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Spectroscopic techniques generate one-dimensional spectra with distinct peaks and specific widths 
in the frequency domain. These features act as unique identities for material characteristics. Deep 
neural networks (DNNs) has recently been considered a powerful tool for automatically categorizing 
experimental spectra data by supervised classification to evaluate material characteristics. However, 
most existing work assumes balanced spectral data among various classes in the training data, 
contrary to actual experiments, where the spectral data is usually imbalanced. The imbalanced 
training data deteriorates the supervised classification performance, hindering understanding of 
the phase behavior, specifically, sol-gel transition (gelation) of soft materials and glycomaterials. 
To address this issue, this paper applies a novel data augmentation method based on a generative 
adversarial network (GAN) proposed by the authors in their prior work. To demonstrate the 
effectiveness of the proposed method, the actual imbalanced spectral data from Pluronic F-127 
hydrogel and Alpha-Cyclodextrin hydrogel are used to classify the phases of data. Specifically, our 
approach improves 8.8%, 6.4%, and 6.2% of the performance of the existing data augmentation 
methods regarding the classifier’s F-score, Precision, and Recall on average, respectively. Specifically, 
our method consists of three DNNs: the generator, discriminator, and classifier. The method 
generates samples that are not only authentic but emphasize the differentiation between material 
characteristics to provide balanced training data, improving the classification results. Based on 
these validated results, we expect the method’s broader applications in addressing imbalanced 
measurement data across diverse domains in materials science and chemical engineering.

Spectroscopic technologies such as X-ray diffraction (XRD), Nuclear Magnetic Resonance (NMR), Raman scat-
tering, and Electrical Impedance Spectral (EIS) are fundamental tools for the characterization of experimental 
samples in chemistry and materials science. XRD has found extensive use throughout industry and research 
laboratories for more than a century1. It is proven to be an effective method for characterizing crystalline materi-
als as it captures detailed information on the long-range periodic nature of crystal structures. In contrast, NMR 
and Raman measurements are more strongly dependent on localized chemical interactions and are widely used 
to characterize the structure of molecular materials2,3. EIS is a technique used to determine the impedance char-
acteristics of an electrochemical interface. It has been used increasingly in biomaterials studies to understand the 
interactions between the surface and the biological environment. While their mechanisms and uses may vary, all 
of these spectroscopic methods generate comparable one-dimensional spectra consisting of unique peak posi-
tions, widths, and intensities. These features often serve as “fingerprints” for material characteristics, including 
patterns and phases4,5. Identification of the characteristics of unknown specimens can be achieved by comparing 
newly measured spectra with those of established materials in experimental databases6,7. However, the analysis 
process is complicated by factors such as measurement noise, background signals, and inherent minor devia-
tions in the spectra8. To automate this process, machine learning has recently emerged as an effective tool since 
it can automatically classify experimental spectra along material characteristics with significant accuracies9,10.

The popular method within the domain of machine learning is deep neural networks (DNNs). These net-
works consist of several layers of artificial neurons designed to mimic the structure and functioning of the 
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human brain11. DNNs is widely used in classification tasks of spectral data as they can automatically extract 
discriminating features. Specifically, DNNs is utilized for supervised classification methods since these methods 
can use the label information of each class (i.e., material characteristics of spectral data), providing accurate clas-
sification results. For example, Kantz et al.12 used DNNs to classify Liquid Chromatography-Mass Spectrometry 
(LC-MS) spectral peak shapes. This approach improves peak filtering performance by reducing the false peaks 
by more than 90% compared to the traditional chemometric methods. Zeng et al.13 utilized one-dimensional 
convolutional neural network (CNN) to classify the visible-near infrared spectra of corn seed to evaluate seed 
viability. In addition, Lee et al.14 developed a CNN-based model to classify interested phases from a mixture of 
inorganic compounds using XRD. Similarly, Schuetzke et al.8 built a robust CNN model for automatically clas-
sifying phases using the XRD patterns. This shows superior performance in automatic phase identification of 
cement compounds and iron ores. These studies assumed balanced training spectral data between classes (i.e., 
material characteristics of spectral data) in their supervised classification methods.

However, the balanced spectral data among the classes is difficult to appear in actual chemistry, physics, and 
industries generating the spectral data. For example, medical diagnostic applications often generate imbalanced 
spectral data reflecting the common asymmetry encountered in health status among screened individuals (e.g., 
more true negatives than true positives are typically encountered in preventative diagnostics). Materials science 
and chemistry applications also often generate imbalanced spectral data reflecting the common asymmetry of 
composition–process–structure–property relations, such as associated with phase equilibrium (e.g., the physics 
governing the thermodynamics of mixtures often results in asymmetric distributions of stable, unstable, and 
transition states with respect to varying mixture composition). For example, it is common to encounter samples 
of one type in accelerated materials discovery applications based on the unknown structure of a material design 
space and the initially selected search parameters, which may be done randomly or based on prior knowledge. As 
such, imbalanced spectral data is inevitably generated mainly in actual experiments and industries. However, the 
imbalanced spectral data leads to compromised supervised classification performance using DNNs. Specifically, 
the prediction in classification models tends to be biased towards the majority class, which has sizable spectral 
data samples. This leads to a high probability of misclassifying samples from the minority class15.

To address this significant challenge arising from imbalanced spectral data in classification utilizing DNNs, 
a viable solution is to employ data augmentation techniques to create a balanced training dataset across spectral 
data of different material characteristics. Basic data augmentation methods, including rotation, flipping, synthetic 
minority oversampling technique (SMOTE)16, and Borderline-SMOTE (B-SMOTE)17 are commonly used for 
balancing training data within the classification due to their straightforward implementation18–20. However, these 
techniques primarily take into account localized information, thus failing to capture the complete data distri-
bution and address the challenge of overfitting21,22. Consequently, these methods are unsuitable for generating 
realistic spectral data with various characteristics23,24. In contrast, there has been a growing trend in the active 
utilization of Generative Adversarial Networks (GAN) and its variations25,26, including deep convolutional GAN 
(DCGAN)27, CDRAGAN28, and Covid GAN29, to supplement the limited actual data because of the GAN’s capac-
ity to generate authentic data by comprehensively learning the entire data distribution of actual data through 
two neural networks: the discriminator and the generator30,31. Specifically, Balancing GAN (BAGAN)32 is a 
well-known GAN-based method focusing on generating minority class samples. Huang and Jafari28 proposed an 
enhanced version of BAGAN (BAGAN-GP)28 by providing an improved initialization method and gradient pen-
alty technique to stabilize the training process. Based on the GAN’s capacity, it has been widely used in spectral 
data analysis. For example, Wu et al.33 used a GAN framework to augment synthetic Raman spectroscopy data 
of skin cancer tissue to address the difficulties of class imbalance in the context of cancer tissue data. Similarly, 
Gao et al.34 utilized GAN to generate seizure events in long-term EEG spectra to overcome the data imbalance 
problem for accurate classification.

Although these studies generate realistic spectral data to provide balanced data among the various material 
characteristics, they do not consider generating the samples enabling differentiation between characteristics 
(i.e., characteristics-distinguishable samples). The characteristics-distinguishable samples can further improve 
the classification performance, which is the ultimate goal of generating the data in the spectral data analysis. 
The samples can be generated by joint optimization between GAN and the classifier. Specifically, the classifier 
guides the generator in GAN to create samples that could improve classification results. Regarding this direc-
tion, we proposed a novel data augmentation method in a recent paper15 that jointly optimizes between GAN 
and the classifier with several stabilizing techniques. The method validated its effectiveness in imbalanced data 
in additive manufacturing processes. Therefore, we apply the method to spectral data to address the imbalanced 
spectral data issue that commonly occurs in actual experiments and industries. In this paper, the effectiveness 
of our method is validated by using the spectral data collected from actual experimentation. Specifically, the 
electrical impedance spectral data from Pluronic F-127 hydrogel and Alpha-Cyclodextrin hydrogel are used. The 
phases of spectral data are provided as imbalanced. The results show that the imbalanced spectral data can be 
successfully overcome by our method in the classification of the phases. In particular, our approach enhances the 
F-score, Precision, and Recall of the classifier by an average of 8.8%, 6.5%, and 6.2%, respectively, compared to 
the benchmark methods. Moreover, the technique has great generality. Thus, it can be further applied to address 
the classification with imbalanced spectral data in other material science or chemical engineering domains.

Results
Several real-world case studies are provided to show the effectiveness of our method in imbalanced spectral 
data analysis. In “Case study using spectral data from Pluronic F-127 hydrogel” and “Case study using spectral 
data from Alpha-Cyclodextrin hydrogel” sections, comparative case studies involving benchmark methods are 
provided. Specifically, spectral data from two actual materials, Pluronic F-127 hydrogel, and Alpha-Cyclodextrin 
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hydrogel, are provided in “Case study using spectral data from Pluronic F-127 hydrogel” and “Case study using 
spectral data from Alpha-Cyclodextrin hydrogel” sections, respectively. The imbalanced spectral data regarding 
the material phases are provided to evaluate the performance. Therefore, the material characteristics that need 
to be classified are the material phases in the case studies. The performance assessment is conducted based on 
the classification results obtained from the imbalanced training dataset. All case studies utilize the Keras with 
TensorFlow backend. The experiments are carried out on an NVIDIA Tesla P4 GPU within the Google Colab 
environment35.

Benchmark methods
Regarding the benchmark methods, both sampling-based and GAN-based approaches are used. Within the 
sampling-based category, two techniques that SMOTE16 and B-SMOTE17 are used. These methods are imple-
mented using the Python imbalanced-learn library. For the GAN-based approaches, three state-of-the-art class-
conditional GAN methods, namely, CDRAGAN28, BAGAN-GP28, and Covid GAN29 are selected. In addition, 
Cooperative GAN36, which is also class-conditional GAN that jointly optimizes GAN and the classifier without 
stabilizing technique, is utilized as one of the benchmark methods. Beyond the GAN methods, we also consid-
ered the diffusion model37, which has been widely used recently because of its superior generative performance. 
Specifically, the class-conditioned U-Net-based diffusion model (CCD-diffusion)38,39 is used as a benchmark 
method. Finally, the baseline is established by evaluating the classification performance without employing any 
data augmentation method.

Performance evaluation measure
The performance assessment is determined by the classifier’s F-score, Precision, and Recall40. Convolutional 
neural network (CNN) is used as a classifier. The F-score expressed in Eq. (1) is a composite metric that combines 
both Precision and Recall.

 As the primary goal of this paper is to enhance classification accuracy using imbalanced training data, it includes 
case studies that encompass different balanced ratios. A balanced ratio refers to the proportion between the 
training data size of the minority and majority classes. Each case study is iterated ten times. The performance 
measure is the average performance across all classes from the ten repetitions.

Case study using spectral data from Pluronic F‑127 hydrogel
Pluronic F-127 (PF-127), a nonionic amphiphilic surfactant, demonstrates a reversible thermogelling process 
in aqueous solutions, resembling the behavior observed in other Pluronic compounds41. In this section, PF-127 
hydrogel libraries are used for the case study. It’s been widely used and studied in a wide range of applications. 
96 PF-127 deionized water mixtures with different mass ratios are formulated in the 96-well plates. The concen-
tration of PF-127 deionized water varies from 0.3125 to 30 wt% with an increment of 0.3125 wt%. The phase 
angle-frequency spectrum of each sample is collected by a sensor-based high-throughput method. The collected 
spectra are labeled as solution or gel to study the composition-property relationships of PF-127 hydrogels. Three 
repeated experiments provide 288 spectral data. Specifically, 181 spectral data of solution (Fig. 1a) and 107 of gel 
(Fig. 1b) are utilized for the case study. The frequency range for each experiment and concentration is determined 
by the spectrum width. Moreover, different sensors are employed in repeated experiments, resulting in diverse 
spectrum frequency ranges. To use all the spectrum data from three experiments, the x-axis of spectrum data is 
converted into the sequence of sensor measurements (from one to eight hundred, which is the length of data). 
The detailed data collection procedure and frequency range of each experiment are described in “Data collection 
of Pluronic F-127 hydrogel libraries” section.

Table 1 describes the imbalanced training data, where the balanced ratios between the two phases are 0.013, 
0.027, and 0.039, respectively. The ratio is set because balanced ratios below 0.013 result in significantly poor 
performance for the classifier. The remaining data sets are used as testing data.

(1)F-score = 2×
Precision× Recall

Precision+ Recall
.

Figure 1.   Spectral data of Pluronic F-127 hydrogel from (a) solution; (b) gel; (c) solution and gel.
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Figure 2 shows the actual and generated samples from the proposed method, respectively. Specifically, Fig. 2a 
describes the actual imbalanced training data in Table 1, while Fig. 2b represents the actual testing data. The 
generated samples in Fig. 2 when the balanced ratio is 0.027 are realistic spectral data with apparent differences 
between phases achieved through a learning process in our method. Specifically, the results show that the gener-
ated samples from our approach successfully learn the features of the test data of the gel phase (Fig. 2b) from the 
small number of training data samples (Fig. 2a).

Figure 3 shows the performance evaluation of the benchmark and our methods using the generated sam-
ples from each method. The detailed averages and standard deviations of the performance of each method are 
provided in Appendix 1.3. Compared to a baseline result that uses only imbalanced data as training data of the 
classifier, the sampling-based methods, including B-SMOTE17 and SMOTE16, tend to exhibit similar or worse 
performance. This is because the small number of minority class samples prevents the generation of various data 
from sampling-based methods.

Conversely, GAN-based approaches typically outperform sampling-based methods because their generators 
learn the actual distribution of samples from minority classes and generate diverse training data for the classi-
fier. In particular, the generator from our method provides more diverse and better-quality samples than other 
GAN-based methods by jointly optimizing the classifier with stabilizing techniques, resulting in improvements 

Table 1.   Imbalanced training data samples in Pluronic F-127 hydrogel case studies.

Majority class Minority class Balanced ratio Majority class training samples Minority class training samples

Solution Gel 0.013 150 2

Solution Gel 0.027 150 4

Solution Gel 0.039 150 6

Figure 2.   Comparison between generated data of Pluronic F-127 hydrogel with (a) actual training data; (b) 
actual testing data when the balanced ratio is 0.027.

Figure 3.   Performance evaluation using Pluronic F-127 hydrogel with several balanced ratios.
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in classification results. Specifically, our method improves 9.4%, 8.3%, and 5.3% of the average performance of 
the benchmark methods regarding their F-score, Precision, and Recall, respectively. To check the significance 
of the proposed method over the benchmark methods, we performed the paired-T test42 between the proposed 
method and a benchmark method, achieving the best F-score performance, the composite metric of precision 
and recall. Specifically, Cooperative GAN, BAGAN-GP, and CDARAGAN show the best performance among 
the benchmark methods at the balanced ratios of 0.013, 0.027, and 0.039, respectively. Table 2 illustrates that 
the proposed method shows statistically significant improvements over the best benchmark method at a 95% 
significance level in most cases. Furthermore, Table 3 represents the average training time from each of the data 
augmentation methods. Although the proposed method takes a relatively large training time compared to bench-
mark methods, it is valuable to use the proposed method to achieve significant improvements in classification 
results over the benchmark methods.

Figure 4 illustrates the efficacy of the generated samples produced by our approach by comparing their fea-
tures in the classifier with those of actual samples when the balanced ratio is 0.027. Specifically, Fig. 4 displays 
the t-distributed Stochastic Neighbourhood Embedding (t-SNE) of the feature extracted from the intermediate 
layer of our method’s classifier. t-SNE is a nonlinear dimensionality reduction technique designed for visualizing 
high-dimensional data by projecting it into lower-dimensional spaces43. In Fig. 4, ‘ • ’ represents t-SNE of the 
features from the intermediate layer of classifiers extracted from actual samples, while ‘ × ’ represents features 
from the generated samples within the balanced training batch. To achieve a balanced training batch, there is an 
abundance of ‘ × ’ instances for the minority class (i.e., the gel phase) in each batch. In Fig. 4a, it is evident that the 
distribution patterns between actual and generated samples are distinct at epoch 0. Specifically, the ‘ • ’ of the gel 
phase is not aligned with ‘ × ’ of its phase. Furthermore, it is aligned with the ‘ • ’ of the solution phase. Because our 
approach is designed to generate realistic and distinguishable samples between the phases, the features extracted 
from the generated samples (denoted as ‘ × ’) accurately align with those from the actual samples (represented 
as ‘ • ’) based on their respective phases at epoch 140 (Fig. 4b). Furthermore, the features associated with each 
phase are distinctly separated. This observation confirms the realistic and phase-discriminative characteristics 

Table 2.   P-value of statistical hypothesis test in Pluronic F-127 hydrogel case studies.

Alternative hypothesis Balanced ratio Precision Recall F-score

Proposed ≥ Cooperative GAN 0.013 0.002 0.004 0.002

Proposed ≥ BAGAN-GP 0.027 0.049 0.049 0.046

Proposed ≥ CDRAGAN 0.039 0.004 0.120 0.022

Table 3.   On average training time of each method in Pluronic F-127 hydrogel case studies.

Method Time (min) Method Time (min) Method Time (min) Method Time (min)

Proposed 24 Cooperative GAN 18 COVID GAN 5 SMOTE 2

BAGAN-GP 23 CDRAGAN 21 CCU-diffusion 18 BSMOTE 2

Figure 4.   t-SNE of the feature from the intermediate layer of the classifier from our method in epochs (a) 0 and 
(b) 140 when the balanced ratio is 0.027.
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of the generated samples produced by our method. By employing balanced training data characterized by these 
attributes, our method attains a high level of classification performance.

Case study using spectral data from Alpha‑Cyclodextrin hydrogel
Alpha-Cyclodextrin based polypseudorotaxane supramolecular hydrogels, which are based on the self-assembly 
of a polymer chain “guest” and Alpha-Cyclodextrin “host”, are promising materials for a wide range of applica-
tions, including drug delivery and tissue engineering44. In this section, hydrogel libraries of Alpha-Cyclodextrin 
( α-CD)/Polyethylene glycol (PEG) are used for the case study. It’s known that composition plays a vital role in 
forming hydrogels. Here, 96 α-CD/PEG hydrogel samples with different mass ratios of α-CD to PEG are for-
mulated in the 96-well plate. The concentration of PEG is kept at 120 mg/mL while the concentration of α-CD 
varies from 20 to 40 mg/mL. The phase angle-frequency spectrum of each sample is collected by a sensor-based 
high throughput method. The collected spectra are labeled as solution or gel to study the composition-structure 
relationship of α-CD/PEG hydrogels. Three repeated experiments offer 288 spectral data. Specifically, 194 spectral 
data of gel (Fig. 5a) and 94 of solution (Fig. 5b) are provided for the case study. The detailed procedure of data 
collection is described in “Data collection of Alphasps Cyclodextrin hydrogel libraries” section.

Table 4 illustrates the training data with various balanced ratios. Specifically, the balanced ratios that the 
classifier’s performances are applicable in practice are utilized. The remaining samples in each phase are used 
as testing data.

Figure 6 shows the samples of actual and generated samples from the proposed method when the balanced 
ratio is 0.050. Similar to Fig. 2, the generated samples from our approach successfully learn the features of the 
test data of the solution phase (Fig. 6b) from the small number of training data samples (Fig. 6a).

Figure 5.   Spectral data of alpha-Cyclodextrin hydrogel from (a) gel; (b) solution; (c) gel and solution.

Table 4.   Imbalanced training data samples in Alpha-Cyclodextrin hydrogel case studies.

Majority class Minority class Balanced ratio Majority Class training samples Minority class training samples

Gel Solution 0.025 120 3

Gel Solution 0.050 120 6

Gel Solution 0.083 120 10

Figure 6.   Comparison between generated data of Alpha-Cyclodextrin hydrogel with (a) actual training data; 
(b) actual testing data when the balanced ratio is 0.050.
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Figure 7 shows the performance evaluation of the benchmark and our methods using the generated samples 
from each method. The detailed averages and standard deviations of the performance of each method are pro-
vided in Appendix 1.4. In addition, Table 5 represents the average training time from each data augmentation 
method.

In this case studies, all benchmark methods represent worse results than the baseline. This might be caused by 
high similarities between the samples from the gel and solution phases, as shown in Fig. 5. It causes a challenging 
task. Therefore, the sampling-based methods that consider only local information offer inferior performance. 
Specifically, BAGAN-GP, CDRAGAN, Covid GAN, and class-conditioned diffusion model represent inferior 
results since the methods only focus on generating realistic samples but did not consider learning the phase-
distinguishable features. Finally, Cooperative GAN also shows poor performance because of its unstable learning, 
resulting in a limited diversity of generated samples. Our method delivers the best performance by generating 
realistic and phase-distinguishable samples with a stabilizing technique. Specifically, our method improves 8.2%, 
4.6%, and 7.0% of the average performance of the benchmark methods regarding their F-score, Precision, and 
Recall, respectively. However, the proposed method could not achieve statistically significant improvements 
over the best benchmark method, unlike the case studies using Pluronic F-127 hydrogel. This is because of the 
extremely high similarity between the solution and gel phases of Alpha-Cyclodextrin hydrogel, as shown in 
Fig. 5. However, the proposed method still achieves the best performance, while all the benchmark methods 
fail to generate suitable data. Therefore, it is still valuable to use the proposed method in such challenging data, 
although it still requires some computational resources, as shown in Table 5.

Figure 8 illustrates the t-SNE visualization of the features extracted from the intermediate layer of classifiers 
in our method at epochs 0 and 135 when the balanced ratio is 0.050. Similar to Fig. 4, ‘ • ’ and ‘ × ’ denote features 
of actual and generated samples, respectively. To make a balanced training data, the solution phase of the Alpha-
Cyclodextrin hydrogel has plenty of generated samples (‘× ’) than actual samples (‘• ’) in each batch. In contrast to 
epoch 0 (Fig. 8a), the features at epoch 135 (Fig. 8b) demonstrate that the features extracted from the generated 
samples (‘× ’) of the solution phase of the Alpha-Cyclodextrin hydrogel accurately match those from the actual 
samples (‘•’). Due to this alignment, the balanced training data generated from our method achieves the best 
classification results compared to benchmark methods.

Discussions
This paper addresses the material characteristics classification problem using imbalanced spectral data. The 
imbalanced spectral data usually happens in actual experiments and industries, causing poor supervised clas-
sification performance. To address this challenge, a GAN-based data augmentation method proposed by authors 
in the previous work15 is utilized. Specifically, the method consists of three DNNs, namely, generator, discrimi-
nator, and classifier, jointly optimized. The generator in the method generates both realistic and characteristics-
distinguishable data to balance the training data. The imbalanced spectral data between the phases of Pluronic 
F-127 hydrogel and Alpha-Cyclodextrin hydrogel are used for the case studies. The results show the method 
successfully addresses the data imbalance problem by improving the phase classification results. Specifically, our 

Figure 7.   Performance evaluation using Alpha-Cyclodextrin hydrogel with several balanced ratios.

Table 5.   On average training time of each method in Alpha-Cyclodextrin hydrogel case studies.

Method Time (min) Method Time (min) Method Time (min) Method Time (min)

Proposed 22 Cooperative GAN 16 COVID GAN 3 SMOTE 0.5

BAGAN-GP 21 CDRAGAN 19 CCU-diffusion 16 BSMOTE 0.5
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method improves 8.8%, 6.4%, and 6.2% of the average performance of the benchmark methods regarding their 
F-score, Precision, and Recall, respectively, in all case studies. The outstanding performances of the proposed 
method in various case studies validate that the method could significantly contribute to many applications 
area using spectral data, such as radiology45 and additive manufacturing46. In addition, it would be an interest-
ing future research topic to generate the minority data from the test data for the users who need to assess the 
performance of the methods requiring balanced test data.

Methodology
A detailed procedure for the data collection of Pluronic F-127 and Alpha-Cyclodextrin hydrogel libraries are 
provided in “Data collection of Pluronic F-127 hydrogel libraries” and“Data collection of Alpha-Cyclodextrin 
hydrogel libraries” sections, respectively. Then, the proposed methodology is described in “Proposed methodol-
ogy” section. Finally, the hyperparameters and the structure of the deep neural network used in this paper are 
listed in “Hyperparameters of the deep neural networks” section.

Data collection of Pluronic F‑127 hydrogel libraries
For the data collection, hydrogel libraries of Pluronic F-127 (PF-127) are obtained from Sigma Aldrich and are 
prepared in 96-well plates47. The stock PF-127 water solution (30% wt%) is first prepared with deionized water. 
The stock solution is then serial diluted with deionized water across the well plate for concentrations from 
0.3125 wt% to 29.6875 wt%. The well plate is left in the fridge overnight for mixing. Then, the plate is taken out 
from the fridge and leave at room temperature in an hour for cross-linking. Next, the prepared PF-127 hydrogel 
libraries are characterized by piezoelectric milli-cantilever (PEMC) sensors. The PEMC sensor is integrated with 
a three-axis robot (MPS50SL; Aerotech), and its movement is controlled by a motion controller (A3200, Aero-
tech). The impedance spectrum of each hydrogel sample is captured by a network analyzer (E5061B, Keysight) 
and a customized MATLAB program. Spectra data of all PF127 hydrogels in the 96-well plates are collected by 
manually controlling the robot-integrated sensor to move from one well to another. The frequency range for each 
experiment and concentration is determined based on the spectrum width. In addition, different sensors are 
used in three repeated experiments, leading to varying spectrum frequency ranges. The frequency ranges span 
26,013.75–37,000 Hz, 27,016.25–40,000 Hz, and 31,012.5–41,000 Hz for three repeated experiments, respectively. 
Finally, in the case of labeling, the spectral data are fitted to the sigmoid curve, and then the spectrum before the 
inflection point of the curve is labeled as a solution, and the spectrum after the inflection point is labeled as a gel.

Data collection of Alpha‑Cyclodextrin hydrogel libraries
To generate samples, supramolecular hydrogels of Alpha-Cyclodextrin ( α-CD)/Polyethylene glycol (PEG) are 
prepared in 96-well plates. Both α-CD and PEG are obtained from Sigma Aldrich and used without further 
purification. Stock solutions of α-CD (80 mg/mL) and PEG (240 mg/mL) are prepared in advance, and the 
hydrogel library is obtained by mixing a constant volume of PEG stock solution with different volumes of α-CD 
stock solution and deionized water. At first, 190 µ L of PEG is pipetted into each well of the 96-well plate. Then, 
deionized water is pipetted by increasing from 95 to 190 µ L with a step size of 1 µ L. Next, α-CD is pipetted by 
reducing from 190 to 95 µ L with a step size of 1 µ L. The final volume in each well is 380 µ L, and the concentra-
tion of PEG is 120 mg/mL, while the concentration of α-CD varies from 20 to 40 mg/mL. To avoid the formation 
of inhomogeneous hydrogels, the precursor solution in each well is mixed by pipette immediately once α-CD 
is added. After all wells have been formulated, the 96-well plate is further mixed by a digital shaker (LSE digital 
microplate shaker; Corning) at 1000 rpm for 10 min. Finally, the well plate was placed in a humid environment 

Figure 8.   t-SNE of the feature from the intermediate layer of the classifier from our method in epochs (a) 0 and 
(b) 135 when the balanced ratio is 0.050.
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and reacted at room temperature for 12 h. Then, the prepared hydrogel libraries of α-CD/PEG are characterized 
by PEMC sensors in a high-throughput manner. The PEMC sensor is integrated with a robot (FISNAR, F5200N) 
for automated characterization. The hydrogel in each well is characterized by penetrating the robot-integrated 
sensor into the sample, and the impedance spectra are collected by a network analyzer (E5061B, Keysight) and a 
customized MATLAB program. All samples in 96-well plates are automatically characterized by PEMC sensors 
with the computer-controlled robot. Finally, the phases of the collected α-CD/PEG spectrum data are obtained 
by two best-fit linear regression models. Specifically, based on the point where the two linear regression models 
intersect, the spectrum before the point is identified as a solution and the spectrum after that as a gel.

Proposed methodology
This section introduces a novel GAN-based data augmentation method proposed in the authors’ previous paper15. 
The structure of the overall method is described in “Three-player structure for imbalanced data learning” sec-
tion. In addition, the objective functions of the algorithm are illustrated in “Objective functions for three-player” 
section. Finally, the training procedure of the method is described in “Training procedure” section.

Three‑player structure for imbalanced data learning
Figure 9 shows the structure of our method, which consists of three players: a discriminator, a generator, and 
a classifier.

The generator generates samples of the spectral data using the random noise and corresponding character-
istics labels. Within the generated samples, those representing the minority class are integrated with the actual 
imbalanced spectral data, resulting in balanced training data for the classifier. The proposed approach provides 
adversarial and cooperative learning to enhance the utility of the generated samples for improving the classifier’s 
performance. The specific roles of these two learnings are outlined as follows.

•	 Adversarial learning: The interaction between the generator and the discriminator adheres to the adversarial 
relationship inherent in the GAN structure. The relationship allows both networks to engage in a competitive 
process, ultimately leading to the generator’s generation of realistic spectral data.

•	 Cooperative learning: The cooperative interaction between the classifier and the generator empowers the 
generator to produce spectral data that can be well discerned regarding the material’s characteristics (i.e., 
characteristics-distinguishable samples) by the classifier.

Based on these two relationships, the generator generates samples of minority class with both properties (i.e., real-
istic and characteristics-distinguishable). Subsequently, these generated samples are combined with actual ones, 
creating a balanced training batch that flows through the classifier network in one training iteration. Through 
the iterative learning process involving three players, the classifier eventually attains a high level of performance. 
The detailed objective function of each player and the training procedure are explained in Appendix 1.

Figure 9.   Structure of the method15.
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Hyperparameters of the deep neural networks
Table 6 describes the hyperparameters that are used for all the methods in this paper. The common parameters 
among methods consisting of deep neural networks are determined based on the literature. Specifically, the 
optimizer of neural networks is the Adam algorithm with a learning rate of 0.0002 and momentums of 0.5 and 
0.915. In addition, many other hyperparameters, including kernel sizes, strides, padding, activation functions, 
and kernel initializer, are utilized by Huang and Jafari28 that proposed CDRAGAN and BAGAN-GP, which are 
the state-of-the-art class conditional GAN methods. Furthermore, the number of kernels is determined as two 
to the powers, including 32, 64, and 128, commonly used in the existing studies using convolutional neural 
networks48,49.

The unique parameters of each method are selected based on the guidelines provided in the literature or 
determined by the values that showed the best performance within a specific range. For example, the coefficient 
of the gradient penalty of BAGAN-GP and CDRAGAN are determined at ten based on the recommendation 
of the previous studies28,50 In the case of Cooperative GAN36, the scheduling parameter related to adjusting the 
borderline between classes is selected based on the performance from a range provided by Choi et al.36 ((0, 1]). 
For the SMOTE16 and B-SMOTE17, the parameters defining the number of neighborhood samples to use to 

Table 6.   Hyperparameters of each method.

Methods Parameters Value

SMOTE, B-SMOTE Range of the nearest K samples [1, 5]

CDRAGAN, BAGAN-GP cooperative GAN proposed

Number of epochs 150

Optimizer Adam

Learning rate 0.0002

Momentum β1 = 0.5,β2 = 0.9

Hidden layers (Discriminator) 4 blocks of
[Conv2D, LeakyRelu]

Hidden layers (Generator)
4 blocks of
[Conv2D-Transpose, LeakyRelu,
BatchNormalization]

Number of Kernels in each block (Discriminator) (64,128,128,256)

Number of Kernels in each block (Generator) (128,128,64,Number of channel)

Kernel sizes (4,4)

Strides (2,2)

Padding Same

Activation functions LeakyRelu, Tanh

Kernel initializer Random normal (sd=0.02)

Slope of Leaky Relu 0.2

CDRAGAN, BAGAN-GP proposed Gradient penalty coefficient 10

Cooperative GAN Range of scheduling parameter (0, 1]

Covid GAN Range of latent vector dimensions [100, 200]

CCU-diffusion Timesteps 1000

BAGAN-GP, Proposed Epochs in pre-training 100

Table 7.   Hyperparameters of the classifier.

Parameters Value

Number of epochs 150

Optimizer Adam

Learning rate 0.0002

Momentum β1 = 0.5,β2 = 0.9

Hidden layers 4 blocks of [Conv2D, LeakyRelu]

Number kernels in each block (32,32,128,256)

Kernel sizes (4,4)

Strides (2,2)

Padding Same

Activation functions Leaky Relu, Softmax

Kernel initializer Random normal (sd=0.02)

Slope of Leaky Relu 0.2
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generate the synthetic samples are selected based on the performance within a specified range ([1, 5]). Similarly, 
the dimension of the latent vector, which is the input size of the generator in Covid GAN29, is tuned within a 
range [100, 200]. From the class-conditioned U-Net based diffusion model38,39, the number of timesteps relevant 
to overfitting and underfitting to training data is determined as 1000 based on the previous literature37,39.

Table 7 provides information on the hyperparameters used for the classifier in the case studies. In case studies, 
a CNN is utilized as the classifier. To ensure a fair and consistent comparison, all the methods adopt the identical 
classifier configuration outlined in Table 7.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request (zkong@vt.edu).

Appendix 1
Objective functions for three‑player
The review of the generative adversarial network (GAN) is described in “Generative adversarial network (GAN)’’ 
section initially. Then, the objective functions of the discriminator, generator, and classifier are illustrated in 
“Objective function of discriminator’’, “Objective function of generator’’ and “Objective function of classifier’’ 
sections, respectively. The iterative optimization between the three players ultimately yields the high-performance 
classifier from the imbalanced spectral data.

Generative adversarial network (GAN)
The idea of a GAN is to train two networks, namely, generator G and discriminator D, with a minimax game for 
V(D, G) demonstrated in Eq. (2)51.

where z denotes the random noise, and xa is actual samples from spectral data. ya and yg are the labels of actual 
and generated spectral data, respectively. Specifically, the generator is to produce samples of spectral data G(z) 
from z. In contrast, the discriminator is to distinguish whether the origin of input samples is from the actual 
( xa ) or the generator (G(z)). In other words, the role of the discriminator is to distinguish the origin of the input 
samples, whereas the generator’s task is to create synthetic samples with the intention of deceiving the discrimi-
nator. This adversarial learning leads to the distribution of newly generated samples approaching the inherent 
distribution of the actual samples, P(Xa).

Objective function of discriminator
In the proposed approach, the discriminator aims to maximize Eq. (2) through adversarial learning with the 
generator. Specifically, the discriminator learns to distinguish the input ( xa, ya ) and ( G(z, yg ), yg ) are actual and 
generated, respectively. Furthermore, the method introduces two supplementary terms to ensure a stable learn-
ing process. This is done because GAN training is usually unstable and challenging to converge, resulting in the 
generator’s gradient explosions in adversarial learning52,53. First, our method ensures the regularization of the 
discriminator’s gradient by imposing a gradient penalty. The penalty enforces 1-Lipschitz continuity upon the 
discriminator. Second, the proposed approach incorporates an extra input for the discriminator, comprising the 
actual sample with a wrong label. This added task prevents the discriminator from distinguishing the origin of 
the input well before the generator successfully approximates the actual sample distribution of the spectral data. 
Otherwise, it causes unstable learning of GAN through exploding or vanishing the gradient of the generator53,54. 
In summary, the objective function of the discriminator ( LD ) is as follows15.

where x̂ = αxa + (1− α)G(z) , and α is sampled uniformly between 0 and 1. The coefficient � pertains to the 
gradient penalty term. The initial three losses in Eq. (3) are associated with losses incurred when the discrimina-
tor misclassifies the source of the actual, generated, and mislabeled sample. The final loss corresponds to the loss 
linked to the gradient of the discriminator.

Objective function of generator
The primary aim of the generator is to generate samples that align with the distribution of actual spectral data 
( P(Xa) ), accomplished by minimizing Eq. (2). Hence, Eq. (2) enables the adversarial learning between the dis-
criminator and generator. Apart from Eq. (2), the generator incorporates an additional component in its objective 
function that pertains to the classifier. Unlike the adversarial relationship with the discriminator, the generator 
and the classifier establish a cooperative relationship to generate distinctly discernible spectral samples across the 
material characteristics. In other words, the generator’s role is to generate samples and provide a balanced train-
ing dataset that can improve the classifier’s performance, as shown in Fig. 9. To accomplish this, the generator’s 

(2)min
G

max
D

V(D,G) = E(xa ,ya)∼P(Xa ,Ya)[log(D(xa, ya))] + E(z,yg )∼P(Z,Yg )[log(1− D(G(z, yg ), yg )],

(3)

LD(Z,Xa,Ya,Yg ,Ym) =−E(xa ,ya)∼P(Xa ,Ya)[log(D(xa, ya))]
︸ ︷︷ ︸

loss from actual sample in discriminator

−E(z,yg )∼P(Z,Yg )[log(1− D(G(z, yg ), yg )]
︸ ︷︷ ︸

loss from generated sample in discriminator

−E(xa ,ym)∼P(Xa ,Ym)[log(1− D(xa, ym)]
︸ ︷︷ ︸

loss from mislabeled sample in discriminator

+�E
(x̂,ya)∼P(X̂,Ya)

[(�∇(x̂,ya)D(x̂, ya)�2 − 1)2]
︸ ︷︷ ︸

loss from gradient penalty

,
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objective function includes the classification loss based on the generated samples. The objective function of the 
generator ( LG ) can be formulated as follows15.

Objective function of classifier
The objective function of the classifier includes the classification loss derived from both the actual and generated 
samples of the spectral data. As illustrated in Fig. 9, the generator’s samples are combined with actual samples to 
provide a balanced training dataset for each batch of the classifier. The classifier is then optimized by minimiz-
ing the classification loss for both the actual and generated samples. Finally, the classifier’s objective function 
( LC ) is listed as follows15.

In particular, −E(z,yg )∼P(Z,Yg )[yg log(C(G(z, yg ))] , a common term in both Eqs. (4) and (5) enables cooperative 
learning between the generator and classifier.

Training procedure
The three players are optimized alternatively. Initially, the discriminator undergoes training using a batch that 
includes both actual and generated samples, aiming to minimize Eq. (3). Subsequently, a batch containing only 
generated samples is employed to update the generator, focusing on minimizing Eq. (4). Finally, the classifier’s 
training involves minimizing Eq. (5) with balanced training data from all the classes. This process begins with 
sampling a batch from the actual data. Then, the generator generates the remaining samples from the minority 
class to ensure a balanced training set. The alternating training process continues until it reaches the specified 
number of predefined epochs.

Performance evaluation in Pluronic F‑127 hydrogel case study
Tables 8, 9, and 10 represent the performance evaluation using the Pluronic F-127 hydrogel when the balanced 
ratios of training data are 0.039, 0.027, and 0.013, respectively.

(4)
LG(Z,Yg ) = −E(z,yg )∼P(Z,Yg )[log(D(G(z, yg ), yg ))]

︸ ︷︷ ︸

loss from generated sample in discriminator

−E(z,yg )∼P(Z,Yg )[yg log(C(G(z, yg )))]
︸ ︷︷ ︸

loss from generated sample in classifier

.

(5)
LC(Z,Xa,Ya,Yg ) = −E(xa ,ya)∼P(Xa ,Ya)[yalog(C(xa))]

︸ ︷︷ ︸

loss from actual sample in classifier

−E(z,yg )∼P(Z,Yg )[yg log(C(G(z, yg ))]
︸ ︷︷ ︸

loss from generated sample in classifier

.

Table 8.   Performance evaluation in Pluronic F-127 hydrogel case study when the balanced ratio is 0.039. 
Averages and standard deviations (in the parenthesis) are represented.

Pluronic F-127 hydrogel

Precision Recall F-score

Baseline 0.820 (0.05) 0.902 (0.04) 0.834 (0.06)

SMOTE 0.821 (0.03) 0.907 (0.02) 0.841 (0.03)

B-SMOTE 0.824 (0.03) 0.910 (0.02) 0.845 (0.03)

CDRAGAN 0.858 (0.04) 0.932 (0.02) 0.880 (0.04)

BAGAN-GP 0.855 (0.06) 0.927 (0.03) 0.875 (0.05)

Cooperative GAN 0.853 (0.05) 0.925 (0.03) 0.872 (0.05)

Covid GAN 0.831 (0.06) 0.912 (0.05) 0.846 (0.05)

CCU-diffusion 0.845 (0.05) 0.922 (0.03) 0.867 (0.05)

Proposed 0.923 (0.07) 0.946 (0.04) 0.926 (0.07)

Table 9.   Performance evaluation in Pluronic F-127 hydrogel case study when the balanced ratio is 0.027. 
Averages and standard deviations (in the parenthesis) are represented.

Pluronic F-127 hydrogel

Precision Recall F-score

Baseline 0.795 (0.04) 0.886 (0.04) 0.805 (0.06)

SMOTE 0.792 (0.04) 0.880 (0.05) 0.799 (0.07)

B-SMOTE 0.793 (0.04) 0.881 (0.05) 0.800 (0.07)

CDRAGAN 0.818 (0.06) 0.900 (0.06) 0.828 (0.09)

BAGAN-GP 0.833 (0.07) 0.908 (0.06) 0.844 (0.09)

Cooperative GAN 0.800 (0.06) 0.883 (0.06) 0.806 (0.09)

Covid GAN 0.819 (0.05) 0.905 (0.05) 0.833 (0.07)

CCU-diffusion 0.849 (0.04) 0.831 (0.05) 0.821 (0.05)

Proposed 0.866 (0.06) 0.934 (0.03) 0.885 (0.06)
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Table 10.   Performance evaluation in Pluronic F-127 hydrogel case study when the balanced ratio is 0.013. 
Averages and standard deviations (in the parenthesis) are represented.

Pluronic F-127 hydrogel

Precision Recall F-score

Baseline 0.760 (0.05) 0.848 (0.07) 0.746 (0.10)

SMOTE 0.760 (0.05) 0.847 (0.07) 0.745 (0.11)

B-SMOTE 0.760 (0.05) 0.847 (0.07) 0.745 (0.11)

CDRAGAN 0.781 (0.07) 0.866 (0.06) 0.776 (0.09)

BAGAN-GP 0.784 (0.06) 0.867 (0.07) 0.778 (0.11)

Cooperative GAN 0.786 (0.06) 0.873 (0.06) 0.788 (0.09)

Covid GAN 0.761 (0.06) 0.846 (0.07) 0.743 (0.09)

CCU-diffusion 0.788 (0.08) 0.871 (0.06) 0.783 (0.10)

Proposed 0.836 (0.05) 0.919 (0.04) 0.855 (0.06)

Table 12.   Performance evaluation in Alpha-Cyclodextrin hydrogel case study when the balanced ratio is 
0.050. Averages and standard deviations (in the parenthesis) are represented.

Alpha-Cyclodextrin hydrogel

Precision Recall F-score

Baseline 0.869 (0.04) 0.847 (0.06) 0.834 (0.07)

SMOTE 0.848 (0.03) 0.819 (0.04) 0.794 (0.06)

B-SMOTE 0.847 (0.03) 0.812 (0.06) 0.803 (0.06)

CDRAGAN 0.830 (0.03) 0.800 (0.05) 0.782 (0.06)

BAGAN-GP 0.864 (0.03) 0.849 (0.04) 0.838 (0.05)

Cooperative GAN 0.851 (0.04) 0.839 (0.05) 0.830 (0.06)

Covid GAN 0.848 (0.02) 0.823 (0.04) 0.808 (0.05)

CCU-diffusion 0.844 (0.03) 0.816 (0.05) 0.800 (0.06)

Proposed 0.886 (0.03) 0.878 (0.04) 0.871 (0.04)

Table 11.   Performance evaluation in Alpha-Cyclodextrin hydrogel case study when the balanced ratio is 
0.083. Averages and standard deviations (in the parenthesis) are represented.

Alpha-Cyclodextrin hydrogel

Precision Recall F-score

Baseline 0.895 (0.02) 0.886 (0.02) 0.882 (0.05)

SMOTE 0.837 (0.03) 0.802 (0.05) 0.785 (0.06)

B-SMOTE 0.856 (0.03) 0.834 (0.06) 0.822 (0.06)

CDRAGAN 0.845 (0.04) 0.818 (0.05) 0.804 (0.06)

BAGAN-GP 0.871 (0.03) 0.858 (0.04) 0.843 (0.05)

Cooperative GAN 0.846 (0.03) 0.834 (0.03) 0.827 (0.03)

Covid GAN 0.761 (0.06) 0.847 (0.04) 0.837 (0.04)

CCU-diffusion 0.848 (0.03) 0.826 (0.03) 0.816 (0.05)

Proposed 0.900 (0.03) 0.894 (0.03) 0.888 (0.04)

Performance evaluation in Alpha‑Cyclodextrin hydrogel case study
Tables 11, 12 and 13 represent the performance evaluation using the Alpha-Cyclodextrin hydrogel when the 
balanced ratios of training data are 0.083, 0.050, and 0.025, respectively.
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