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This work presents a Bayesian inference study for relativistic heavy-ion collisions in the Beam
Energy Scan program at the Relativistic Heavy-Ion Collider. The theoretical model simulates event-
by-event (3+1)D collision dynamics using hydrodynamics and hadronic transport theory. We ana-
lyze the model’s 20-dimensional posterior distributions obtained using three model emulators with
di!erent accuracy and demonstrate the essential role of training an accurate model emulator in the
Bayesian analysis. Our analysis provides robust constraints on the Quark-Gluon Plasma’s transport
properties and various aspects of (3+1)D relativistic nuclear dynamics. By running full model sim-
ulations with 100 parameter sets sampled from the posterior distribution, we make predictions for
pT-di!erential observables and estimate their systematic theory uncertainty. A sensitivity analysis
is performed to elucidate how individual experimental observables respond to di!erent model pa-
rameters, providing useful physics insights into the phenomenological model for heavy-ion collisions.

I. INTRODUCTION

Relativistic heavy-ion collision programs at the Rela-
tivistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) have been a key tool in studying the prop-
erties of the Quark Gluon Plasma (QGP), a state of mat-
ter exhibiting quarks and gluon degrees of freedom [1, 2].
These experiments allow high-energy nuclear physicists
to quantitatively characterize the strongly interacting nu-
clear matter under extreme temperatures and densities,
thereby exploring the phase structure of Quantum Chro-
modynamics (QCD). Especially with the systems stud-
ied in the RHIC Beam Energy Scan (BES) program,
where the center-of-mass energy is varied, it is possible
to study the QGP over a wide range of temperatures
and densities [3–6]. With precision measurements from
this experimental program, it is exciting to investigate
the transition between the QGP and hadronic matter,
search for a critical point and the associated first-order
phase boundary in the QCD phase diagram, and study
the emergent properties of the produced state of matter
(see reviews [7–11]).

Modeling heavy-ion collisions event-by-event is a com-
plex and computationally demanding task [12–17]. Be-
cause the relevant length scales change dynamically as
the collision systems evolve, it requires matching di!er-
ent types of physical models in a multi-stage approach.
Fluid dynamics serves as an e!ective long-wavelength de-
scription of the collective behavior of the strongly coupled
QGP produced in heavy-ion collisions. Relativistic vis-
cous hydrodynamics can well describe the time evolution
of the produced bulk medium, e”ciently transforming
the initial-state spatial inhomogeneities to anisotropies
in the final-state hadrons momentum distributions. This
theoretical description allows us to access information
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about the initial conditions of heavy-ion collisions and
transport properties of the QGP from the experimental
measurements.

It is challenging to compute the QGP transport coe”-
cients from first principles [18]. There have been several
attempts using lattice QCD techniques to compute the
plasma’s shear viscosity for a pure gluon system [19–22].
On the other hand, extensive phenomenological studies
were able to show that the hadronic observables mea-
sured from heavy-ion collisions are sensitive to the vis-
cosities in the QGP [14, 23–28]. There have been many
studies using hydrodynamics in heavy-ion collision sim-
ulations to estimate the specific shear viscosity ω/s for
the QGP [23, 24, 29–31]. Nowadays, there is more ef-
fort put into the direction of extracting the QGP-specific
shear and bulk viscosities, together with their uncer-
tainties from varying other aspects of the theoretical
model, based on large-scale model-to-data comparisons
with Bayesian inference analysis in a high dimensional
model parameter space [32–44].

The RHIC BES program generates a wealth of data for
heavy-ion collisions at di!erent collision energies. These
measurements enable phenomenological extraction of the
QGP transport properties at finite baryon density via the
global Bayesian inference analysis. For collisions with
energies around O(10) GeV, full (3+1)D simulations are
required to perform precision comparisons [45, 46].

This work expands upon Ref. [47] and performs a sys-
tematic Bayesian inference analysis of RHIC BES mea-
surements using full (3+1)D event-by-event simulations.
In addition to the constraints on the QGP-specific viscos-
ity, we will report and analyze the posterior distribution
for all model parameters in Sec. IV. We improve the con-
straints on the model parameters by applying a more ac-
curate Gaussian Process (GP) model emulator [48] than
the one used in [47]. Sec. V will further provide a selec-
tion of model predictions by performing numerical simu-
lations with the parameter sets drawn from the posterior
distribution. The relative variations in the model predic-
tions from di!erent parameter sets provide the theoret-
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ical uncertainty from the Bayesian calibration. We will
perform a detailed sensitivity analysis between the model
parameters and experimental observables in Sec. VII.

II. THE HYBRID THEORETICAL
FRAMEWORK AND MODEL PARAMETERS

The theoretical simulations for Au+Au collisions at
→
sNN = 7.7, 19.6, and 200 GeV used for this Bayesian

analysis were performed using the iEBE-MUSIC frame-
work [47]. To simulate the full (3+1)D dynamical evolu-
tion, a 3D-Glauber model is coupled with relativistic vis-
cous hydrodynamics (MUSIC) [49–51] and hadronic trans-
port (UrQMD) [52, 53]. The 3D-Glauber model considers
the finite thickness of nuclei along the beam direction
as they pass through each other, which becomes impor-
tant as the center of mass collision energy decreases to
O(10) GeV [54–56]. The transverse collision geometry is
controlled by the shape of nuclei and their relative im-
pact parameter. Each nucleon inside the colliding nuclei
contains four hotspots related to three constituent quarks
and one soft gluon. These hotspots lose energy and lon-
gitudinal momentum by being decelerated by strings be-
tween them during nucleon-nucleon collisions [17]. The
averaged rapidity loss is parametrized as a function of the
incoming rapidity yinit in the collision pair rest frame [47]:

↑yloss↓ =






yloss,2
yinit

2 , 0 < yinit ↔ 2

yloss,2 + (yloss,4 ↗ yloss,2)
yinit↑2

2 , 2 < yinit < 4

yloss,4 + (yloss,6 ↗ yloss,4)
yinit↑4

2 , yinit ↘ 4
(1)

where yloss,n is the average amount of rapidity loss for
yinit = n. The event-by-event fluctuations of the ra-
pidity loss are modeled by the parameter εyloss , which
controls the variance of the fluctuations [17]. The pa-
rameter ϑshadowing takes into account coherence e!ects
when the incoming nucleons go through multiple colli-
sions. With ϑshadowing = 0, all binary collisions will pro-
duce strings while ϑshadowing ≃= 0 sets a finite probabil-
ity to shadow string production from secondary collisions
between nucleon pairs. The parameter ϑrem controls the
amount of energy-momentum lost by the collision rem-
nants [17]. These wounded partons are connected via
strings and decelerated in the longitudinal direction un-
til ϖhydro = 0.5 fm/c in the collision rest frame. Then,
they are fed as source terms for the system’s energy-
momentum tensor and net baryon current,

ϱµT
µω = J

ω
, (2)

ϱµJ
µ
B = ςB . (3)

The definitions of the source terms were explained in de-
tail in Ref. [17]. Here, we introduce a longitudinal tilted

string profile by parameterizing the transverse profile as,

f(φx↓, ωs) =
1

2↼(εstring
x )2

exp

[
↗
[x↗ xc(ωs)]2 + [y ↗ yc(ωs)]2

2(εstring
x )2

]
, (4)

where the position of the string center (xc, yc) depends
on the space-time rapidity,

xc(ωs) =
x
P + x

T

2
+ ϑstring tilt

x
P
↗ x

T

ωPs ↗ ωTs

(
ωs ↗

ω
P
s + ω

T
s

2

)
,

(5)

yc(ωs) =
y
P + y

T

2
+ ϑstring tilt

y
P
↗ y

T

ωPs ↗ ωTs

(
ωs ↗

ω
P
s + ω

T
s

2

)
.

(6)

Here, (xP/T
, y

P/T
, ω

P/T
s ) are the space-time coordinates

for the projectile (P ) and target (T ) hotspots after the
string deceleration.
Motivated by the baryon junction model [57], we allow

for the incoming baryon numbers to be located at the
string ends or fluctuate along the string with a parameter
↽B [17],

P (yBP/T ) = (1↗ ↽B)yP/T + ↽B
e
yB
P/T↑(yP+yT )/2

4 sinh[(yP ↗ yT )/4]
. (7)

The pre-equilibrium evolution of the system is mod-
eled via a blast-wave-like transverse flow profile for the
individual strings developed in the time ↔ ϖhydro with a
transverse flow rapidity [47, 58]

ω↓(x↓) = ϑpreFlow|x̃↓|, (8)

where x̃↓ = (x ↗ xc, y ↗ yc), with xc and yc being the
string’s center in the transverse plane in Eqs. (5) and (6).
The hydrodynamic equation of motion, Eqs. (2) and

(3), are evolved with the lattice-QCD-based NEOS-BQS

equation of state at finite densities, which assumes
strangeness neutrality and nQ = 0.4nB for Au+Au colli-
sions [59]. The system’s viscous stress tensors are evolved
with the Denicol-Niemi-Molnar-Rischke (DNMR) the-
ory [60]. The µB dependence of QGP-specific shear vis-
cosity is parametrized by

ω̃(µB) =






ω0 + (ω2 ↗ ω0)
µB

0.2 , 0 < µB ↔ 0.2 GeV

ω2 + (ω4 ↗ ω2)
(µB↑0.2)

0.2 , 0.2 < µB < 0.4 GeV,

ω4, µB ↘ 0.4 GeV
(9)

where ω̃ ⇐ ωT/(e + P ) and ω0, ω2 and ω4 are the values
of the specific shear viscosity at µB = 0, 0.2, 0.4 GeV re-
spectively. We did not introduce an explicit temperature
dependence in the parameterization to keep the number
of model parameters manageable. A previous analysis
showed that a temperature-independent ω/s is compati-
ble with experimental data at high energy collisions [37].
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We parameterize the specific bulk viscosity by

⇀̃(T, µB) =





⇀max exp

[
↗

[T↑Tω(µB)]2

2ε2
ω,→

]
, T < Tϑ(µB)

⇀max exp
[
↗

[T↑Tω(µB)]2

2ε2
ω,+

]
, T ↘ Tϑ(µB)

,

(10)
where ⇀̃ ⇐ ⇀T/(e + P ) with the bulk pressure peak
temperature Tϑ(µB) ⇐ Tϑ,0 ↗

0.15
1 GeVµ

2
B . This param-

eterization follows the constant energy density curve
e = e(Tϑ,0, µB = 0) of the NEOS-BQS equation of state
closely and ensures that the parameterization peaks close
to the phase crossover at µB > 0 [11, 61, 62].

We choose to normalize the QGP shear and bulk vis-
cosity by T/(e+P ) instead of the local entropy density s

to better control the variations of the viscous relaxation
times in numerical simulations. Take the shear relaxation
time, for example,

ϖϖ ⇐ Cϱ
ω

(e+ P )
= Cϱ ω̃

1

T
(11)

= Cϱ
ω

s

1

T

1

1 + µBnB

Ts

. (12)

One can see that the shear relaxation time ϖϖ in Eq. (11)
remains well behaved when we vary ω̃ within the prior
range. If we parameterize ω/s as in Eq. (9), then ϖϖ in
Eq. (12) could potentially reduce to very small values
and violate causality conditions [63, 64] when the factor
µBnB/(Ts) becomes large during the dynamical evolu-
tion.

All fluid cells dropping below an energy density esw are
particlized using a Cooper-Frye freeze-out procedure in-
cluding ⇁f corrections for multiple conserved charge cur-
rents (B,Q, S) using the Grad moment method [12, 65].
The hadronic rescatterings and decays in the afterburner
phase are modeled using UrQMD [52, 53].

All 20 model parameters, together with their prior
ranges, are listed in Table I.

TABLE I. The 20 model parameters and their prior ranges.

Parameter Prior Parameter Prior

BG [GeV↑2] [1, 25] ωstring tilt [0, 1]

ωshadowing [0, 1] ωpreFlow [0, 2]

yloss,2 [0, 2] ε0 [0.001, 0.3]

yloss,4 [1, 3] ε2 [0.001, 0.3]

yloss,6 [1, 4] ε4 [0.001, 0.3]

ϑyloss [0.1, 0.8] ϖmax [0, 0.2]

ωrem [0, 1] Tω,0 [GeV] [0.15, 0.25]

ϱB [0, 1] ϑω,+ [GeV] [0.01, 0.15]

ϑstring
x [fm] [0.1, 0.8] ϑω,↑ [GeV] [0.005, 0.1]

ϑstring
ε [0.1, 1] esw [GeV/fm3] [0.15, 0.5]

III. MODEL EMULATION AND BAYESIAN
INFERENCE SETUP

For the exploration of the 20-dimensional parameter
space shown in Table I with Bayesian inference, we need
e”cient Gaussian Process (GP) emulators to replace the
computationally expensive high-fidelity model calcula-
tions with the iEBE-MUSIC framework. In this work, we
will make use of the PCSK emulator implemented in the
surmise package [66] and a standard GP emulator from
the Scikit-learn Python package [47]. For the details of
the implementation of these emulators, we refer to our
previous comparison of these GP emulators in Ref. [48].
For an e”cient exploration of the parameters in Ta-

ble I, we generate model simulations at 1,000 di!erent
parameter sets in 20 dimensions using the Maximum Pro-
jection Latin Hypercube Design (LHD). At every design
point, the model simulations consist of 1,000 minimum
bias Au+Au collisions at 200 GeV and 2,000 minimum
bias events each at 19.6 GeV and 7.7 GeV. Addition-
ally, we make use of 95 additional full model simulations,
where the parameters were sampled from the posterior
distribution. This additional dataset is denoted as High
Probability Posterior (HPP) points. In our standard
setup, we train the GP emulator with the LHD + HPP
datasets combined, which improves the emulator predic-
tions in the parameter region with higher probability.
The fast prediction of model outputs at di!erent points

in the parameter space using GP emulators allows us to
make use of Bayes’ rule:

P(ω|yexp) =
P(yexp|ω)P(ω)

P(yexp)
. (13)

P(ω|yexp) represents the posterior probability density
function, P(ω) is the prior probability density function,
P(yexp) stands for the total evidence, and P(yexp|ω) is
the likelihood function. In this work, we choose uniform
prior distributions for all the model parameters listed in
Table I. The likelihood function is defined as,

P(yexp|ω) =
1√
|2↼!|

⇒ exp

[
↗
1

2
(ysim(ω)↗ yexp)

T!↑1(ysim(ω)↗ yexp)

]
,

(14)

where ! ⇐ !model + !exp is the covariance matrix.
The GP emulator provides the model covariance matrix
!model. Lacking the knowledge of the full covariance
matrix for the experimental measurements, we assume a
diagonal form for !exp using the square of the statistical
errors for its elements.
To tackle the computation of the posterior distribu-

tion numerically, we employ Markov Chain Monte Carlo
(MCMC) techniques [67, 68]. In Ref. [48], we have
shown that the a”ne invariant MCMC implemented in
the emcee Python package [69] and the Parallel Tem-
pering Langevin Monte Carlo (PTLMC) implemented in
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surmise lead to consistent results. The parallel tem-
pering methods generally work better when there are
multiple modes in the posterior distributions. This was
the case for the closure test performed there, where
the uncertainty of the test point was su”ciently small.
For real experimental data with a larger uncertainty,
we will therefore use a method that can deal with
multi-modal posterior distributions. Since the previ-
ously tested PTLMC method does not compute the evi-
dence P(yexp) (this factor is essential for computing the
Bayes factor, which we use to compare di!erent training
processes in our analysis), we will employ another e”-
cient MCMC sampler routine implemented in the pocoMC
package [70, 71]. This sampler implements Precondi-
tioned Monte Carlo (PMC), where first normalizing flow
is applied to decorrelate the parameters and the distribu-
tions, and then adaptive Sequential Monte Carlo (SMC)
is applied.

The Bayesian inference analysis in this paper is per-
formed using the STAR and PHOBOS measurements for
Au+Au collisions at the RHIC BES program. The de-
tails are listed in Table II.

TABLE II. The experimental measurements for Au+Au col-
lisions used in our Bayesian inference analysis. We include
identified dN/dy and →pT↑ from central to 60% in collision
centrality and the charged hadron vn{2} from 0 to 50% cen-
trality.

↓
sNN [GeV] STAR PHOBOS

200 dN/dy(ς+,K+, p̄, p) [72] dNch/dε [73]

→pT↑(ς+,K+, p, p̄ [72] vch2 (ε) [74]

vch2 {2} [75], vch3 {2} [76]

19.6 dN/dy(ς+,K+, p) [77] dNch/dε [73]

→pT↑(ς+,K+, p, p̄) [77]

vch2 {2} [75], vch3 {2} [76]

7.7 dN/dy(ς+,K+, p) [77]

→pT↑(ς+,K+, p, p̄) [77]

vch2 {2} [75], vch3 {2} [76]

In Ref. [48], we systematically studied the performance
of di!erent model emulation setups on these experimental
measurements and quantified their impacts on the closure
test.

IV. POSTERIOR ANALYSIS

In this section, we perform Bayesian analyses on the
RHIC measurements using three di!erent GP models:
PCSK and Scikit GP trained with LHD + HPP simu-
lations, and PCSK trained only with the LHD dataset.
We will first evaluate and compare the general aspects of
the posterior distributions from the three GP models and
then discuss the physics insights from the constraints on
model parameters.

In Fig. 1, we show the posterior marginal distribu-
tions for the 20 model parameters using the PCSK em-
ulator (blue), the Scikit GP emulator (green), and the
PCSK emulator trained only with the 1,000 LHD points
(magenta). The former two GP emulators were trained
with the 1,095 LHD + HPP training points. We showed
that the PCSK emulator performed much better than
the Scikit GP in the closure test in Ref. [48]. However,
when applying the Bayesian inference analysis to the real
experimental measurements, the two emulators result in
similar posterior distributions for the model parameters.
For most of the parameters, we find that the PCSK em-
ulator still gives slightly more peaked distributions than
those from the Scikit GP.
Comparing the blue and magenta posterior distribu-

tions, we find that including the additional 95 HPP
points in training the GP emulator results in slightly
stronger constraints on the model parameters.
The amount of information gained in our Bayesian

inference analysis can be quantified using the Kull-
back–Leibler (KL) divergence, which is defined as,

DKL(p||q) =

∫
dω p(ω) ln

(
p(ω)

q(ω)

)
. (15)

Here, we compute the KL divergence with p(ω) as the
posterior distribution P(ω|yexp) in Eq. (13) and q(ω) as
the uniform prior distribution P(ω). Using Eq. (13), we
can compute the KL divergence from the sampled poste-
rior chains as

DKL(p||q) =
1

Nsamples

∑

i

ln

(
P(yexp|ωi)

P(yexp)

)
, (16)

where the index i runs through the Nsamples parameter
samples in the posterior chains.

TABLE III. The Kullback-Leibler divergence of posterior dis-
tributions to the uniform prior in our Bayesian inference anal-
ysis using di!erent GP emulators.

GP Model DKL

PCSK (LHD + HPP) 24.6

Scikit GP 20.9

PCSK (LHD only) 22.4

Table III reports the KL divergence for the three pos-
terior distributions presented in Fig. 1. The ordering
of the DKL is consistent with our observation in Fig. 1
discussed above. The more accurate model emulator,
PCSK, gives stronger constraints on model parameters
than those from the Scikit GP. Including 95 high proba-
bility posterior (HPP) points in training the GP emulator
further tightens the model constraints.
Another metric to compare the posterior distributions

is the Bayes factor. The Bayes factor is defined as the
ratio of posterior probabilities from two models, A and
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FIG. 1. Comparison of the marginal posterior distributions of the 20 model parameters using the MCMC sampling with the
PCSK and Scikit GP emulators. Values above the plots show the parameters’ median and 90% confidence intervals. The x-axes
represent the ranges of the uniform prior distributions.

B, given the experimental data yexp,

BA/B ⇐
P(A|yexp)

P(B|yexp)
=

P(yexp|A)P(A)

P(yexp|B)P(B)
. (17)

Here, we compare the three GP emulator models shown
in Fig. 1. Because the three GP models are emulating
the same theoretical model, we assume the prior model
probability is the same for all the models, namely P(A) =
P(B) in Eq. (17). Thus, the Bayes factor reduces to the
ratio of marginalized likelihoods, also known as Bayesian
evidence:

BA/B =
P(yexp|A)

P(yexp|B)
. (18)

The Bayesian evidence for a model A on the given exper-
imental data yexp, P(yexp|A), can be computed by inte-
grating the likelihood function over the model parameter

set across the entire parameter space:

P(yexp|A) =

∫
dωA P(yexp|ωA, A)P(ωA). (19)

We compute the Bayesian evidence for the three models
using the pocoMC package. The Bayes factors are re-
ported in Table IV.
Following the Je!reys’ Scale of the Bayes factor in

Ref. [78], we find strong evidence in favor of the analysis
with the PCSK emulator than the one with the Scikit
GP. This result emphasizes the importance of getting an
accurate model emulator in Bayesian studies. We also
compare the two model setups with di!erent training
data sets using the PCSK emulator. In this case, we
find a Bayes factor with a magnitude between 1 and 2.5,
which suggests that the PCSK trained with only the LHD
points is favored but only with weak evidence. Naively,
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one would expect the GP emulator with more training
data to be more favored. The reversed hierarchy here
is because the PCSK emulator trained with the LHD
+ HPP dataset gave a smaller model covariance ma-
trix !model, which leads to an overall lower likelihood
in Eq. (14) compared to the results from PCSK trained
with LHD only.

Considering the KL divergence and Bayes factor re-
sults, we will perform further analysis on the posterior
distribution from the PCSK emulator (LHD + HPP)
from now on.

TABLE IV. Bayes factors for di!erent combinations in the
model setup.

Model A Model B ln
(
BA/B

)

PCSK (LHD + HPP) Scikit GP 6.94± 0.03

PCSK (LHD + HPP) PCSK (LHD only) ↔1.41± 0.03

Now, we discuss the physics implications of the con-
straints on model parameters from the posterior distri-
bution.

• The parameter BG is the width of the nucleon to
sample its hot spots [17]. The posterior range BG =
15.99+7.14

↑9.66 GeV↑2 translates to the nucleon mass
width between 0.5 and 0.95 fm at 90% confidence
level.

• The parameter ϑshadowing controls the probability
of producing strings from secondary binary colli-
sions in the 3D-Glauber initial state model [17, 55].
Our Bayesian analysis prefers ϑshadowing ⇑ 0.15, in-
dicating that only 15% of the binary collisions are
shadowed for soft string production. The numbers
of produced strings scale closer to the number of
binary collisions than the number of participants.

• The rapidity loss fluctuation parameter εyloss ⇑ 0.3
in our analysis, which is smaller than the value
εyloss = 0.6 used in Ref. [17]. The latter was cal-
ibrated using the multiplicity distribution in p+p

collisions, which has a stronger sensitivity to this
model parameter than the 10% centrality binned
particle yields in Au+Au collisions [17]. The par-
ticle multiplicity fluctuations in Au+Au collisions
include the number of participant fluctuations, fur-
ther diluting the sensitivity to the rapidity loss fluc-
tuation parameter.

• The parameter for the nucleons’ remnant rapid-
ity loss ϑrem = 0.54 ± 0.15 is constrained by the
shape of the pseudo-rapidity distribution dN ch

/dω.
Its value is consistent with the previous simula-
tions [17].

• The parameter ↽B controls the amount of initial-
state baryon charge transport to the string junc-
tion [17]. Its constrained value ↽B ⇑ 0.15 is consis-
tent with previous analyses [17, 79].

FIG. 2. Posterior distributions for the average rapidity loss
→yloss↑ (top) as a function of the initial rapidity, the QGP
specific shear viscosity (middle) and bulk viscosity (bottom)
as functions of µB and temperature respectively. Bands in-
dicate the 68% (dashed) and 90% (dotted) confidence levels.
The 90% prior is shown as a gray band. For all curves, the
PCSK (LHD + HPP) emulator is used in the MCMC.

• Our Bayesian analysis prefers ϑpreflow ⇑ 0, sug-
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gesting small pre-equilibrium flow in the transverse
plane for the string source terms before depositing
into hydrodynamics.

• The posterior distribution for the hotspot trans-
verse size ε

string
x peaks at the lower bound of the

prior, suggesting a small hotspot size is preferred.

• The parameter ε
string
ϱ controls the string pro-

file’s fall-o! along the longitudinal direction. Its
marginal distribution has a double-peaked struc-
ture, indicating this parameter may have a

→
sNN

dependence.

To quantify the constraints on the functional depen-
dence for the initial-state rapidity loss and the QGP-
specific viscosities, we display the 90% confidence level
of the prior distributions (gray) with the 68% and 90%
confidence levels of the posterior distributions (green) for
these parameters in Fig. 2.

The average rapidity loss in the initial state is, com-
pared to the prior distribution (gray), tightly constrained
by the particle yield measurements at multiple collision
energies. Despite using di!erent types of GP emulators
and MCMC algorithms, our results are consistent with
those in Ref. [47]. We also obtain strong constraints on
the specific shear and bulk viscosities of QGP as func-
tions of µB and T , respectively. The values of QGP-
specific shear viscosity show a significant increase with
µB within [0, 0.2] GeV. This constraint primarily comes
from the pseudo-rapidity dependence of elliptic flow v2(ω)
measurements [80]. The values of ω̃ at larger µB remain
around 0.3 closer to the upper bound of the prior for
the parameter ω4. For the QGP’s specific bulk viscosity,
we find a peaked distribution around a temperature of
⇓ 200 MeV with a maximum value of 0.12. The val-
ues of ⇀̃ fall o! to zero quickly when departing from the
maximum value.

V. MODEL SIMULATIONS WITH POSTERIOR
DISTRIBUTIONS

After using the GP emulators to obtain the posterior
distributions of model parameters displayed in Fig. 1,
we will verify these constraints with full model simula-
tions and further make model predictions. We randomly
choose 100 samples {ωpost

} from the posterior distribu-
tions generated with the PCSK emulator (LHD + HPP)
and then perform event-by-event simulations with the
iEBE-MUSIC framework. At each posterior model param-
eter set ωpost

i , we simulate 1,000 minimum bias Au+Au
collisions at

→
sNN = 200 GeV, 2,000 events at

→
sNN =

19.6 GeV, and 3,000 collisions at
→
sNN = 7.7 GeV. With

these simulations, we compute the averages of the observ-
ables from the 100 posterior parameter sets and denote
their standard deviations as the remaining systematic un-
certainties after the Bayesian analysis. Here, we assume

the statistical errors of observables at individual poste-
rior parameter sets are much smaller compared to the
standard deviations of the 100 posterior parameter sets.
In Fig. 3, we show the comparison to the experimental
observables (see Tab. II) used in the Bayesian inference.

In general, the full model calculations with parame-
ters sampled from the posterior distribution can provide
a good description of the 544 data points in the Bayesian
inference. The agreement is generally better for central
collisions and near the mid-rapidity region. This behav-
ior is related to the fact that the GP emulator has smaller
emulation errors for those observables than the observ-
ables in peripheral centralities and forward rapidity re-
gions [48].

Looking into details of the mid-rapidity observables
at

→
sNN = 200 GeV (right columns of Fig. 3), our

model slightly overpredicted the particle yields of K
+

mesons. The centrality dependencies of proton and
anti-proton yields are somewhat flatter than the STAR
measurements. All these observables are sensitive to
the switching energy density from hydrodynamics to
hadronic transport, the current model discrepancy could
be reduced by allowing the parameter esw to be central-
ity dependent. The identified particles’ mean pT and
mass hierarchy reflect the amount of radial flow devel-
oped in the hydrodynamic phase. Our model provides
a good description of the STAR measurements for pi-
ons and kaons, while slightly underestimating the pro-
ton and anti-proton mean pT but still within the experi-
mental uncertainties. The averaged transverse momenta
of protons is more sensitive to the scattering cross sec-
tions and baryon-anti-baryon annihilation processes in
the hadronic transport model [28].

For the mid-rapidity observables at
→
sNN = 19.6 GeV,

the description of kaon’s particle yields is slightly im-
proved compared to that at 200 GeV. At this collision
energy, the averaged net baryon chemical potential can
reach up to 150-200 MeV at mid-rapidity [77]. Our
model gives a ⇑ 50 MeV larger mean pT for anti-protons
than those for protons at finite baryon density. The cur-
rent STAR measurement can not distinguish this di!er-
ence. In our model, the mean pT di!erence between pro-
tons and anti-protons primarily comes from the UrQMD

hadronic scattering phase as anti-protons emit relatively
earlier than protons from the hydrodynamic hypersur-
face and experience more hadronic interactions [51]. This
phenomenon is more pronounced at

→
sNN = 7.7 GeV,

at which the anti-proton mean pT is about 100 MeV
larger than that of protons in our calculations. At
→
sNN = 7.7 GeV, our model underestimates the mean pT

of pions and kaons, suggesting the systems do not develop
enough radial flow in the hydrodynamic phase. Introduc-
ing an explicit µB dependence on the QGP-specific bulk
viscosity would help to reduce the tension here. Because
the hydrodynamic phase at

→
sNN = 7.7 GeV is limited,

we observe that the triangular flow coe”cients v
ch
3 {2}

start to deviate from the experimental data in peripheral
collisions, similar to the finding in Ref. [83].



8

FIG. 3. Observables computed with the full theoretical model at 100 posterior samples {ωpost}. For the three di!erent collision
energies

↓
sNN = 7.7 GeV, 19.6 GeV, and 200 GeV, we simulate 3,000, 2,000, and 1,000 minimum bias Au+Au collisions at each

posterior point ωpost
i , respectively. The full line indicates the mean value of the observable averaged from the 100 parameter

sets, and the band indicates the one standard deviation interval. The experimental data are summarized in Table II.

Lastly, we look at the pseudorapidity-dependent ob- servables. Our model gives a good description of the
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FIG. 4. Model predictions for pT-di!erential observables from the 100 posterior parameter samples {ωpost}. The three columns
from left to right represent observables at

↓
sNN = 7.7 GeV, 19.6 GeV, and 200 GeV, respectively. The first two rows show pT-

di!erential ς+ and p spectra compared with the STAR measurements [72, 77], while the bottom row shows the pT-di!erential
elliptic flow v2{SP} compared with the STAR data [81, 82]. The band indicates the one standard deviation interval computed
from the 100 parameter sets.

PHOBOS charged hadron dN ch
/dω measurements across

collision centrality at 200 and 19.6 GeV. Our model gives
a flatter shape for vch2 (ω) compared to the PHOBOS mea-
surements. This is because our parameterization for the
QGP shear viscosity is temperature-independent. Intro-
ducing a ω/s(T ) will improve the model-to-data compar-
ison [84].

The full model simulations allow us to go beyond the
calibrated experimental measurements and make model
predictions with controlled systematic uncertainties. In
this work, we select pT-di!erential observables to demon-
strate the predictive power of our model. We will report
a systematic extrapolation of our model to di!erent col-
lision systems such as (p, d, 3He)+Au, O+O, Ru+Ru,

Zr+Zr collisions, and Au+Au collisions at other collision
energies in the RHIC BES program in future work.

Since our model is calibrated using only the pT-
integrated observables in Table II, the model-to-data
comparison for pT-di!erential observables can e!ectively
test the consistency of our Bayesian analysis.

Figure 4 shows our model predictions for the pT-
di!erential spectra for pions and protons and charged
hadron v2(pT) in Au+Au collisions at 7.7, 19.6, and 200
GeV compared with the STAR measurements. We find
a good description of the identified particle pT spectra
at 200 and 19.6 GeV, while the pT spectra are slightly
steeper than the STAR data at 7.7 GeV. These results
are consistent with our description of the identified parti-
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cle mean pT in Fig. 3. Our results show that the first two
moments of the particle pT spectra, namely the particle
yield and mean pT, are su”cient to produce reasonable
pT spectra in the Bayesian calibration [32].

For the charged hadron pT-di!erential elliptic flow, our
model prediction can reproduce the experimental data
fairly well up to 2 GeV. We notice that the systematic
uncertainty in v2(pT) grows with pT in the calculations.
The e!ects from the out-of-equilibrium ⇁f corrections in
the Cooper-Frye particlization become important at high
pT. The v2(pT) at 200 GeV shows a strong suppression
in pT > 2 GeV from the ⇁f based on the Grad’s moment
method.

VI. HIGH LIKELIHOOD PARAMETERS

Although our approach in Sec. IV is a preferred way
to make model predictions with controlled systematic er-
rors, it is computationally demanding to perform event-
by-event simulations at O(100) parameter sets sampled
from the posterior distribution, especially for observables
which require high statistics.

The Bayesian analysis usually reports the parameter
set ωMAP at the MAP (maximum a posteriori probabil-
ity) estimate using the GP emulator. In our case, we
find the MAP parameter set in the entire prior space
gives a reverse ordering for some rapidity loss parameters,
namely yloss,4 > yloss,6. In the Bayesian analysis above,
we did not impose any constraints on the prior distribu-
tion of the rapidity loss parameters. As shown in Fig. 2,
the experimental measurements at 200 GeV give strong
constraints on the initial-state rapidity loss near its beam
rapidity, ybeam ⇐ arccosh

→
sNN/(2mN)


= 5.36. There-

fore, the values of yloss,4 and yloss,6 are anti-correlated
(see Fig. 6 below), and both orderings are allowed in the
posterior distribution. Although the MAP parameter set
with yloss,4 > yloss,6 is su”cient to perform simulations
for the RHIC BES program, we expect it to fail when
extrapolating to the higher LHC energies. Therefore, we

TABLE V. The highest likelihood parameter set obtained
from the MCMC with the PCSK emulator (LHD + HPP),
imposing the monotonic constraint yloss,2 ↗ yloss,4 ↗ yloss,6.

Parameter Value Parameter Value

BG [GeV↑2] 17.095 ωstring tilt 0.884

ωshadowing 0.145 ωpreFlow 0.004

yloss,2 1.467 ε0 0.045

yloss,4 1.759 ε2 0.280

yloss,6 2.260 ε4 0.287

ϑyloss 0.356 ϖmax 0.148

ωrem 0.611 Tω,0 [GeV] 0.214

ϱB 0.129 ϑω,+ [GeV] 0.018

ϑstring
x [fm] 0.113 ϑω,↑ [GeV] 0.040

ϑstring
ε 0.156 esw [GeV/fm3] 0.350

FIG. 5. Posterior distributions for the average rapidity loss
→yloss↑ as a function of yinit. The band indicates the 90%
confidence level imposing the monotonic constraint yloss,2 ↗
yloss,4 ↗ yloss,6. The black dotted line shows the 90% con-
fidence interval without the constraint from Fig. 2, and the
90% prior is shown as a gray band.

FIG. 6. Single parameter (diagonal) and two-parameter joint
(o!-diagonal) distributions of the posterior using the PCSK
emulator (LHD + HPP) in the MCMC for the parameters
related to the initial-state rapidity loss. The upper right part
(magenta) shows the parameter correlation without the mono-
tonic constraint. The lower left part (green) represents the
results imposing the constraint yloss,2 ↗ yloss,4 ↗ yloss,6.

choose to report the highest likelihood parameter set with
the monotonic constraint yloss,2 ↔ yloss,4 ↔ yloss,6 in Ta-
ble V. We compute the Bayesian evidence without and
with the monotonic constraint and obtain a Bayes factor
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of ln

Bw.o. constr./w. constr.


= 0.85±0.02, which falls in the

“inconclusive” category based on the Je!reys’ Scale [78]
to distinguish the two setups.

Figure 5 compares the posterior distribution for the
averaged rapidity loss ↑yloss↓ as a function of yinit with
and without the monotonic constraints, yloss,2 ↔ yloss,4 ↔

yloss,6. The 90% posterior band shrinks almost by half
for yinit ⇔ [3, 6]. Because the values for yloss,2 and yloss,4

are also anti-correlated in the posterior distribution, the
↑yloss↓ at small yinit also receive some minor e!ects from
the monotonic constraint.

Figure 6 shows the marginalized posterior distributions
for individual rapidity loss parameters on the diagonal
and the correlations between the di!erent parameters in
the o!-diagonal corners.

The diagonal panels show that imposing the monotonic
constraint on the rapidity loss parameters leads to more
peaked marginalized posterior distributions because the
prior space is smaller with the constraint. While the peak
position of yloss,2 is barely a!ected by the constraint, the
peak position of yloss,4 is shifted to a slightly smaller value
and the position of yloss,6 to a slightly larger value. The
marginal distribution for the rapidity loss fluctuations
εyloss is almost una!ected. We have further checked that
the marginalized posterior distributions of the other 16
parameters are not a!ected by imposing the monotonic
constraint.

The upper right o!-diagonal panels show the correla-
tion between the rapidity loss parameters without the
monotonic constraint. We find strong anti-correlations
between yloss,2 and yloss,4 and between yloss,4 and yloss,6.
Such anti-correlation is a consequence of the piece-wise
parameterization in Eq. (1) when the experimental mea-
surements at 200 and 19.6 GeV set constraints on the
average rapidity loss near their beam rapidity 5.36 and
3.04, respectively. Looking at the constrained case in the
lower left part of the o!-diagonal panels, we also observe
a sharp cut in the yloss,6 vs. yloss,4 distribution, which is
a direct consequence of the yloss,4 ↔ yloss,6 constraint in
the prior.

VII. SENSITIVITY ANALYSIS

The fast model emulator lets us quantitatively study
how individual model parameters a!ect di!erent experi-
mental observables.

Starting with a global sensitivity analysis, we compute
the first-order Sobol’ indices [85] for individual experi-
mental observables over the entire prior region. Simi-
lar analyses were performed for heavy-ion collisions with
(2+1)D simulations assuming longitudinal boost invari-
ance [43, 86]. The first-order Sobol’ indices quantify
the importance of each parameter for a given observable
O(ω) by performing a decomposition of the variance of
O(·) over the parameter space ω ⇐ (θ1, . . . θm). The first-
order Sobol’ index for the model parameter θi is defined

as

S
O

i ⇐
Varςi


Eω→i(O(ω)|θi)



Varω(O(ω))
, i = 1, . . . ,m. (20)

Here, the index i runs over the dimension of the model pa-
rameter space (m = 20). We sample each model param-
eter θi independently from a uniform distribution over
its corresponding prior range in Table I. The expression
Eω→i(O(ω)|θi) performs an average of the observable O

over a parameter subspace ω↑i ⇐ ω\θi by holding the
i-th parameter θi at a fixed value. Then Sobol’ index S

O

i
measures the fraction of the variance of the observable O
from the parameter θi relative to its total variance.
Figure 7 shows the first-order Sobol’ indices for iden-

tified particle yields dN/dy and ↑pT↓ in the most central
events and charged hadron v

ch
2 {2} at 0-5% and 20-30%

centrality bins. The particle yields of charged pions have
strong sensitivities to the rapidity loss parameters yloss,n.
The measurements at 200 GeV are sensitive to the ra-
pidity loss parameters at incoming rapidity yinit = 4 and
yinit = 6, while the strongest sensitivity shifts to yloss,2

for the lower collision energy measurements. Compar-
ing the Sobol’ indices between pion and proton yields,
we find that the proton yields show additional sensitiv-
ity to the baryon stopping parameter ↽B and the string’s
longitudinal profile parameter εstring

ϱ .
The averaged transverse momenta of pions and pro-

tons are mostly sensitive to the initial-state hotspot size
in the transverse plane ε

string
x and the magnitude of pre-

equilibrium flow ϑpreFlow. Both model parameters have
strong e!ects on the development of hydrodynamic radial
flow. The hotspot’s transverse size controls the magni-
tude of the early-stage pressure gradients. A stronger
pre-equilibrium flow leads to faster fireball expansion at
the early time. We also find the pion’s mean pT at 200
GeV shows some sensitivity to the specific bulk viscosity
of the QGP. However, the magnitudes of their Sobol’ in-
dices are dwarfed compared to those model parameters
in the initial-state and pre-equilibrium stages. A similar
situation is observed for mid-rapidity anisotropic flow.
The charged hadron elliptic flow coe”cients at central
and semi-peripheral collisions are mostly sensitive to the
hotspot’s transverse size and pre-equilibrium flow over
the entire prior range. The sensitivity to the specific
shear viscosity of the QGP is very small. We checked
that the charged hadron triangular flow shows very sim-
ilar global sensitivity as the elliptic flow observables.
Figure 8 further represents the first-order Sobol’ in-

dices for rapidity-dependent observables. We find that
the charged hadron yields at forward rapidity show a
stronger sensitivity to the specific bulk viscosity of the
QGP and also the amount of rapidity loss in the beam
remnant ϑrem. We find a similar global sensitivity for
charged hadron elliptic flow at central and forward ra-
pidity regions.
Although it is informative to quantify the global sensi-

tivity of experimental observables to the model parame-
ter over the entire prior parameter space shown in Figs. 7
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FIG. 7. The first-order Sobol’ indices for selected midrapidity observables at di!erent collision energies
↓
sNN and centrality

bins. The black bars indicate the 95% confidence interval.

and 8, the responses could be di!erent in di!erent local
regions of the parameter space. Therefore, we further

compute the response coe”cients between experimental
observables and model parameters using the posterior
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FIG. 8. The first-order Sobol’ indices for selected observables
at central and forward rapidity regions. The black bars indi-
cate the 95% confidence interval.

distribution. We follow the approach in Ref. [87] and
define the ensemble-averaged response coe”cient matrix,

Rai ⇐


ϱya

ϱθi



post

=
∑

j

↑⇁ya⇁θj↓post↑⇁θj⇁θi↓
↑1
post. (21)

Here, the index a runs over individual experimental ob-
servables in Table II, and the index i runs over the model
parameters in Table I. The ensemble average ↑·↓post is
performed on the posterior distribution to extract the
model’s response to the experimental observables near
the real measurements. To make the response coe”-
cients unitless, we define the normalized experimental
observables ⇁ya = (ya(θj) ↗ ȳa)/εya and model parame-
ters ⇁θi = (θi↗ θ̄i)/εςi , where ȳa(θ̄i) and εya(εςi) are the
mean and standard deviation of the observable ya (pa-
rameter θi) over the posterior distribution, respectively.
The right-hand side of Eq. (21) should be interpreted as
a matrix multiplication.

Figure 9 shows the response matrix between the ex-
perimental observables and model parameters over the
posterior distribution. We observe that identified par-
ticle yields show strong sensitivity to the rapidity loss
parameters, consistent with the results from the global

analysis above. The signs of the response coe”cients
provide additional information compared to Sobol’ in-
dices. Interestingly, the mid-rapidity charged hadron
yields at 19.6 GeV show positive correlations with the
rapidity loss parameters while the forward dN ch

/dω neg-
atively correlates with these parameters. This pattern
results from the energy-momentum conservation imposed
in the 3D-Glauber model. More particle production near
mid-rapidity would require more energy loss during the
initial state, which leaves less available energy at for-
ward rapidity regions. Particle yields show significant
anti-correlation with the parameter ϑshadowing because a
smaller value of ϑshadowing produces more string sources
from the binary collisions and increases mid-rapidity par-
ticle production.
Di!erent from the global sensitivity analysis above, we

find the observables’ response coe”cients to the hotspot
transverse size ε

string
x and pre-equilibrium flow ϑpreFlow

are small in the posterior distribution. This di!erence is
because the marginalized posterior distributions for these
two parameters are sharply peaked around the edge of
their prior range, as shown in Fig. 1. The correlations in
the local region are small and di!erent from the global
averages.
We find that the observables’ responses to the QGP

transport properties in Fig. 9 are more in line with our
physics intuition.
The identified particles’ mean pT shows sizable nega-

tive correlations with the parameters related to the spe-
cific bulk viscosity of the QGP. This result aligns with
our intuition that the bulk viscosity acts as a resistance
to reduce the development of hydrodynamic radial flow.
The parameters related to the specific shear viscos-

ity of the QGP have a significant negative correlation
with the charged hadrons’ anisotropic flow coe”cients at
200 GeV. The pseudo-rapidity dependent v2(ω) measure-
ments also show strong sensitivity to the QGP shear vis-
cosity, especially the v2 at forward rapidity shows some
sensitivity to the ω2 parameter. Although the correlation
is relatively weak, we find a negative correlation between
charged hadron vn at 19.6 GeV and the shear viscosity
at µB = 200 MeV. And the ω4 parameter, which controls
the QGP shear viscosity at µB = 400 MeV, is negatively
correlated with the charged hadron vn at 7.7 GeV.

VIII. CONCLUSION

This work presents a systematic Bayesian analysis of
particle production and flow measurements at the RHIC
BES program using an event-by-event (3+1)D hydrody-
namics + hadronic transport framework. We obtain ro-
bust statistical constraints on the QGP transport proper-
ties and various aspects of relativistic nuclear dynamics.
This work expands upon Ref. [47] and provides the com-
plete 20-dimensional model posterior distribution using
an improved Gaussian Process model emulator. Utilizing
the statistical tools developed in Ref. [48], we systemati-
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FIG. 9. Response matrix Rai averaged over the posterior distribution. The observables in the left column correspond to
observables at

↓
sNN = 200 GeV collisions. The right column shows the response to observables at

↓
sNN = 19.6 GeV and

7.7 GeV.

cally analyze the model’s posterior distributions obtained
from three model emulators with di!erent accuracy. Us-
ing the statistical measures, namely the Kullback-Leibler
divergence and Bayes factor, we demonstrate that the ac-
curacy of the model emulator plays a crucial role in get-
ting robust posterior distribution from the experimental
measurements. With an independent Bayesian analysis
framework [88], we verify that the posterior distributions
of the initial-state rapidity loss and the specific shear
and bulk viscosity of QGP obtained in this work are con-
sistent with the results in Ref. [47], demonstrating the
reproducibility of our results.

We sample 100 parameter sets from the posterior dis-
tributions and perform large-scale event-by-event simu-

lations at each parameter set using our (3+1)D hybrid
model. These results verify that the posterior distribu-
tion obtained with the model emulator is reliable for the
real model. We further make predictions for a set of pT-
di!erential observables and estimate their systematical
errors based on the variations among the 100 parameter
sets. Good agreements with the experimental data are
found. Based on this approach, we will perform more
systematic model predictions in future work. For com-
munity users who do not have su”cient computing re-
sources to perform simulations at multiple posterior pa-
rameter sets, we provide a high-likelihood parameter set
in Table V.

Lastly, we report a sensitivity analysis of how individ-
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ual experimental observables respond to di!erent model
parameters, enabled by the fast model emulator. We
find commons and di!erences between the global sensi-
tivity analysis over the entire prior region and the re-
sponse matrix from the posterior distribution. Both sen-
sitivity analyses provide useful physics insights into the
phenomenological modeling of relativistic heavy-ion col-
lisions. We will extend the sensitivity analysis to a more
systematic experimental design study in future work.

We provide the following results from this work for
community use:

• Training datasets in Table II [89]

• Trained model emulator PCSK (LHD + HPP) [89]

• Posterior parameter samples from the MCMC [89]

• An updated Bayesian analysis package with the
pocoMC integration [88]
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