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ABSTRACT. We introduce a scale of anisotropic Sobolev spaces defined through
a three-parameter family of Fourier multipliers and study their functional ana-
lytic properties. These spaces arise naturally in PDE when studying traveling
wave solutions, and we give some simple applications of the spaces in this
direction.

1. Introduction.

1.1. Setup and background. Consider the problem of finding a solution v : R% x
[0,00) = F € {R, C} to the equation d;v+(—A)% 2y = F for some 1 < § € R. When
§ = 2, this is the standard heat equation. Let us assume that F : R x [0,00) — F
is in traveling wave form, namely F(x,t) = f(x — yte;) for some f : R? — F and
traveling wave speed v € R\{0}. If we make the traveling wave ansatz v(z,t) =
u(z — 7te;), then we reduce to the PDE —ydu + (—A)%/?u = f in R?, which
rewrites on the Fourier side as

[—2mivér + (2 [€])°a(€) = f(£).

Clearly, this determines 4 in terms of f, and if we assume that f € H® (R%; ), then
we have the estimate

[l +ie o™ ara= [ ©*|7] €= o
R4 Rd

One can show (and we will do so later) that the space defined by the square-norm on
the left is complete and consists of locally integrable functions if and only if d > 1+6.
Thus, in small dimension it is natural to seek a refinement of this estimate (which
requires more information on f, of course) that overcomes this issue and leads to
an isomorphism of Banach spaces for the operator —yd; + (—A)%/2.

To this end, we write .7 (R?; F) for the Schwartz space of F—valued functions and
" (R4, ) for the corresponding space of F—valued tempered distributions. Given
the parameters s,7,6 € R we define the measurable function ws , s : RY¢ — [0, )
via

2 25
|£1|§|+2r§|XB(O,1)(§) + (&% XB(0,1)<(£),
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where (€) = /1 + |¢]? is the usual bracket notation. We then define the Sobolev-
type space

®EF) = {f e S ®REF) | f € L REC) and ||flly,, <o},

where * denotes the Fourier transform, and the norm is defined by
2

1, = [ wnns(® |f0)] 2t

E+IE 5o ;
= [ e @l [ e

€1 B(0,1)¢

The norm is clearly derived from the associated inner-product

Fahxe, = [ nns(@F(TE o

Note that since ws . s is even, this inner-product takes values in R when F = R. We
further note that with this notation established, the left side of (1.1) is equivalent
to ||u|\§(5+55.

‘ 2

£

dé.

Although we have motivated the introduction of X s(R%F) with a simple linear
pseudodifferential equation above, similar issues arose in recent work of the second
author and collaborators on the construction of traveling wave solutions to the
free boundary Navier-Stokes [4, 6, 3] and Muskat systems [5]. In these instances,
the space Xf’Q(Rd; F) played an essential role in the construction of solutions, and
we expect the new more general scale to be useful in other PDE applications. In
particular, for uses in nonlinear PDE, the question of when X 5(Rd; F) is an algebra
is of central importance. '

1.2. Anisotropic reduction. Consider the case § < 1. Then for ¢ € R? such that
|€] < 1 we have that
s 5
_ 6l 1 een
- 2r - 2r ’
€] i

and so Xfyé(Rd;IF) = HO-9) (R F), where for A, p € R we define the bihomoge-
neous Sobolev space

ws,r,(;(f)

HONREF) = {f € 7' (RGF) | f € Lino(R% C) and [f]| 00 < o0}
with

s = [P | aes [ | fof ae

B(0,1)¢
This shows that when § < 1 the space X s(R% ) is actually isotropic, and the pair
of parameters (r,0) reduce to the single parameter § — r € R.

Similarly, consider the case d = 1. We then note that for £ € R with |£] < 1 we
have

5 5
_ a1* + 1¢° _ 1€° + 1¢)? = |grin(26-)20-0)
& €1

and so again we reduce to X3 ,(R;F) = HO™"*(R;F) or X3 ;(R;F) = H'""*(R; F)
depending on whether § <1 or § > 1.

ws,r,é(g)
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As such, in this paper we will focus our attention on the more interesting regime
6 > 1 and d > 2, in which case the space Xfﬁ(Rd; IF) is genuinely anisotropic, as we
will see later.

1.3. Main results. Our goal in the present paper is two-fold. First, we aim to
study the functional analytic properties of this generalized scale, including embed-
dings into classical spaces, completeness, and under which parameter regime this
space is an algebra. Second, we will provide some elementary uses of these spaces
in constructing traveling wave solutions to some simple PDEs.

The following theorem summarizes the properties of X! 5(]Rd; F) we will prove in
Sections 2 and 3. Then, in Section 4 we will record the PDE applications.

Theorem 1.1. Let s,7,d € R and d € N with 6 > 1 and d > 2. Then the following
hold.

1. X;f,é(]Rd;F) is a Hilbert space if and only if 1 +§ — 2r < d. In either case, we
have the continuous inclusion Xf,é(Rd;F) — C°(R%;F) + H*(R%F), where
Ce°(R%F) = Nyen CE(RYF) is endowed with its standard Fréchet topology.

2. H*(R%F) — X3 5(REGF) if and only if r < 1.

3. If 146 —2r <d and r <1 then X} ;(R%F) is anisotropic in the sense that
it is not closed under composition with rotations. More precisely, there exist
fe Xfﬁ(Rd;IF)ﬂC(‘)’o(Rd;F) such that foQ ¢ X3 s(R%:F) whenever Q € O(d)
satisfies |Qey - e1| < 1. In particular, the subspace inclusion H*(R%F) C
X3 5(RYF) s strict in this parameter regime.

4. Ifd > 1406 —2r and s > d/2, f € Xf,é(Rd;F) and g € H*(R% F), then
fg € H*(R%F) and there exists a constant C' > 0 such that || fgll ;. <
Clflx, ol

5. Suppose d > 1486 —2r, r <1, and s > d/2. If d > 3, then Xﬁyé(Rd;F) is
an algebra. If d = 2, then X‘;’(;(Rd;IF) is an algebra if and only if 6 < 2. In
particular, in this parameter regime, when Xf’(;(]Rd;IF) is an algebra, (4) says
that H*(R%:F) C X3 5(R%F) is an ideal.

6. If 6§ —r <t <sand f € X3 (RLF), then (~A)2f € HHR%F) and
o1f € H"(R%F) and ||(—A)t/2f||Hs4 +0ifllg-—- S ||fHX;5'

The regions where X[ 5 is an algebra are outlined in Figure 1.
2. Preliminary estimates. What follows are some useful estimates, bounds, and
observations. The first of these is a simple remark.

Remark 2.1. The unit radius employed in ws s is not essential. Indeed, it’s
straightforward to verify that the map

2 25
f,s(Rd;F) S f— </B(O . £1|—£|L§|

yields an equivalent norm for every R > 0.

, 1/2
i) df)

fo ae+ [ g

(0,R)°

The next result crucially characterizes the integrability of the reciprocal of our
multiplier ws , s around the origin.
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FIGURE 1. On the left: For d > 3, we restrict to the anisotropic
region § > 1, to the right of the dashed grey line. We show that
Xﬁ’g(Rd;F) is complete when d > 1 + ¢ — 2r, above the dashed
red line. The classical Sobolev space H® embeds into X5 when
r < 1, below the solid blue line. In this region, we show that Xf’ s
is always an algebra. On the right: We have the same constraints
for d = 2. However, in this case X ; is an algebra if and only if
6 < 2, to the left of the solid green line.

Lemma 2.2. Let 2 < d € N and suppose that r,6 € R with d > 1+ § —2r and

0>1. If R >0, then
/ € I e o 2.1)
B(0,R) 51 + (€]

Proof. We first consider the case when d = 2, in which case we compute:

2m 2
déod
/ B(0,R) §1+|§|26 / / p 0032 o2 cos2(9) ¢ po P VP
1
— 2r—1 I
a /0 P /0 cos?(6) + p20—2 dodp

R
1
_ 2,]]_/ p2r—1 dp
0 p5—1 /1 + p26—2

Since d > 1, we know /1 + p?0=2 < 1 in B(0, R) and so the last integral is finite if
and only if 2r — 9 > —-1=1—d.
Next suppose d > 3. We can write (2.1) in spherical coordinates to find

€)>"
I = — d
/OR & +1¢* ¢

2 27+d—1
/ / /[ (10 a_2)* 20401, . . 9a_s) dédddp,
0

a2 (pcospi—o)? + p?

where d¢ = Hi:_l dy; and g4(e1,--.,0d—3) = Hf:_f sin’(¢;). Integrating over

©1,...,9i—3 and changing variables with u = sin ¢4_2 we have
p2rd—1 io
I =C(d) i —2)7 % dpg_od
/ / p COSQ Pd—2 + p* (800 4-2) pa2ap
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27+d 1
/ / pu2+p251_u) dudp

1
<C(d 2’“+d3/ — dud
= ()/(; p _ ’LL2 +p2572 w p

:20(d)/ pPrd=3 —— arctan ((51) dpx/ pIrrd=o-24,,
0 P P 0

where we used that arctan(p'~%) =< 1 for p < R since § > 1. The latter integral is
finite if and only if d > 1 + § — 2r, giving the desired result. O

Using the previous lemma, we can now discern when H f H _ is bounded by Il s ,
L v,
and show that functions in X ;s are sums of a smooth function and something in
He. ’
Proposition 2.3. Suppose that d > 1+ 6§ — 2r, and let R > 0. Then the following
hold.

1. There exists a constant C = C(R,r,d,d,s) > 0 such that if f € Xﬁ,é(Rd;F),
then

/ o FO] ( /| o A

Moreover, if s > d/2, then HfHLl <C ”f”X(s for some C = C(r,d,d,s) > 0.

2. For f € X:s(RLF) define fir = (fXB(o,R))V and fap = (fXB(o,R)c)v~
Then fir, fonr € Xﬁé(Rd;F), f = fir + fnr, and we have the bounds
”fl’R”X;f(; < ”fHX;ja , S ”f”Xff,g' Moreover, for each k € N

we have that fi r € CF(R%F) with the estimate ||fl,R||C§ < C(k) HflvR”Xf,s’
and fr pH®(R%F) with the estimate < ||fh,R||X55.
3. We have the continuous inclusion Xsé(Rd F) < C°(R%: F) + H* (R F).

) 1/2
f(f)ﬂ d«f) <Clfllxs, - (22

Proof. We begin with the proof of the first item. Clearly, the second term on the
left side of (2.2) is bounded by the term on the right, so we only need to consider the
first. We estimate the first term using Cauchy-Schwarz, Lemma 2.2, and Remark
2.1:

‘§|27" 1/2 52 n |§|25 9 1/2

‘ol d Ty ;

/B(O,R) ‘f(g)‘ = </B(0 R) & +|£|25 E) </B(O,R) [ ‘f(f)‘ 5)
<Clflxs, -

Additionally, if s > d/2, we can estimate

/B(O,R)c

1/2

. 1

1/2
x ( / o (1) ]f<£>]2d5> < Clflx;,
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Combining this with (2.2) gives the second inequality and completes the proof of the
first item. The second and third items follows easily from the first and the standard
properties of band-limited functions whose Fourier transforms are in L'. O

We now characterize when X} 5(R% F) is complete.
Theorem 2.4. Xf’(;(Rd; F) is a Hilbert space if and only if 1+ — 2r < d.

Proof. First suppose that r > # and th?t {fi}ren is Cauchy in X7 5. Write p
for the measure w; . 5(£)d¢ on RY. Then {fx}ren is Cauchy in Li(Rd;F), and so
there exists some F' € Li(Rd;IF) such that f, — F in Li(Rd;IF) as k — oo. We

now aim to verify that F' € ./ N L] . Employing Cauchy-Schwarz and Lemma 2.2,
we have that

) 1/2 1/2
JLE ( / ) ( / |F|2ws,ms> 1l < oo
B(0,1) B(0,1) Ws,r,6 B(0,1) "

or in other words F'X (g ) € L'. Since w; ,5(£) = (€)*® for |¢] > 1, it’s also clear
that FXpo,py € 7' N Ll .. Hence, F = FXpo,r) + FXBo,r) €€ L'N Ll ., and
so we may define f = F € ./(R%TF). It’s then clear that f € Xﬁ,é(Rd;F) and
fr = [ in X} 5, which shows that X 5(R%F) is complete.

Conversely, suppose X! s(R%LF) is complete when § > 1. Consider the norm
[l s X35(REE) - [0.00) defined by £, = |Fxpnlzs + ] . which

is well-defined thanks to the fact that f € L _ for any f € X5 Note that

loc

( ﬁvé(Rd;F); [Ill,) is also complete. Then the identity I : ( ﬁ,é(Rd;F); I, —
(X5 5(R%TF); ||HX5) is obviously a continuous surjective linear map, so by the

open mapping theorem || f||, < || f]| x- g In particular, we have that ||fXB(o,1) Il <
1£llx,.

Let 0 < € < % and define the rectangle R. = [¢°/2,3¢° /2] x [/2,3¢/2) ", Let
F = Xg.u_g.- Then for § € R. U—R. we have || < g9 and |¢] < ¢, and so

2 25
-~ 1&” + I€] _ e 4% _ 22007
|§|2T 527“ :

Ws,r,8 (g)

Straightforward computations show that

IF|l,. = 2|R.| < 4148 ond HFHX — /‘RE|€2(57T) ~ £(B30+d—2r—1)/2
8

Combining the preceding analysis, we have
T Pl S |1F |, = 0T

Sending ¢ — 0, this implies (30 +d —2r — 1) /2 < d — 1 4+ § giving us the bound
d>14 0 — 2r as desired. O

We can also characterize exactly when the Schwartz functions . and the classical
Sobolev space H* embeds into X7 ;. We first prove a useful lemma.

Lemma 2.5. Letr,d € R with § > 1. Then

& l” + 1g*

J = T
Boy €

dé < oo
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if and only if r < %, where B(0,1) is the unit ball in R?.

: _ 1&? _ |¢]2°
Proof. We write J; = fB(O i d¢ and Jp, = fB(o N d¢, so we have that

J = Ji + Jo. We know that Jo is finite if and only if 2(§ — ) > —d, so it only
remains to analyze J;. By symmetry, note for any 1 < k < d we have that

135 - &I’ l4&
Jy = / 5 d¢, and hence dJ = / o= de = / 5= de.
B(0,1) [€] =1/ B0 [ B(0,1) [¢]
The latter is finite if and only if 2—2r > —d. Since § > 1, this is the more restrictive
condition, and so we have that J < oo if and only if r < 2J2r—d. O

We now investigate how the Schwartz functions relate to our spaces.

Theorem 2.6. For all s,7 € R and § > 1, we have .7 (R%; F) ﬂXﬁ,é(Rd;F) is dense

in X3 5(R%F). Furthermore, we have that . (R%F) C X2 ;(RYGF) if and only if
246 ’

r< 5.

Proof. Let f € Xf75(Rd) and € > 0. For 0 < R; < Ry < oo, define the annulus

A(R1,R2) = B(0, Ry) \ B[0, R1]. By the monotone convergence theorem, we may

find 0 < Ry < Ry < oo such that

52

/A(Rl,RQ)c We,r,5(§) ‘f(f)r d¢ < T

Pick nonnegative and radially symmetric ¢ € C°(R?) with supp(¢) C B(0,1) and
Jga® =1. Then for 0 <n < £, define the function F, € C=°(R?) by

B 1o (e
&@%:A%Rﬁww(77>f@d&

An elementary computation shows that supp(Fy,) € A(R1/2,R1 + R») and that
F,(€) = F,(—¢), which then implies F}, € .#(R?) is real-valued. Within the annulus
A(R1/2, Ri+R>) we know that w; , s(€) =< 1, and so the usual theory of mollification
supplies us with some 0 < 79 < R1/2 such that

2

[ wuns©lft0 - B d
A(R1,R2)

2

3
+ s (€ | (O € < 5
A(R1/2,R1+R2)\A(R1,Rz)

Thus if we define f,, = F,, then f, € X;f,(;(]Rd) N .#(RY) and supp (fno) C
A(R1/2, Ry + R»). Putting everything together, we see

2
1 = fuoll%,
‘2

F&) = Fu ()

dg

anns(®) |FO] ae+ [ 00 (6)

/14(R1/2,R1+R2)c (R1/27R1+R2)

62

< Z +/ ws,r,é(f)
A(Rl,Rz)

o
A(R1/2,R1+R2)\A(R1,R2)

F©) = Fp ()] dg

‘ 2

ws,r,(s(g) fA(g) - Fno(g)r

dg
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52
< Z +/ ws,r,é(g)
A(R1,R2)

+ 2/
A(R1/2,R1+R2)\A(R1,R2)

‘ 2

F&) = Fy (&)

d¢

We s (€) | Fyo (€)1 d

NE g2 g2 g
+2/ wars@ O] de< S 425 125 <
A(R1,Ra)¢ 4 8 4
Since e was arbitrary, we have shown that . (R%:F) N X7 ;(R%F) is dense in
Xf’é(Rd;F).

For the second assertion, first suppose that .7 (R%;F) C X s(REGTF). Then pick

some radial ¢ € .7 (R%;R) such that ¢ = 1 on B(0,1) and ¢ > 0 everywhere. Then
pE Xﬁ,é(Rd;F), so we see that

2 26
12 |&1]” + [€]
o> gl > [ ELEE ac
° oy [
By Lemma 2.5, we must have r < %.

Conversely, suppose r < 282, Let ¢ € .Z(R%F) and let ¢y = (X))~ and
$1 = (@XB(OJ)C)V. We then see

. €2+€25
|%ﬁ%=/()wazﬂmﬁ'%<w
i B(0,1

by Lemma 2.5. Since ¢ € . C H*, we clearly have
ey, = [ 1@ I dg <o,
" B(0,1)¢
Finally, we know that ¢ € . C LllOC7 thus ¢ € X7 ; as desired. O

Next, we investigate when standard L2-based Sobolev spaces embed into the
anisotropic ones.

Theorem 2.7. H*(R%F) — Xﬁyé(Rd;F) if and only if r < 1.

Proof. Suppose initially that » < 1. Then for |¢| < 1 we can use the fact that § > 1
to bound

)
& + ¢ - 5 2
ura(€) = SLE S 6P 16 S e S 1
From this we readily deduce the continuous embedding H*(R%; F) — X7 s(REGT).

Conversely, suppose we have the continuous embedding H*(R%; F) — X b s(RETF),
and write C' > 0 for the embedding constant. Restricting to f € .#(R%;F) such

that supp(f) € B(0,1), we find that

5% + |£|26 R 2 2 2s
R A d<C
le>wW Fe)] ae < LQJQ

and since this must hold for all such f, we deduce the pointwise bound
26
&+ €]
2
€17
In turn, this implies that £2 < &27 for |¢;| < 1, and hence r < 1. O

N 2
f©)| a,

<C?)* <1
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However, in this parameter regime this space is genuinely bigger than H*(R%; F),
and also anisotropic - in general, if f € X7 ;, it is not true that f o Q ¢ X, s for
every nonidentity linear isometry Q.

Theorem 2.8. Suppose that r < 1, andd > § —2r+1. Let Q € O(d) = {M €
R¥*4 | MTM = I} be such that |Qey - e1| < 1. Then there exists f € X3 (R4 F)N
Cs°(R%:F) \ H¥(R% F) such that foQ ¢ Xf’é(Rd;]F).

Proof. Let Q € O(d) with |Qe;y - e1| < 1. For 1 < k < dset o = 1if Qej-e; > 0 and
or = —1if Qey - e, < 0. For e > 0 set R. = 0y [¢°/2,32°/2] x HZ:Q or [e/2,3¢/2].

By construction, for each 0 < ¢ < BQW and £ € R. U(—R.) C B(0,1) we have that

|QT§ : €1| =

d
Z k€ ler - Qe
=1

d
> &k (ex - Qex)
k=1

d d
= I&kller - Qer| < €% fer- Qer| + Y lex - Qerle =< ¢,
k=1 k=2
where the last equivalence follows because § > 1 and we can find some j > 2
with |e; - Qe1| > 0. Furthermore, again because § > 1, we have that |{] =< ¢ for
¢ € R. U(—R.). We thus readily deduce the equivalences

2 26 26 26
_ 131 |€‘|“2T§| _ € 6‘;5 o 20-2r g9

) 5
o lQre P +1QTe” Qe e+ g 2 +e?
Ws,r,5(Q 6) - ‘QT£|2T - ‘£|2T - 627' =€

Ws,r,8 (g)

for £ € R. U(—R;).
Set F. = Xg, + X_g. and note F.(—§) = F.(§) = F.(£). The previous calcula-
tions then show that

L L
T, Rd
IFellpe = [ Fell2e = [Re| 4 |- Re| = €5+, amd

1Fo0 QI = [ werale) IP@0)P dg
y Rd

- /d (’US,T,&(QTO |FE(§)|2 d§ < g2 2redtd=l = glm2rtotd,
R

Let @ = 401220 qpq fix K € N with 45 > 3Y4, Set F =Y, 4°FF, , and
note that supp(F,-«) N supp(Fy-;) are disjoint for j,k > K and j # k. Now we
compute various norms of F'. First, using that d > —2r+1 weseea—0—-d+1=
L2’5_27’<1—(5<O,amdso

(o]

LGRS

k=K

4ak47k(6+d71) _ Z 43‘172‘5’177” < Z 4k(176) < .
k=K k=K

The definition of « requires that 2a — 3 —2r +d — 1 =2 — 2§ < 0; thus

oo oo

/d ws7r76(€) ‘F(£)|2 dé— — Z 42ak47k(3672r+d71) — Z 4]@(2725) < 00.
R

k=K k=K
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Because r < 1 we have that 2a« —d —d + 1 =2 — 2r > 0; thus

oo

1|72 = / |F(©)) de = Z groky—k(d=1) _ §7 g2 oo
k=K
Finally, « is defined so that 2o —1+2r —d — 6 = 0, and so
> (o)
. = 2 o 20k y—k(1—2r+6+d) _ o
1o Qlf, = [ orsld) PQOF dex Y s “Siex

With this, set f = F. The previous calculations imply that f € XTS’(;(]R(Z) but
f¢ LR C H(RY) and foQ ¢ Xf’é(Rd). F is compactly supported and in L*,
so we conclude that f € C§°(R%). O

We close out this section with identifying when derivatives of X ; functions lie
in classical Sobolev spaces. We give some examples of the uses of these estimates
in the last section.

Proposition 2.9. Suppose that 1—r < s, d—r <7, ando < s and f € Xf’(;(]Rd;IE‘).
Suppose ¢ : R? — [0,00) is measurable and satisfies (€) < |&|” for |€] < 1 and
(&) =< [€]7 for €] = 1. We then have ¢ (V=A) f € H*(R%:F) and 01 f €
H~"(R%F) and

® f A0 = S Ml xs -
| (v=2)1,..- y

In particular, when § —r < 7 <'s, we have that H(—A)T/2fHHS,T +loufllg-r S

1 lxe

Proof. We note since §—r < 7 that |¢*” < €207 < w, ,.5(€) for [€] < 1. Thus we
have (14 [£]°)*=7 |€]77 < wars(€) for [€] < 1. Clearly we have (14 [€]%)5~ [€]*7 <

1€ = wy4.5(€) for |€] > 1, thus we see

G PR RN G
# o Al fo] acs [ennst @] ae =ik,

~ 2
f©)| a

The inclusion and estimate for 0, f follow similarly after we observe that 1 —r <'s

implies that E‘lgr €[*® for |¢] > 1. The final claim follows by setting o(¢) =

€17 B

3. When is X5 an algebra? We now proceed to our goal of characterizing when
X5 is an algebra Our approach is modeled on the Littlewood-Paley techniques
used in [2]. We will also look to leverage that H*® is an algebra when s > d/2. The
first step shows that for f € X ; and g € H*, we know that fg € H*.

Theorem 3.1. Assume that d > 1+ —2r and s > d/2. Then the following hold.
1. There exists a constant C > 0 such that if f € X:”(;(Rd;IE‘) and g € H*(R%TF),
then fg € H*(R%F) and

1follire < Clf e, ol
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2. For 1 <k €N the map

k k
HREF) x [[ X5sREF) 3 (g, f1,---5 fe) = g [ [ f5 € HY(REF)
j=1

j=1
is a bounded (k + 1)—linear map.

Proof. The second item follows easily from the first, so we only prove the first.
Fix f € Xﬁ75(Rd;]F) and write f = fi + fn, = fi1 + fr,1 as in Theorem 2.3 with
R = 1. Since f, € H*(R%F) and s > d/2, we have that frg € H*(R%F) and
1fngllgre S Nl gl e S 11N xs ol

On the other hand, since f; € CF(R%F) for every k € N, we may readily
deduce that multiplication by f, defines a bounded linear map from H*(R%;TF)
to itself for every k € N, and [figlp S [illeg lelme < 1l Il for
every o € HF(R%TF). Interpolating, we conclude that multiplication by f; de-
fines a bounded linear map from H!(RY;F) to itself for every 0 < ¢ € R and
1fiellge < CW) N Fllxs , llell g for every ¢ € H!(R%F), where C(t) > 0 is a con-

stant that depends on ¢ but is independent of f or ¢. Picking t = s then shows
that fug € H*(R%F) and | figll . < 1711 x, Il =

We now mark some notation for convenience.

Definition 3.2. We define the measurable function p,. s : R? — [0, 00) by trs(E) =
1 HEE  hich is asymptotically equivalent to Vws r5(€) for [] < 1. We then have

10, = || (Broxzo + 0 Xs00:) ] -

We then define the trilinear functional I : (L°(R%; [0, oo}))3 — [0, 0] by

e = [ e FOGUHE + ) de dn
where LO(R%; [0, 00]) denotes the nonnegative measurable functions on R9.

In fact, the next lemma shows I induces a bounded trilinear functional over
(Lz(Rd;F))3 as long as I is bounded over (L?*(R%; 0, oo]))g.
Lemma 3.3. Suppose there exists a constant C > 0 such that
I(F,G,H) < C||F| 2 |Gl 2 | HI| -

for all F,G,H € L*(R%[0,00]). Then I induces a bounded trilinear map over
(L2(R%,TF))? into F satisfying the same formula, and there exists some constant
C' > 0 such that

[I(F, G H)| < C'||F| 2 |Gl 2 [ HI| 2

Proof. The proof for this is identical to Lemma 2.7 in [3] . O

Using this lemma, we can identify a crucial link between X7 ; being an algebra
and the boundedness of I.

Proposition 3.4. Assume thatd > 1+ —2r, r <1, and s > d/2. There exists a
constant C' > 0 such that

Ifollx:, < Clflxs, lgllxs, for all f,g € X 5(RSF)
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if and only if there exists a constant C' > 0 such that

_ MT,5(£ +n)
I(FG H) = /3(0,1)2 ,U'r,é(f)/u'r,é(n)F<§)G(n)H(§ ) dedny

S ClF 2 Gl 2 [1HI| 2
for all F,G, H € L*(R%[0, o0]).
Proof. First, suppose that I is bounded and let f,g € X§75(Rd;F). We then set

fo = (XB(0,1)J?)V € C°(R%GF) and f; = (XB(O,l)cJ?)V: f=fo € H*(R:F). We
define gg and g; similarly for g. We then have

fg9 = fogo + fog1 + figo + fig:.

By Theorem 2.7, Proposition 3.1, and the fact that H*(R%; F) is an algebra, when-
ever i + j > 1 we have that f;g; is supported in B(0,1)¢, is in H* < X 5 and

1figillxe , = 1Figillie S Wfillxe Ngslles, < W lxe, gl -

Thus, it only remains to analyze fygg. Theorem 2.3 shows that fo and gg are
integrable and supported in B(0, 1), so Young’s inequality implies foxgo € L' (R TF)
and supp(fo % go) C B(0,2). Let ¢ € .#(R%F). We employ Tonelli’s theorem to
calculate

/]R s (fo * ﬁo) ®
/Rd/ 5 (€ + 1) fo(€)go(n)p(€ +n) A€ dn
_ /B N D Fo(©)d0 (M (€ + 1) AE Ay = T(jir.s for firs o 2)-

By the assumed boundedness of I we have

[ st 5 |
R4

By the density of .# in L?, we see that the left hand side extends to define a bounded
linear functional on L? obeying the same estimate, and so the Riesz representation
theorem tells us that p, 5(fo * o) € L*(R%) and

11, gl , 2 |

The last bound followed because fo * go is compactly supported. We thus have the
desired result.

Conversely, assume that Xﬁ’g(Rd) is an algebra. Let F, G, H € L*(R%; [0, ]) and
note that I(F,G, H) = I(F'Xp(0,1), GXp(0,1), H) due to the domain of the integral,
and the fact that we have (X p(o,1)F/tr,s) and (X p(o,1)G/kr,s) are both in X ;.
Thus by Cauchy-Schwarz and the boundedness of products in X ; we have

/Rd fhr.s ((XB(O,l)F//Jné) * (XB(o,l)G/Mr,a)) o
‘ o ((XB(OJ)F/““S) * (XB(0,1)G/MT,5)) HL2 IH||

= H (XB(O,l)F/,ur,é)V(XB(O,I)G/Nrﬁ)V HXﬁ,a [ H || 12

||, Wirsdollza Iolle S 1L, lgllxe , Illga

.5 (fo *QO)HL2 = ‘Mr,afogoHL2 = fogollx: ,

I(F,G,H)

IN
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S H (XB(O,l)F/MT',(S)VHXS H (XB(O,l)G//-LT,&)VHXS [ H| 2
7,68 7,8
SUIFN L G L2 1 H I -
By Lemma 3.3, we then have the desired result. O

Thus, to analyze when X[ ; is a Banach algebra, it suffices to analyze the bound-

edness of the functional I. To do this, we first split the domain B(0,1)? into two
sets to get control of I in each independently.

Definition 3.5. We partition B(0,1)? into two sets Ey and E; as follows:
Eo={(&n) € BO,1)* | [¢] +[nl < 3€| - [nl[} and

By ={(&n) € B(0,1)* | [€]+ Inl > 3][¢] = Inll}-

From this we write I as a sum of two operators Iy and Iy, where for ¢ € {0,1} we
have

[ HeeEtm)
= /E tos @)y () QG H(E +m) dedn.

We now analyze the boundedness of Iy and I; in turn.

Proposition 3.6. (£,7) € By < (£,n) € B(0,1)? and & |n| < |¢] < 2|n|. Addition-
ally, (§,m) € Ex implies |§ +n| < 3|n].

Proof. The proof for this can be found in Lemma 2.10 of [3]. O
Lemma 3.7. If (§,1) € Eo, then pur.s(§+n) S pr,5(§) + pr,5(n)-

Proof. We note since § —r > 0, we have that (|¢| + |7[)°" < €]°"" 4 |n|°~". Using
this, the triangle inequality, and the estimate from the definition of Ey, we have

IS/ s—r _ |&] + |m] 5—r
prs(+m) = Z— +1E+n"" < S + ([§] 4+ |n])
€+ 1] 1€l = Inll
‘£1| + |771| o—r o—r
S HETT T < s () + prs(n). O
(1€ +ml)
Proposition 3.8. Io(F,G, H) < [|1/prsll g2 [1F ]l 2 Gl 2 | H | -
Proof. The proof is identical to that of Proposition 2.12 in [3]. O

3.1. Splitting F; further. We now aim to get more control of I;. To accomplish
this, we localize further in Fj.

Definition 3.9. Suppose we have m,n € N. Then we define
Epn={Eneb | 27m ' <|¢|<27™and 27" < €+ 9| <2772}

Similar to before, we also define

wrs(E+ 1)
B Hor5(§)1r,5(0) ()G () H( )

In addition, we define the annulus A = B[0,4] \ B(0,1/2) and set

F”L B FXQ?m?lA’ G"L = GX2*7YL—1A7 Hn = HXQ*?LA

for F,G, H € L*(R%, [0, c]).
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Lemma 3.10. We have

D G Em,n:El and i i Im,n:II-

m=0n=m m=0n=m
Proof. The proof is identical to that of Lemma 2.14 in [3]. O

We now come to our first major bound. For large d, we will see that in fact we
can get control of Iy, thus proving that X7 ; is an algebra. For small dimension, we
will need to do some further splitting.

Proposition 3.11. Letr < 1. Let F,G, H € L*(R%,[0,]). The following hold.
1. If d > 46 — 2r — 2, then
L(F,.G H)SFll Gl [[H 2 -
2. If d< 40 — 2r — 2, then

SO S LualF.GH) S IF] e Gl e IH] o

m=0n>km

2(6—r
for k= 1—(r+d}2'

Proof. Let m,n € N and n > m. Then we have
frs(§ + 1)
Tyn(F, G, H) < I,(Fyn, G, H, =/ Mrds TN
( ) < & ) By Hrs(8) s ()

The right hand integral vanishes except when 2772 < |¢[, |n] < 27™F1 and
2771 <€+ | <272 Thus we have the estimates

Fon(&)Gm(n)Hp(§ +n) d&dn.

5
Mr,é(f) _ |£1||£+|T|€| > |£|5—r Z 27m(577‘),

and similarly s, s(n) = 270~ Furthermore, we get

J g -n —nd
2 2
frs(E+m) = bt ml + |§_+77| < |§+n|+|§r+m S TT <27,
€+l €+l 2-n

Thus combining the estimates, we get

Mr,é(f-f—??) < 9—n(l-r) _ 22m(5—7-)_n(1_7.)7
5 (E) iy 5(m) ~ 2-2m(0=)

and so we find
nn(F.G.H) S 227007000 [ (G () (€ + 1) d€
Ey
For ¢ € Z%, let Q, be the closed cube centered at 27 "¢ of side length 27" and Q,
denote the closed cube centered at —27"¢ of side length 9-27". We note then that

max | xq, | 2 = [Ixqull - =27

Note if (&,1) € Ey and € € Qy, then
In+27" < In+€l+|-¢+27m <272 427 = (9/2)27",

and so 7 € Qy. Thus we compute

/E o (€) G () Ho (€ + 17) dE
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S K;Zd /]3(0,1)2 (FmXg,) (€) <GmXQZ) (mMHp (& +n) dE dn

< egi /B(O,l) (FmXQe) (5) HGmXQZ

< ||Hn||L2 HXQOHLQ Z HFnXQZHL?
LeZa

L Hall e de

GmXQZ 2

1/2
< 9—nd/2 HH"||L2 /Rd |Fm(€)|2 Z XqQ, (§) d§

Lezd
1/2

2 —-n
<\ [ 16 Y Xamdn | S22 Bl (Gl |l
R tezd
Synthesizing these, we obtain
I, n(F7 G, H) < 22m(67r)7n(17r+d/2)'

Now we break to cases based on dimension. If d > 46 — 2r — 2, then we simply
bound

> Lna(F,G H)

m>0n>m
<0 > T D E L (Gl o (1 Ha o
m>0n>m
) 00 1/2 o 1/2
< Z 92m(6—r) ||Fm||L2 ”Gm”L2 (Z 2—n(2—27-+d)> (/ |H|2 Z X2—"A>
m=0 n=m n=m
S—r—1—
SIHI e Y 2D E 2 1Gmll 2 S IF Iz 1G ) e I1H] 2 -
m=0
On the other hand, if d < 4§ — 2r — 2, then we split further: for k = 12_(5_:;}2 an
analogous argument shows that
(oo}
Do D LuwFGH)S|H| e Yy 2m @2tk B o |Gl 2
m>0n>km m=0
SIEN L Gl g2 [ H I > - O

We now prove our final bound when d is small.

Proposition 3.12. Suppose that r < 1 and d < 46 — 2r — 2, and if d = 2 further
suppose that § < 2. For F,G,H € L*(R?,[0,00]) we have the estimate

S0 > Inn(F.GH) SIF| e IG] 2 1 H o (3.1)
m>0m<n<km
where k = 13(f;;}2.

Proof. We define
d
Rpx(a) =27"[=a/2+p,a/2+p] x 27" [[[~0/2 + mk-1,0/2 + mia].
k=2
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For { € R, »(1) and n € Ry (1), we get
27 (M1 +op—1 — 1/2) < &+ <27 (M1 + op—1 — 1/2).
Combining with the fact that |€ + 7| < 272 we get
|Th—1 4+ ok—1] < |Tr—1 4+ 0ok—1 — 2" (& +ni)| + |27 (& +n1)| < 9/2.

In particular, n € R, _-(9). Combined with £ € R, (1), we get { +1 € Rp44,0(10).
In what follows, we define the functions

Frpr=FnXg, 1) Gmar=GCmXg, _ (o) and Hypq=HnXpg . (10)-
We then see

Z Z / MT‘; §+77 )F ,p,rr(g)ém,q,ﬂ(n)ﬁn,p,Q(g+n)d£dn'

P,q€EZL t,0€Zd~1 'uré ,Uré

Now if € € R, (1) N 2™ 1A, then 2°™ |&] > |p| — 1/2, so

g —om —om
il el S 20 B+ 2
|§| ~ 2_mr ~

prs(§) =

and similarly
prs(n) 22707 gl

Then because £ + 1 € Ry140(10) N27" 1A, we get
&+ m|+ €+ nl°
€ +nl"
— 2nr—m6(2m6 |£1 + 771| + 26(m—n)) 5 2m~—m6(|p‘ + |Q|)
Putting everything together, we get

M5 (5 + 77) < 2nr+m(5727‘) < 1 + 1 >
Mr,ﬁ(&)ﬂr,ﬁ(n) ~ maX(L |p|) max(l, |q|)

1 1
— 2nr+m(5—2r) <~ + ~> ,

where we set p = max(1, |p|) and § = max(1,]|g|). Then for fixed m,n € N, we see

27nr7m(572r)]—m’n(F’ G, H)

1 1\ - - -
>/ - <ﬁ+d) ey oy G 1) an

P,qEL weZd—1

& +n) = S 2" (€ +m| +27")

IN

11 ~ :
< ) PO, 0O [Gonae | [ ],
%G:Zﬂ'gd:—l/B(O,l) <P q for () Tl Tl
1 . ~
S Z Z <~ ~> HFm,pﬂr 12 m,q,T 2 n,p,q L2
P,qE€EL weZI—1 4
dm— n ” a ]
= 2o 55 5 (54 ) el lGmasl o fineal .

p,qEL weZd—1
Firstly, we handle the sum over 7 € Z%~!. Indeed, we find for each p,q € Z

> [Fune

Tezd—1

m,q,m

L2 L2
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1/2 1/2
2 2
=S VLD DI V) I LD D P
R meZd—1 R TELI—1
< HFmXUWEZm Rmu)‘ 12 1CmXU, o Rq,,,<9)] e
Now we consider the sums over p, q. First we consider the term containing %. We
find
LIF G H
> ol H mXU,, a1 Rwu)‘ 12 | mXU, cnan Rq,4<9>’ 12 mm‘ 12
P,qEL
1
S Gl 2 ZE HI*_'mXUﬂeZd_1 Rp,,,(1)’ L HnXUqEz Rﬁq,o(m)’ 12
PEZ
1/2
1
< WGl lHallis | 2 | [Py, U, s
PEZL
S N Enllp2 1Gmll 2 1Hnll o -
Analogously, we can compute the sum containing % to find
Lig G 128
Z EH mXU,,ezdfl anr(l)’ L2 mXUnezdfl Rq,,,,(g)‘ L2 P L2
P,q€EL
S IEmll2 1Gmll 2 [ Hnll 22 -
Combining the previous bounds, we then arrive at the estimate
_dy1 5
L (B, G, H) S 2" 08020 | o Gl |l (32)

We now split to two cases. In the first assume that r — % + % < 0, looking at the
inner sum in (3.1) we bound using the first term to find

km km 1/2
3" LG H) S 2(5720) (Z 2”‘”“”) LE | (| ol 2 G 2

n=m n=m

< 2 (G205 (=243)) | H|l o | Fol 2 1G] 2

Now summing over m, this converges if and only if % < 7 which is true by
hypothesis.

For the other case, we have r — % + % > (0. In particular, since we have already
restricted 7 < 1 this implies that d = 2. Plugging in d = 2 in (3.2), we again analyze
the inner sum of (3.1), this time bounding using the last term to see

km km 1/2
N L F G H) S 2m(57) (Z 2"@“2“)) H | 12 | Foll 2 |Gonl 2

n=m n=m

< 2m((g—2r)+k(r—1/2)) ||H||L2 ||Fm||L2 ”G"LHL?

< o (3222 2) 1 L ([ Fol o (G2 -

Again summing over m, this converges when

(g—2r>+2(26__:)(7“—1/2)<0@(2_7") (g—27“>+(5—7”)(27°—1)<0
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) é dd
<:>5—2T—%+2r2—|—z—rd—|—26r—2r2—26+2r+6—r§0<:>6§2,
the latter condition of which is assumed to hold by hypothesis. O

In fact, the assumption that 6 < 2 when d = 2 was necessary, as the next
proposition shows.

Proposition 3.13. Suppose that d = 2, r > 0, and § > 2. Then there does not
ezist a constant C' > 0 such that

prs (€ + 1)
M STV peG(nH ¢ dn < C|F||,» |G, || H]| ;o
/13(0,1)2 s ) ira (1) OGMHE+n) dEdn < C||F|l 2 |Gl 2 [1H|

for every F,G, H € L*(R?).
Proof. Define the sets
Q= Buo((27™,277),27m072),
Q' = Boo((27™,—27™),27™"2) and
P=Q+Q = B((27°,0),27m™1).
We then note for £ € @, we have that |£] < 27™, and so

g —md —md
2 2
,ur,é(g) _ |§1|§+|r|§| S 2;:17” 5 2—m(577~).

and similarly . s5(n) < 27" when n € Q'. We also note ¢ + 7 € P when
£€Q,neq@, and so ¢ < |n| <27 and |¢ +n| < 27™°. Thus we see

g —md —mé?
€0 +m| +[E+n" (2770 +2 —md(1—
r T 2 22 (1-r),
pr5(§ + 1) €+ 7] 5 —mar

Finally, we note that
/J(P) — 2—2m§

=
e
X
=
<
X

and so
- 2—3m5

Ixoll 2 Ixoll 2 Ixpll

On the other hand, we can compute

J] o et g € (X ) d

— M > —m(é(l—r)—Q((S_T)) ,
- //QXQ’ fr,6 (&) por,5(1) dedn 22 @)@’

> 2—m(46+6(1—r)—2(6—r)) )

In particular, if the linear functional was bounded, we could find some C' > 0 such

that
2—m(45+(5(1—r)—2(5—r)—36) <C

for all m € N. However, since § > 2 and r > 0 we know that
404+0(1—7)—2(0—1r)—36=r(2-9) <0,
and so making m arbitrarily large, we contradict the inequality. O
We can now state our main result.

Theorem 3.14. Supposed > 1+06—2r,r <1, s> d/2. Ifd > 3, then X;f’a(]Rd;IF)
is an algebra. If d =2, then X7 ; is an algebra if and only if & < 2.
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Proof. Thed > 3 and d =2, < 2 cases follows by combining Propositions 3.4, 3.8,
3.11, 3.12. For d = 2, § > 2, we note that we must have r > 1/2 > 0 due to our
other restrictions, and so Proposition 3.13 shows that X 5 is not an algebra in this
case. O

4. PDE applications. In this section we give a couple short and simple applica-
tions of the X s(R%TF) spaces in constructing traveling wave solutions to PDEs.
Recall the motivating pseudodifferential equation equation from the introduction:
0w+ (—A)%/2 = F, which reduces to —ydu+(—A)%2u = f after the traveling wave
reformulation. We assume here that + # 0, which corresponds to actual traveling
wave solutions and not stationary solutions. Here the operator (—A)%/2 comes from
a homogeneous function on the Fourier side, namely R? > ¢ +— (27 |¢])° € [0, 00).

In fact, the spaces Xf75(Rd;IE‘) are designed to be more flexible by handling
more general symbols with a manifest “bihomogeneity,” meaning possibly different
homogeneous behavior for small and large frequencies. To describe this, we let
¢ : R? — [0,00) be a continuous function such that

_Jeole for gl <1
*"@“{cl €] for [¢[>1 4

for §,0 € R satisfying § > 1 and o € R. We write ¢(D) for the pseudodifferential

operator acting via 4,0/(\D)u(§) = @(&€)au(¢). As two particular examples: (1) the
function (&) = (27 |€])? gives o(D) = (—A)%/2 from the introduction, and satisfies
0 = o; (2) the function ¢(&) = [£|tanh(|¢]) is of this type with § = 2 and o = 1;
this particular ¢ arose in the analysis in [5] and is related to the classic gravity-
wave dispersion relation. We can then consider the modification of the previous
pseudodifferential equation: dyv+p(D)u = F', which reduces to —yo u+p(D)u = f
after the traveling wave reformulation. Our first result establishes solvability of this
linear problem.

Theorem 4.1. Let s,7,0,0 € R satisfy 1 <d,d>14+6—2r, r>0, 0 < s, and
1—7 <s. Suppose p : RT — [0,00) is a continuous function satisfying (4.1). Let
B,v € R\{0}. Then the map —701 + Bp(D) : X;57 (R F) — (H* N H™")(R%F)
is well-defined and induces a bounded linear isombrphism. In particular, for each
fe(HNHT)RELTF) there exists a unique u € X:}'”(Rd;lﬁ‘) solving

—y01u + Bo(D)u = f. (4.2)

Proof. Since r > 0, we have § — r < §, and by hypothesis we have ¢ < s, so
Proposition 2.9 shows that —yd; and ¢ (D) are both bounded linear operators
from Xf"g”(]Rd; F) to (H* N H~")(R%F). Consider, then, the problem of finding u
satisfying (4.2) for a given f. Applying the Fourier transform, we see that this is
equivalent to
[—y2rigy + Be()]al€) = F(¢) for ae. € € RY.

If a solutions u exists with f = 0, then since the term in brackets on the left only
vanishes at most on a null set, we must have that & = 0 a.e., and hence u = 0.
Thus, the linear map is injective. We also learn from this that it is surjective, as
we may use this equation to define 4 in terms of f , and then

2 28
2 / [&” + €™ la(e))? de +/ ) EPCF) Ja(e) | de

Boy € B(0,1)
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_ / 1
By €7
s+o

which shows that u indeed belongs to X 7% (R%;F). Hence, the linear map is an
isomorphism. O

2s

I3

A 2 9
F©)| de = 11—

fof ae+ [

B(0,1)¢

Next we give an extremely simple but instructive example of how the isomorphism
from the previous theorem can be used to solve nonlinear variants of the above
traveling wave problem. Note that the u we obtain from this theorem gives a
traveling wave solution by setting v(z,t) = u(x — vyert).

Theorem 4.2. Suppose ¢ : R? — [0,00) is a continuous function satisfying (4.1).
Let s,r, 6,0 € R satisfyl <6,d>14+6-2r,r>0,0 <s,1—r <s, and s+o > d/2.
If d = 2, further suppose that 6 < 2. Suppose that R > 0 is such that the ball
B(0,R) C T is the ball of convergence for two analytic functions ¢,v : B(0,R) = F
such that ((0) = ¢(0) = 0 and ¢'(0) = a € R\{0} and ¢'(0) = g € R\{0}. Then
there exists an open set @ #U C (H*NH~")(R%F) such that for each f € U there
exrists a unique u € Xf"g“ (R F) satisfying

=70 [C(u)] + p(D)¢p(u) = f.

Moreover, the induced map U > f+— u € Xj"g‘s(Rd;F) is analytic.

Proof. We begin by noting that since s + ¢ > d/2, Proposition 2.3 shows that
XPE(RYGF) — CY(R4GF). Theorem 3.14 shows that X T7(R%F) is an alge-
br&i, but it does not show that it is a Banach algebra. ﬂowever, by rescaling
the norm on Xfig"(Rd;]F) by a fixed constant we may assume without loss of
generality that ||uv||X:§a < ||U||X:«§o‘ Hv||Xﬁ§a. We may then select an open set

0eVvcC Xf"go(Rd;F) such that if u € V then u(R?) C B(0, R). Thus, (ou and ou
are well-defined for v € V, and this induces analytic maps (, % : V — Xf:g" (R%; ).

Proposition 2.9 and the above show that the map N : V — (H® N H~")(R% F)
defined by N(u) = —v01¢(u) + ¢(D)(u) is well-defined and analytic, and by
construction N(0) = 0 and its derivatives satisfies DN (0)v = —ay01v + Sp(D)v.
This linear map is an isomorphism thanks to Theorem 4.1, and so we may apply the
inverse function theorem (see, for instance, Theorem 10.2.5 in [1]) to conclude. O

By a similar argument, we can also prove the following variant, which is a non-
linear “divergence form” version of the problem from the introduction.

Theorem 4.3. Let 0 <s,r € R and 1 < € R satisfyd > 1+ —2r and s > d/2.
If d = 2, further suppose that 6 < 2. Suppose that R > 0 is such that the ball
B(0,R) C T is the ball of convergence for two analytic functions ¢, : B(O,R) — F
such that ¢(0) = ¢ (0) = 0, ¢'(0) = a € R\{0}, and ¢'(0) = 8 € R\{0}. Then there
exists an open set @ #U C (H*NH")(R%F) such that for each f € U there exists
a unique u € ij;‘s (R F) satisfying

01 [C(w)] = (=A)*2 div[(1 + ¢(u)) V] = f.
Moreover, the induced map U > f+— u € Xf;‘s(Rd;F) is analytic.
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