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Abstract

Causal decomposition analysis aims to identify risk factors (referred to as
“mediators”) that contribute to social disparities in an outcome. Despite
promising developments in causal decomposition analysis, current methods
are limited to addressing a time-fixed mediator and outcome only, which
has restricted our understanding of the causal mechanisms underlying social
disparities. In particular, existing approaches largely overlook individual char-
acteristics when designing (hypothetical) interventions to reduce disparities.
To address this issue, we extend current longitudinal mediation approaches
to the context of disparities research. Specifically, we develop a novel
decomposition analysis method that addresses individual characteristics by
(2) using optimal dynamic treatment regimes (DTRs) and (b) conditioning
on a selective set of individual characteristics. Incorporating optimal DTRs
into the design of interventions can be used to strike a balance between
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equity (reducing disparities) and excellence (improving individuals’ out-
comes). We illustrate the proposed method using the High School
Longitudinal Study data.
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Introduction

Recently, there have been considerable methodological developments on
approaches to decompose social disparities within the causal inference litera-
ture (e.g., VanderWeele and Robinson 2014; Jackson and VanderWeele
2018; Jackson 2021; Lundberg 2020; Park, Qin, and Lee 2022; Park et al.
2023). These developments in causal decomposition analysis extend trad-
itional approaches (e.g., difference-in-coefficients and Blinder Oaxaca
decomposition) to settings with nonlinear relationships, and have clarified
the assumptions (e.g., no omitted confounding) required to permit causal
interpretation of the results. Moreover, recently developed sensitivity ana-
lyses (Park, Qin, and Lee 2022; Park et al. 2023) enable researchers to
assess the robustness of findings against a reasonable amount of omitted con-
founding. As a result, stronger causal interpretations of the estimated effects
can be made.

A successful application of causal decomposition and sensitivity analysis
can be found in Lee, Park, and Boylan (2021), which examines interventions
to reduce cardiovascular health disparities across race/ethnicity and gender
categories. That study begins by presenting a directed acyclic graph
(DAG; Pearl 2012), which encodes the authors’ understanding of the data-
generating process. They used the DAG to determine which variables to
control to eliminate confounding. The study concludes that approximately
one-third of the cardiovascular health disparity between Black women and
White men would be reduced if Black women’s socioeconomic status
(SES) was equal to that of White men. This reduction remains robust even
in scenarios where a reasonable amount of omitted confounding (as large
as the existing covariates, e.g., family history of cardiometabolic conditions)
is assumed to exist. Causal decomposition analysis allows us to rigorously
evaluate the effect of modifying risk factors or resources on reducing dispar-
ities, even when using observational data. The risk factors or resources are



Park et al. 3

referred to as “mediators,” since they are believed to lie in the path between
social groups (exposure) and the outcome.

Despite these promising developments in causal decomposition analysis,
the methods currently available are restricted to scenarios involving only
time-fixed mediators and outcomes. Consequently, this has limited our under-
standing of the causal mechanisms underlying the observed disparities.
However, it is important to highlight the existence of the relevant literature
on time-varying exposures and mediators in the causal inference framework.
Specifically, Bind et al. (2016) proposed employing a generalized linear
mixed model to identify natural direct and indirect effects (Pearl 2001) in
settings with time-varying exposures, mediators, and outcomes. Natural
direct and indirect effects are not nonparametrically identified when
exposure-induced confounders exist (VanderWeele and Tchetgen Tchetgen
2017); hence, the analysis hinges on a strong assumption of no
exposure-induced confounding. To circumvent this issue, VanderWeele
and Tchetgen Tchetgen (2017) and Zheng and van der Laan (2017) used
interventional analogs of natural direct and indirect effects (hereafter, inter-
ventional effects), which are identified even in the presence of
exposure-induced confounding. In disparities research, such confounding is
likely, since a myriad of life course factors influenced by the exposure
(social groups) affect disparities. For example, in the United States, Blacks
are more likely to be born into low-income families, which can affect their
education (mediator) and math achievement (outcome). In this scenario, the
causal decomposition framework based on interventional effects can be
used to evaluate the effect of modifying mediators in reducing social dispar-
ities. However, the literature on causal decomposition analysis has not yet for-
mally examined time-varying mediators.

An additional limitation of the current literature on causal decompos-
ition analysis is that it largely overlooks individual characteristics when
modifying risk factors or resources. Therefore, its capacity to inform the
design of an actual intervention has been limited. In causal decomposition
analysis, we estimate the effect of hypothetically intervening to set the
mediator to a predetermined value or the mediator distribution equal to
that of a reference group. Setting the mediator to a predetermined value
would imply giving the same intervention to every individual, which is
often unrealistic or unethical in practice. Equalizing the mediator distribu-
tion between groups may be more realistic, yet this approach still does not
take into account individual characteristics. For example, providing the
same math course-taking plan to all high school students or assigning
Black students to follow the same course-taking pattern as White students,
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regardless of their prior math achievement or motivation levels, may not be
realistic or desirable.

The main goal of this paper is to (a) formally extend existing longitudinal
mediation approaches to the context of disparities research and (b) propose a
novel decomposition analysis that considers individual characteristics. The
concept of individualized treatment is widely used in precision medicine,
which aims to optimize treatments for each patient based on their unique
genetic, environmental, and lifestyle factors, as opposed to a one-size-fits-all
approach (Tsiatis et al. 2019). Dynamic treatment regimes (DTRs) are a set
of decision rules that describe how treatments should be assigned in response
to individual factors (Mahar et al. 2021). Optimal DTRs develop sequential
decision rules that maximize an average outcome at the end of the time
period (Murphy 2003). For example, optimal DTRs can be used to optimize
the decision to take a series of math courses depending on each student’s prior
math achievement or motivation levels at each time interval, such that the
final math score is maximized. Reducing social disparities to achieve
equity is an important goal in and of itself. At the same time, we aim to maxi-
mize the outcome, assuming that larger outcomes (e.g., academic achieve-
ment) are preferable. Incorporating optimal DTRs into the design of
interventions aimed at reducing disparities can serve as a means to strike a
balance between equity (reducing disparities) and excellence (maximizing
the outcome). In our study, we provide a novel contribution to the causal
decomposition literature by incorporating individual characteristics and con-
sidering both excellence and equity. We distinguish between different quan-
tities of interest and provide important considerations for deciding between
them. These considerations involve the extent to which individual character-
istics need to be considered, the feasibility of the intervention, and whether
maximizing the outcome is a priority. The overarching goal is to examine
the effect of interventions that are both realistic and appropriate given indivi-
duals’ characteristics.

The article is organized as follows. We introduce a running example in the
“Running Example” section, which is followed by extending existing longitu-
dinal mediation approaches to disparities research in the “Extending Existing
Longitudinal Mediation Approaches” section and a review of optimal DTRs
in the “Review of Optimal DTRs” section. In the “Longitudinal Causal
Decomposition Analysis (CDA) With Individualized Interventions” section,
we propose a novel CDA that takes into account individual characteristics.
In the “Recommendations for Empirical Researchers” section, we present
key insights and recommendations for empirical researchers. Finally, we con-
clude with a discussion of the main contributions of the paper.
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Running Example

Our motivating question is the following: “how much of the Black—White dif-
ferential in math achievement would remain if we were to intervene on the
courses they take?” Comparing other racial/ethnic groups might be of sub-
stantive interest, but we only focus on the Black—White differential in math
scores in 11th grade for simplicity. The estimates we present here are
based on data from the High School Longitudinal Study 2009 (HSLS:09).

Prior research suggests that the courses that students take in math have
important consequences for a variety of educational and career outcomes
(Attewell and Domina 2008; Kelly 2009). In particular, various studies
have shown that taking advanced math courses affects students’ math
achievement and college enrollment (Byun, Irvin, and Bell 2015; Long,
Conger, and latarola 2012; McEachin, Domina, and Penner 2020). In add-
ition, researchers have argued that minority underrepresentation in advanced
math courses can be a key driver of educational inequality (Attewell and
Domina 2008; Riegle-Crumb and Grodsky 2010). Based on this concern, a
variety of educational policies and efforts have been developed to reduce
inequitable access to advanced math courses (Byun, Irvin, and Bell 2015;
Long, Conger, and Iatarola 2012).

Considering these initiatives, an important question that arises is whether
all students benefit from taking advanced math courses. Prior research sug-
gests that taking courses without adequate preparation can actually have unin-
tended negative consequences, such as a decline in students’ motivation
(Simzar, Domina, and Tran 2016a). A central question is, then, how to
assign students to rigorous math courses (and thus increase access to educa-
tional opportunities), while making sure that students can succeed in these
courses. This problem has motivated researchers to design effective course
placement rules based on objective measures such as prior test scores
(Dougherty et al. 2017).

DAG. We define the social groups as Blacks (R = 1) and Whites (R = 0)
and the outcome as math score in 11th grade (Y). We have two time-varying
mediators: Algebra 1 (M) and advanced math courses (M;). Using these vari-
ables, we draw a DAG as shown in Figure 1. We assume that the Black—
White differential in math scores arises through multiple causal and noncau-
sal paths: (P1) the path from race to math score through Algebra 1 or
advanced courses (e.g., R > M; — Y or R > M, — Y), (P2) the back-door
path through history, childhood SES, and education (e.g., R« H
— X1 > M, - M, — Y), and (P3) the paths that do not operate through
any mediators (e.g., R > X » Y or R — Y). Following Jackson and
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Figure |I. DAG showing the pathways to the racial disparity in math achievement in
| Ith grade. Note. DAG = directed acyclic graph; SES = socioeconomic status. (a)
Baseline covariates (C) include gender and placing a box around C indicates
conditioning on this variable. (b) The three arrows emanating from C indicate that
they are confounders of all bivariate relations unless conditioned on, as visualized by
the box around C. (c) Childhood SES (X ) includes the individual’s birth region, and
father’s and mother’s years of education. (d) Confounders (Xj;) include parental
expectations, school climate, and students’ readiness to take math courses.

VanderWeele (2018), Path P1 represents discrimination. For example, Blacks
are more likely to be placed into less rigorous curriculum tracks (Kelly 2009)
and are thus less likely to achieve high scores in math in 11th grade. Path P2
represents the effect of historical processes, including racism and segregation
(Kaufman 2008). For example, Blacks are more likely to be born into families
with low SES and live in neighborhoods with low-quality schools. Path P3
represents the direct effect of race on math achievement in 11th grade not
via a math course-taking pattern.

The proposed DAG also includes baseline covariates and time-varying
confounders. In the present example, the baseline covariates (C) include
gender given that (a) the gender distribution varies in each racial group,
and accounting for it addresses potential biases, and (b) gender is a source
of outcome differences we do not consider in this study, making it an “allow-
able” covariate (Jackson 2021) when measuring Black—White differentials. In
a different context, such as health outcomes, variables such as age or demo-
graphic status might fall under this category. In cases where these variables do
not pertain to the study, one can specify “null” for the baseline covariates.

Time-varying confounders are the variables that are measured concur-
rently or after the group status and confound the mediator—outcome relation-
ship. The first set of time-varying confounders includes childhood SES (X;)
and variables at different levels (individual, teacher, parent, peer, and other
contextual factors) that are related to math readiness (X»;). For simplicity,
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we use X; = (Xi1, Xp1). The second set (X;) includes math achievement
scores in nineth grade. We assume that X; is constant between nineth and
11th grades to avoid multicollinearity.

Sample and Measures. For subsequent analyses, we restricted our sample
to those students who did not take Algebra 1 before nineth grade, as the time-
varying confounders at Time 1 (X;;) were measured in nineth grade.
Including students who took Algebra 1 in eighth grade would have raised ana-
lytic challenges, as the confounders (X;;) were measured after the mediator
(M;; taking Algebra 1 in eighth grade). This results in a sample size of
11,050 students, consisting of 8,919 White students and 2,127 Black stu-
dents. We used the item response theory theta scores for math achievement
in nineth (X») and 11th (Y) grades. Algebra 1 (M) was measured by identi-
fying those students who took Algebra 1 in nineth grade, while advanced
courses (M,) were measured by identifying students who took courses
beyond Algebra 2 (trigonometry, probability and statistics, precalculus, cal-
culus, AP/IB calculus, and other AP/IB math) before graduating high school.

To ensure the validity of key identification assumptions, we carefully
selected the set of intermediate confounders X,; based on the literature.
Prior research suggests that achievement in previous courses is the main
factor influencing students’ course-taking patterns (Kalogrides and Loeb
2013; Long, Conger, and latarola 2012). Thus, we control for students’
final grades in their most advanced eighth-grade math course. We also
control for additional individual-level factors that can confound the medi-
ator—outcome relationship: students’ math course interest, math utility and
identity beliefs, math self-efficacy, school engagement, and school belonging
(see Ingels et al. 2013 for a detailed description of these variables).

Students’ course-taking decisions can also be influenced by their teachers,
parents, peers, and other contextual factors (Byun, Irvin, and Bell 2015;
Kelly 2009; Long, Conger, and Iatarola 2012; Riegle-Crumb and Grodsky
2010). At the family level, we controlled for household SES, parental occupa-
tion, and parents’ expectations and aspirations regarding their children. At the
teacher level, we controlled for math teacher’s sex and math teacher’s emphasis
on increasing students’ interest in math. At the peer level, we controlled the
academic disposition of the closest friend. Finally, at the school level, we con-
trolled for the school’s locale, school problems, and climate, the percentage of
students in math courses that are unprepared, the science and math course
requirements, and whether the school offers Science, Technology,
Engineering, and Mathematics extracurricular activities.

It is worth noting, however, that this example is for illustrative purposes
and should not be used to draw educational or policy conclusions.
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We defined M, as having taken advanced courses by the time of high school
graduation, as there was no item asking about the math courses students took
by 11th grade. This could affect the validity of the results since some students
may have taken advanced courses after 11th grade.

Extending Existing Longitudinal Mediation Approaches

Several approaches for addressing time-varying exposures and mediators
within a causal inference framework have been proposed in the literature.
In this section, we formally extend these existing methods in the context of
disparities research.

To identify the disparity reduction and disparity remaining estimand
(Jackson and VanderWeele 2018) with observational data, we assume the
following:

e Al. Conditional independence of M, and M;: Y(m;, my) L M{|R =
V,X]I.Xl,C:C and Y(ml,mz)J_M2|R:r,X1:xl,Mlzml,
X, =x,C=c for all xeX,ceC and r,m,my =0,1 where
Y(my, my) is a potential outcome under M| = m; and M, = m;. This
assumption states that there is no omitted confounding in the medi-
ator—outcome relationship given the corresponding conditioning sets.

o A2, Positivity: 0 <P(My =m|[R=r,X;=x,C=c¢)<1 and 0<
PMy=mR=r,Xi=x1,Mi =m, X, =x,,C=c)<1forallx €
X,ce C and r, my, my =0, 1. This assumption implies that indivi-
duals of every group have a nonzero probability of receiving any
level of the mediators (Algebra 1 and advanced math) given baseline
covariates.

e A3. Consistency: The observed outcome (e.g., math score) of an indi-
vidual who has a certain level of the mediators (e.g., Algebra 1 and
advanced math) is the same as the potential outcome after intervening
to set the mediators to that level.

All of these assumptions are strong, and their plausibility depends on the spe-
cific study. In the example provided, we have exercised caution in selecting
baseline covariates and time-varying confounders based on the literature.
However, the assumption of sequential ignorability (A1) may be compro-
mised due to the presence of unobserved confounders. Furthermore, consist-
ency may be violated if an individual student’s math score is influenced by the
course-taking patterns of their peers. Although these are strong assumptions,
for the purposes of this article, we will assume that these assumptions hold.
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Controlled Direct Effects

One potential strategy for addressing Black—White disparities in math
achievement scores is to implement a standardized course-taking pattern
for all students. To evaluate the potential impact of this intervention, one
can estimate the controlled direct effect (CDE) using observational data.
The CDE is defined as the effect of an exposure (race) on an outcome of inter-
est (math score) after setting the mediators (math course-taking pattern) to a
specific value.

The CDE with time-varying exposures and mediators can be estimated
using the identification result and estimation method provided by
VanderWeele and Tchetgen Tchetgen (2017). However, in the case where
race is not a time-varying exposure, this method may not be directly applic-
able. To address this limitation, an extension can be made by defining the dis-
parity remaining at each value of m; and m; as:

EoPE(my, my) = E[Y(my, m)IR =1, C = c] — E[Y(m;, ;)[R =0, C =]
for my, m; € {0, 1}
(H

where Y(m,, my) is a potential outcome under M; = m; and M, = my, and
R = 1 denotes Black students and R = 0 denotes White students (the refer-
ence group). This definition of disparity remaining (:°%(my, m,)) captures
the degree to which the outcome disparity would persist if all individuals
were to adopt the specified values of the mediators m; and m, given baseline
covariates.

Under Assumptions Al to A3, the disparity remaining at each value of m;
and my can be estimated by fitting the following weighted regression model,
where baseline covariates are centered at C = c:

Y = ﬂl +ﬂ2R+ﬂ3M1 +ﬂ4M2 +ﬂ5R><M1 +,B6RXM2 +ﬂ7C+ €1, (2)

given the weight of Wepz = P(M|R, X1, C)"'P(M>|R, X\, M;, X», C)~".
The disparity remaining at each value of m; and my is then estimated as
EE%E(my, my) = P, + Psmy + Pgmy. To account for multiple stages of estima-
tion, bootstrapping can be used to estimate standard errors.

The estimation of CDEs depends on Wcpe. When positivity (A2) is nearly
violated, the weight can either be very large or very small, leading to unstable
estimates. To overcome this issue, we can truncate the weight at the first and
99th percentiles of the weight distribution (Cole and Herndn 2008). Another
common approach is to use stabilized weights (Robins, Hernan, and
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Brumback 2000), where the weight is replaced by P(M;|R)P(M;|R, M)
/[P(M1|R, Xy, O)P(Ma|R, Xy, My, X5, C)].

In equation (2), we assume a differential effect of mediators by race (i.e.,
R X M, and R X M,). However, the equation can be modified to assume a con-
stant effect of mediators by deleting the interaction terms. In the example,
estimating the CDE using observational data can provide valuable insights
into the potential impact of implementing a standardized course-taking
pattern for all students on reducing disparities in math achievement given
Assumptions Al to A3.

Interventional Marginal Effects

An important limitation of the CDE approach is that it may not be feasible or
beneficial to require all students to take the same math courses. An alternative
approach to address racial disparities in math achievement could be to ensure
that Black students are randomly placed in Algebra 1 and advanced math
classes at the same rate as White students within the same gender status
(baseline covariates). We could estimate the potential impact of this interven-
tion using interventional analogs of natural direct and indirect effects
(VanderWeele Vansteelandt, and Robins 2014; Jackson and VanderWeele,
2018: interventional effects,) with observational data. The interventional
direct effect is defined as the effect of an exposure on an outcome after inter-
vening to equalize the distribution of the mediators (e.g., math course-taking
pattern) between groups given baseline covariates.

VanderWeele and Tchetgen Tchetgen (2017) proposed an identification
method and estimation technique for mediational effects in situations where
exposures and mediators are time-varying. This approach is based on the
mediational g-formula (Pear]l 2001), which is a method of estimating medi-
ation effects by fitting parametric models. However, this method can be com-
putationally intensive, as it involves numerous integrations and requires
correctly specifying models for intermediate confounders. As an alternative,
the authors suggest using marginal structural models (MSMs) and inverse
probability of treatment weighting (Robins, Hernan, and Brumback 2000).
Again, given that race is not a time-varying exposure, we extend their
method by defining the disparity reduction and disparity remaining as:

5SS (1) =E[YIR=1, C = c] — E[Y(Gum,|r=0.c> G jr=0,0)IR =1, C = ¢], and
¢M(0) = ELY(Gumy r=0.0> Gy jr=0.0)IR =1, c] — E[Y|R =0, c],
(3)
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for c € C, where Gy r=o,c forj € {1,2} is a random draw from the mediator
distribution of the reference group given baseline covariates. Using potential
outcomes notation, Y (G, |r=0,c> Gm,jr=0,c) 1s an outcome that is realized
under a random draw from the mediator distributions of the reference
group given baseline covariates. The disparity reduction (5."(1)) represents
the change in the outcome among Black students given baseline covariates
after intervening to set the mediator distribution equal to that of White stu-
dents with the same level of baseline covariates; disparity remaining
(¢I"%(0)) represents the difference in the outcome given baseline covariates
that persists between Black and White students, even after the hypothetical
intervention. In the example, disparity reduction and disparity remaining
capture, respectively, the extent to which the outcome disparity would be
reduced or persist if Black students were enrolled in Algebra 1 and advanced
math at the same rate as White students within the same gender status.

Given Assumptions Al to A3, the disparity reduction and disparity
remaining can be estimated by fitting the outcome model as in equation (2)
and the following mediator model:

P(M, = 1|R, C) = logit™!(a;; + 2R + a;3C), and

@
P(M, = 1|R, C) = logit™!(az; + a2:R + ax0).
Then, §™%(1) can be obtained as
{ exp (@1 + a2 + a3 E[C)) _exp(an + aE[C)) } <yt B0
1+ exp (@ +an +anElC) 1 +exp@n +asken) =7 7
{ exp (@1 + @ + anEIC)  exp (a1 + dnE[C]) } X Gt B
1+ exp (@ + ém + a3 EIC]) 1 +exp(an +ankElcn) =70 707

ZME(0) can be obtained as

exp (11 + ai3E[C]) hox exp (&1 + anE[C])
1+ exp (@ +aElC)  7° 7 1+ exp (@ + anEIC])’

By + Bs x

or alternatively as #. — 6™*%(1). Here, ffs are obtained from the outcome
model weighted in the same way as equation (2). We refer to the disparity
reduction and remaining as interventional marginal indirect and direct
effects, respectively. These effects are considered marginal because they
involve equalizing the mediator distribution across intermediate confounders
(X1, X»), given baseline covariates (C).
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An Application to HSLS:09

We estimated the initial disparity, disparity remaining, and disparity reduc-
tion with CDEs and interventional marginal effects (IMEs). Table 1 shows
the estimated quantities of interest. For illustration purposes, the baseline cov-
ariate (gender) is centered at the mean' . The results are based on truncated
weights at the first and 99th percentiles of the weight distribution. The
initial disparity in math achievement in 11th grade between Black and
White students is negative (—0.413 SD) and significant at the 95% confidence
level, meaning that Black students have significantly lower math scores than
White students within the same gender status.

First, we estimated the disparity remaining using CDEs. In our study, we
included a group status—mediator interaction effect in the MSM if it was
found to be significant. In our data, we observed a lower return from
taking advanced courses for Black students compared to White students
(0.058 for Black students versus 0.231 for White students). In contrast,
Black students benefit equally from taking Algebra 1 as White students
(0.341). Thus, we included the interaction between group status and
whether or not the students took advanced courses. Enforcing all students
to enroll in Algebra 1 but not in advanced math courses results in a remain-
ing disparity of ¢S°%(1,0) = —0.322 SD, which represents a 22.0%
reduction from the initial disparity. Enforcing all students to enroll in
both Algebra 1 and advanced courses results in a remaining disparity of

Table |. Estimates of the Initial Disparity, Disparity Reduction, and Disparity
Remaining.

Estimate (SE)

CDE (1,0) CDE (1,1) IME
Initial disparity —041377(0.022) 0413 (0.022) -0.413" (0.022)
Disparity remaining  —0.322" (0.038)  —0.498' " (0.056) —0.398"" (0.022)
Disparity reduction —0.015"" (0.004)
% reduction 22.0% —20.6% 3.6%

Note. SE = standard error; CDE = controlled direct effect; IME = interventional marginal effect;
ICE =interventional conditional effect. The asterisk followed by estimates indicates the level of
statistical significance (*: significant at 0.05, **: at 0.01, ***: at 0.001). Gender is centered at the
mean.

Source: U.S. Department of Education, Institute of Education Sciences, National Center for
Education Statistics. High School Longitudinal Study of 2009 (HSLS:09) Base-Year Restricted-Use
File (NCES 2011-333)
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¢EPE(1, 0) = —0.498 SD, that is, it increases the initial disparity by 20.6%.
This larger disparity in math achievement in 11th grade after the intervention
is due to the lower return of taking advanced courses for Black students com-
pared to White students.

Second, we used interventional marginal indirect and direct effects to esti-
mate disparity reduction and remaining, respectively. Compared to enforcing
a standard math course pattern, intervening to equalize the proportion of stu-
dents taking Algebra 1 and advanced courses between groups has a relatively
smaller effect. Equalizing between groups within the same gender group
results in a disparity reduction of §.*(1) = —0.015 SD, which represents
3.6% of the initial disparity. This suggests that equalizing access to math
courses alone may have a limited effect on reducing the math achievement
gap in 11th grade, as there is only a 4% difference in course-taking patterns
between Black and White students. Specifically, 83.0% of White students
took Algebra 1 and 43.3% took advanced courses, while 79.3% of Black stu-
dents took Algebra 1 and 39.6% took advanced courses.

Implications for Existing Causal Decomposition Analysis

The implementation of CDEs sheds light on the potential consequences of
setting the mediators to a pre-specified value for all students in reducing dis-
parities. However, this static intervention may not be practical or advanta-
geous. Implementing interventional marginal direct effects provides
insights into the potential impact of equalizing the mediator distribution
between the groups in reducing disparities. This stochastic intervention
may be more realistic than fixing the mediator to a single value for all
individuals.

However, equalizing the mediator distribution between the two groups has
important limitations. First, not all subjects in the reference group may have
optimal mediator values. White students are commonly used as a reference
group and their mediator distribution is compared with that of Black students.
The logic behind this is that the mediator distribution of the reference group
may result in greater rewards in terms of the outcome. However, as shown in
our case study in the “An Application to HSLS:09” section’, there is no sub-
stantial difference in course-taking patterns between Black and White stu-
dents, so the effect of the hypothetical intervention would be limited.

Second, even if we identify a reference group with a better mediator dis-
tribution, equalizing that distribution may not be suitable or desirable for
another group with different individual characteristics. For example, equaliz-
ing access to math courses may not benefit students who lack motivation or
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are not ready to take the course. As noted before, previous literature has
shown that placing average- and low-performing students in Algebra 1 in
eighth grade could lower their motivation (Simzar, Domina, and Tran
2016b). How can we take into account individual characteristics, such as
prior achievement scores or motivation, when designing interventions to
reduce social disparities in an outcome?

Review of Optimal DTRs

In this section, we review optimal DTRs and discuss how they can be used in
the context of our example.

Notation and Definition

Consider two decision points M; for j € {1, 2}, where we have two options
for the jth decision point. Let h; € H; be a collection of variables, or
history, available on an individual at the jth decision point. Given the DAG
in Figure 1, hy = (r, x1, ¢) and hy = (r, x|, my, X2, ¢). A two-interval DTR
consists of two decision rules (dy, d»), with d; = dj(h;) € D;, where D; is
all possible treatment regimes. An example of a decision rule is d;(h;)=
Imath efficacy>—1), where I(:) is the indicator function. Under this
rule, students whose math self-efficacy” is >—1 SD will be recommended
to take Algebra 1. Otherwise, students will be recommended not to take the
course at that time.

Among all decision rules, our interest centers on identifying an optimal
decision rule d°™. Assuming that larger outcomes are preferred, d° is the
one that maximized the value V(d,, d,), which is the expected potential
outcome E{Y(d, d>)} under that optimal decision (Tsiatis et al. 2019).
Formally,

Opt - -
d" = arg r;lea[))( V(d,, d,) = arg tzlleag E{Y(d,, d)}. (®)]

In the example, the maximized average math score would be achieved if all
students followed the optimal course-taking patterns.

Identification Assumptions

To identify optimal DTRs, we need to make the same assumptions as longi-
tudinal causal decomposition analysis, which are Assumptions Al to A3.
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However, these assumptions are not sufficient for identifying optimal DTRs.
The following additional assumption is needed:

e Ad. Conditional independence of M, with respect to X,: X,(m;) L
M{IR=r,X; =x1,C=c for all x; €X;,ceC and r,m; =0, 1.
This assumption asserts the absence of omitted confounding for the
relationship between M (enrollment in Algebra I) and X, (nineth-grade
math achievement) given the group status, intermediate confounders at
Time 1, and baseline covariates.

This implies that the assumptions for identifying optimal DTRs are stronger
than those for longitudinal mediation analysis introduced in the “Controlled
Direct Effects” and “Interventional Marginal Effects” sections. For
example, if there is omitted confounding between M| and X, the optimal
DTRs will not be identified while CDEs or interventional marginal in/
direct effects can still be identified (as long as there is no omitted confounding
in the relationship between each mediator and the final outcome). In practice,
Assumptions Al and A4 can be simultaneously met if the mediators are
sequentially randomized.

Although these assumptions are strong, for the sake of this study, we
assume that these assumptions are met. Given Assumptions Al to A4, the
optimal DTRs can be expressed in terms of the observed data.

Estimation

We review two common approaches to obtain the optimal DTRs, which are
Q-learning and weighting.

Q-Learning. Here, we use backward induction to define optimal DTRs. The
estimation begins at the second interval by identifying the optimal value
for the second mediator M, (advanced math). Then, the optimal value for
the first mediator M; (algebra 1) is identified by estimating the impact of
M, on the pseudo-outcome, which is a predicted outcome under an optimal
value for M, (Moodie, Chakraborty, and Kramer 2012).

Q-learning is based on postulating the outcome regression model. The two
Q-functions can be defined as

O2(hy, my) = E[Y|Hy = hay, My = my], .
01, my) = E[ max Qa(ho, mo)|Hy = hy, My = m], ©
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where H; includes history variables up to decision point j and
max Q,(h,, my) represents the expected value of the Q, function when it is
my

assessed at the m, value that maximizes the O, function. Based on the
Q-functions, the optimal DTRs could be derived such that each Q function
is maximized. Given that the true Q-functions are unknown, we model the
Q-functions using linear models as

Qj(H;, My; p;)) = B0 + ﬂJT]Hj +Bp+ ﬂjT'3Hjl M;. )

Among these variables, H; represents history variables (main effects); H
represents a subset of variables in H; that have heterogeneous (interaction)
effects on the outcome based on the mediator value. We can estimate f;
using ordinary least squares. After substituting f; with the least square esti-

mate, denoted as ﬁ j» we can determine optimized DTRs that maximize

Qj(hj, mj; B ;). That is, by leveraging the heterogeneous effects, we can con-
struct optimized DTRs for the time interval j as follows:

dP(H) = 1B, + P3Hj > 0). (8)

The performance of Q-Learning depends on the correct specification of the
QO-functions. While the implementation of Q-Learning is straightforward,
the estimated optimal regimes tend to generate poor results given that the mis-
specification of the Q-functions for each stage is highly likely (Tsiatis et al.,
2019).

Weighting. To define optimal DTRs through weighting, we adopt the back-
ward induction approach proposed by Zhao et al. (2015). This estimation
method begins at the second interval, where the optimal value for M,
(advanced courses) is identified as if it were a single-point decision. Next,
the optimal value for M, (algebra 1) is identified by maximizing the expected
outcome, given the optimal value for M;. The value function for each deci-
sion point that is to be maximized can be formalized as follows:

I(M; = dr(H>)) Yi|

d,(H))) = E
Va(dr(H>)) |: POV, [Hy)

Vi(di(H)), ™ (Hy)) = E[I(M' = d(H)), My = dy*"(H)) }

P(M,|H)P(M|H>)

At each stage, the value function is maximized. To obtain the maximized
value, the weighting method proposed by Zhang et al. (2012) requires
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modeling the following contrast function:

MY (1 — MY
CO My ) = 70~ 1= POTIH; 7)° (10
( j| ,V_]) ( ]| 9}/_])

where P(M;|H;; 7;) is a propensity model for M;, which is regressed on the
history variables up to the jth decision point. For example, this contrast
function for Time 2 estimates the difference in potential math scores in
11th grade between taking advanced courses or not. We then define
Z =I1(C(Y, M;, H;) > 0), so that Z = 1 indicates subjects who will benefit
from the mediator M; = 1 than M; = 0. The optimal value can be deter-
mined based on Z. However, the accuracy of the estimation relies on the
extent to which the model for C(Y, M;, H;) aligns with the true contrast
function.

Recognizing the possibility of misspecifying the regression models, Zhang
et al. (2012) considered an alternative approach of recasting the original
problem of finding the optimal treatment regime as a weighted classification
problem. Based on the estimated contrast function, the optimized value is
obtained by minimizing a weighted classification error as

opt . 5 2
4P (H = arg min > 1C(Y, My, HI[Z = (] (11)
This optimization problem can be solved by existing classification techni-
ques, such as classification and regression trees (Breiman 2017). This
approach of minimizing the classification error separates the estimation of
the contrast function and the maximization of the value function.
Therefore, it offers increased flexibility and robustness compared to
approaches that rely on a specific model for the outcome or contrast function
only (Zhang et al. 2012). However, it is important to note that even with this
approach, there may still be concerns related to the model specification of
contrast functions.

An Application to HSLS:09

Our two decision points are whether to take Algebra 1 (M;) and advanced
courses (M;). To estimate the optimal decision rules, we considered math
self-efficacy, math course interest, and math achievement in nineth grade
for M,, and math self-efficacy, math course interest, and grades in their
most advanced eighth grade math course for M;. These variables, denoted
as Hj;, were selected because, based on prior research, they can affect
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Figure 2. Percentage of Recommendation by Race. Source: U.S. Department of
Education, Institute of Education Sciences, National Center for Education Statistics.
High School Longitudinal Study of 2009 (HSLS:09) Base-Year Restricted-Use File
(NCES 2011-333).

whether the person benefits from taking advanced courses. The rest of the
variables were used to estimate the main effects (Q-Learning) or propensity
scores for each mediator (weighting).

Figure 2 summarizes the percentages of students recommended to receive
Algebra 1 and advanced courses by each estimator. Both the Q-learning and
weighting methods recommended that almost all the students (Q-learn: 100%,
weighting: 97.9%) take Algebra 1. The weighting method recommended
Algebra 1 for all students except for those with math efficacy scores lower
than —1.71 SD.

In contrast, the recommendation patterns for advanced courses between
the methods were quite different. While Q-Learning recommended that
more than 98% of students from both races receive advanced courses, the
weighting method recommended advanced courses for 85.7% of White
students and 72.8% of Black students. The weighting method did not
recommend advanced courses for students with math achievement scores
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Q-Learning Weighting
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Figure 3. Proportion of Compliance by Race. Source: U.S. Department of Education,
Institute of Education Sciences, National Center for Education Statistics. High School
Longitudinal Study of 2009 (HSLS:09) Base-Year Restricted-Use File (NCES
2011-333).

lower than —1.06 SD and Q-Learning did not recommend when (0.098 X 9th
math score +0.04 Xxmathefficacy — 0.013 Xmath interest) is
<—0.244.

We also examined the proportion of students who complied with the
recommendations by race (see Figure 3). For Algebra 1, there was no signifi-
cant difference in the compliance rates between Black and White students for
both the Q-learn and weighting methods (Q-learning: 79.3% and 83.0%;
weighting: 78.8% and 82.1%; for Blacks and Whites, respectively).
However, for advanced courses, the proportion of students who complied
with the weighting method recommendation was slightly higher for both
White and Black students compared to the Q-learn recommendation
(Q-learning: 40.5% and 44.4%; weighting: 53.4% and 51.3%; for Blacks
and Whites, respectively).

Note that we use the term “compliance” to refer to instances where
individuals’ math course-taking patterns align with the optimal rules
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(i.e., (M = d°") = 1). It is noteworthy that our definition of compliance
differs from the treatment noncompliance literature (Angrist, Imbens, and
Rubin, 1996; Frangakis and Rubin 1999: e.g.,), which addresses the compli-
cations of individuals self-selecting into receiving the treatment. In our data,
students make decisions regarding math courses without knowledge of the
optimal rules, which differs from the context of the treatment noncompliance
literature.

Longitudinal Causal Decomposition Analysis (CDA)
With Individualized Interventions

In this section, we propose three strategies to reduce outcome disparities by
tailoring interventions to individual characteristics. The first two strategies
leverage optimal DTRs, which were introduced in the “Review of Optimal
DTRs” section. The third strategy involves directly incorporating individual
characteristics into the interventional effects.

Individualized Controlled Direct Effects

We propose a strategy for intervention wherein all students follow an optimal
course-taking pattern based on their previous math achievement level and
motivation. We use optimal DTRs as a reference to follow for each student
and examine whether this would reduce the observed disparity in math
achievement in 11th grade.

Using the optimal decision rules obtained from optimal DTRs, we define
disparity remaining as

CIPEE@MY = E[Y(d)™, &P)IR = 1, C = ¢] — E[Y(d}™, d&")IR =0, C = c],
(12)

for ¢ € C, where d; P! is an optimal value for mediator M;. This definition of
disparity remaining (£.°"*(d°™)) states the difference in outcome between
groups given baseline covariates after setting the mediator values to their
optimal values, which are obtained from the optimal decision rules. We
refer to this definition as individualized CDEs (ICDEs). In our example,
ICDEs represent the degree to which the Black—White math disparity
would remain if all students followed the optimal course-taking rule deter-
mined by their prior math achievement and motivation within the same
gender status.
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Given Assumption Al to A4, E[Y(d}™, d")|R = r, C = c] is nonparame-
trically identified as

g 1My = di™, My = dy")

YIR=r Cc= ] 13
POMLIR, X1, OPGMIR, X1, My, X0, ©) IR =€ =¢f (13)

for r =0, 1 and ¢ € C where I(-) is an indicator function. A proof of this
identification result is given in Appendix A of the Supplemental Materials.

One straightforward approach to estimate the disparity remaining after the
individualized intervention is through an MSM. We fit the following model,
where baseline covariates are centered at C = c:

given the weight of

IM; =d*, My = d)™)
P(M,|R, X1, CO)P(M>|R, Xy, M1, X>, C)°

Wicoe =
Then, the disparity remaining is estimated as {°°% = 7,. Here, we assumed
binary mediators and a continuous outcome. However, the MSM estimator
can be easily modified for a binary outcome by fitting a logistic regression
and computing the average difference in predicted probabilities.
Alternatively, a weighting estimator can be used by directly applying equa-
tion (13) as:
CI%F = E[WicY[R=1,C=c] — E[WicrsY|[R=0,C =¢].  (19)

c

The weighting estimator can be applied for both binary and continuous
outcomes.

Individualized Interventional Effects

Optimal rules are not definitive and may not be suitable for every student.
Hence, it is expected that not all students’ course-taking patterns are consist-
ent with the optimal rules. However, if one racial group has a tendency for
their course-taking patterns to be more inconsistent with the optimal rules
than other groups, it may be problematic in terms of reducing disparities.
In this case, we could consider an intervention to equalize the rate of being
consistent with optimal rules across groups. Ideally, the reference group’s
course-taking patterns should be more consistent with optimal rules. For illus-
trative purposes, we will use White students as the reference group although
White students are not more compliant than Black students (see Figure 3).
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Without loss  of  generality, let Kj = Gy _govyp— oc X d™

+ (1= Gyy—grypmo.c) X (1 = ;’pt), where d™ is an optimal value for
mediator M;, and G, —™IR=0.C is a random draw from the compliance dis-
tribution for M; of the reference group given baseline covariates. Then, the
disparity reductlon and disparity remaining after equalizing compliance
rates across groups can be defined as:

SITP()=EYIR=1,c] —E[Y(Ki,K)IR=1,C=c], and

(IEO)=EY(K), K)IR=1,c] —E[YIR=0, C =], (16)

for ¢ € C. Using potential outcomes notation, Y(Ki, K») represents an
outcome that is realized under mediators determined by a random draw
from the compliance distributions for M; and M, of the reference group
given baseline covariates. For instance, if a random draw indicates that the
reference individual complied with the recommendation, then the mediators
of an individual in the comparison group will likewise align with their
assigned optimal values. Disparity reduction (5:'%(1)) represents the
change in the outcome among Black students given baseline covariates
after intervening to set the compliance distribution equal to that of White stu-
dents among those with the same level of baseline covariates; disparity
remaining ({LI,IE(O)) represents the difference in the outcome that persists
between Black and White students given baseline covariates, even after the
hypothetical intervention. In the example, the disparity reduction (remaining)
represents the degree to which the disparity in math achievement in 11th grade
would be reduced (remain) if Black students complied with optimal rules at the
same rate as White students among those with the same gender status. We refer
to this definition as individualized interventional in/direct effects.

Given Assumptions 1 to 4, E[Y(K;, K>)|R = 1, C = c] is nonparametri-
cally identified as follows:

= ZP(/(M1 =d™)=60,|R=0,C=c)PU(M, =dy")=0,]R=0,C =)
01,02

XE[( =01d™ + (1= 0)(1 —d\™), My = 0,d5" + (1 — 0,)(1 — d5™)) Y

P(M; X, R, C)P(M,|My, X, X2, R, C)
R=1,C= c},

forx; € X;,m; € M;, c € C,and 0; € {0, 1}. A proof of this identification result
is given in Appendix B of the Supplemental Materials.



Park et al. 23

For estimation, we assume the following MSM (where baseline covariates
are centered at C = ¢):

Y =M + bR+ LIM; = d™) + My = &™)+ sC+ e, (17)

given the weight of Wepz =P(M|R=1,X;,C) 'PMR=1,X,,
My, X2, CO)~'. A more complex model could be specified to address nonlinear
relationships, such as interactions between race and compliance status.

Suppose further that the following compliance models hold.
PU(My = di")|R, C) = logit™ (), + ¢1oR + $130),  and s
PUI(Mz = dy™)|R, C) = logit™ ' (¢hy) + R + $0).

Then, §"*%(1) can be obtained as

{ exp (¢y; + ¢1, + d3E(C]) __&xp (@11 + d:ELC)) } %3

1+exp(dy + ¢+ ¢EIC) 1 +expdy; + ¢:EIC)

" { exp ((}21 + (;52% + éziﬁ[c]) . exp ((2721 + $2§E[C]) } <
1+ exp (dyy + o + PiEICD) 14 exp(dyy + PpEIC)) ’

ZTTE(0) can be obtained as 1y, or alternatively as 7, — 6-"%(1).
Alternatively, a weighting estimator for individualized interventional
effect (IIE) can be employed using the following steps:

e Step 1: Compute the compliance rate among those with R = 0 and
C = c, denoted as 7;—g0. = P[I(M; = d™) = 6;]R =0, C = c].

e Step 2: Fit a logistic model, regressing each mediator on the history
variables among those with R =1 to estimate P(M,|R =1, X;, C)
and P(M|R = 1, Xy, My, X5, O).

e Step 3: For each combination of 6, and 6,, weights can be formed as

1(My =01 +(1— )1 —d™), My = 025" + (1 - ,)(1 — d5™))

woo: =
e P(M1|R:I,XI,C)XP(leR:1,X1,M1,X2,C)

e Step 4: The disparity reduction is estimated as 6*%(1) = E[Y|R =
1, C=cl—Yp g #1-0,0cL-0,0cEIWis" 2YIR=1,C=¢] and
disparity ~ remaining  is  estimated  as EHE(0) =
> 0,0, =0, 0c1,=0,10cEIW: 157 %2Y R
=1,C=c]—E[YIR=0,C=c].
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Individualized Conditional Effects

The last individualized intervention strategy we propose is to use interven-
tional effects that incorporate individual characteristics. This strategy is
similar to interventional conditional in/direct effects proposed by Zheng
and van der Laan (2017). Interventional conditional direct effects estimate
the potential effects of randomly assigning Black students to Algebra 1 and
advanced math classes at a rate comparable to White students within the
same level of all existing intermediate confounding variables (e.g., SES,
parent career aspiration, math course availability at school, and prior math
achievement). However, this approach has an important limitation. Taking
into account SES or course availability at school when assigning students
to mathematics courses carries the risk of reinforcing structural racism
(McGee 2020; Jackson 2021), where Black students are more likely to be
born into low SES families and attend schools with low quality that may
not offer advanced mathematics courses.

In a sense, our proposed strategy resembles a time-varying version of
Jackson (2021), as we assign math courses based on selective covariates
driven by equity concerns. However, in addition to equity considerations,
we suggest selecting covariates that modify the effect of taking math
courses, allowing for a personalized intervention. The idea is to equalize
the mediator distribution between the groups among those who would simi-
larly benefit from the intervention, thus enabling tailored interventions
based on their individual characteristics. Therefore, we propose here
that we only condition on a subset of intermediate confounders, which
were previously considered in obtaining optimal DTRs. As before, these
variables are denoted as Hj for j =1, 2. We refer to these variables as
individualized sources of difference, which must be considered when
designing interventions to reduce disparities that are tailored to individual
characteristics. Formally, we define the disparity reduction and disparity
remaining as

5.F =E[YIR=1, C = c] — E[Y(Gu,r=0.t,,.c- Gryjr=0.11,.)IR=1,C =],
and

¢IF = E[Y(Guyr=0.1,.C» Gy lr=0.11,,.0)IR=1,C = c] — E[Y|R =0, C =],

(19)

for c € C, where Gy r=04, c is a random draw from the mediator distri-
bution of the reference group given the individualized factors and
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baseline covariates. This definition of disparity reduction represents the
change in the outcome given baseline covariates after setting the mediator
distributions equal between groups among those who have the same
levels of the selected intermediate confounders and baseline covariates;
disparity remaining represents the difference in the outcome that persists
between groups given baseline covariates, even after the intervention. In
the example, disparity reduction (remaining) reflects the degree to which
the outcome disparity would be reduced (remain) after Black students
were enrolled in Algebra 1 and advanced math at the same rate as
White students who possess similar prior academic achievement and
motivation levels (H; and H;;) and gender status (C). We refer to this
definition as individualized conditional in/direct effects.

Given Assumptions Al to A4, E[Y(Guy,\r=0#,,,c> GM,IR=0,H,,,c)IR =1, c]
is identified as

P(M IR =0, Hy;, C) P(Mz|R=0, Hy;, C)
= £| YR=1,C=c],
P(Mi|R, X1, C)  P(M3|R, Xy, My, X5, C)
(20)

for ¢ € C. A proof of this identification result is given in Appendix C of the
Supplemental Materials.

The weighting estimation steps of disparity reduction and remaining based
on individualized conditional effects (ICEs) are as follows:

e Step 1: Fit a numerator model, regressing each mediator on a subset of
intermediate confounders and baseline covariates among those with
R = 0. Using the fitted model, compute the predicted probability of
each mediator using the confounders of those with R = 1 to estimate
PM;IR=0, Hj;, O).

e Step 2: Fit a denominator model, regressing each mediator on the
history variables among those with R = 1. Using the fitted model,
compute the predicted probability of each mediator among those with
R=1 to estimate P(M;|R=1,X;,C) and P(M,R =1, X;, M,
X3, O).

e Step 3: Weights can be formed as

W _P(M|IR=0,Hy;,C) PMR=0, Hy, O)
ETPMIR =1, Xy, C) P(MaR = 1, Xy, My, X5, C)
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e Step 4: The disparity reduction is estimated as 5,'°%(1) = E[Y|R = 1,
C=c]— E[WICE YIR = 1, C = c] and disparity remaining is estimated
as £,T°F(0) = E[Wrer YIR=1,C =¢c] — E[YIR=0, C = c].

We do not present an MSM estimator for this ICE since it does not work when
there are M—X interactions, as assumed in this study.

We conducted a simulation study to evaluate the performance of the pro-
posed estimators for individualized effects when the outcome is continuous.
The simulation settings and results are presented in Appendix D of the
Supplemental Materials. Briefly, when the sample size is 2000 or more,
most estimators demonstrate good performance in terms of bias and
root-mean-squared errors. For sample sizes <2000, it is preferable to use
the weighting estimators over the MSM estimators.

An Application to HSLS:09

In this section, we present findings on disparity reduction and disparity
remaining using the proposed individualized effects (i.e., ICDEs, individua-
lized interventional in/direct effects, and individualized conditional in/direct
effects). We used optimal decision rules obtained by the weighting method
as Q-Learning resulted in very few students who were not recommended to
take Algebra 1 or advanced courses, which posed a modeling issue. Given
the sample size of 11,050, we expect both MSM and weighting estimators
to perform equally well. For simplicity, we present results obtained by the
MSM estimators in Table 2.

First, we estimated the disparity remaining using ICDEs. Following the
optimal course-taking rules results in a remaining disparity of ¢{I°°F =
—0.482 SD. This represents a 16.7% increase from the initial disparity. This
increase may be due to either or both of the following reasons: (a) there are
more White students who were recommended to take the courses but didn’t,
compared to Black students in the same situation, and (2) the returns of
taking advanced courses for Black students are lower compared to White stu-
dents. While this increase is substantial, it is lower than the increase observed
after enforcing all students to enroll in both Algebra 1 and advanced courses
(cf. £EPE(1, 1) = —0.498). In addition, following the optimal course-taking
rules maximizes the average outcome for both groups of students.

Next, we used IIEs to estimate the disparity reduction and disparity
remaining. These effects estimate the potential effect of equalizing the com-
pliance rate between groups within the same gender status. This intervention
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Table 2. Estimates of the Initial Disparity, Disparity Reduction, and Disparity
Remaining.

Estimate (SE)

ICDE ITE ICE
Initial disparity —0413"" -0413"" -0413""
(SE) (0.022) (0.022) (0.022)
Disparity remaining -0482"" —-0.407"" —0.424""
(SE) (0.040) (0.022) (0.023)
Disparity reduction —0.006 0.012
(SE) (0.005) (0.010)
% reduction —16.7% 1.5% -2.7%

Note: (a) ICDE =individualized controlled direct effect; I IE =individualized interventional
effect; ICE =individualized conditional effect; SE =standard error. (b) The asterisk followed by
estimates indicates the level of statistical significance (*: significant at 0.05, **: at 0.01, ***: at
0.001). (c) We did not take into account the uncertainty regarding obtaining the optimal values
for the mediators. (4) Gender is centered at the mean.

Source: U.S. Department of Education, Institute of Education Sciences, National Center for
Education Statistics. High School Longitudinal Study of 2009 (HSLS:09) Base-Year Restricted-Use
File (NCES 2011-333).

does not yield a significant reduction in initial disparity. The remaining dis-
parity is {I'® = —0.407 SD, which is comparable to the initial disparity.
This is because there is a similar compliance rate between Black and White
students in the observed data (see the right panel of Figure 3: weighting).

Lastly, we used ICEs to estimate disparity reduction and disparity remaining.
These effects determine the potential effect of equalizing course-taking patterns
between groups among students with similar motivation and prior achievement
levels within the same gender status. The ICE does not yield a significant reduc-
tion in disparity, with the remaining disparity of {I“® = —0.424 SD.

Overall, our findings suggest that following optimal course-taking rules
does not necessarily reduce the initial disparity. Additionally, simply equal-
izing compliance rates across groups or aligning course-taking patterns
between groups among students with similar motivation and prior achieve-
ment levels may not effectively reduce the initial disparity.

Recommendations for Empirical Researchers

To reduce social disparities in relevant outcomes, policymakers and practi-
tioners can explore the potential effect of hypothetical interventions using
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1. Is it feasible to implement interventions for all individuals?

No ‘ ‘ Yes

IME, IIE, ICE CDE, ICDE
\ \

2. Is it important to consider individual characteristics?

No ’—‘—\ Yes No ’—‘—’ Yes

IME  1IE, ICE CDE ICDE
\ | | |

3. Is it important to consider whether the expected outcome is maximized?

No No ’—‘—‘ Yes No Yes

IME ICE IIE CDE ICDE

Figure 4. Tree diagram for optimal intervention decision-making.

approaches outlined in the “Extending Existing Longitudinal Mediation
Approaches” and “Longitudinal CDA with Individualized Interventions” sec-
tions. To identify effective interventions in specific contexts, we propose
three guiding questions for consideration. We illustrate the decision-making
processes outlined in Figure 4.

The first question to consider is whether it is feasible or desirable to imple-
ment interventions for all individuals. For example, mandating that all stu-
dents take Algebra 1 by the end of the nineth grade may be feasible and
even desirable, as shown in Table 1. In this case, static interventions such
as CDEs and ICDEs should be considered. If implementing interventions
for all individuals is not feasible, stochastic interventions such as IMEs,
IIEs, and ICEs become relevant options.

The second question is whether it is essential to consider individual charac-
teristics when designing interventions. As demonstrated in our example, taking
into account individual factors such as prior achievement and motivation is
crucial in determining whether advanced courses are suitable for each
student. In such cases, interventions that follow optimal treatment regimes
(ICDE and IIE) or interventions to equalize the mediator distribution among
those who have the same individual characteristics (ICE) should be chosen.

Lastly, one should ask whether maximizing each individual’s outcome is a
priority. In our example, both maximizing the final math score and reducing
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racial disparities are important. In this case, interventions that follow optimal
treatment regimes such as IIE and ICDE should be considered.

Another point of confusion arises when determining which variables to
choose for different sets of confounders. It is crucial to distinguish between
baseline covariates and intermediate confounders. Baseline covariates typic-
ally include demographic factors such as gender, home language status, or
age. The remaining variables that confound the mediator—outcome relation-
ships are intermediate confounders. When defining disparities in educational
outcomes as well as risk factors for stochastic interventions, one should
decide which variables to adjust based on whether the difference due to the
variables is deemed allowable or fair (Jackson 2021). For example, it might
be deemed unfair to remove differences attributable to SES when defining
racial disparities in math achievement and math course-taking patterns.

In addition, in determining optimal regimes, it is necessary to select intermedi-
ate confounders H j;, which represent a subset of H; that has heterogeneous (inter-
action) effects based on the mediator level. Typically, H;; variables are
confounders in the mediator—outcome relationship. For instance, in the context
of students’ math course selection, prior math achievement and motivation
might interact with taking advanced math courses while also being confounding
variables. The variables that do not act as confounders but interact with the medi-
ator can also be included in H;; (Moodie, Chakraborty, and Kramer 2012).

We use the same set of variables, represented as H, as conditioning vari-
ables for the ICE. However, it is important to highlight that conditioning on
these Hj variables is meaningful only if they serve as confounders in the
mediator—outcome relationship. In the event that H;; contains a variable
that is not a confounder, the conditioning effect through that specific variable
would be null.

Conclusion and Discussion

This paper contributes to the fast-growing literature on causal decomposition
in three ways. First, we extend existing longitudinal mediation approaches to
the context of disparities research. These approaches were previously devel-
oped for situations where exposures vary over time. However, in causal
decomposition analysis, group status serves as the exposure, which rarely
changes over time. We made a straightforward extension to the existing
approaches by providing a formal definition, identification assumptions,
and an illustrative example. Although the extension may seem methodologic-
ally trivial, it has practical implications by facilitating the investigation of
contributing factors to social disparities that evolve over time.
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Second, we combine the existing longitudinal mediation approaches with
optimal DTRs that take into account individual characteristics. Simply apply-
ing the same intervention to all individuals or intervening to equalize the risk
factors or resources between groups may be infeasible or not beneficial to
individuals with different characteristics. Our new approach considers indi-
vidual characteristics by using optimal DTRs, which were originally designed
to maximize the average outcome. This new method represents a paradigm
shift from existing causal decomposition methods that use a static or stochas-
tic intervention by allowing interventions that are tailored to individual
characteristics.

Third, we propose the individualized conditional in/direct effects by con-
ditioning on a selected set of individual characteristics that modify the effect
of risk factors. This approach allows researchers to equalize the distribution of
risk factors between groups among those who similarly benefit from the inter-
ventions. Previously, the judgment on selecting conditioning variables for
stochastic interventions has been solely based on equity considerations,
that is, whether it is fair to remove the source of differences due to the con-
ditioning variables (Jackson 2021). Our approach suggests another way of
selecting conditioning variables based on individual characteristics that deter-
mine whether they benefit from the intervention or not.

It is important to acknowledge the limitations of our study. First, we did
not consider the uncertainty involved in obtaining the optimal values for the
mediators when combining causal decomposition analysis with optimal
DTRs. This could potentially lead to smaller standard errors, resulting in
an inflated Type I error rate. Second, the assumptions required to identify
the effects of interest (disparity reduction and disparity remaining) are
strong. Therefore, it is essential for future studies to develop sensitivity ana-
lysis techniques to examine the potential effect of violating the assumptions.
Third, the proposed models are based on two time points and assume no
nested structure of the data. Future studies can extend these models to
more complex scenarios, such as cases with more than two time points or
with multilevel models.

Data Awvailability

The HSLS:09 data utilized for the case study is accessible via NCES’s restricted-use
License Program. Details can be found at https:/nces.ed.gov/surveys/hsls09.asp.
Additionally, the R codes for both the simulation study and case study presented in
this article are available on the first author’s GitHub repository at https:/github.
com/soojinpark33/Individualized-Intervention.
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Notes

1. Hence, the conditional estimates of disparity reduction and disparity remaining are
equivalent to the marginal estimates, which are averaged over the gender distribution.

2. Math self-efficacy refers to individual’s beliefs about their math abilities (Bandura
et al. 2001).
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