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We perform high-statistics simulations to study the impacts of nuclear structure on the ratios
of anisotropic flow observables in 208Pb+208Pb and 129Xe+129Xe collisions at the Large Hadron
Collider. Even with 40% di!erence in atomic numbers between 208Pb and 129Xe nuclei, the ratios of
anisotropic flow in the same centrality class between the two collision systems are strongly a!ected
by the nuclear structure inputs in the initial state. The ratios of v2{4}/v2{2} in these collisions are
sensitive to the nuclear skin thickness of the colliding nuclei, providing indirect constraints on the
nuclei’s neutron skin. Our model predictions serve as a benchmark to compare with experimental
measurements.

I. INTRODUCTION

The study of nuclear structure is a cornerstone of nu-
clear physics, o!ering profound insights into the emergent
properties and interactions of atomic nuclei. Recent ab
initio approaches aim at describing strongly correlated
nuclear systems from solutions of the Schrödinger equa-
tion with nucleon-nucleon and three-nucleon interactions
constructed in an e!ective theory of low-energy quan-
tum chromodynamics (QCD). These e!orts find a nat-
ural application in the phenomenology of multi-particle
correlations in high-energy nuclear collisions [1–4] and
the physics at the future Electron-Ion Collider [5–7]. In
relativistic heavy-ion collisions, event-by-event snapshots
of the colliding nuclei’s many-body wavefunctions leave
important imprints in the momentum anisotropy of final-
state particles because of the ultra-short time duration
for the interaction between the two ions at high en-
ergy [8–10]. They are essential inputs for understand-
ing the collective behavior of strongly coupled nuclear
matter in the precision era of relativistic heavy-ion colli-
sions [11–16]. The anisotropic flow measurements at the
Large Hadron Collider (LHC) and Relativistic Heavy-
Ion Collider (RHIC) have reached su”cient precision to
be sensitive to the nuclear structure of colliding nuclei.
The recent isobar (96Ru+96Ru and 96Zr+96Zr) collisions
at RHIC [17] have demonstrated the direct impact of
structural properties of nuclei on the collective flow of
the produced quark gluon plasma (QGP) [18–22]. On
the experimental side, the ratios of observables between
the two isobar systems can cancel most of the system-
atic errors, which enabled new studies of net baryon and
electric charge dynamics at high energies [23–26]. There-
fore, heavy-ion collisions at high energies could serve
as a promising tool for imaging the structure of atomic
nuclei, providing complementary information to conven-
tional low-energy experimental measurements.

Constraining the nuclear structure from heavy-ion col-
lisions involves precise measurements in multiple collision

systems and sophisticated theoretical models [27–31]. In
particular, high-precision simulations play a critical role
in this endeavor, enabling quantitative comparisons with
the experimental measurements [19, 29, 32, 33]. These
studies have initiated a new synergy between low-energy
ab initio theory advancements and high-energy many-
body descriptions, from which the nuclear physics com-
munity as a whole could benefit. A future step is to
perform robust statistical inference analyses to simulta-
neously constrain low and high energy model parameters
and perform uncertainty quantification on the theoretical
models [34–46].

Although high-energy isobar collisions are ideal sys-
tems to study the impact of nuclear structure on heavy-
ion observables because final-state e!ects can be canceled
to high precision in the observable ratios, such experi-
mental setups require dedicated planning and resources,
which may not be easily accessible. The System for
Measuring Overlap with Gas (SMOG2) experiments at
LHCb [47–49] on the other hand could provide one cost-
e”cient way to conduct heavy-ion collisions across many
nuclear species [31].

In this work, we will explore the impact of the nu-
clear structure on observable ratios in 208Pb+208Pb and
129Xe+129Xe collisions, whose measurements are avail-
able at the LHC [50]. Since the mass numbers di!er by
→40% between the two collision systems, we will first
identify several observables whose ratios cancel most of
the final-state e!ects based on high-precision simulations
with a hydrodynamic + hadronic transport framework.
Our model predictions will provide a benchmark for ex-
isting [50] and future experimental measurements.

II. THE SIMULATION FRAMEWORK

In this work, we perform event-by-event simulations
with the state-of-the-art IP-Glasma+MUSIC+UrQMD
framework, whose details were described in Ref. [32].
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TABLE I. The values for the Woods-Saxon parameters for
208Pb and 129Xe used in the IP-Glasma initial conditions [55–
57].

Nucleus RWS
0 (fm) aWS (fm) ωWS

2 ωWS
4

208Pb(default) 6.647 0.537 0.006 0
129Xe(1) 5.601 0.492 0.207 -0.003
129Xe(2) 5.601 0.57 0.207 -0.003
129Xe(3) 5.601 0.57 0.162 -0.003
129Xe(4) 5.601 0.57 0 -0.003

In the IP-Glasma initial-state model [51, 52], the event-
by-event configurations of the 208Pb and 129Xe nuclei are
implemented as follows. The spatial positions of individ-
ual nucleons are sampled with the following deformed
Woods-Saxon parametrization,

ωWS(r, ε) =
ω0

1 + exp{[r ↑ R(ε)]/aWS} , (1)

with R(ε) = RWS
0 [1 + ϑWS

2 Y 0
2 (ε) + ϑWS

4 Y 0
4 (ε)]. Here

Y m
l (ε) are the spherical harmonics. The values of the

Woods-Saxon parameters are listed in Table I. We im-
pose a minimum distance dmin = 0.9 fm between individ-
ual nucleon pairs, which mimic the repulse interactions
between nucleons at short distances [53]. When the dis-
tance between a nucleon pair is smaller than dmin, we
only resample the azimuthal angle of the newly added nu-
cleon until the minimum distance requirement is fulfilled
for all nucleon pairs. This algorithm ensures that we still
reproduce the desired deformed Woods-Saxon profile in
Eq. (1) [54]. Once nuclear configurations are generated,
an independent random 3D rotation is applied to the in-
dividual configurations before the collisions.

Table I includes four di!erent sets of Woods-Saxon pa-
rameters for the 129Xe nucleus [55–57], with which we will
perform high statistics simulations of Xe+Xe collisions.
Comparisons of these results will quantify the e!ects of
the nuclear surface thickness parameter aWS and ellip-
tical quadrupole deformation ϑWS

2 on the ratios of flow
observables to those in 208Pb+208Pb collisions.

In this work, we update the sub-nucleonic struc-
ture [58] parameters in the model compared to the ones
used in Ref. [32]. Here, the parameters are obtained
as follows. First, we calculate coherent and incoherent
J/ϖ photoproduction at xp = 2 ↓ 10→4, which is a typ-
ical value probed in heavy ion collisions at LHC ener-
gies. This calculation is done exactly as in Ref. [59], with
the energy dependence obtained by solving the JIMWLK
evolution equation [60, 61]. This setup is constrained
by available photoproduction data from HERA experi-
ments and from ultra-peripheral collisions measured at
the LHC. Finally, the substructure parameters are ex-
tracted from the calculated pseudodata at the smaller x
by performing a fit as in Ref. [38]. The values for the
sub-nucleonic parameters are summarized in Table II.

The nucleon positions and subnucleon structure deter-
mine the thickness function of each nucleus, from which

TABLE II. The values for the sub-nucleonic parameters used
in the IP-Glasma initial conditions. The detailed definitions
of these parameters can be found in Ref. [38].

m (GeV) BG (GeV→2) Bq (GeV→2) ε

0.179 5.15 0.293 0.568

Qs/µ dq,min (fm) Nq

0.551 0.249 3

we obtain the color charge densities, which in turn deter-
mine the incoming gluon fields via solutions to the Yang-
Mills equations [62–65]. Then we solve for the gluon fields
after the collision and evolve them using the source free
Yang-Mills equations up to time ϱhydro = 0.4 fm/c fol-
lowing [62–64, 66]. The procedure is laid out in detail in
[32].

The system’s energy-momentum tensor Tµω is com-
puted from the gluon fields and provides the initial con-
dition for relativistic viscous hydrodynamic simulations
performed using MUSIC [67, 68]. These simulations
employ a lattice-QCD based equation of state [69, 70].
We consider both shear and bulk viscous e!ects dur-
ing the hydrodynamic evolution by solving the Denicol-
Niemi-Molnar-Rischke (DNMR) theory with spatial gra-
dient terms up to the second order [71]. The fluid cells
are converted into hadrons at a constant energy den-
sity hyper-surface with esw = 0.18 GeV/fm3 using the
Cooper-Frye particlization prescription with the Grad’s
14-moment viscous corrections [72–74]. These hadrons
are then fed into the hadronic transport model (UrQMD)
for further scatterings and decay in the dilute hadronic
phase [75, 76].

We first calibrate our simulations using 208Pb+208Pb
measurements at 5.02 TeV. Then we vary the nuclear
structure parameters for the Xe nucleus as shown in Ta-
ble I to study their impact on the ratios of observables
between 129Xe+129Xe and 208Pb+208Pb collisions.

We introduce the temperature dependence for the
QGP specific shear and bulk viscosities shown in Fig. 1.
The parameterizations are as follows:

ς

s
(T ) =

{
ς0 + b(T ↑ T0) for T < T0

ς0 for T ↔ T0
(2)

and

φ

s
(T ) =

{
φ0 exp{↑[(T ↑ T0)/↼+]2} for T ↔ T0

φ0 exp{↑[(T ↑ T0)/↼→]2} for T < T0
, (3)

where ς0 = 0.12, T0 = 0.18 GeV, b = ↑4 GeV→1, φ0 =
0.12, ↼+ = 0.12 GeV, and ↼→ = 0.025 GeV.

Figure 2 shows the model-to-data comparisons with
the ALICE measurements of charged hadron and identi-
fied particle production, averaged transverse momentum,
and charged hadron anisotropic flow coe”cients as func-
tions of the collision centrality for 208Pb+208Pb collisions
at 5.02 TeV.
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FIG. 1. The temperature-dependent QGP specific shear and
bulk viscosities used in this work. The grey area indicates the
hadronic phase simulated by the UrQMD transport model.

We choose T0 = 0.18 GeV in the parametrization of
the bulk viscosity such that the centrality dependence
of the identified particles’ mean pT in Pb+Pb collisions
at 5.02 TeV can be reproduced. Ref. [32] used a lower
T0 = 0.16 GeV, which was obtained by matching to re-
sults from RHIC measurements. The larger T0 leads to
a weaker centrality dependence of ↗pT ↘, agreeing better
with the ALICE data. We introduce a temperature-
dependent ς/s below T0 in this work to get a better
description of the vn{2} measurements beyond the 40%
centrality bin. We find a constant ς/s would overesti-
mate vn{2} compared to the ALICE measurements.

For every collision system and parameter set, we simu-
late at least 100k IP-Glasma + hydrodynamics minimum
bias events with an average of 100 oversampled hadronic
events in the UrQMD phase. These high statistics simu-
lations ensure small enough statistical errors on the ob-
servable ratios we present in the following section, allow-
ing us to quantify the impact of the nuclear structure.

III. PROBING NUCLEAR STRUCTURE IN
HEAVY-ION COLLISIONS

A. Imaging the deformation of 129Xe at the LHC

The observables in relativistic heavy-ion collisions usu-
ally have a complex dependence on model parameters. In
this section, we will first identify observables that are in-
sensitive to the model parameters not related to nuclear
structure, such as sub-nucleonic structure and the QGP
viscosities. Such exploration is essential to find observ-
ables that will maximize the sensitivity to the nuclear
structure of the colliding nuclei.

Figure 3 shows the ratios of anisotropic flow coe”-
cients v2{2} and v3{2} between 129Xe+129Xe collisions
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FIG. 2. Charged hadron and identified particle yields (Panel
(a)) and their averaged transverse momenta (Panel (b)), and
the charged hadron anisotropic flow coe”cients vn{2}(n =
2→4) and v2{4} are shown in Panel (c) as functions of collision
centrality in 208Pb+208Pb collisions at

↑
sNN = 5.02 TeV. The

model calibration results (solid lines) are compared with the
ALICE measurements [77–80]. The statistical errors in the
calculations are plotted as shaded bands, which are narrower
than the line widths for most cases.
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FIG. 3. The elliptic (a) and triangular (b) flow ratios between
129Xe+129Xe collisions at

↑
sNN = 5.44 TeV and 208Pb+208Pb

collisions at
↑
sNN = 5.02 TeV with di!erent simulation set-

tings. For nuclear structure parameters, we use 129Xe(1) and
208Pb(default) in Table I.

at
≃

sNN = 5.44 TeV and 208Pb+208Pb collisions at≃
sNN = 5.02 TeV with four di!erent parameter sets. We

find that the elliptic flow ratios between the two collision
systems are largely insensitive to the QGP viscosity used
in the hydrodynamic simulations. Despite the transverse
overlap areas in 129Xe+129Xe collisions being approxi-
mately 25% smaller than those in 208Pb+208Pb colli-
sions at the same centrality, the final-state interactions in
the hydrodynamics + hadronic transport phases are can-
celed to very high precision in the ratios of anisotropic
flow between two collision systems across all centrality
bins. This result demonstrates that experimental mea-
surements of this observable can be used to probe fea-
tures related to the initial state of heavy-ion collisions.

The IP-Glasma initial-state model includes multiple
length scale fluctuations from nuclear and sub-nucleonic
structures. To further disentangle their e!ects in the
identified observables, we perform additional simulations
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FIG. 4. The ratios of vn{2}(n = 2(a), 3(b)) between
129Xe+129Xe and 208Pb+208Pb collisions with di!erent
Woods-Saxon parameters for the 129Xe nucleus in Table I.
The insert in panel (a) zooms in on the most central events
where the e!ects are largest.

with the full shear and bulk viscosity but without sub-
nucleonic fluctuations. Figure 3 shows that the elliptic
flow v2{2} ratios up to 40% in centrality are insensitive
to the sub-nucleonic structures in the initial state model.

For triangular flow v3{2} ratios, the QGP’s specific
shear viscosity and sub-nucleonic fluctuations show siz-
able e!ects for centralities larger than the 20% centrality
class because the triangular flow is more sensitive to the
shorter length scale fluctuations than elliptic flow. The
specific shear viscosity also slightly a!ects the ratio of
flow coe”cients, particularly at mid-central and periph-
eral collisions because of the system size di!erence be-
tween 129Xe+129Xe and 208Pb+208Pb collisions. We have
checked that the centrality bin window in which v4{2}
and v5{2} ratios are insensitive to the sub-nucleonic fluc-
tuations further shrinks to 0-10%.

Figure 4 shows the ratios of anisotropic flow coe”-
cients for di!erent shapes of 129Xe nuclei with respect to
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208Pb+208Pb collisions. Within the 0–10% central bins,
the values of elliptic flow ratios are sensitive to the ellipti-
cal deformation ϑWS

2 of the 129Xe nuclei. In 0–1% central-
ity, the v2{2} ratios increase by about 20% as we change
ϑWS
2,Xe from 0 to 0.207. This result is in line with previous

studies comparing Pb+Pb and Xe+Xe collisions [14] and
others that studied the deformation of 238U nuclei with
respect to the measurements in 197Au+197Au collisions
at the top RHIC energy [28, 81].

The elliptic flow v2{2} ratios in semi-peripheral cen-
tralities (20–40%) exhibit sizable dependencies on the
nuclear skin thickness parameter aWS. This occurs be-
cause a smaller aWS leads to a sharper edge in the nuclear
density profile, which impacts 208Pb and 129Xe nuclei dif-
ferently due to their distinct average radii. The recent
ALICE measurements of this ratio [50] could thus serve
as a sensitive probe to discern di!erences in the nuclear
skin thickness between the 129Xe and 208Pb nuclei.

Figure 4b shows that the e!ects of the 129Xe nucleus’
ϑWS
2 on v3{2} ratios are negligible in central collisions.

We find that a smaller nuclear skin thickness for the
129Xe nucleus results in a smaller v3{2} ratio around the
20–30% centrality bin. But sub-nucleonic fluctuations
also have noticeable e!ects on this ratio around this cen-
trality bin as shown in Fig. 3. Combining the ratios of
v2{2} and v3{2} could help us disentangle e!ects of sub-
nucleonic fluctuations and skin thickness.

Similar weak dependence on ϑWS
2 of the 129Xe nu-

cleus is found for ratios of high-order anisotropic flow
coe”cients v4{2} and v5{2}. However, the initial-state
elliptic deformation of the nuclei can a!ect high-order
anisotropic flow vectors (Q4 and Q5) via the nonlinear
response e!ects during hydrodynamic evolution [82–85].
Such non-linear response to initial geometry is one of the
signatures that can demonstrate that the underlying sys-
tem is strongly coupled. Therefore, it is worthwhile to
quantitatively explore the e!ects of elliptic deformation
in central 129Xe+129Xe collisions with di!erent ϑWS

2 on
both the v2{2} ratio, sensitive to linear response, and the
ratios of high-order flow correlations, that are sensitive
to non-linear response e!ects. Here, we analyze the ra-
tios of the following Pearson coe”cients for Q4 and Q5

between the two collision systems,

ω422 =
⇐{↗Q4(Q2

2)
↑↘}√

↗|Q4|2↘↗|Q2|4↘
, (4)

ω523 =
⇐{↗Q5(Q2Q3)↑↘}√
↗|Q5|2↘↗|Q2|2|Q3|2↘

. (5)

Here, Qn ⇒
∑

j exp(in↽j) is the n-th order complex
anisotropic flow vector and ⇐{· · · } takes the real part
of the correlation function.

Figure 5 presents the ratios of the non-linear re-
sponse coe”cients ω422 and ω523 between 129Xe+129Xe
and 208Pb+208Pb collisions. Our results indicate that the
larger elliptical deformation of the 129Xe nucleus leads to
increased ω422 and ω523 coe”cients in central collisions.
The sensitivity of these coe”cients to the deformation
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FIG. 5. The ratios of non-linear correlation coe”cients ϑ422
(Panel (a)) and ϑ523 (Panel (b)) between 129Xe+129Xe and
208Pb+208Pb collisions with di!erent Woods-Saxon parame-
ters for the 129Xe nucleus in Table I.

parameter ϑWS
2,Xe is comparable to that observed for the

v2{2} ratios. We expect these measurements in central
collisions to provide complementary constraints to v2{2}
measurements on the ϑWS

2 deformation of the colliding
nucleus. The recent ALICE measurement [50] of the ω422
ratio between these two systems reaches a value above 1.7
for central collisions (0-5%), consistent with our model
calculations where ϑWS

2,Xe > 0.
The observable v2 ↑ [pT ] correlation is sensitive to the

non-trivial correlation between the system’s elliptical de-
formation and system size. It is defined as

ω2(v
2
2 , [pT ]) =

↗|Q2|2([pT ] ↑ ↗[pT ]↘)↘√
↗|Q2|4↘↗([pT ] ↑ ↗[pT ]↘)2↘

, (6)

where [pT ] denotes the total transverse momentum of all
charged hadrons within one collision event and ↗[pT ]↘ is
the averaged total transverse momentum over a centrality
bin class.

Figure 6 presents the ratios of the v2 ↑ [pT ] correla-
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FIG. 6. The ratios of v2 → [pT ] correlations between
129Xe+129Xe and 208Pb+208Pb collisions with di!erent
Woods-Saxon parameters for the 129Xe nucleus.

tions between 129Xe+129Xe and 208Pb+208Pb collisions.
For central collisions, the 129Xe nucleus with a larger ϑWS

2
leads to a smaller ratio. This is because, when nuclei are
deformed, the elliptic flow in central collisions comes from
both the deformed geometry and event-by-event shape
fluctuations. Generally, shape fluctuations significantly
contribute to the v2 ↑ [pT ] correlation. A large ϑWS

2 de-
formation in the colliding nucleus diminishes the relative
contribution of shape fluctuations to the elliptic flow, re-
sulting in a weaker v2 ↑ [pT ] correlation. Varying ϑWS

2,Xe
between 0 and 0.207, the ω2 ratio varies from 1.5 to 0.25 in
central collisions, showing strong sensitivity to the ellip-
tical deformation of the 129Xe nucleus [56]. The nuclear
surface thickness aWS

Xe does not have a significant e!ect
on the ratios.

Figure 7 shows the ratio of the normalized variance of
charged hadron transverse momentum between the two
collision systems. The ratio is overall above unity because
129Xe nuclei have fewer nucleons than 208Pb nuclei and
therefore contain more shape and size fluctuations which
lead to a larger variance in the final-state hadrons’ trans-
verse momenta. We find the 129Xe nuclei with larger el-
liptical deformation to result in a larger variance of trans-
verse momentum fluctuations in central collisions. This
result is intuitive to understand as a non-zero elliptic de-
formation introduces more shape and size fluctuations in
the collisions [86].

B. Constraining the neutron skin of 208Pb

Another interesting topic in nuclear structure studies
is the neutron skin size of the 208Pb nucleus. Although
the majority of observables studied in high-energy heavy-
ion collisions do not explicitly depend on the di!erence
between protons and neutrons in the initial state, we will
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FIG. 7. The ratio of the normalized variance of
charged hadron transverse momentum fluctuations,
εpT /↓pT ↔ ↗

√
↓(pT → ↓pT ↔)2↔/↓pT ↔, between 129Xe+129Xe

and 208Pb+208Pb collisions with di!erent Woods-Saxon
parameters for the 129Xe nucleus.

explore some observables that are sensitive to the over-
all nuclear skin thickness of the colliding nuclei. These
observables provide indirect information for constraining
the neutron skin if the charge radius of the 208Pb nucleus
can be accessed from complementary low-energy experi-
ments and its evolution to high energy is estimated.

We find one promising observable, the v2{4}/v2{2} ra-
tio, which is sensitive to the nuclear skin thickness of
the colliding nuclei. Ref. [87] studied related observ-
ables based on the TRENTO [54] initial-state model
for the RHIC isobar collisions. The v2{4}/v2{2} ratio
does not require measurements in two di!erent collision
systems. Figure 8 shows that the v2{4}/v2{2} ratios
in 208Pb+208Pb collisions are insensitive to the choices
of QGP viscosity and initial-state sub-nucleonic fluctua-
tions over a wide range of centrality.

We use the following Woods-Saxon parameters for
the 208Pb nucleus RWS

0,p = 6.68 fm, aWS
p = 0.448 fm,

and ϑWS
2 = 0.006. These parameters lead to a Root-

Mean-Square (RMS) radius for the proton density of
Rp = 5.435 fm. We introduce di!erent sizes of neutron
skins by setting RWS

0,n = 6.69 fm with di!erent neutron
skin thicknesses aWS

n listed in Table III [27, 88, 89]. One
can compute the neutron skin of the 208Pb nucleus us-
ing the RMS radii di!erence between proton and neutron
densities,

#Rnp = Rp ↑ Rn, (7)

Rp,n =

√∫
d3rr2ωWS

p,n (r, ε)

/∫
d3rωWS

p,n (r, ε). (8)

Figure 9a shows the e!ects of varying the 208Pb neu-
tron skin on the v2{4}/v2{2} ratio at high energies. A
smaller neutron skin results in a larger v2{4}/v2{2} ra-
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FIG. 8. The ratios of charged hadron v2{4} and v2{2}
in 208Pb+208Pb collisions at

↑
sNN = 5.02 TeV using the

208Pb(default) in Table I and di!erent simulation settings.

TABLE III. The values for the Woods-Saxon parameters for
208Pb with di!erent sizes of neutron skin #Rnp used in the
IP-Glasma initial conditions [88, 89].

Nucleus RWS
0,n →RWS

0,p aWS
n → aWS

p (fm) #Rnp (fm)
208Pb(1) 0.01 0.119 0.149
208Pb(2) 0.01 0.160 0.201
208Pb(3) 0.01 0.198 0.250

tio in 20-60% semi-peripheral collisions. Assuming that
the elliptic flow has a Bessel-Gaussian distribution with
mean v̄2 and variance ↼2

v2 [90], then

v2{4}
v2{2} =

√
v̄22 ↑ ↼2

v2

v̄22 + ↼2
v2

=

√
1 ↑ ↼̃2

v2

1 + ↼̃2
v2

, (9)

where ↼̃2
v2 ⇒ ↼2

v2/v̄22 is the normalized variance of ellip-
tic flow. A decreasing v2{4}/v2{2} ratio with increasing
#Rnp indicates that a larger nuclear skin depth gener-
ates more fluctuations in elliptic flow. This is because
a larger nuclear skin depth allows nucleons to be more
di!usively populated around the edge of the overlapping
area, increasing the shape fluctuations.

We also compute this ratio observable for 129Xe+129Xe
collisions and show its dependence on the nuclear skin
thickness aWS in Fig. 9b. The results convey the same
physics message as for 208Pb+208Pb collisions.

Future precision measurements of the v2{4}/v2{2} ra-
tio can serve as a sensitive probe for the skin depth of
the nuclear mass density of the colliding nuclei. By com-
bining the knowledge of charge radius from low-energy
nuclear experiments, one can deduce the size of the neu-
tron skin of the colliding nuclei.
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v 2
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FIG. 9. The ratios of v2{4} to v2{2} as functions of centrality
for 208Pb+208Pb collisions with di!erent sizes of neutron skin
(Panel (a)) and 129Xe+129Xe collisions with di!erent nuclear
surface thickness (Panel (b)).

IV. CONCLUSION

In this work, we identified several experimental observ-
ables, which show strong sensitivity to the nuclear struc-
ture inputs in the initial state of high-energy heavy-ion
collisions. Although there is a 40% di!erence in the mass
numbers between the 129Xe and 208Pb nuclei, we find
that final-state e!ects from hydrodynamics and hadronic
transport are canceled to very high precision in the ratios
of anisotropic flow coe”cients between the two systems,
in particular for the most central collisions. Precision
measurements of these two systems at the LHC can pro-
vide valuable information for constraining the shape de-
formation of the 129Xe nucleus. The ratios of non-linear
response coe”cients ω422 and ω523 between the two col-
lision systems are also sensitive to the elliptical defor-
mation of the 129Xe nucleus. The experimental mea-
surements [50] can provide complementary information
to constrain the value of ϑWS

2,Xe.
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We also find that the nuclear skin thickness is sensitive
to the elliptic flow fluctuations which result in measur-
able e!ects of varying the skin thickness on the ratio of
v2{4}/v2{2} in semi-peripheral collisions.

High statistics simulations as performed in this work
are essential for constraining the nuclear structure infor-
mation in phenomenological studies of heavy-ion colli-
sions. They are needed for quantitative model-to-data
comparisons to access information about the event-by-
event shape fluctuations of the colliding nuclei. Our sim-
ulation results serve as a benchmark for comparisons with
recent and upcoming measurements at the Large Hadron
Collider.

Our event-by-event simulation data are open-source
and can be used by community users [91].
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