as well as
to better localize equation parameters. Practitioners have relied
on the Clutter (1963) system for many years, with numerous
examples in the USA, such as the work by Burkhart and Sprinz
(1984),Clutter and Jones (1980), in loblolly pine, and Pienaar and
Shiver (1984), Pienaar et al. (1985) in slash pine. Other examples
can be found in Spain (Palahi et al. 2002), New Zealand (Woollons
and Hayward 1985), Finland, South Africa, and Portugal (Soares
et al. 1995). Bailey and Ware (1983) introduced the concept of
fitting both prediction and projection simultaneously, further
improving compatibility. Borders and Bailey (1986) introduced a
full system of equations using linear, and later, nonlinear systems.
Our model includes the addition of silvicultural treatments
as part of the base model as shown by Ramirez et al. (2022),
showing a consistent way to add these effects as they affect
either the asymptote or the slope of the relationship, resulting in
a reduction of RMSE and AIC with respect to the base model. The
system from Fang et al. (2001), which evaluated a simultaneous
equation system, similar to the one proposed by Borders
and Bailey (1986), also incorporated silvicultural treatments
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Figure 2. Distributions of estimated parameters in base models without incorporating silvicultural treatments. The line type, solid, long-dashed, and
short-dashed, denotes Methods 1, 2, and 3, respectively. The distribution of the estimated parameters generated from the 1000 iterations performed.

(chopping, burning, fertilizer, bedding, or herbicide) using
different types of soils as dummy variables inside of a mixed
effects model for slash pine. However, bias in prediction values
was not addressed in their study. Other studies that include
compatible terms between prediction and projection values
beyond the original work from Pienaar and Shiver (1984) and the
work by Pienaar et al. (1985) include McTague and Bailey (1987)
for loblolly pine plantations, and Pienaar and Harrison (1989) for
slash pine in Brazil.

Studies have shown that BA per hectare yield increases asymp-
totically with age and for its modeling the incorporation of site
quality is frequently included to improve estimates. In these
empirical models, algebraic differences have been incorporated
to improve the precision of the BA projection (Ochi and Cao 2003).
Other approaches have been developed from the projection of the
diameter distribution and its relationship with the BA (Zhang and
Duan 2004). Some approaches have incorporated climatic vari-
ables to improve the estimates and projections of BA. Woollons
et al. (1997) reported improvements of 10% in the precision of the
model using climatic variables. Snowdon et al. (1999) included
climatic variables in a temporal and spatial variation for Pinus
radiata in Australia. Makela et al. (2000) mentioned that the devel-
opment of BA yield projection models should go toward hybrid
models that incorporate climatic and empirical variables at the
tree level. Recently, Scolforo et al. (2019) incorporated information

on the water deficit related to the yield in BA, improving the
estimates with respect to the base model using the same base
model structure used in this study.

Due to the algebraic constraints on the parameters, the
increased RMSE of the simultaneous fitting system compared
with fitting the BA equations independently is not surprising. It
was expected to see a reduction in fit statistics when imposing
constraints to the model that require more than one equation
to be fit with additional parameters. This loss in precision was
already noted by several authors, but LeMay (1990) and Zhang
and Duan (2004) indicated that the improvements in stand level
model consistency offset the loss in model precision. That effect
hasbeen previously reported and most authors stress that the loss
of precision is compensated by allowing the system of compatible
equations to generate consistent projections (Fang et al. 2001).

Method 3, which incorporates the weight factor wy =
1/ (0? + 02,) to improve projection values, showed a reduction
in RMSE in comparison with Methods 1 and 2. These results
were the same for every regression model tested, and all
models were further improved through the incorporation of
silvicultural treatment effects (Table 2). Method 2, which incor-
porates the weight factor w: = 1/0 that accounts for variance
heteroscesedacity, did not significantly reduce the RMSE when
compared with Method 1 that assumes homoscedasticity. Using
the w; = 1/ (o2 + 02,) weighting factor was the best choice to
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Figure 3. Distributions of estimated parameters in models incorporating silvicultural treatments. The line type, solid, long-dashed, and short-dashed,
denotes Methods 1, 2, and 3, respectively. The distribution of the estimated parameters generated from the 1000 iterations performed.

correct variance heteroscedasticity as it includes both prediction
(¢) and projection variances (8). Our system does not explicitly
account for time series autocorrelation. There are contrasting
views about the subject. Meng and Huang (2010) indicated that
growth and yield models should include an autocorrelation
structure due to the repeated measurements nature of the data.
LeMay (1990) indicate that a system of equations calibrated from
permanent sampling plots will produce a set of heteroscedastic
errors because BA corresponds to the expression of multiple
factors that cannot independently be measured, generating an
accumulated effect. Hall and Clutter (2004) indicated that a
system of equations fitted simultaneously should include a
term for time series autocorrelation in the covariance matrix.
However, error estimation using such a matrix is complex and
depends strongly on the structure of the correlation between each
equation. Fortin et al. (2007) indicate that an autocorrelation term
in the variance-covariance matrix improves the autocorrelation
problem, however this alone does not solve the problem of
heteroscedasticity in the prediction and the projection equation.

The compatible system estimates parameters all at once,
ensuring compatibility between the prediction and the projection
equations. This method, proposed by Bailey and Ware (1983),
had been used several times to derive BA equations. All these
equations had implemented the required constraints to ensure
compatibility, however according to Sun et al. (2007), these

methods have only increased the complexity, but the error
structure term has not been the subject of study. In fact, Wilson
et al. (2019) citing other authors indicate that the projection error
has seldom been part of further consideration. One exception
would be Meng and Huang (2010) who generated a BA model
including fixed and random effects using a mixed effect modeling
approach. Results from this study show that the incorporation of
fixed and random effects does reduce the overall error, with small
effect in the parameters from the model when compared with
the fixed effects only methods. The results of our research show,
on one hand, a simple methodology to incorporate the errors
in a compatible fitting system between simultaneously fitted
prediction and projection models. Furthermore, we demonstrate
the effect of incorporating the estimation error at time t — 1 and
its effect at time t, which can be considered as a recognition of
the effect of error propagation in a projection system.

In our study, we also incorporated a distribution analysis of the
estimated parameters for the three methods evaluated. In gen-
eral, Methods 1 and 2 showed a similar distribution of parameters
in all cases of analysis. That is, in the models fitted independently
and the models fitted simultaneously. On the other hand, the
distribution of the parameters of Method 3 varied with respect
to Methods 1 and 2. Evidently, the difference was generated by
the incorporation of the weighting factor 1/ (o? + ¢, ), which pro-
duces effects on the weighting of each of the parameters. Method
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3, in the simultaneous fit without the incorporation of dummy
variables (Fig. 2), parameters f1, and B, are higher with respect to
their estimation in Methods 1 and 2. This indicates that Age and
Dominant Height are more significant, thus correcting the bias
that was observed in Methods 1 and 2. A similar trend is observed
with the distribution of the parameters in the fit incorporating the
dummy variables (Fig. 3). Here, the parameter B¢ also decreases
with respect to Methods 1 and 2, which makes the BA prediction
curve fit better to the observed information. Another relevant
change occurs in parameter B3, which showed changes only in
the projection model when compared between the three methods.
Here, this parameter defines the mortality rate between two time
periods, and using the weighting factor 1/ (67 + ¢ ;) in Method 3,
it was observed that this variable becomes more significant in the
BA projection process.

Method 3 generates the weight matrix (W;) independently from
the prediction and the projection equation. In the simultaneous
fitting approach, the W, for the prediction equation used the
reciprocal for the prediction variance (1/0?) using the error gen-
erated with the observation at time t, while the projection factor
w; used the weighting factor 1/ (o2 + 02,) that depends on the
projection error at time t — 1. Doing this, the weighting factor
now includes two sources of error. The result of this reduces
the effect of the projection values as the elapsed time between
two consecutive measurements increases, giving more weight to
the observation instead of the projection. This error propaga-
tion method has been studied before, using other techniques.
For example, McGarrigle et al. (2013) proposed a different type
of dynamic model using copulas derived from nearest neighbor
imputation; this method was called “informed random walks”.
Wilson et al. (2019) produced projections up to 40 years in length
for Pseudotsuga menziesii using a Bayesian probabilistic modeling
approach. According to Wilson et al. (2019), this technique allows
the inclusion of error propagation using Bayes’s theorem. How-
ever, it is important to note the limitations of the Markov Chain
Monte Carlo algorithm for parameter calibration when the num-
ber of series increase. Our results present a simpler framework
that can be easily implemented to estimate compatible equations
using a matrix formulation that is solved using simple two-stage
least squares or a generalized least squares formulation.

Conclusion

Incorporating the effects of silvicultural treatments as dummy
variables in the models improved the RMSE and AIC fit statis-
tics relative to the base model. This improvement was observed
over all three methods evaluated in this research. As expected,
the more restrictive simultaneous fit method of the prediction
and projection equations generated higher RMSE values on the
calibration data, showing that this type of fit generates a loss
of flexibility in the model. However it does ensure compatibility
between prediction and projection functions. Our Method 3, which
incorporates the weighting factor w;, generated the best results
according to the RMSE in relation to the other two methods
evaluated in both independent and simultaneous fitting phases.
In Method 3, the W;-weighted matrix was generated indepen-
dently for the prediction and projection functions. Thus, Method
3 proposed in this study showed advantages with respect to the
other two, because it considers the prediction and projection error
to generate the weighting factor. This method allows correcting
the effect of the autocorrelation generated in the modeling of seri-
ally correlated information. In this way, the W;-weighted matrix
integrated the error sources of the prediction and projection
process, in addition to the o2 ; error assimilation term. The error

assimilation term decreases the weighting of the w; factor when
the BA yield projections are made between an initial age very
distant from the final projection age, and this effect was observed
with improved RMSE values in Method 3. Our results show the
importance of incorporating the error terms in the fitting system
of simultaneously compatible and fitted BA models. In addition
to improving the accuracy and BIAS indicators in the projections,
the main advantage of this methodology is that it is very simple to
implement, which only requires setting up the predictor matrices
in a weighted least squares approach.
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