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Abstract 10 

The selection and execution of context-appropriate behaviors is controlled by the integrated 11 

action of neural circuits throughout the brain. However, how activity is coordinated across brain 12 

regions, and how nervous system structure enables these functional interactions, remain open 13 

questions. Recent technical advances have made it feasible to build brain-wide maps of nervous 14 

system structure and function, such as brain activity maps, connectomes, and cell atlases. Here, 15 

we review recent progress in this area, focusing on C. elegans and D. melanogaster, as recent 16 

work has produced global maps of these nervous systems. We also describe neural circuit motifs 17 

elucidated in studies of specific networks, which highlight the complexities that must be captured 18 

to build accurate models of whole-brain function.  19 

 20 

Highlights 21 

• New atlases define brain-wide activity and organization in C. elegans and Drosophila 22 

• Brain-wide imaging shows consistent principles of how neural activity encodes behavior  23 

• Maps of synaptic and neurotransmitter connectivity reveal structural organization 24 

• Neural circuits use varied motifs to control context-appropriate behaviors  25 

 26 

Introduction 27 

Even in small animals, ethologically relevant behaviors can be remarkably complex. Nervous 28 

systems with a limited number of neurons can direct behaviors like foraging, courtship, and 29 

navigation, and allow animals to respond to threats, injuries, and infection. Understanding how 30 

neurons act together to direct context-appropriate behaviors is an essential question in modern 31 

neuroscience. To date, most research has focused on individual circuits or neurons controlling 32 

specific behaviors. However, recent technical advances have dramatically expanded the scope of 33 

what is possible, allowing researchers unprecedented access into the brains of animals.  34 

In this review, we discuss recent advances in building, connecting, and interpreting brain-wide 35 

maps of nervous system function in C. elegans and Drosophila. We first discuss whole-brain 36 

neural recordings from freely-behaving animals – studies that are mapping the relationship 37 

between neural activity and behavior. We then cover new, comprehensive maps of neuronal 38 

connectivity, genetic identity, and neuromodulation that have provided insights into nervous 39 

system structure. Finally, we discuss examples of individual circuit motifs with established links 40 

between structure and function that may aid our ability to interpret these new brain-wide maps. 41 
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As this is a fast-moving field, we have largely limited our focus to developments over the past 42 

few years.  43 

 44 

Brain-wide activity maps: how the brain encodes behavior  45 

Recent advances have made it possible to perform whole-brain calcium imaging in behaving 46 

animals, yielding new insights into how brain-wide activity generates motor outputs. In C. 47 

elegans, pioneering studies examined whole-brain activity in immobilized [1]–[3] and freely 48 

moving animals [4]–[6]. These studies showed that information about behavior is distributed 49 

across the brain, with neurons representing different aspects of locomotion such as velocity and 50 

turning.  51 

Recent work combined brain-wide imaging in moving animals with reliable, brain-wide cell 52 

identification. This development allows comparisons of neuron activity to ongoing behavior 53 

(sample data shown in Figure 1a); importantly, these relationships can then be compared across 54 

animals. Imaging the sex-specific neurons of the C. elegans male tail during mating behavior 55 

showed that stereotyped sets of neurons are active during different phases of mating, like sliding, 56 

turning, and copulation [7*]. While some neurons have specialized functions, others are engaged 57 

in several aspects of mating. Functional correlations between neurons changed as animals 58 

switched behavioral outputs. Another recent study used encoder models to describe how each 59 

neuron class in the head of the hermaphrodite worm encodes specific behavioral features [8**]. 60 

Many neurons encode single behavioral features, like velocity or feeding, but a surprising 61 

number of neurons conjunctively encode multiple behaviors, revealing widespread multiplexing. 62 

While many neuron classes represent behavior reliably, a stereotyped subset changed encoding 63 

upon changes in the animal’s internal state, suggestive of flexible remapping. Neuronal 64 

identification allowed comparison to the C. elegans connectome: neurons that are connected, 65 

especially by gap junctions, are more likely to show similar activity [7]–[9]. However, 66 

anatomical predictions of activity are not perfect, suggesting additional information is needed.  67 

Whole-brain recordings in freely-behaving Drosophila similarly found a vast distribution of 68 

locomotor information. Behaviors such as walking elicit changes in activity across most brain 69 

regions, while less intensive grooming behavior only recruits specific brain regions (for example, 70 

compare heatmap of brain-wide activity to simultaneous behavior in Figure 1b) [10], [11**], 71 

[12**], [13**]. Careful analysis of different locomotor features showed that specific brain 72 

regions are active during distinct behavioral components such as movement initiation, forward 73 

velocity, and turning [10]–[13]. Brain-wide activity is similar during freely-initiated and forced 74 

walking behavior, suggesting that many of these signals may be proprioceptive rather than motor 75 

commands [11]. These behavioral signals are accompanied by widespread sensory signals, which 76 

are also starting to be mapped at brain-wide scale [14].  77 

Comparing studies from these two species reveals some consistent principles. In both animals, 78 

locomotor information is distributed across a surprisingly large area of the brain. This 79 

organization may enable coordinated behavioral outputs, allowing circuits throughout the brain 80 

to receive information about current behavior. Sleep or quiescence states consistently evoke 81 

broad downregulation in brain-wide activity [15], [16] . In addition, anatomy may dictate 82 

activity: neurons that are connected tend to have similar activity patterns in C. elegans; in 83 

Drosophila, individual brain regions often contain small functional units of neurons with related 84 

dynamics [8], [11]–[13]. Finally, activity in bilaterally symmetric neurons or brain regions is 85 
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mostly similar [8], [9], [12], [17], with a notable exception seen in turning neurons that activate 86 

on a specific side for directed turns [12], [18].  87 

An interesting feature of brain-wide dynamics in both organisms is the timescale of behavior 88 

representation. Neuronal activity can represent current behavior or behavior in the recent past 89 

[8], [12], [13].  Neurons with related behavioral information can show varied timescales in their 90 

tuning to that behavior, allowing for an ordered recruitment of different neurons as behavior 91 

progresses [8], [12], [13]. In flies, neural activity could even predict upcoming turning behavior, 92 

revealing signals related to motor planning [18]. These studies reveal consistent principles in the 93 

organization of global brain dynamics that are conserved across evolutionarily distant species.  94 

 95 

Maps of neuronal architecture and genetic identity  96 

Many advances in C. elegans neuroscience were enabled by early mapping of the connectome 97 

[19]. Recent studies expanded that understanding, identifying connections that vary across 98 

individuals, throughout development, and based on sex [20], [21]. Notably, this work found that 99 

the greatest variability in connectivity was observed in modulatory neurons [21]. Careful 100 

analysis also revealed a previously unrecognized degree of organization in the neuropil of the C. 101 

elegans nerve ring, which could influence functional interactions between neurons (Figure 2a) 102 

[22], [23]. In Drosophila, a sophisticated electron microscopy (EM) platform [24] was 103 

instrumental in the generation of the first complete map of synaptic connectivity [25**], [26], 104 

adding to an earlier connectivity map of the hemibrain [27]. This valuable atlas revealed key 105 

principles in brain organization; for example, densely connected groups of “rich club” neurons 106 

represent about 30% of neurons [28]. The Drosophila connectome is also defined for larvae [29] 107 

and the Ventral Nerve Cord [30]–[33], and more targeted work has mapped the mushroom body 108 

[34] and central complex [35], providing a wealth of maps to aid studies of neural circuits. For 109 

example, analysis of the mushroom body connectome found many more visual inputs than 110 

previously known, perhaps allowing for integration with other convergent sensory cues. The 111 

Drosophila connectomes are limited to chemical synapses thus far, owing to technical 112 

constraints. Future annotations of electrical synapses will provide additional insights into the 113 

synaptic organization of this nervous system.  114 

Identifying connections is only part of the battle. To understand how these synapses function, we 115 

must determine the identities of the underlying neurotransmitters and receptors. The Drosophila 116 

connectome benefits from artificial neural network predictions of neurotransmitter identity based 117 

on EM data [36*]. In both species, transcriptomic atlases revealed the distribution of 118 

neurotransmitters and receptors [37]–[39**]. Fluorescent reporters have also been valuable in 119 

mapping the expression of neurotransmitters [40]–[42] and receptors [43], [44*]. This work has 120 

suggested that there may be widespread extrasynaptic signaling: many receptors are expressed in 121 

cells that do not receive synapses from a cell expressing that neurotransmitter. These genetic 122 

maps are essentially complete for the main C. elegans neurotransmitter systems at the level of 123 

cell types (for example, neurotransmitter identity is shown in Figure 2b). Completion of single 124 

synapse resolution maps in worms and flies – a major challenge for the future – will yield 125 

additional advances. 126 

Another factor not accounted for in connectivity maps is neuropeptide signaling. Understanding 127 

of C. elegans neuropeptide systems expanded enormously with the identification of 461 novel 128 

ligand-receptor pairs out of over 55,000 possible pairs tested [45**]. These findings were 129 
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combined with single-cell sequencing data to construct a brain-wide neuropeptide signaling map. 130 

Compared to synaptic signaling, neuropeptide signaling is more decentralized and far denser, 131 

with >10-fold more connections [46**]. Neuropeptide networks also link the synaptically 132 

disconnected pharyngeal network to the central brain. In addition, different peptidergic systems 133 

feature dramatically different organizations: point-to-point signaling, autocrine signaling, and 134 

broadcasting architectures, which may enable different features of emergent activity (Figure 2d-135 

f). Mapping of the neuropeptide network in Drosophila showed neuropeptide expression limited 136 

to clusters of neurons but receptor expression throughout the brain [43].  137 

A central goal of future research will be to connect brain-wide activity and connectivity maps. In 138 

C. elegans, a recent investigation focused on comprehensively mapping the serotonin system’s 139 

structure and function [47*]. The serotonergic NSM neuron is activated by food ingestion, and 140 

its non-synaptic release of serotonin induces slow locomotion and increased feeding behavior. A 141 

combination of approaches was used to identify the contributions of each of the six serotonin 142 

receptors to these behavioral changes, determine the neurons across the connectome that express 143 

these receptors, and investigate how serotonin release impacts brain-wide activity. Different 144 

receptors mediated behavioral responses to different patterns of serotonin release. In addition, 145 

knowledge of each neuron’s serotonin receptor expression could partially predict how their 146 

activity changed during serotonin release, providing links between structure and function.  147 

Another study recently attempted to bridge the gap between architecture and activity by 148 

assembling a map of functional connectivity [48**]. This work combined cell-specific 149 

optogenetic activation, whole brain imaging, and neuronal identification to quantify how 150 

perturbing each neuron’s activity affects all other neurons’ activities. Many relationships were 151 

identified between neurons that are not directly connected through synapses (example shown in 152 

Figure 2c). Additionally, many of these fast, functional connections were dependent on dense 153 

core vesicle release, providing evidence for functionally important extrasynaptic signaling that 154 

may be critical to understand brain-wide dynamics.  155 

Efforts to build increasingly precise and accurate network models of fly and worm nervous 156 

systems are ongoing. In Drosophila, modeling constrained by connectome and neurotransmitter 157 

data generated novel hypotheses about sensory and motor pathways [49]. Many of these 158 

predictions held true in subsequent testing; for example, novel neurons predicted to be important 159 

for water responses indeed caused a change in water intake upon optogenetic perturbation. 160 

Accurate predictions of known visual system neurons were also generated by a neural network 161 

model of a smaller region, the optic lobe, which was built using constraints from the connectome 162 

and deep learning methods [50]. Still other work used behavioral data to train a deep neural 163 

network model, cleverly using behavior recordings from flies with silenced neurons to probe the 164 

visual courtship circuitry [51]. Current modeling efforts are limited by a lack of data about 165 

electrical signaling, receptor dynamics, neuromodulation, and individual neuron characteristics 166 

such as co-neurotransmitter release.  167 

Although the work described here has produced a wealth of information about circuit 168 

organization and function, many challenges still need to be solved in order to interrogate circuit 169 

function at brain-wide scale. In the meantime, studies of specific circuits provide valuable 170 

intuition about how nervous system structure relates to function in the context of behavior.  171 

 172 

Neural circuit motifs in invertebrate nervous systems  173 
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Our understanding of how neural circuits generate behavior has been greatly aided by case 174 

studies of individual circuits. Here, we discuss examples of studies that uncovered network 175 

motifs that contribute to defined features of animal behavior.  176 

At first glance, the most straightforward pathways are point to point signals, where one neuron 177 

communicates directly to another. Hundreds, if not thousands, of such connections have been 178 

identified, often underlying specific sensorimotor responses. Recent studies have shown that 179 

even neuropeptides can act in this direct manner to impact behavior. For example, in worms, the 180 

neuropeptide flp-1 promotes avoidance of pathogenic bacteria [52*]. Upon infection, this 181 

neuropeptide is released from one neuron class, called AVK, to promote avoidance behavior 182 

through a single receptor, dmsr-7, which functions in RIM/RIC neurons. flp-1 is produced in 183 

other neurons and has other receptors; dmsr-7 is similarly broadly expressed and has many 184 

ligands, yet a single connection within this complex network has a specific behavioral function. 185 

In Drosophila larvae, a similar motif was found when examining nociceptive responses to heat: 186 

the neuropeptide DSK acts via one receptor on a single cell type to inhibit heat avoidance [53].  187 

Another common network motif is broadcasting or “one to many” signaling, where a single 188 

neuron signals to several downstream partners. This network logic is effective for behavioral 189 

outputs that require synchronization, such as changes in behavioral state. In C. elegans, stress 190 

induced sleep is regulated by the ALA neuron, which releases multiple neuropeptides to 191 

downregulate distinct behavioral features such as feeding, head movement, and locomotion [54], 192 

[55]. Broadcasting signals are also useful as teaching signals during learning. In Drosophila 193 

spatial learning, dopaminergic ExR2 neurons broadly innervate the head direction network and 194 

facilitate learning during rotational movements so that animals can update their internal 195 

representations of space [56].  196 

There are several circuit architectures that can support coincidence detection. In C. elegans, “hub 197 

neurons” receiving convergent signals can weigh multiple sensory inputs and generate integrated 198 

behavioral responses. For example, in response to gentle touch, several mechanosensory neurons 199 

send concurrent signals via gap junctions to a single downstream neuron, RIH, which acts as a 200 

coincidence detector to direct avoidance behavior [57], [58]. Coincidence detection circuits are 201 

also central to learning. In Drosophila, dopaminergic DAN neurons that contain information 202 

about motor state, internal state, and even reward and punishment converge onto defined 203 

compartments of the mushroom body; coincident activation of specific DANs with olfactory-204 

responsive Kenyon cells changes how Kenyon cells couple to mushroom body outputs and 205 

behavior [59]–[68]. 206 

Studies of defined neural circuits have also demonstrated that behavioral outputs are not always 207 

governed by a single, linear circuit. Degenerate signaling pathways can often exist, where 208 

different neural sources can lead to the same outcome. In C. elegans, feeding behavior can be 209 

initiated by several independent neurons [69]. This work is reminiscent of degeneracy in the 210 

stomatogastric ganglion (STG) of crustaceans, where many underlying circuit configurations can 211 

generate the same circuit outputs [70]–[72]. Work on the STG has also demonstrated that 212 

neurons can co-release several neuropeptides that have additive or antagonistic effects (reviewed 213 

in [73]). In flies and worms, release of different neurotransmitters from the same neuron can 214 

impact distinct behavioral outputs [74], [75], effectively allowing them to participate in multiple 215 

networks. In order to accurately capture brain-wide activity, we will need to consider that the 216 

underlying signaling can be flexible, degenerate, and multiplexed and may contain many 217 

interlinked network motifs that contribute to overall circuit function.  218 
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 219 

Conclusion  220 

The recent developments reviewed here have opened an exciting new chapter in neuroscience 221 

research. Advances in hardware and software (reviewed in [76], [77]) have yielded bountiful 222 

data on neuronal activity in freely behaving animals under a variety of conditions. While 223 

similarities between worms and flies suggest that principles of brain-wide organization may span 224 

species, examining brain-wide activity in mammals is challenging. Recent advances have 225 

allowed for recording of over a million neurons in the mouse neocortex [78], but brain-wide 226 

imaging will require additional innovations. C. elegans now have an atlas of how most neurons 227 

encode spontaneous behavior [8], and activity maps for the larger Drosophila brain provide a 228 

global view of its dynamics. In addition, both species now have genetic maps of neurotransmitter 229 

and receptor expression, as well as maps of synaptic connections. Despite this wealth of data, we 230 

are still missing information crucial to our understanding of how these nervous systems function.  231 

Going forward, future experiments will need to address the flexibility of how neural activity 232 

encodes behavior. Examining brain-wide responses across animals in different behavioral states, 233 

in defined sensory surroundings, or during motivated behaviors will show how neuronal 234 

encoding can change based on context (see [65*]). Our current understanding of flexibility and 235 

degeneracy derived from smaller circuits suggests that brain activity maps will not be fixed. 236 

To fully integrate the activity and molecular maps, we need a more complete understanding of 237 

neurotransmitter system dynamics. Further studies about the timescales of neurotransmitter 238 

release, the spatial organization of heterogeneous receptors on a single neuron, the extent of 239 

extrasynaptic signaling, and the kinetics of different receptors will provide valuable information. 240 

Currently, these questions are typically addressed on a case-by-case basis, but large-scale 241 

approaches [48] may be well positioned to tackle some questions at scale. In addition, sensors for 242 

neuropeptides [79] and neurotransmitters [80], [81] may be useful to further address these 243 

problems. As future work expands our view of brain-wide dynamics and organization, it will be 244 

increasingly possible to create accurate models of brain activity to generate novel, testable 245 

predictions.  246 

 247 

  248 
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 249 

Figure 1: Brain wide recordings in C. elegans and Drosophila reveal how neurons and 250 

brain regions encode behavior features 251 

a) Whole brain calcium imaging data collection in C. elegans. From top to bottom: Cartoon of C. 252 

elegans. The worm connectome, showing synaptic connections between neuronal cells (data 253 

from [19], [21]). Sample image of whole brain calcium imaging in a freely moving worm, 254 

showing pan-neuronal GCaMP and mNeptune in the head of a worm [8]. Heatmap of brain-wide 255 

activity during spontaneous behavior, with behavior quantification for velocity, feeding rate, and 256 

angular velocity in the same animal.  257 
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b) Whole brain calcium imaging data collection in Drosophila. From top to bottom: Cartoon of a 258 

Drosophila.  The flow of information via chemical synapses between different brain regions as 259 

found in the Drosophila connectome [26]. Sample image of a fly brain, depicting representations 260 

of behavior in different regions [12]. Three views show orthogonal slices through the brain of a 261 

fly. Color values show correlations for each brain region with forward velocity and left or right 262 

angular velocity. Heat map of brain-wide activity during spontaneous fly behavior, with 263 

behavioral annotations and speed shown for the same animal [13].  264 
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 265 

Figure 2: Structural, genetic, and network maps of the C. elegans connectome  266 

a-f) Six identical arrangements of neurons from the C. elegans connectome, where neurons are 267 

organized by sensorimotor layer (y-axis) and connectivity (x-axis). In each panel, neurons are 268 

colored according to different structural or functional features. 269 

a) Neurons are colored based on their neuropil layer assignments as determined in [23]. 270 

“Unassigned” neurons span multiple strata.  271 

b) Neurotransmitter expression in all C. elegans neurons (data summarized in [40]). Neurons 272 

with multiple colors release multiple neurotransmitters. 273 

c) Sample result comparing functional and anatomical connectivity for a single neuron, SAADL 274 

(shown in yellow). Neurons in green had changes in activity upon SAADL stimulation [48]. 275 

Neurons in blue are synaptically connected to SAADL [19], [21]. 276 

d-f) Examples of three different signaling motifs found in the neuropeptidergic connectome of C. 277 

elegans (data on neuropeptide and receptor expression patterns from [39], [45], [46]).  278 

d) Point to point signaling, with only a few neurons expressing either the neuropeptide nlp-23 or 279 

its cognate receptor gnrr-3 (data from [39], [45], [46]).  280 

e) Broadcasting expression from a single neuron pair (HSN) releasing neuropeptide flp-23 to 281 

many downstream partners expressing receptor dmsr-7 (data from [39], [45], [46]). Interestingly, 282 

HSN expresses both the neuropeptide and receptor, representing a possible autocrine loop.  283 

f) Convergent signals emanating from many neurons releasing flp-5 are integrated by only a 284 

handful of neurons expressing its receptor egl-6 (data from [39], [45], [46]).   285 
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