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Abstract. We introduce a scale of anisotropic Sobolev spaces defined through
a three-parameter family of Fourier multipliers and study their functional ana-

lytic properties. These spaces arise naturally in PDE when studying traveling
wave solutions, and we give some simple applications of the spaces in this
direction.

1. Introduction.

1.1. Setup and background. Consider the problem of finding a solution v : Rd×
[0,∞) → F ∈ {R,C} to the equation ∂tv+(−∆)¶/2v = F for some 1 < ¶ ∈ R. When
¶ = 2, this is the standard heat equation. Let us assume that F : Rd × [0,∞) → F

is in traveling wave form, namely F (x, t) = f(x − µte1) for some f : Rd → F and
traveling wave speed µ ∈ R\{0}. If we make the traveling wave ansatz v(x, t) =
u(x − µte1), then we reduce to the PDE −µ∂1u + (−∆)¶/2u = f in Rd, which
rewrites on the Fourier side as

[−2ÃiµÀ1 + (2Ã |À|)¶]û(À) = f̂(À).

Clearly, this determines û in terms of f̂ , and if we assume that f ∈ Hs(Rd;F), then
we have the estimate∫

Rd

(|À1|2 + |À|2¶) ïÀð2s |û(À)|2 dÀ ≍
∫

Rd

ïÀð2s
∣∣∣f̂(À)

∣∣∣
2

dÀ = ∥f∥2Hs . (1.1)

One can show (and we will do so later) that the space defined by the square-norm on
the left is complete and consists of locally integrable functions if and only if d > 1+¶.
Thus, in small dimension it is natural to seek a refinement of this estimate (which
requires more information on f , of course) that overcomes this issue and leads to
an isomorphism of Banach spaces for the operator −µ∂1 + (−∆)¶/2.

To this end, we write S (Rd;F) for the Schwartz space of F−valued functions and
S ′(Rd;F) for the corresponding space of F−valued tempered distributions. Given
the parameters s, r, ¶ ∈ R we define the measurable function És,r,¶ : Rd → [0,∞)
via

És,r,¶(À) =
|À1|2 + |À|2¶

|À|2r
ÇB(0,1)(À) + ïÀð2s ÇB(0,1)c(À),
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where ïÀð =
√
1 + |À|2 is the usual bracket notation. We then define the Sobolev-

type space

Xs
r,¶(R

d;F) =
{
f ∈ S

′(Rd;F)
∣∣∣ f̂ ∈ L1

loc(R
d;C) and ∥f∥Xs

r,¶
<∞

}
,

where ·̂ denotes the Fourier transform, and the norm is defined by

∥f∥2Xs
r,¶

=

∫

Rd

És,r,¶(À)
∣∣∣f̂(À)

∣∣∣
2

dÀ

=

∫

B(0,1)

À21 + |À|2¶

|À|2r
∣∣∣f̂(À)

∣∣∣
2

dÀ +

∫

B(0,1)c
ïÀð2s

∣∣∣f̂(À)
∣∣∣
2

dÀ.

The norm is clearly derived from the associated inner-product

ïf, gðXs
r,¶

=

∫

Rd

És,r,¶(À)f̂(À)ĝ(À) dÀ.

Note that since És,r,¶ is even, this inner-product takes values in R when F = R. We
further note that with this notation established, the left side of (1.1) is equivalent

to ∥u∥2Xs+¶
0,¶

.

Although we have motivated the introduction of Xs
r,¶(R

d;F) with a simple linear
pseudodifferential equation above, similar issues arose in recent work of the second
author and collaborators on the construction of traveling wave solutions to the
free boundary Navier-Stokes [4, 6, 3] and Muskat systems [5]. In these instances,
the space Xs

1,2(R
d;F) played an essential role in the construction of solutions, and

we expect the new more general scale to be useful in other PDE applications. In
particular, for uses in nonlinear PDE, the question of when Xs

r,¶(R
d;F) is an algebra

is of central importance.

1.2. Anisotropic reduction. Consider the case ¶ f 1. Then for À ∈ Rd such that
|À| f 1 we have that

És,r,¶(À) =
|À1|2 + |À|2¶

|À|2r
≍ |À|2¶

|À|2r
= |À|2(¶−r)

,

and so Xs
r,¶(R

d;F) = Ḣ(¶−r,s)(Rd;F), where for ¼, Ä ∈ R we define the bihomoge-
neous Sobolev space

Ḣ(¼,Ä)(Rd;F) =
{
f ∈ S

′(Rd;F)
∣∣∣ f̂ ∈ L1

loc(R
d;C) and ∥f∥Ḣ(¼,Ä) <∞

}

with

∥f∥2Ḣ(¼,Ä) =

∫

B(0,1)

|À|2¼
∣∣∣f̂(À)

∣∣∣
2

dÀ +

∫

B(0,1)c
|À|2Ä

∣∣∣f̂(À)
∣∣∣
2

dÀ.

This shows that when ¶ f 1 the space Xs
r,¶(R

d;F) is actually isotropic, and the pair

of parameters (r, ¶) reduce to the single parameter ¶ − r ∈ R.
Similarly, consider the case d = 1. We then note that for À ∈ R with |À| < 1 we

have

És,r,¶(À) =
|À1|2 + |À|2¶

|À|2r
=

|À|2 + |À|2¶

|À|2r
≍ |À|min{2(¶−r),2(1−r)}

and so again we reduce to Xs
r,¶(R;F) = Ḣ¶−r,s(R;F) or Xs

r,¶(R;F) = Ḣ1−r,s(R;F)
depending on whether ¶ f 1 or ¶ > 1.
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As such, in this paper we will focus our attention on the more interesting regime
¶ > 1 and d g 2, in which case the space Xs

r,¶(R
d;F) is genuinely anisotropic, as we

will see later.

1.3. Main results. Our goal in the present paper is two-fold. First, we aim to
study the functional analytic properties of this generalized scale, including embed-
dings into classical spaces, completeness, and under which parameter regime this
space is an algebra. Second, we will provide some elementary uses of these spaces
in constructing traveling wave solutions to some simple PDEs.

The following theorem summarizes the properties of Xs
r,¶(R

d;F) we will prove in
Sections 2 and 3. Then, in Section 4 we will record the PDE applications.

Theorem 1.1. Let s, r, ¶ ∈ R and d ∈ N with ¶ > 1 and d g 2. Then the following
hold.

1. Xs
r,¶(R

d;F) is a Hilbert space if and only if 1 + ¶ − 2r < d. In either case, we

have the continuous inclusion Xs
r,¶(R

d;F) ↪→ C∞
0 (Rd;F) + Hs(Rd;F), where

C∞
0 (Rd;F) =

⋂
k∈N

Ck
0 (R

d;F) is endowed with its standard Fréchet topology.

2. Hs(Rd;F) ↪→ Xs
r,¶(R

d;F) if and only if r f 1.

3. If 1 + ¶ − 2r < d and r f 1 then Xs
r,¶(R

d;F) is anisotropic in the sense that
it is not closed under composition with rotations. More precisely, there exist
f ∈ Xs

r,¶(R
d;F)∩C∞

0 (Rd;F) such that f ◦Q /∈ Xs
r,¶(R

d;F) whenever Q ∈ O(d)

satisfies |Qe1 · e1| < 1. In particular, the subspace inclusion Hs(Rd;F) ¢
Xs

r,¶(R
d;F) is strict in this parameter regime.

4. If d > 1 + ¶ − 2r and s > d/2, f ∈ Xs
r,¶(R

d;F) and g ∈ Hs(Rd;F ), then

fg ∈ Hs(Rd;F) and there exists a constant C > 0 such that ∥fg∥Hs f
C ∥f∥Xs

r,¶
∥g∥Hs

5. Suppose d > 1 + ¶ − 2r, r f 1, and s > d/2. If d g 3, then Xs
r,¶(R

d;F) is

an algebra. If d = 2, then Xs
r,¶(R

d;F) is an algebra if and only if ¶ f 2. In

particular, in this parameter regime, when Xs
r,¶(R

d;F) is an algebra, (4) says

that Hs(Rd;F) ¢ Xs
r,¶(R

d;F) is an ideal.

6. If ¶ − r f t f s and f ∈ Xs
r,¶(R

d;F), then (−∆)t/2f ∈ Hs−t(Rd;F) and

∂1f ∈ Ḣ−r(Rd;F) and
∥∥(−∆)t/2f

∥∥
Hs−t + ∥∂1f∥Ḣ−r ≲ ∥f∥Xs

r,¶
.

The regions where Xs
r,¶ is an algebra are outlined in Figure 1.

2. Preliminary estimates. What follows are some useful estimates, bounds, and
observations. The first of these is a simple remark.

Remark 2.1. The unit radius employed in És,r,¶ is not essential. Indeed, it’s
straightforward to verify that the map

Xs
r,¶(R

d;F) ∋ f 7→
(∫

B(0,R)

À21 + |À|2¶

|À|2r
∣∣∣f̂(À)

∣∣∣
2

dÀ +

∫

B(0,R)c
ïÀð2s

∣∣∣f̂(À)
∣∣∣
2

dÀ

)1/2

yields an equivalent norm for every R > 0.

The next result crucially characterizes the integrability of the reciprocal of our
multiplier És,r,¶ around the origin.
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Figure 1. On the left: For d g 3, we restrict to the anisotropic
region ¶ > 1, to the right of the dashed grey line. We show that
Xs

r,¶(R
d;F) is complete when d > 1 + ¶ − 2r, above the dashed

red line. The classical Sobolev space Hs embeds into Xs
r,¶ when

r f 1, below the solid blue line. In this region, we show that Xs
r,¶

is always an algebra. On the right: We have the same constraints
for d = 2. However, in this case Xs

r,¶ is an algebra if and only if
¶ f 2, to the left of the solid green line.

Lemma 2.2. Let 2 f d ∈ N and suppose that r, ¶ ∈ R with d > 1 + ¶ − 2r and
¶ > 1. If R > 0, then

∫

B(0,R)

|À|2r

À21 + |À|2¶
dÀ <∞. (2.1)

Proof. We first consider the case when d = 2, in which case we compute:

∫

B(0,R)

|À|2r

À21 + |À|2¶
dÀ =

∫ R

0

∫ 2Ã

0

Ä2r

Ä2 cos2(¹) + Ä2¶
Ä d¹dÄ

=

∫ R

0

Ä2r−1

∫ 2Ã

0

1

cos2(¹) + Ä2¶−2
d¹dÄ

= 2Ã

∫ R

0

Ä2r−1 1

Ä¶−1
√
1 + Ä2¶−2

dÄ.

Since ¶ > 1, we know
√
1 + Ä2¶−2 ≍ 1 in B(0, R) and so the last integral is finite if

and only if 2r − ¶ > −1 = 1− d.
Next suppose d g 3. We can write (2.1) in spherical coordinates to find

I :=

∫

B(0,R)

|À|2r

À21 + |À|2¶
dÀ

=

∫ R

0

∫ 2Ã

0

∫

[0,Ã]d−2

Ä2r+d−1

(Ä cosφd−2)2 + Ä2¶
(sinφd−2)

d−2gd(φ1, . . . , φd−3) dϕd¹dÄ,

where dϕ =
∏d−2

i=1 dφi and gd(φ1, . . . , φd−3) =
∏d−3

i=1 sini(ϕi). Integrating over
φ1, . . . , φd−3 and changing variables with u = sinϕd−2 we have

I = C(d)

∫ R

0

∫ Ã

0

Ä2r+d−1

Ä2 cos2 φd−2 + Ä2¶
(sinφd−2)

d−2 dφd−2dÄ
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= C(d)

∫ R

0

∫ 1

−1

Ä2r+d−1

Ä2u2 + Ä2¶
(1− u2)

d−3
2 dudÄ

f C(d)

∫ R

0

Ä2r+d−3

∫ 1

−1

1

u2 + Ä2¶−2
dudÄ

= 2C(d)

∫ R

0

Ä2r+d−3 1

Ä¶−1
arctan

(
1

Ä¶−1

)
dÄ ≍

∫ R

0

Ä2r+d−¶−2 dÄ,

where we used that arctan(Ä1−¶) ≍ 1 for Ä < R since ¶ > 1. The latter integral is
finite if and only if d > 1 + ¶ − 2r, giving the desired result.

Using the previous lemma, we can now discern when
∥∥∥f̂
∥∥∥
L1

is bounded by ∥f∥Xs
r,¶

and show that functions in Xs
r,¶ are sums of a smooth function and something in

Hs.

Proposition 2.3. Suppose that d > 1 + ¶ − 2r, and let R > 0. Then the following
hold.

1. There exists a constant C = C(R, r, d, ¶, s) > 0 such that if f ∈ Xs
r,¶(R

d;F),
then

∫

B(0,R)

∣∣∣f̂(À)
∣∣∣ dÀ +

(∫

B(0,R)c
(1 + |À|2)s

∣∣∣f̂(À)
∣∣∣
2

dÀ

)1/2

f C ∥f∥Xs
r,¶
. (2.2)

Moreover, if s > d/2, then
∥∥∥f̂
∥∥∥
L1

f C ∥f∥Xs
r,¶

for some C = C(r, d, ¶, s) > 0.

2. For f ∈ Xs
r,¶(R

d;F) define fl,R = (f̂ÇB(0,R))
( and fh,R = (f̂ÇB(0,R)c)

(.

Then fl,R, fh,R ∈ Xs
r,¶(R

d;F), f = fl,R + fh,R, and we have the bounds

∥fl,R∥Xs
r,¶

f ∥f∥Xs
r,¶

and ∥fh,R∥Xs
r,¶

f ∥f∥Xs
r,¶
. Moreover, for each k ∈ N

we have that fl,R ∈ Ck
b (R

d;F) with the estimate ∥fl,R∥Ck
b
f C(k) ∥fl,R∥Xs

r,¶
,

and fh,RH
s(Rd;F) with the estimate ∥fh,R∥Hs ≲ ∥fh,R∥Xs

r,¶
.

3. We have the continuous inclusion Xs
r,¶(R

d;F) ↪→ C∞
0 (Rd;F) +Hs(Rd;F).

Proof. We begin with the proof of the first item. Clearly, the second term on the
left side of (2.2) is bounded by the term on the right, so we only need to consider the
first. We estimate the first term using Cauchy-Schwarz, Lemma 2.2, and Remark
2.1:

∫

B(0,R)

∣∣∣f̂(À)
∣∣∣ dÀ f

(∫

B(0,R)

|À|2r

À21 + |À|2¶
dÀ

)1/2(∫

B(0,R)

À21 + |À|2¶

|À|2r
∣∣∣f̂(À)

∣∣∣
2

dÀ

)1/2

f C ∥f∥Xs
r,¶
.

Additionally, if s > d/2, we can estimate

∫

B(0,R)c

∣∣∣f̂(À)
∣∣∣ dÀ f



∫

B(0,R)c

1(
1 + |À|2

)s dÀ




1/2

×
(∫

B(0,R)c

(
1 + |À|2

)s ∣∣∣f̂(À)
∣∣∣
2

dÀ

)1/2

f C ∥f∥Xs
r,¶
.
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Combining this with (2.2) gives the second inequality and completes the proof of the
first item. The second and third items follows easily from the first and the standard
properties of band-limited functions whose Fourier transforms are in L1.

We now characterize when Xs
r,¶(R

d;F) is complete.

Theorem 2.4. Xs
r,¶(R

d;F) is a Hilbert space if and only if 1 + ¶ − 2r < d.

Proof. First suppose that r > 1+¶−d
2 and that {fk}k∈N is Cauchy in Xs

r,¶. Write µ

for the measure És,r,¶(À)dÀ on Rd. Then {f̂k}k∈N is Cauchy in L2
µ(R

d;F), and so

there exists some F ∈ L2
µ(R

d;F) such that f̂k → F in L2
µ(R

d;F) as k → ∞. We

now aim to verify that F ∈ S ′∩L1
loc. Employing Cauchy-Schwarz and Lemma 2.2,

we have that
∫

B(0,1)

|F | f
(∫

B(0,1)

1

És,r,¶

)1/2(∫

B(0,1)

|F |2 És,r,¶

)1/2

≲ ∥F∥L2
µ
<∞,

or in other words FÇB(0,R) ∈ L1. Since És,r,¶(À) = ïÀð2s for |À| g 1, it’s also clear

that FÇB(0,R)c ∈ S ′ ∩ L1
loc. Hence, F = FÇB(0,R) + FÇB(0,R)c ∈∈ S ′ ∩ L1

loc, and

so we may define f = F̌ ∈ S ′(Rd;F). It’s then clear that f ∈ Xs
r,¶(R

d;F) and

fk → f in Xs
r,¶, which shows that Xs

r,¶(R
d;F) is complete.

Conversely, suppose Xs
r,¶(R

d;F) is complete when ¶ g 1. Consider the norm

∥·∥∗ : Xs
r,¶(R

d;F) → [0,∞) defined by ∥f∥∗ = ∥f̂ÇB(0,1)∥L1 + ∥f∥Xs
r,¶
, which

is well-defined thanks to the fact that f̂ ∈ L1
loc for any f ∈ Xs

r,¶. Note that

(Xs
r,¶(R

d;F); ∥·∥∗) is also complete. Then the identity I : (Xs
r,¶(R

d;F); ∥·∥∗) →
(Xs

r,¶(R
d;F); ∥·∥Xs

r,¶
) is obviously a continuous surjective linear map, so by the

open mapping theorem ∥f∥∗ ≲ ∥f∥Xs
r,¶
. In particular, we have that ∥f̂ÇB(0,1)∥L1 ≲

∥f∥Xs
r,¶
.

Let 0 < ε < 1
2 and define the rectangle Rε = [ε¶/2, 3ε¶/2] × [ε/2, 3ε/2]

d−1
. Let

F = ÇRε∪−Rε
. Then for À ∈ Rε ∪ −Rε we have |À1| ≍ ε¶ and |À| ≍ ε, and so

És,r,¶(À) ≍
|À1|2 + |À|2¶

|À|2r
≍ ε2¶ + ε2¶

ε2r
≍ ε2(¶−r).

Straightforward computations show that

∥F∥L1 = 2 |Rε| ≍ εd−1+¶ and
∥∥F̌
∥∥
Xs

r,¶

≍
√

|Rε| ε2(¶−r) ≍ ε(3¶+d−2r−1)/2.

Combining the preceding analysis, we have

εd−1+¶ ≍ ∥F∥L1 ≲
∥∥F̌
∥∥
Xs

r,¶

≍ ε(3¶+d−2r−1)/2.

Sending ε → 0, this implies (3¶ + d− 2r − 1) /2 < d − 1 + ¶ giving us the bound
d > 1 + ¶ − 2r as desired.

We can also characterize exactly when the Schwartz functions S and the classical
Sobolev space Hs embeds into Xs

r,¶. We first prove a useful lemma.

Lemma 2.5. Let r, ¶ ∈ R with ¶ g 1. Then

J =

∫

B(0,1)

|À1|2 + |À|2¶

|À|2r
dÀ <∞
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if and only if r < 2+d
2 , where B(0, 1) is the unit ball in Rd.

Proof. We write J1 =
∫
B(0,1)

|À1|2
|À|2r dÀ and J2 =

∫
B(0,1)

|À|2¶
|À|2r dÀ, so we have that

J = J1 + J2. We know that J2 is finite if and only if 2(¶ − r) > −d, so it only
remains to analyze J1. By symmetry, note for any 1 f k f d we have that

J1 =

∫

B(0,1)

|Àk|2

|À|2r
dÀ, and hence dJ =

d∑

k=1

∫

B(0,1)

|Àk|2

|À|2r
dÀ =

∫

B(0,1)

|À|2

|À|2r
dÀ.

The latter is finite if and only if 2−2r > −d. Since ¶ g 1, this is the more restrictive
condition, and so we have that J <∞ if and only if r < 2+d

2 .

We now investigate how the Schwartz functions relate to our spaces.

Theorem 2.6. For all s, r ∈ R and ¶ g 1, we have S (Rd;F)∩Xs
r,¶(R

d;F) is dense

in Xs
r,¶(R

d;F). Furthermore, we have that S (Rd;F) ¦ Xs
r,¶(R

d;F) if and only if

r < 2+¶
2 .

Proof. Let f ∈ Xs
r,¶(R

d) and ε > 0. For 0 < R1 < R2 < ∞, define the annulus

A(R1, R2) = B(0, R2) \ B[0, R1]. By the monotone convergence theorem, we may
find 0 < R1 < R2 <∞ such that

∫

A(R1,R2)c
És,r,¶(À)

∣∣∣f̂(À)
∣∣∣
2

dÀ <
ε2

4
.

Pick nonnegative and radially symmetric φ ∈ C∞
c (Rd) with supp(φ) ¦ B(0, 1) and∫

Rd φ = 1. Then for 0 < ¸ < R
4 , define the function F¸ ∈ C∞

c (Rd) by

F¸(À) =

∫

A(R1,R2)

1

¸d
φ

(
À − z

¸

)
f̂(z) dz.

An elementary computation shows that supp(F¸) ¦ A(R1/2, R1 + R2) and that

F¸(À) = F¸(−À), which then implies F̌¸ ∈ S (Rd) is real-valued. Within the annulus
A(R1/2, R1+R2) we know that És,r,¶(À) ≍ 1, and so the usual theory of mollification
supplies us with some 0 < ¸0 < R1/2 such that

∫

A(R1,R2)

És,r,¶(À)
∣∣∣f̂(À)− F¸0

(À)
∣∣∣
2

dÀ

+

∫

A(R1/2,R1+R2)\A(R1,R2)

És,r,¶(À) |F¸0
(À)|2 dÀ <

ε2

8
.

Thus if we define f¸0
= F̌¸0

, then f¸0
∈ Xs

r,¶(R
d) ∩ S (Rd) and supp

(
f̂¸0

)
¦

A(R1/2, R1 +R2). Putting everything together, we see

∥f − f¸0∥
2
Xs

r,¶

=

∫

A(R1/2,R1+R2)c
És,r,¶(À)

∣∣∣f̂(À)
∣∣∣
2

dÀ+

∫

A(R1/2,R1+R2)

És,r,¶(À)
∣∣∣f̂(À)−F¸0(À)

∣∣∣
2

dÀ

<
ε2

4
+

∫

A(R1,R2)

És,r,¶(À)
∣∣∣f̂(À)− F¸0

(À)
∣∣∣
2

dÀ

+

∫

A(R1/2,R1+R2)\A(R1,R2)

És,r,¶(À)
∣∣∣f̂(À)− F¸0

(À)
∣∣∣
2

dÀ
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<
ε2

4
+

∫

A(R1,R2)

És,r,¶(À)
∣∣∣f̂(À)− F¸0

(À)
∣∣∣
2

dÀ

+ 2

∫

A(R1/2,R1+R2)\A(R1,R2)

És,r,¶(À) |F¸0
(À)|2 dÀ

+ 2

∫

A(R1,R2)c
És,r,¶(À)

∣∣∣f̂(À)
∣∣∣
2

dÀ <
ε2

4
+ 2

ε2

8
+ 2

ε2

4
< ε2.

Since ε was arbitrary, we have shown that S (Rd;F) ∩ Xs
r,¶(R

d;F) is dense in

Xs
r,¶(R

d;F).

For the second assertion, first suppose that S (Rd;F) ¦ Xs
r,¶(R

d;F). Then pick

some radial φ ∈ S (Rd;R) such that φ = 1 on B(0, 1) and φ g 0 everywhere. Then
φ̌ ∈ Xs

r,¶(R
d;F), so we see that

∞ > ∥φ̌∥2Xs
r,¶

g
∫

B(0,1)

|À1|2 + |À|2¶

|À|2r
dÀ.

By Lemma 2.5, we must have r < 2+d
2 .

Conversely, suppose r < 2+d
2 . Let φ ∈ S (Rd;F) and let φ0 = (φ̂ÇB(0,1)) ˇ and

φ1 = (φ̂ÇB(0,1)c) .̌ We then see

∥φ0∥2Xs
r,¶

=

∫

B(0,1)

|φ̂(À)|2 |À1|2 + |À|2¶

|À|2r
dÀ <∞

by Lemma 2.5. Since φ ∈ S ¦ Hs, we clearly have

∥φ1∥2Xs
r,¶

=

∫

B(0,1)c
|φ̂(À)|2 |À|2s dÀ <∞.

Finally, we know that φ̂ ∈ S ¦ L1
loc, thus φ ∈ Xs

r,¶ as desired.

Next, we investigate when standard L2-based Sobolev spaces embed into the
anisotropic ones.

Theorem 2.7. Hs(Rd;F) ↪→ Xs
r,¶(R

d;F) if and only if r f 1.

Proof. Suppose initially that r f 1. Then for |À| f 1 we can use the fact that ¶ > 1
to bound

És,r,¶(À) =
À21 + |À|2¶

|À|2r
≲ |À|2−2r

+ |À|2¶−2r
≲ |À|2−2r

≲ 1.

From this we readily deduce the continuous embedding Hs(Rd;F) ↪→ Xs
r,¶(R

d;F).

Conversely, suppose we have the continuous embeddingHs(Rd;F) ↪→ Xs
r,¶(R

d;F),

and write C g 0 for the embedding constant. Restricting to f ∈ S (Rd;F) such

that supp(f̂) ¢ B(0, 1), we find that
∫

B(0,1)

À21 + |À|2¶

|À|2r
∣∣∣f̂(À)

∣∣∣
2

dÀ f C2

∫

B(0,1)

ïÀð2s
∣∣∣f̂(À)

∣∣∣
2

dÀ,

and since this must hold for all such f , we deduce the pointwise bound

À21 + |À|2¶

|À|2r
f C2 ïÀð2s ≲ 1.

In turn, this implies that À21 ≲ À2r1 for |À1| < 1, and hence r f 1.
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However, in this parameter regime this space is genuinely bigger than Hs(Rd;F),
and also anisotropic - in general, if f ∈ Xs

r,¶, it is not true that f ◦ Q /∈ Xs
r,¶ for

every nonidentity linear isometry Q.

Theorem 2.8. Suppose that r f 1, and d > ¶ − 2r + 1. Let Q ∈ O(d) = {M ∈
Rd×d | M⊺M = I} be such that |Qe1 · e1| < 1. Then there exists f ∈ Xs

r,¶(R
d;F)∩

C∞
0 (Rd;F) \Hs(Rd;F) such that f ◦Q /∈ Xs

r,¶(R
d;F).

Proof. Let Q ∈ O(d) with |Qe1 · e1| < 1. For 1 f k f d set Ãk = 1 if Qe1 ·ek g 0 and

Ãk = −1 if Qe1 · ek < 0. For ε > 0 set Rε = Ã1
[
ε¶/2, 3ε¶/2

]
×∏d

k=2 Ãk [ε/2, 3ε/2].

By construction, for each 0 < ε < 2
3
√
d
and À ∈ Rε ∪ (−Rε) ¦ B(0, 1) we have that

|Q⊺À · e1| =
∣∣∣∣∣

d∑

k=1

Àk (ek ·Qe1)
∣∣∣∣∣ =

∣∣∣∣∣
d∑

k=1

ÃkÀk |ek ·Qe1|
∣∣∣∣∣

=

d∑

k=1

|Àk| |ek ·Qe1| ≍ ε¶ |e1 ·Qe1|+
d∑

k=2

|ek ·Qe1| ε ≍ ε,

where the last equivalence follows because ¶ > 1 and we can find some j g 2
with |ej ·Qe1| > 0. Furthermore, again because ¶ > 1, we have that |À| ≍ ε for
À ∈ Rε ∪ (−Rε). We thus readily deduce the equivalences

És,r,¶(À) =
|À1|2 + |À|2¶

|À|2r
≍ ε2¶ + ε2¶

ε2r
≍ ε2¶−2r and

És,r,¶(Q
⊺À) =

|Q⊺À · e1|2 + |Q⊺À|2¶

|Q⊺À|2r
=

|Q⊺À · e1|2 + |À|2¶

|À|2r
≍ ε2 + ε2¶

ε2r
≍ ε2−2r

for À ∈ Rε ∪ (−Rε).

Set Fε = ÇRε
+ Ç−Rε

and note Fε(−À) = Fε(À) = Fε(À). The previous calcula-
tions then show that

∥Fε∥2Xs
r,¶

=

∫

Rd

És,r,¶(À) |Fε(À)|2 dÀ ≍ ε2¶−2rε¶+d−1 = ε3¶−2r+d−1,

∥Fε∥L1 = ∥Fε∥2L2 = |Rε|+ |−Rε| ≍ ε¶+d−1, and

∥Fε ◦Q∥2Xs
r,¶

=

∫

Rd

És,r,¶(À) |Fε(QÀ)|2 dÀ

=

∫

Rd

És,r,¶(Q
⊺À) |Fε(À)|2 dÀ ≍ ε2−2rε¶+d−1 = ε1−2r+¶+d.

Let ³ = d+¶+1−2r
2 and fix K ∈ N with 4K > 3

√
d

2 . Set F =
∑

kgK 4³kF4−k and

note that supp(F4−k) ∩ supp(F4−j ) are disjoint for j, k g K and j ̸= k. Now we
compute various norms of F . First, using that d > ¶− 2r+1 we see ³− ¶−d+1 =
3−d−¶−2r

2 < 1− ¶ < 0, and so

∫

Rd

|F (À)| dÀ ≍
∞∑

k=K

4³k4−k(¶+d−1) =

∞∑

k=K

4
3d−¶−1

2 −r <

∞∑

k=K

4k(1−¶) <∞.

The definition of ³ requires that 2³− 3¶ − 2r + d− 1 = 2− 2¶ < 0; thus
∫

Rd

És,r,¶(À) |F (À)|2 dÀ ≍
∞∑

k=K

42³k4−k(3¶−2r+d−1) =

∞∑

k=K

4k(2−2¶) <∞.
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Because r f 1 we have that 2³− ¶ − d+ 1 = 2− 2r g 0; thus

∥F∥2L2 =

∫

Rd

|F (À)|2 dÀ ≍
∞∑

k=K

42³k4−k(¶+d−1) =

∞∑

k=K

42−2r = ∞.

Finally, ³ is defined so that 2³− 1 + 2r − d− ¶ = 0, and so

∥F ◦Q∥2Xs
r,¶

=

∫

Rd

És,r,¶(À) |F (QÀ)|2 dÀ ≍
∞∑

k=K

42³k4−k(1−2r+¶+d) =

∞∑

k=K

1 = ∞.

With this, set f = F̌ . The previous calculations imply that f ∈ Xs
r,¶(R

d) but

f /∈ L2(Rd) ¦ Hs(Rd) and f ◦Q /∈ Xs
r,¶(R

d). F is compactly supported and in L1,

so we conclude that f ∈ C∞
0 (Rd).

We close out this section with identifying when derivatives of Xs
r,¶ functions lie

in classical Sobolev spaces. We give some examples of the uses of these estimates
in the last section.

Proposition 2.9. Suppose that 1−r f s, ¶−r f Ä , and Ã f s and f ∈ Xs
r,¶(R

d;F).

Suppose φ : Rd → [0,∞) is measurable and satisfies φ(À) ≍ |À|Ä for |À| f 1 and
φ(À) ≍ |À|Ã for |À| g 1. We then have φ

(√
−∆

)
f ∈ Hs−Ä (Rd;F) and ∂1f ∈

Ḣ−r(Rd;F) and
∥∥∥φ
(√

−∆
)
f
∥∥∥
Hs−Ä

+ ∥∂1f∥Ḣ−r ≲ ∥f∥Xs
r,¶
.

In particular, when ¶ − r f Ä f s, we have that
∥∥(−∆)Ä/2f

∥∥
Hs−Ä + ∥∂1f∥Ḣ−r ≲

∥f∥Xs
r,¶
.

Proof. We note since ¶−r f Ä that |À|2Ä f |À|2(¶−r) f És,r,¶(À) for |À| f 1. Thus we

have (1 + |À|2)s−Ã |À|2Ä ≲ És,r,¶(À) for |À| f 1. Clearly we have (1 + |À|2)s−Ã |À|2Ã ≲

|À|2s ≍ Ér,s,¶(À) for |À| g 1, thus we see

∥∥∥φ
(√

−∆
)
f
∥∥∥
2

Hs−t
≍
∫

B(0,1)

(1 + |À|2)s−Ã |À|2Ä
∣∣∣f̂(À)

∣∣∣
2

dÀ

+

∫

B(0,1)c
(1 + |À|2)s−Ã |À|2Ã

∣∣∣f̂(À)
∣∣∣
2

dÀ ≲

∫
És,r,¶(À)

∣∣∣f̂(À)
∣∣∣
2

dÀ = ∥f∥2Xs
r,¶
.

The inclusion and estimate for ∂1f follow similarly after we observe that 1− r f s

implies that |À1|2
|À|2r f |À|2s for |À| g 1. The final claim follows by setting φ(À) =

|À|Ä .

3. When is Xs
r,¶ an algebra? We now proceed to our goal of characterizing when

Xs
r,¶ is an algebra. Our approach is modeled on the Littlewood-Paley techniques

used in [2]. We will also look to leverage that Hs is an algebra when s > d/2. The
first step shows that for f ∈ Xs

r,¶ and g ∈ Hs, we know that fg ∈ Hs.

Theorem 3.1. Assume that d > 1 + ¶ − 2r and s > d/2. Then the following hold.

1. There exists a constant C > 0 such that if f ∈ Xs
r,¶(R

d;F) and g ∈ Hs(Rd;F),

then fg ∈ Hs(Rd;F) and

∥fg∥Hs f C ∥f∥Xs
r,¶

∥g∥Hs .
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2. For 1 f k ∈ N the map

Hs(Rd;F)×
k∏

j=1

Xs
r,¶(R

d;F) ∋ (g, f1, . . . , fk) 7→ g
k∏

j=1

fj ∈ Hs(Rd;F)

is a bounded (k + 1)−linear map.

Proof. The second item follows easily from the first, so we only prove the first.
Fix f ∈ Xs

r,¶(R
d;F) and write f = fl + fh = fl,1 + fh,1 as in Theorem 2.3 with

R = 1. Since fh ∈ Hs(Rd;F) and s > d/2, we have that fhg ∈ Hs(Rd;F) and
∥fhg∥Hs ≲ ∥fh∥Hs ∥g∥Hs ≲ ∥f∥Xs

r,¶
∥g∥Hs .

On the other hand, since fl ∈ Ck
b (R

d;F) for every k ∈ N, we may readily
deduce that multiplication by fl defines a bounded linear map from Hk(Rd;F)
to itself for every k ∈ N, and ∥flφ∥Hk ≲ ∥fl∥Ck

b
∥φ∥Hk ≲ ∥f∥Xs

r,¶
∥φ∥Hk for

every φ ∈ Hk(Rd;F). Interpolating, we conclude that multiplication by fl de-
fines a bounded linear map from Ht(Rd;F) to itself for every 0 f t ∈ R and
∥flφ∥Ht f C(t) ∥f∥Xs

r,¶
∥φ∥Hk for every φ ∈ Ht(Rd;F), where C(t) g 0 is a con-

stant that depends on t but is independent of f or φ. Picking t = s then shows
that flg ∈ Hs(Rd;F) and ∥flg∥Hs ≲ ∥f∥Xs

r,¶
∥g∥Hs .

We now mark some notation for convenience.

Definition 3.2. We define the measurable function µr,¶ : Rd → [0,∞) by µr,¶(À) =
|À1|+|À|¶

|À|r , which is asymptotically equivalent to
√
És,r,¶(À) for |À| f 1. We then have

that

∥f∥Xs
r,¶

≍
∥∥∥
(
µr,¶ÇB(0,1) + ï·ðsÇB(0,1)c

)
f̂
∥∥∥
L2
.

We then define the trilinear functional I :
(
L0(Rd; [0,∞])

)3 → [0,∞] by

I(F,G,H) =

∫

B(0,1)2

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
F (À)G(¸)H(À + ¸) dÀ d¸,

where L0(Rd; [0,∞]) denotes the nonnegative measurable functions on Rd.

In fact, the next lemma shows I induces a bounded trilinear functional over(
L2(Rd;F)

)3
as long as I is bounded over

(
L2(Rd; [0,∞])

)3
.

Lemma 3.3. Suppose there exists a constant C > 0 such that

I(F,G,H) f C ∥F∥L2 ∥G∥L2 ∥H∥L2

for all F,G,H ∈ L2(Rd; [0,∞]). Then I induces a bounded trilinear map over
(L2(Rd;F))3 into F satisfying the same formula, and there exists some constant
C ′ > 0 such that

|I(F,G,H)| f C ′ ∥F∥L2 ∥G∥L2 ∥H∥L2

Proof. The proof for this is identical to Lemma 2.7 in [3] .

Using this lemma, we can identify a crucial link between Xs
r,¶ being an algebra

and the boundedness of I.

Proposition 3.4. Assume that d > 1 + ¶ − 2r, r f 1, and s > d/2. There exists a
constant C > 0 such that

∥fg∥Xs
r,¶

f C ∥f∥Xs
r,¶

∥g∥Xs
r,¶

for all f, g ∈ Xs
r,¶(R

d;F)
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if and only if there exists a constant C > 0 such that

I(F,G,H) =

∫

B(0,1)2

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
F (À)G(¸)H(À + ¸) dÀd¸

f C ∥F∥L2 ∥G∥L2 ∥H∥L2

for all F,G,H ∈ L2(Rd; [0,∞]).

Proof. First, suppose that I is bounded and let f, g ∈ Xs
r,¶(R

d;F). We then set

f0 = (ÇB(0,1)f̂ )̌ ∈ C∞
0 (Rd;F) and f1 = (ÇB(0,1)c f̂ )̌ = f − f0 ∈ Hs(Rd;F). We

define g0 and g1 similarly for g. We then have

fg = f0g0 + f0g1 + f1g0 + f1g1.

By Theorem 2.7, Proposition 3.1, and the fact that Hs(Rd;F) is an algebra, when-
ever i+ j g 1 we have that figj is supported in B(0, 1)c, is in Hs ↪→ Xs

r,¶ and

∥figj∥Xs
r,¶

≍ ∥figj∥Hs ≲ ∥fi∥Xs
r,¶

∥gj∥Xs
r,¶

f ∥f∥Xs
r,¶

∥g∥Xs
r,¶
.

Thus, it only remains to analyze f0g0. Theorem 2.3 shows that f̂0 and ĝ0 are

integrable and supported in B(0, 1), so Young’s inequality implies f̂0∗ĝ0 ∈ L1(Rd;F)

and supp(f̂0 ∗ ĝ0) ¦ B(0, 2). Let φ ∈ S (Rd;F). We employ Tonelli’s theorem to
calculate∫

Rd

µr,¶

(
f̂0 ∗ ĝ0

)
φ

=

∫

Rd

∫

Rd

µr,¶(À + ¸)f̂0(À)ĝ0(¸)φ(À + ¸) dÀ d¸

=

∫

B(0,1)2
µr,¶(À + ¸)f̂0(À)ĝ0(¸)φ(À + ¸) dÀ d¸ = I(µr,¶ f̂0, µr,¶ f̂0, φ).

By the assumed boundedness of I we have
∣∣∣∣
∫

Rd

µr,¶(f̂0 ∗ ĝ0)φ
∣∣∣∣ ≲

∥∥∥µr,¶ f̂0

∥∥∥
L2

∥µr,¶ ĝ0∥L2 ∥φ∥L2 ≲ ∥f∥Xs
r,¶

∥g∥Xs
r,¶

∥φ∥L2 .

By the density of S in L2, we see that the left hand side extends to define a bounded
linear functional on L2 obeying the same estimate, and so the Riesz representation

theorem tells us that µr,¶(f̂0 ∗ ĝ0) ∈ L2(Rd) and

∥f∥Xs
r,¶

∥g∥Xs
r,¶

≳
∥∥∥µr,¶(f̂0 ∗ ĝ0)

∥∥∥
L2

=
∥∥∥µr,¶ f̂0g0

∥∥∥
L2

≍ ∥f0g0∥Xs
r,¶
.

The last bound followed because f̂0 ∗ ĝ0 is compactly supported. We thus have the
desired result.

Conversely, assume that Xs
r,¶(R

d) is an algebra. Let F,G,H ∈ L2(Rd; [0,∞]) and

note that I(F,G,H) = I(FÇB(0,1), GÇB(0,1), H) due to the domain of the integral,

and the fact that we have (ÇB(0,1)F/µr,¶ )̌ and (ÇB(0,1)G/µr,¶ )̌ are both in Xs
r,¶.

Thus by Cauchy-Schwarz and the boundedness of products in Xs
r,¶ we have

I(F,G,H) =

∫

Rd

µr,¶

((
ÇB(0,1)F/µr,¶

)
∗
(
ÇB(0,1)G/µr,¶

))
H

f
∥∥∥µr,¶

((
ÇB(0,1)F/µr,¶

)
∗
(
ÇB(0,1)G/µr,¶

))∥∥∥
L2

∥H∥L2

=
∥∥∥
(
ÇB(0,1)F/µr,¶

)
ˇ
(
ÇB(0,1)G/µr,¶

)
ˇ
∥∥∥
Xs

r,¶

∥H∥L2
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≲
∥∥∥
(
ÇB(0,1)F/µr,¶

)
ˇ
∥∥∥
Xs

r,¶

∥∥∥
(
ÇB(0,1)G/µr,¶

)
ˇ
∥∥∥
Xs

r,¶

∥H∥L2

≲ ∥F∥L2 ∥G∥L2 ∥H∥L2 .

By Lemma 3.3, we then have the desired result.

Thus, to analyze when Xs
r,¶ is a Banach algebra, it suffices to analyze the bound-

edness of the functional I. To do this, we first split the domain B(0, 1)2 into two
sets to get control of I in each independently.

Definition 3.5. We partition B(0, 1)2 into two sets E0 and E1 as follows:

E0 = {(À, ¸) ∈ B(0, 1)2 | |À|+ |¸| f 3 ||À| − |¸||} and

E1 = {(À, ¸) ∈ B(0, 1)2 | |À|+ |¸| > 3 ||À| − |¸||}.
From this we write I as a sum of two operators I0 and I1, where for i ∈ {0, 1} we
have

Ii =

∫

Ei

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
F (À)G(¸)H(À + ¸) dÀd¸.

We now analyze the boundedness of I0 and I1 in turn.

Proposition 3.6. (À, ¸) ∈ E1 ô (À, ¸) ∈ B(0, 1)2 and 1
2 |¸| < |À| < 2 |¸|. Addition-

ally, (À, ¸) ∈ E1 implies |À + ¸| < 3 |¸|.

Proof. The proof for this can be found in Lemma 2.10 of [3].

Lemma 3.7. If (À, ¸) ∈ E0, then µr,¶(À + ¸) ≲ µr,¶(À) + µr,¶(¸).

Proof. We note since ¶− r g 0, we have that (|À|+ |¸|)¶−r
≲ |À|¶−r

+ |¸|¶−r
. Using

this, the triangle inequality, and the estimate from the definition of E0, we have

µr,¶(À + ¸) =
|À1 + ¸1|
|À + ¸|r + |À + ¸|¶−r f |À1|+ |¸1|

||À| − |¸||r + (|À|+ |¸|)¶−r

≲
|À1|+ |¸1|
(|À|+ |¸|)r + |À|¶−r

+ |¸|¶−r f µr,¶(À) + µr,¶(¸).

Proposition 3.8. I0(F,G,H) ≲ ∥1/µr,¶∥L2 ∥F∥L2 ∥G∥L2 ∥H∥L2 .

Proof. The proof is identical to that of Proposition 2.12 in [3].

3.1. Splitting E1 further. We now aim to get more control of I1. To accomplish
this, we localize further in E1.

Definition 3.9. Suppose we have m,n ∈ N. Then we define

Em,n = {(À, ¸) ∈ E1 | 2−m−1 < |À| f 2−m and 2−n+1 < |À + ¸| f 2−n+2}.
Similar to before, we also define

Im,n =

∫

Em,n

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
F (À)G(¸)H(À + ¸) dÀd¸.

In addition, we define the annulus A = B[0, 4] \B(0, 1/2) and set

Fm = FÇ2−m−1A, Gm = GÇ2−m−1A, Hn = HÇ2−nA

for F,G,H ∈ L2(Rd, [0,∞]).
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Lemma 3.10. We have
∞⋃

m=0

∞⋃

n=m

Em,n = E1 and

∞∑

m=0

∞∑

n=m

Im,n = I1.

Proof. The proof is identical to that of Lemma 2.14 in [3].

We now come to our first major bound. For large d, we will see that in fact we
can get control of I1, thus proving that Xs

r,¶ is an algebra. For small dimension, we
will need to do some further splitting.

Proposition 3.11. Let r f 1. Let F,G,H ∈ L2(Rd, [0,∞]). The following hold.

1. If d g 4¶ − 2r − 2, then

I1(F,G,H) ≲ ∥F∥L2 ∥G∥L2 ∥H∥L2 .

2. If d < 4¶ − 2r − 2, then
∞∑

m=0

∞∑

n>km

Im,n(F,G,H) ≲ ∥F∥L2 ∥G∥L2 ∥H∥L2

for k = 2(¶−r)
1−r+d/2 .

Proof. Let m,n ∈ N and n g m. Then we have

Im,n(F,G,H) f I1(Fm, Gm, Hn) =

∫

E1

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
Fm(À)Gm(¸)Hn(À + ¸) dÀd¸.

The right hand integral vanishes except when 2−m−2 f |À|, |¸| f 2−m+1, and
2−n−1 f |À + ¸| f 2−n+2. Thus we have the estimates

µr,¶(À) =
|À1|+ |À|¶

|À|r g |À|¶−r
≳ 2−m(¶−r),

and similarly µr,¶(¸) ≳ 2−m(¶−r). Furthermore, we get

µr,¶(À + ¸) =
|À1 + ¸1|+ |À + ¸|¶

|À + ¸|r f |À + ¸|+ |À + ¸|¶
|À + ¸|r ≲

2−n + 2−n¶

2−nr
≲ 2−n(1−r).

Thus combining the estimates, we get

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
≲

2−n(1−r)

2−2m(¶−r)
= 22m(¶−r)−n(1−r),

and so we find

Im,n(F,G,H) ≲ 22m(¶−r)−n(1−r)

∫

E1

Fm(À)Gm(¸)Hn(À + ¸) dÀ d¸.

For ℓ ∈ Zd, let Qℓ be the closed cube centered at 2−nℓ of side length 2−n and Q̃ℓ

denote the closed cube centered at −2−nℓ of side length 9 · 2−n. We note then that

max
ℓ∈Zd

∥∥ÇQℓ

∥∥
L2 =

∥∥ÇQ0

∥∥
L2 = 2−nd/2.

Note if (À, ¸) ∈ E1 and À ∈ Qℓ, then∣∣¸ + 2−nℓ
∣∣
∞ f |¸ + À|+

∣∣−À + 2−nℓ
∣∣
∞ f 2−n+2 + 2−n−1 = (9/2)2−n,

and so ¸ ∈ Q̃ℓ. Thus we compute∫

E1

Fm(À)Gm(¸)Hn(À + ¸) dÀ d¸
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f
∑

ℓ∈Zd

∫

B(0,1)2

(
FmÇQℓ

)
(À)
(
GmÇQ̃ℓ

)
(¸)Hn(À + ¸) dÀ d¸

f
∑

ℓ∈Zd

∫

B(0,1)

(
FmÇQℓ

)
(À)
∥∥∥GmÇQ̃ℓ

∥∥∥
L2

∥Hn∥L2 dÀ

f ∥Hn∥L2

∥∥ÇQ0

∥∥
L2

∑

ℓ∈Zd

∥∥FnÇQℓ

∥∥
L2

∥∥∥GmÇQ̃ℓ

∥∥∥
L2

f 2−nd/2 ∥Hn∥L2



∫

Rd

|Fm(À)|2
∑

ℓ∈Zd

ÇQl
(À) dÀ




1/2

×



∫

Rd

|Gm(¸)|2
∑

ℓ∈Zd

ÇQ̃l
(¸) d¸




1/2

≲ 2−nd/2 ∥Fm∥L2 ∥Gm∥L2 ∥Hn∥L2 .

Synthesizing these, we obtain

Im,n(F,G,H) ≲ 22m(¶−r)−n(1−r+d/2).

Now we break to cases based on dimension. If d g 4¶ − 2r − 2, then we simply
bound∑

mg0

∑

ngm

Im,n(F,G,H)

≲
∑

mg0

∑

ngm

22m(¶−r)−n(1−r+d/2) ∥Fm∥L2 ∥Gm∥L2 ∥Hn∥L2

f
∞∑

m=0

22m(¶−r) ∥Fm∥L2 ∥Gm∥L2

( ∞∑

n=m

2−n(2−2r+d)

)1/2(∫
|H|2

∞∑

n=m

Ç2−nA

)1/2

≲ ∥H∥L2

∞∑

m=0

2m(2¶−r−1−d/2) ∥Fm∥L2 ∥Gm∥L2 ≲ ∥F∥L2 ∥G∥L2 ∥H∥L2 .

On the other hand, if d < 4¶ − 2r − 2, then we split further: for k = 2(¶−r)
1−r+d/2 an

analogous argument shows that

∑

mg0

∑

ngkm

Im,n(F,G,H) ≲ ∥H∥L2

∞∑

m=0

2m(2¶−2r−k+kr−kd/2) ∥Fm∥L2 ∥Gm∥L2

≲ ∥F∥L2 ∥G∥L2 ∥H∥L2 .

We now prove our final bound when d is small.

Proposition 3.12. Suppose that r f 1 and d < 4¶ − 2r − 2, and if d = 2 further
suppose that ¶ f 2. For F,G,H ∈ L2(Rd, [0,∞]) we have the estimate

∑

mg0

∑

mfnfkm

Im,n(F,G,H) ≲ ∥F∥L2 ∥G∥L2 ∥H∥L2 , (3.1)

where k = 2(¶−r)
1−r+d/2 .

Proof. We define

Rp,Ã(³) = 2−¶m[−³/2 + p, ³/2 + p]× 2−n
d∏

k=2

[−³/2 + Ãk−1, ³/2 + Ãk−1].
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For À ∈ Rp,Ã(1) and ¸ ∈ Rq,Ã(1), we get

2−n(Ãk−1 + Ãk−1 − 1/2) f Àk + ¸k f 2−n(Ãk−1 + Ãk−1 − 1/2).

Combining with the fact that |À + ¸| f 2−n+2, we get

|Ãk−1 + Ãk−1| f |Ãk−1 + Ãk−1 − 2n(Àk + ¸k)|+ |2n(Àk + ¸k)| f 9/2.

In particular, ¸ ∈ Rq,−Ã(9). Combined with À ∈ Rp,Ã(1), we get À+¸ ∈ Rp+q,0(10).
In what follows, we define the functions

F̃m,p,Ã := FmÇRp,Ã(1)
, G̃m,q,Ã := GmÇRq,−Ã(9)

, and H̃n,p,q := HnÇRp+q,0(10)
.

We then see

Im,n(F,G,H)

f
∑

p,q∈Z

∑

Ã,Ã∈Zd−1

∫

E1

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
F̃m,p,Ã(À)G̃m,q,Ã(¸)H̃n,p,q(À + ¸)dÀd¸.

Now if À ∈ Rp,Ã(1) ∩ 2−m−1A, then 2¶m |À1| g |p| − 1/2, so

µr,¶(À) =
|À1|+ |À|¶

|À|r ≳
2−¶m |p|+ 2−¶m

2−mr
≳ 2−m(¶−r) |p|

and similarly
µr,¶(¸) ≳ 2−m(¶−r) |q| .

Then because À + ¸ ∈ Rp+q,0(10) ∩ 2−n−1A, we get

µ(À + ¸) =
|À1 + ¸1|+ |À + ¸|¶

|À + ¸|r ≲ 2nr(|À1 + ¸1|+ 2−n¶)

= 2nr−m¶(2m¶ |À1 + ¸1|+ 2¶(m−n)) ≲ 2nr−m¶(|p|+ |q|).
Putting everything together, we get

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
≲ 2nr+m(¶−2r)

(
1

max(1, |p|) +
1

max(1, |q|)

)

= 2nr+m(¶−2r)

(
1

p̃
+

1

q̃

)
,

where we set p̃ = max(1, |p|) and q̃ = max(1, |q|). Then for fixed m,n ∈ N, we see

2−nr−m(¶−2r)Im,n(F,G,H)

f
∑

p,q∈Z

∑

Ã∈Zd−1

∫

B(0,1)

(
1

p̃
+

1

q̃

)
F̃m,p,Ã(À)

∫

B(0,1)

G̃m,q,Ã(¸)H̃n,p,q(À + ¸) d¸ dÀ

f
∑

p,q∈Z

∑

Ã∈Zd−1

∫

B(0,1)

(
1

p̃
+

1

q̃

)
Fm(À)ÇRp,Ã(1)

(À)
∥∥∥G̃m,q,Ã

∥∥∥
L2

∥∥∥H̃n,p,q

∥∥∥
L2

dÀ

f
∑

p,q∈Z

∑

Ã∈Zd−1

(
1

p̃
+

1

q̃

)∥∥∥F̃m,p,Ã

∥∥∥
L2

∥∥∥ÇRp,Ã(1)

∥∥∥
L2

∥∥∥G̃m,q,Ã

∥∥∥
L2

∥∥∥H̃n,p,q

∥∥∥
L2

= 2(−¶m−(d−1)n)/2
∑

p,q∈Z

∑

Ã∈Zd−1

(
1

p̃
+

1

q̃

)∥∥∥F̃m,p,Ã

∥∥∥
L2

∥∥∥G̃m,q,Ã

∥∥∥
L2

∥∥∥H̃n,p,q

∥∥∥
L2
.

Firstly, we handle the sum over Ã ∈ Zd−1. Indeed, we find for each p, q ∈ Z
∑

Ã∈Zd−1

∥∥∥F̃m,p,Ã

∥∥∥
L2

∥∥∥G̃m,q,Ã

∥∥∥
L2
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f



∫

Rd

|Fm|2
∑

Ã∈Zd−1

ÇRp,Ã(1)




1/2

∫

Rd

|Gm|2
∑

Ã∈Zd−1

ÇRq,−Ã(9)




1/2

f
∥∥∥FmÇ⋃

Ã∈Zd−1 Rp,Ã(1)

∥∥∥
L2

∥∥∥GmÇ⋃
Ã∈Zd−1 Rq,−Ã(9)

∥∥∥
L2
.

Now we consider the sums over p, q. First we consider the term containing 1
p̃ . We

find
∑

p,q∈Z

1

|p|
∥∥∥FmÇ⋃

Ã∈Zd−1 Rp,Ã(1)

∥∥∥
L2

∥∥∥GmÇ⋃
Ã∈Zd−1 Rq,−Ã(9)

∥∥∥
L2

∥∥∥H̃n,p,q

∥∥∥
L2

≲ ∥Gm∥L2

∑

p∈Z

1

p̃

∥∥∥FmÇ⋃
Ã∈Zd−1 Rp,Ã(1)

∥∥∥
L2

∥∥∥HnÇ⋃
q∈Z

Rp+q,0(10)

∥∥∥
L2

f ∥Gm∥L2 ∥Hn∥L2


∑

p∈Z

1

p̃2




1/2 ∥∥∥FmÇ⋃
p∈Z

⋃
Ã∈Zd−1 Rp,Ã(1)

∥∥∥
L2

≲ ∥Fm∥L2 ∥Gm∥L2 ∥Hn∥L2 .

Analogously, we can compute the sum containing 1
q̃ to find

∑

p,q∈Z

1

q̃

∥∥∥FmÇ⋃
Ã∈Zd−1 Rp,Ã(1)

∥∥∥
L2

∥∥∥GmÇ⋃
Ã∈Zd−1 Rq,−Ã(9)

∥∥∥
L2

∥∥∥H̃n,p,q

∥∥∥
L2

≲ ∥Fm∥L2 ∥Gm∥L2 ∥Hn∥L2 .

Combining the previous bounds, we then arrive at the estimate

Im,n(F,G,H) ≲ 2n(r−
d
2+

1
2 )+m( ¶

2−2r) ∥Fm∥L2 ∥Gm∥L2 ∥Hn∥L2 . (3.2)

We now split to two cases. In the first assume that r− d
2 +

1
2 f 0, looking at the

inner sum in (3.1) we bound using the first term to find

km∑

n=m

Im,n(F,G,H) ≲ 2m(
¶
2−2r)

(
km∑

n=m

2n(2r−d+1)

)1/2

∥H∥L2 ∥Fm∥L2 ∥Gm∥L2

≲ 2m((
¶
2−2r)+(r− d

2+
1
2 )) ∥H∥L2 ∥Fm∥L2 ∥Gm∥L2 .

Now summing over m, this converges if and only if ¶−d+1
2 f r which is true by

hypothesis.
For the other case, we have r − d

2 + 1
2 > 0. In particular, since we have already

restricted r f 1 this implies that d = 2. Plugging in d = 2 in (3.2), we again analyze
the inner sum of (3.1), this time bounding using the last term to see

km∑

n=m

Im,n(F,G,H) ≲ 2m(
¶
2−2r)

(
km∑

n=m

2n(2r−2+1)

)1/2

∥H∥L2 ∥Fm∥L2 ∥Gm∥L2

≲ 2m((
¶
2−2r)+k(r−1/2)) ∥H∥L2 ∥Fm∥L2 ∥Gm∥L2

≲ 2m((
¶
2−2r)+ 2(¶−r)

2−r
(r−1/2)) ∥H∥L2 ∥Fm∥L2 ∥Gm∥L2 .

Again summing over m, this converges when
(
¶

2
− 2r

)
+

2(¶ − r)

2− r
(r − 1/2) f 0 ô (2− r)

(
¶

2
− 2r

)
+ (¶ − r) (2r − 1) f 0



18 SUBHASISH MUKHERJEE AND IAN TICE

ô ¶

2
− 2r − r¶

2
+ 2r2 +

d¶

4
− rd+ 2¶r − 2r2 − 2¶ + 2r + ¶ − r f 0 ô ¶ f 2,

the latter condition of which is assumed to hold by hypothesis.

In fact, the assumption that ¶ f 2 when d = 2 was necessary, as the next
proposition shows.

Proposition 3.13. Suppose that d = 2, r > 0, and ¶ > 2. Then there does not
exist a constant C > 0 such that∫

B(0,1)2

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
F (À)G(¸)H(À + ¸) dÀ d¸ f C ∥F∥L2 ∥G∥L2 ∥H∥L2

for every F,G,H ∈ L2(R2).

Proof. Define the sets

Q = B∞((2−m¶, 2−m), 2−m¶−2),

Q′ = B∞((2−m¶,−2−m), 2−m¶−2), and

P = Q+Q′ = B∞((2−m¶, 0), 2−m¶−1).

We then note for À ∈ Q, we have that |À| ≍ 2−m, and so

µr,¶(À) =
|À1|+ |À|¶

|À|r ≲
2−m¶ + 2−m¶

2−mr
≲ 2−m(¶−r).

and similarly µr,¶(¸) ≲ 2−m(¶−r) when ¸ ∈ Q′. We also note À + ¸ ∈ P when
À ∈ Q, ¸ ∈ Q′, and so |À| ≍ |¸| ≍ 2−m¶ and |À + ¸| ≍ 2−m¶. Thus we see

µr,¶(À + ¸) =
|À1 + ¸1|+ |À + ¸|¶

|À + ¸|r ≳
2−m¶ + 2−m¶2

2−m¶r
≳ 2−m¶(1−r).

Finally, we note that
µ(Q) ≍ µ(Q′) ≍ µ(P ) ≍ 2−2m¶

and so ∥∥ÇQ

∥∥
L2

∥∥ÇQ′

∥∥
L2 ∥ÇP ∥L2 ≍ 2−3m¶.

On the other hand, we can compute
∫∫

B(0,1)2

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
ÇQ(À)ÇQ′(¸)ÇP (À + ¸) dÀ d¸

=

∫∫

Q×Q′

µr,¶(À + ¸)

µr,¶(À)µr,¶(¸)
dÀ d¸ ≳ 2−m(¶(1−r)−2(¶−r))µ(Q)µ(Q′)

≳ 2−m(4¶+¶(1−r)−2(¶−r)).

In particular, if the linear functional was bounded, we could find some C > 0 such
that

2−m(4¶+¶(1−r)−2(¶−r)−3¶) f C

for all m ∈ N. However, since ¶ > 2 and r > 0 we know that

4¶ + ¶(1− r)− 2(¶ − r)− 3¶ = r(2− ¶) < 0,

and so making m arbitrarily large, we contradict the inequality.

We can now state our main result.

Theorem 3.14. Suppose d > 1+ ¶−2r, r f 1, s > d/2. If d g 3, then Xs
r,¶(R

d;F)
is an algebra. If d = 2, then Xs

r,¶ is an algebra if and only if ¶ f 2.
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Proof. The d g 3 and d = 2, ¶ f 2 cases follows by combining Propositions 3.4, 3.8,
3.11, 3.12. For d = 2, ¶ > 2, we note that we must have r > 1/2 > 0 due to our
other restrictions, and so Proposition 3.13 shows that Xs

r,¶ is not an algebra in this
case.

4. PDE applications. In this section we give a couple short and simple applica-
tions of the Xs

r,¶(R
d;F) spaces in constructing traveling wave solutions to PDEs.

Recall the motivating pseudodifferential equation equation from the introduction:
∂tv+(−∆)¶/2 = F , which reduces to −µ∂1u+(−∆)¶/2u = f after the traveling wave
reformulation. We assume here that µ ̸= 0, which corresponds to actual traveling
wave solutions and not stationary solutions. Here the operator (−∆)¶/2 comes from
a homogeneous function on the Fourier side, namely Rd ∋ À 7→ (2Ã |À|)¶ ∈ [0,∞).

In fact, the spaces Xs
r,¶(R

d;F) are designed to be more flexible by handling
more general symbols with a manifest “bihomogeneity,” meaning possibly different
homogeneous behavior for small and large frequencies. To describe this, we let
φ : Rd → [0,∞) be a continuous function such that

φ(À) ≍
{
C0 |À|¶ for |À| j 1

C1 |À|Ã for |À| k 1
(4.1)

for ¶, Ã ∈ R satisfying ¶ > 1 and Ã ∈ R. We write φ(D) for the pseudodifferential

operator acting via φ̂(D)u(À) = φ(À)û(À). As two particular examples: (1) the
function φ(À) = (2Ã |À|)¶ gives φ(D) = (−∆)¶/2 from the introduction, and satisfies
¶ = Ã; (2) the function φ(À) = |À| tanh(|À|) is of this type with ¶ = 2 and Ã = 1;
this particular φ arose in the analysis in [5] and is related to the classic gravity-
wave dispersion relation. We can then consider the modification of the previous
pseudodifferential equation: ∂tv+φ(D)u = F , which reduces to −µ∂1u+φ(D)u = f
after the traveling wave reformulation. Our first result establishes solvability of this
linear problem.

Theorem 4.1. Let s, r, ¶, Ã ∈ R satisfy 1 < ¶, d > 1 + ¶ − 2r, r g 0, Ã f s, and
1 − r f s. Suppose φ : Rd → [0,∞) is a continuous function satisfying (4.1). Let

´, µ ∈ R\{0}. Then the map −µ∂1 + ´φ(D) : Xs+Ã
r,¶ (Rd;F) → (Hs ∩ Ḣ−r)(Rd;F)

is well-defined and induces a bounded linear isomorphism. In particular, for each
f ∈ (Hs ∩ Ḣ−r)(Rd;F) there exists a unique u ∈ Xs+Ã

r,¶ (Rd;F) solving

−µ∂1u+ ´φ(D)u = f. (4.2)

Proof. Since r g 0, we have ¶ − r f ¶, and by hypothesis we have Ã f s, so
Proposition 2.9 shows that −µ∂1 and φ (D) are both bounded linear operators

from Xs+Ã
r,¶ (Rd;F) to (Hs ∩ Ḣ−r)(Rd;F). Consider, then, the problem of finding u

satisfying (4.2) for a given f . Applying the Fourier transform, we see that this is
equivalent to

[−µ2ÃiÀ1 + ´φ(À)]û(À) = f̂(À) for a.e. À ∈ R
d.

If a solutions u exists with f = 0, then since the term in brackets on the left only
vanishes at most on a null set, we must have that û = 0 a.e., and hence u = 0.
Thus, the linear map is injective. We also learn from this that it is surjective, as

we may use this equation to define û in terms of f̂ , and then

∥u∥2Xs+Ã
r,¶

=

∫

B(0,1)

|À1|2 + |À|2¶

|À|2r
|û(À)|2 dÀ +

∫

B(0,1)c
|À|2(s+Ã) |û(À)|2 dÀ
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≍
∫

B(0,1)

1

|À|2r
∣∣∣f̂(À)

∣∣∣
2

dÀ +

∫

B(0,1)c
|À|2s

∣∣∣f̂(À)
∣∣∣
2

dÀ = ∥f∥2Hs∩Ḣ−r ,

which shows that u indeed belongs to Xs+Ã
r,¶ (Rd;F). Hence, the linear map is an

isomorphism.

Next we give an extremely simple but instructive example of how the isomorphism
from the previous theorem can be used to solve nonlinear variants of the above
traveling wave problem. Note that the u we obtain from this theorem gives a
traveling wave solution by setting v(x, t) = u(x− µe1t).

Theorem 4.2. Suppose φ : Rd → [0,∞) is a continuous function satisfying (4.1).
Let s, r, ¶, Ã ∈ R satisfy 1 < ¶, d > 1+¶−2r, r g 0, Ã f s, 1−r f s, and s+Ã > d/2.
If d = 2, further suppose that ¶ f 2. Suppose that R > 0 is such that the ball
B(0, R) ¦ F is the ball of convergence for two analytic functions ·, È : B(0, R) → F

such that ·(0) = È(0) = 0 and · ′(0) = ³ ∈ R\{0} and È′(0) = ´ ∈ R\{0}. Then

there exists an open set ∅ ̸= U ¦ (Hs ∩ Ḣ−r)(Rd;F) such that for each f ∈ U there
exists a unique u ∈ Xs+Ã

r,¶ (Rd;F) satisfying

−µ∂1[·(u)] + φ(D)È(u) = f.

Moreover, the induced map U ∋ f 7→ u ∈ Xs+¶
r,¶ (Rd;F) is analytic.

Proof. We begin by noting that since s + Ã > d/2, Proposition 2.3 shows that
Xs+Ã

r,¶ (Rd;F) ↪→ C0
b (R

d;F). Theorem 3.14 shows that Xs+Ã
r,¶ (Rd;F) is an alge-

bra, but it does not show that it is a Banach algebra. However, by rescaling
the norm on Xs+Ã

r,¶ (Rd;F) by a fixed constant we may assume without loss of

generality that ∥uv∥Xs+Ã
r,¶

f ∥u∥Xs+Ã
r,¶

∥v∥Xs+Ã
r,¶

. We may then select an open set

0 ∈ V ¦ Xs+Ã
r,¶ (Rd;F) such that if u ∈ V then u(Rd) ¦ B(0, R). Thus, · ◦u and È◦u

are well-defined for u ∈ V, and this induces analytic maps ·, È : V → Xs+Ã
r,¶ (Rd;F).

Proposition 2.9 and the above show that the map N : V → (Hs ∩ Ḣ−r)(Rd;F)
defined by N(u) = −µ∂1·(u) + φ(D)È(u) is well-defined and analytic, and by
construction N(0) = 0 and its derivatives satisfies DN(0)v = −³µ∂1v + ´φ(D)v.
This linear map is an isomorphism thanks to Theorem 4.1, and so we may apply the
inverse function theorem (see, for instance, Theorem 10.2.5 in [1]) to conclude.

By a similar argument, we can also prove the following variant, which is a non-
linear “divergence form” version of the problem from the introduction.

Theorem 4.3. Let 0 f s, r ∈ R and 1 < ¶ ∈ R satisfy d > 1 + ¶ − 2r and s > d/2.
If d = 2, further suppose that ¶ f 2. Suppose that R > 0 is such that the ball
B(0, R) ¦ F is the ball of convergence for two analytic functions ·, È : B(0, R) → F

such that ·(0) = È(0) = 0, · ′(0) = ³ ∈ R\{0}, and È′(0) = ´ ∈ R\{0}. Then there

exists an open set ∅ ̸= U ¦ (Hs∩ Ḣ−r)(Rd;F) such that for each f ∈ U there exists

a unique u ∈ Xs+¶
r,¶ (Rd;F) satisfying

−µ∂1[·(u)]− (−∆)¶/2−1 div[(1 + È(u))∇u] = f.

Moreover, the induced map U ∋ f 7→ u ∈ Xs+¶
r,¶ (Rd;F) is analytic.
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