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Abstract

In this paper we study traveling wave solutions to the free boundary incompressible Navier-Stokes system 

with generalized Navier-slip conditions. The fluid is assumed to occupy a horizontally infinite strip-like 
domain that is bounded below by a flat rigid surface and above by a moving surface. We assume that the 
fluid is acted upon by a bulk force and a surface stress that are stationary in a coordinate system moving 

parallel to the fluid bottom, and a uniform gravitational force that is perpendicular to the flat rigid surface. 
We construct our solutions via an implicit function argument, and show that as the slip parameter shrinks to 

zero, the Navier-slip solutions converge to solutions to the no-slip problem obtained previously.
 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 

license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

The construction of traveling wave solutions to the inviscid, incompressible equations of fluid 

dynamics is a classical subject in mathematics with a rich history. In comparison, progress on 
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the corresponding viscous problems began quite recently: the series of papers [18,19,29,30]
developed a well-posedness theory for the free surface Navier-Stokes equations modeling in-
compressible fluids in a horizontally infinite strip-like domain of finite depth, subject to sources 
of applied force and stress. In each of these papers, the fluid is assumed to obey the standard no-
slip boundary condition at its lower boundary with a flat, rigid floor. The purpose of this paper 
is to continue the study of this type of problem by incorporating the more general Navier-slip 

condition, which allows the fluid to slip along the bottom boundary, and show that a generic 

well-posedness theory persists. The slip boundary condition, first proposed by Navier [23] in 

1832, asserts that the tangential fluid velocity at the fluid bottom is proportional to the tangential 
stress experienced by the fluid. The ratio of the tangential stress to the tangential fluid velocity 

is referred to as the slip parameter. We will prove that not only are traveling wave solutions also 

generic under the Navier-slip conditions, but that one recovers the no-slip solutions in the limit 
as the characteristic slip parameter goes to zero.

1.1. Problem formulation

In this paper we consider a single layer of viscous, incompressible fluid evolving in a horizon-
tally infinite strip-like domain, bounded below by a flat, rigid surface and above by a free moving 

surface that can be described by the graph of a continuous function, in dimensions n � 2. Even 

though the only physically relevant cases are when n = 2, 3, the analysis in this paper can be ap-
plied more generally to higher dimensions as well. Since our primary interest is the construction 

of traveling wave solutions, we will skip the somewhat lengthy discussion of the formulation 

of the fully dynamic problem and the subsequent reformulation under a traveling wave ansatz 

and jump straight to the traveling wave problem; these omitted details can be found in the intro-
duction of [18]. The equations for a traveling wave solution to the free boundary Navier-Stokes 
system are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

divS(q, v)− γ e1 · ∇v+ v · ∇v+ g(∇ ′η,0)= f, in�b+η
divv = 0, in�b+η
−γ ∂1η+∇ ′η · v′ = vn, on�b+η
S(q, v)N = (−σH(η)I + T )N , on�b+η
−α(S(q, v)en)′ = [A(v)]′, on�0

vn = 0, on�0.

(1.1)

We now explain all the terms appearing in the system (1.1). The fluid occupies the unknown 

domain �b+η = {x = (x′, xn) ∈ Rn | 0 < xn < b + η(x′)}, where η : Rn−1 → (−b, ∞) is the 

unknown free surface function and b > 0 is the equilibrium depth of the fluid. The graph �b+η =
{x = (x′, xn) ∈Rn | xn = b+η(x′)} is the unknown upper boundary of the fluid, while the trivial 
graph �0 = {x = (x′, xn) ∈Rn | xn = 0} denotes its fixed, rigid lower boundary. See Fig. 1 for a 

graphical depiction of the fluid domain.
The fluid’s velocity field and pressure are denoted here by v :�b+η→Rn and q :�b+η→R, 

and together they determine the viscous stress tensor

S(q, v)= qIn×n −μDv = qIn×n −μ(∇v+ (∇v)T ) ∈Rn×n (1.2)
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Fig. 1. A sample portion of the unknown fluid domain in dimension n= 3.

with the viscosity coefficient μ > 0. We emphasize, though, that the pressure q is not really 

the fundamental fluid mechanical pressure, but rather a “good” pressure unknown obtained by 

subtracting off a variant of the hydrostatic pressure (see [18] for details). The parameter g > 0
is the strength of the gravitational field, and the term g(∇ ′η, 0) corresponds to the gravitational 
force the fluid experiences, after the aforementioned reformulation of the pressure unknown. 
Without loss of generality, we henceforth assume the convenient normalization μ = g = 1.

The parameter γ ∈ R is the traveling wave speed, and its specific appearance in (1.1) cor-
responds to solutions to the dynamic problem that are stationary in a coordinate frame mov-
ing with velocity γ e1. The applied bulk force f : �b+η → Rn and the applied surface stress 
T : �b+η → Rn×n

sym are given data that are responsible for inducing the motion of the fluid. The 

term N = (−∇ ′η, 1) denotes the non-unit normal vector field to �b+η, while the term −σH(ζ )
corresponds to surface tension on �b+η, with σ > 0 denoting the coefficient of surface tension 

and H(η) = div′(∇ ′η/
√

1+ |∇ ′η|2) denoting the mean-curvature operator.
The system (1.1) is obtained from the incompressible Navier-Stokes system. The first two 

equations in (1.1) correspond to the balance of momentum and conservation of mass. The third 

equation is the kinematic boundary condition describing the evolution of the free surface. The 

fourth equation is called the dynamic boundary condition, as it encodes the balance of forces 
on the free surface. The fifth and sixth equations constitute a general nonlinear version of the 

Navier-slip condition, which we now elaborate on. The sixth equation is called the no-penetration 

condition, and it requires that the fluid is not able to detach from or pass through �0. Unlike in 

the case of the no-slip boundary condition, the fluid is allowed to have a nontrivial tangential 
component on �0, which is described as “slip.” However, slip comes at a price: it generates a 

tangential stress on the fluid that opposes the motion, which one should think of as being anal-
ogous to the way that air resistance is modeled in standard Newtonian point-particle mechanics. 
The precise form we impose in the fifth equation is (using the sixth)

[A(v)]′ =−α(S(q, v)en)′ =−α(qen −Dven)
′ = α(Dven)

′ = α(∇ ′vn + ∂nv′)= α∂nv
′ (1.3)

for a given smooth “slip parameter” α > 0 and “slip function” A : Rn → Rn satisfying (for 
technical reasons we will discuss later)
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A(0)= 0, A(w) ·w > 0 for w ∈Rn \ {0}, and A(w) ·w � θ |w|2 for w ∈ B(0, δ) \ {0}, (1.4)

where δ, θ > 0 are fixed constants. One should then think of (1.3) as a one-parameter family 

(indexed by α) of nonlinear Robin boundary conditions with the extreme case α= 0 recovering 

the no-slip condition since then (1.3) requires 0 =A(v)′ on �0, which together with the condition 

vn = 0 and (1.4) implies that v = 0 on �0. The most common form of the Navier-slip condition 

in the literature is in a linear form, in which A is a linear map (often just the identity); we have 

included the nonlinear form for the sake of generality, and our analysis certainly handles the 

standard linear case.

1.2. Previous work

The Navier-slip condition was first proposed by Navier [23] and it is now used to model a 

wide range of physical phenomena, including liquid-solid contact lines (we refer to Dussan’s 
survey [8]) and flows through irregular surfaces (see, for instance, the work of Gérard-Varet and 

Masmoudi [14]). It also plays a crucial role in the analysis of collisions in fluid-solid systems: 
see, for example, [9,11–13,15,16,28]. The slip phenomenon has also been empirically observed 

in recent experiments; we refer to the survey of Neto et al. [24] and the references therein for a 

review of these results.
The well-posedness of the Navier-Stokes system with Navier-slip boundary conditions has 

been investigated by several authors. Solonnikov-Ščadilov [27] studied the 3D linearized station-
ary Navier-Stokes system and proved the existence of weak solutions as well as their regularity. 
Beirão da Veiga [4] studied the stationary problem on the half space and proved strong regular-
ity up to the boundary. Ferreira [10] studied the inhomogeneous system on bounded space-time 

domains and proved the existence of weak solutions. Masmoudi-Rousset [22] proved uniform in 

time bounds with respect to the viscosity parameter. Kelliher [17] studied the 2D equations on 

bounded domains and proved that 2D Navier-slip solutions with sufficiently smooth initial ve-
locities converge to the no-slip solutions as the slip parameter goes to zero. Murata-Shibata [26]
studied the compressible variant with slip boundary conditions on bounded domains and proved 

a global in time unique existence theorem for small data.
The dynamical stability of Navier-slip solutions has also been studied by various authors. Li-

Pan-Zhang [20] studied the stability of steady state solutions to the 3D incompressible problem 

on bounded domains. Ding-Lin [7] studied the stability of the Couette flow in 2D, and Li-Zhang 

[21] studied the stability of Couette flow in 3D, and separately they proved that the Couette flow 

is asymptotically stable under small perturbations with various conditions on the slip parameter 
and viscosity.

The well-posedness of the traveling wave problem for the free boundary Navier-Stokes sys-
tem first appeared in the recent work of Leoni-Tice [19]. This work was extended to periodic 

and tilted fluid configurations by Koganemaru-Tice [18]. Stevenson-Tice [29] studied multi-later 
configurations [29], the vanishing wave speed limit [30], and the compressible traveling wave 

problem [31]. Similar well-posedness result for the traveling wave formulation of the Muskat 
problem were obtained by Nguyen-Tice [25].

1.3. Reformulation in a fixed domain

The fluid domain �b+η is one of the unknowns in (1.1), so it is convenient to recast the 

system in a fixed domain. We choose the equilibrium domain � :=�b =Rn−1 × (0, b) for this, 
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and write �b = {x ∈ Rn | xn = b} for the flat upper boundary. The reformulation is achieved 

by introducing the flattening map F :Rn→ Rn, associated to any η ∈ C1
b(R

n−1; R) satisfying 

η >−b, defined via

F(x′, xn)= (x′, xn + η(x′)ϕ(xn)), (1.5)

where ϕ ∈ C∞b (R; R) is some fixed function that it is a monotone and satisfies ϕ = 0 on 

(−∞, b/4] and ϕ = 1 on [3b/4, ∞). By construction, we have that F(�b) = �b+η , F(�b) =
�b+η , and F = I in Rn−1 × (−∞, b/4), which in particular means that F is the identity on �0. 
Moreover, it’s easy to see that if ‖η‖C0

b
is sufficiently small then F is a diffeomorphism.

We compute

∇F(x)=
(

I(n−1)×(n−1) 0(n−1)×1

∇ ′η(x′)T ϕ(xn) 1+ η(x′)ϕ′(xn)

)
and

(∇F)−ᵀ(x)=
(
I(n−1)×(n−1) − ∇ ′η(x′)ϕ(xn)

1+η(x′)ϕ′(xn)
01×(n−1)

1
1+η(x′)ϕ′(xn) .

)
. (1.6)

We then define A :Rn→Rn×n via A(x) = (∇F)−ᵀ(x) and J , K :Rn→R via

J (x)= det∇F(x)= 1+ η(x′)ϕ′(xn) and K(x)= 1

J (x)
= 1

1+ η(x′)ϕ′(xn)
. (1.7)

Then we define the A-dependent differential operators: (∇Af )i =
∑n

j=1 Aij∂jf , (X · ∇Au)i =∑n
j,k=1XjAjk∂kui , divAX =

∑n
i,j=1 Aij∂jXi , (DAu)ij =

∑n
k=1 Aik∂kuj + Ajk∂kui ,

SA(p, u) = pI − μDAu, divA SA(p, u) = ∇Ap − μ
Au − μ∇A divA u, (
Au)i =∑n
j,k,m=1 Ajk∂k(Ajm∂mui).
Next, we introduce the new unknowns u : � → Rn, p : � → R, and f : � → Rn via u =

v ◦ F, p = q ◦ F, and f = f ◦ F. This yields the reformulation of (1.1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

divA SA(p,u)− γ e1 · ∇Au+ u · ∇Au+ (∇ ′η,0)= f ◦ F, in�

divA u= 0, in�

−γ ∂1η− u ·N = 0, on�b
SA(p,u)N = [−σH(η)I + T ◦ F]N , on�b
α[SA(p,u)ν]′ = [A(u)]′, on�0

un = 0, on�0.

(1.8)

1.4. Main results and discussion

In this subsection we state the main results obtained in this paper. The first result establishes 
the existence and uniqueness of solutions to the flattened problem (1.8); the spaces Ckb , C

k
0 ap-

pearing in the statement are defined in Section 1.5 and the space X s is defined in Definition 4.3.

Theorem 1.1 (Proved later in Section 5.2). Suppose N 
 s � 1 + �n/2� and that either σ > 0
and n � 2 or else σ = 0 and n = 2. Further suppose that A : Rn → Rn is smooth and obeys 

(1.4). Then there exist open sets
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U s ⊂R+ × (R \ {0})×H s+3(Rn;Rn×n
sym )×H s+ 1

2 (Rn−1;Rn×n
sym )

×H s+2(Rn;Rn)×H s(Rn−1;Rn) (1.9)

and Os ⊂X s such that the following hold.

(1) (0, 0, 0) ∈ Os , and for every (u, p, η) ∈ Os we have that u ∈ Cs+1−�n/2�
0 (�; Rn), p ∈

C
s−�n/2�
0 (�; R), η ∈ Cs+1−�(n−1)/2�

0 (Rn−1; R) with maxRn−1 |η|� b
2 , and the flattening map 

F is a Cs+1−�(n−1)/2� diffeomorphism.

(2) We have R+ × (R \ {0}) × {0} × {0} × {0} × {0} ⊂ U s .

(3) For each (α, γ, T , T , f, f ) ∈ U s , there exists a unique (u, p, η) ∈Os classically solving

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

divA SA(q, v)− γ e1 · ∇Av+ v · ∇Av + (∇ ′η,0)= f ◦ F+L�bf, in�

divA v = 0, in�

−γ ∂1η+∇ ′η · v′ = vn, on�b

SA(q, v)N = (−σH(η)I + T ◦ F|�b + SbT )N , on�b

α[SA(q, v)ν]′ = [A(v)]′, on�0

vn = 0, on�0,

(1.10)

where L�b , Sb are defined via (5.6).
(4) The map U s 
 (α, γ, T , T , f, f ) �→ (u, p, η) ∈Os is C1 and locally Lipschitz.

The theorem is proved by way of the implicit function theorem by adapting the strategies 
employed for the corresponding no-slip problem; we refer to Section 1.5 of [19] and Section 1.7 

in [18] for a high-level summary of this plan. We emphasize, though, that while there is a serious 
overlap in the strategies, there are interesting technical problems introduced by the Navier-slip 

condition that must be dealt with along the way. We further note that by following the approach in 

[19], solutions to the unflattened system (1.1) may be obtained from this theorem by employing 

the inverse of the flattening map, F−1. We omit the details here for the sake of brevity.
Our second result, which is the principal novelty of this paper, establishes that if the slip map 

A is linear then in the limit α→ 0 we can recover the no-slip solution to the incompressible 

Navier-stokes system obtained in [18,19].

Theorem 1.2 (Proved later in Section 5.3). Suppose that N 
 s � 1 + �n/2� and that either 

σ > 0 and n � 2 or else σ = 0 and n = 2. Further suppose that A(·) = β· where β ∈ Rn×n is 

positive definite. Then there exist open sets

U s ⊂R+ × (R \ {0})×H s+3(Rn;Rn×n
sym )×H s+ 1

2 (Rn−1;Rn×n
sym )

×H s+2(Rn;Rn)×H s(Rn−1;Rn) (1.11)

and Os ⊂ X s such that for each γ∗ ∈ R \ {0}, there exists an open set V (γ∗) such that for all 

α∗ ∈ (0, 1) the following hold.

(1) The open sets U s, Os satisfy the first two items of Theorem 1.1.

(2) (α∗, γ∗, 0, 0, 0, 0) ∈ (0, 1) × V (γ∗) ⊂ U s .
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(3) For every (T , T , f, f ) such that (γ∗, T , T , f, f ) ∈ V (γ∗), there exists a unique (uα∗,pα∗ ,

ηα∗) ∈ Os classically solving (1.10). Furthermore, (uα∗ , pα∗ , ηα∗) converges weakly to 

(u0, p0, η0) in H s+2(�; Rn) ×H s+1(�; R) ×Xs+5/2(Rn−1; R) as α∗→ 0, where

(u0,p0, η0) ∈ Cs+1−�n/2�
b (�;Rn)×∈ Cs−�n/2�b (�;R)×Cs+1−�(n−1)/2�

0 (Rn−1;R)

is the unique solution to

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

divA SA(q, v)− γ e1 · ∇Av+ v · ∇Av+ (∇ ′η,0)= f ◦ F+L�bf, in�b

divA v = 0, in�b

−γ ∂1η+∇ ′η · v′ = vn, on�b

SA(q, v)N = (−σH(η)I + T ◦ F|�b + SbT )N , on�b

v = 0, on�0.

(1.12)

We now turn to a brief discussion of our strategy for proving this theorem. There are essen-
tially two key difficulties that must be dealt with. The first comes from the fact that we want to 

fix the stress-force tuple (T , T , f, f ) and produce a family of solutions (uα, pα, ηα) to (1.10), pa-
rameterized by α ∈ (0, 1). This is certainly plausible within the context of Theorem 1.1, but there 

is nothing within the statement of that result that can guarantee that the tuple remains within the 

open set of data that yields solutions. Indeed, in principle the open set could shrink dramatically 

as α→ 0, making it impossible to employ a fixed data tuple in the limiting argument. Provided 

this problem can be dispatched, we then arrive at the second: we need to establish α-independent 
estimates for the solutions (uα, pα, ηα) in order to invoke weak compactness results.

We resolve both of these problems by combining a careful analysis of the linearization of 
(1.10) with some nonlinear tricks. In the linear analysis we achieve α-independent estimates by 

focusing on the linearization (2.1) with l = 0. This is only reasonable insofar as we can encode 

l = 0 in the nonlinear problem, which means that the fifth equation in (1.10) must already be 

linear. To enforce this we require that A itself is linear and that the matrix A is the identity in a 

neighborhood of �0. The latter condition is the motivation for the introduction of the cutoff ϕ in 

the definition of the flattening map F; unfortunately, its presence here requires us to retool many 

previously established results.
In order to enforce the linear slip condition in an implicit function theorem argument we then 

need to build this condition into the domain of the nonlinear map. For any fixed value of α this 
is easy, but we need to do this for α ∈ (0, 1), which means the linear subspace obeying the α-
slip condition changes as a function of α. This then requires us to develop a special version of 
the implicit function theorem capable of handling maps fα : X × Yα → Z defined over a one-
parameter family of Banach spaces. We prove this variant of the implicit function theorem in 

Appendix A.3 and demonstrate that with uniform control over the derivatives of the nonlinear 
solution operator with respect to the parameter α, we may also deduce uniform control over the 

norms of solutions obtained via the parameter-dependent implicit function theorem. This is a 

stronger mandate than that from the standard implicit function theorem, so we must then verify 

these conditions in our linear analysis. This turns out to be doable but somewhat tricky because 

it requires determining the asymptotics of an implicit Fourier multiplier as a function of α.
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1.5. Notational conventions and outline of the article

We will frequently use the “horizontal” Fourier transform for functions on � =Rn−1× (0, b), 
defined by f̂ (ξ, xn) =

∫
Rn−1 f (x

′, xn)e−2πix′·ξ dx′. For k ∈N , a non-empty open set U ⊆ Rd , 
and a finite-dimensional inner product space V , we write H k(U ; V ) for the usual L2-based 

Sobolev space; when U =Rd we extend to H s(Rd; V ) for s ∈R in the usual way. For s � 0 and 

a function f ∈ L2(Rd ; V ), we write f ∈ Ḣ−1 to mean that the Ḣ−1-seminorm of f defined via 

[f ]2
Ḣ−1 =

∫
Rd |ξ |−2 |f̂ (ξ)|2dξ is finite. For k ∈N , a real Banach space V , and a nonempty open 

set U ⊆Rd for d � 1, we define the space Ckb(U ; V ) of k-times continuous differentiable maps 
from U→ V with all derivatives bounded. We also define the space Ck0(R

d; V ) ⊂ Ckb(R
d ; V ) to 

be the closed subspace of f such that lim|x|→∞ ∂αf (x) = 0 for all |α|� k.

2. The γ -Stokes equations with stress boundary conditions

In this section our goal is to study the solvability of the linear problem

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

divS(p,u)− γ ∂1u= f, in�

divu= g, in�

S(p,u)en = k, on�b
[αS(p,u)en + βu]′ = l, on�0

un = 0, on�0

(2.1)

with a given data tuple (f, g, k, l) and parameters α ∈ (0, ∞), γ ∈ R, and β ∈ Rn×n. Due to 

techniques we will employ later, it will be convenient to have access to a well-posedness theory 

over both the reals and the complex numbers. As such, throughout this section and the next we 

let F ∈ {R, C} denote either field, and we develop a well-posedness theory generically over F . 
Recall that when F =C and X is a complex Hilbert space, the Riesz map is a linear isomorphism 

from X to X∗, where the latter denotes the anti-linear functionals on X. We will use this notation 

a few times throughout this section.
We begin our analysis by fixing some notation.

Definition 2.1. Let � be defined as per Section 1.1. For R 
 s > 1/2, we define the spaces 
tanH

s(�; F) = {u ∈ H s(�; F) : un|�0 = 0} and tanH
1
σ (�; F) = {u ∈ tanH

s(�; F) : divu = 0}. 
We equip these spaces with the standard H s -norm, and note that since these spaces are closed 

subspaces of the Hilbert space H s(�; F), they inherit the natural Hilbert structure. If in addi-
tion R 
 s > 3/2 and α ∈ R, we define the space α−tanH

s(�; F) = {u ∈ H s(�; F) : un|�0 =
0, [−αDuen + βu]′|�0 = 0}, which is a closed subspace of tanH

s(�; F) and thus inherits the 

natural Hilbert structure from H s(�; F) as well.

In order to produce weak solutions to the system (2.1) we will first need some functional 
analytic tools in tanH

s(�; F). We begin with a version of Korn’s inequality.

Lemma 2.2. We have that ‖u‖H 1(�) � ‖Du‖L2(�)+
∥∥Tr�0 u

∥∥
L2(�0)

for u ∈H 1(�; Fn). Conse-

quently,
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‖u‖
tanH 1(�) =

√
‖Du‖2

L2(�)
+
∥∥Tr�0 u

∥∥2
L2(�)

, (2.2)

generates the standard H 1 topology on the space tanH
s(�; F).

Proof. The second assertion follows from the first bound and standard trace theory. To prove 

the first, it suffices to prove the result when F =R, as the case F =C can then be recovered by 

applying the real result to the real and imaginary parts of u. Assume F =R.
Consider a rectangle Q = {x′ ∈ Rn−1 :

∣∣x′
∣∣
∞ < 1} × (0, b). The standard Korn inequality in 

Lipschitz domains (see, for instance, Lemma IV.7.6 in [5]) shows that ‖u‖H 1(Q) � ‖u‖L2(Q) +
‖Du‖L2(Q). We claim that

‖u‖L2(Q) � ‖Du‖L2(Q) +
∥∥Tr∂Q0 u

∥∥
L2(∂Q0)

, (2.3)

where ∂Q0 = ∂Q ∩ {xn = 0}. Indeed, if not then we can produce a sequence {uk}∞k=1 ⊂
H 1(Q; Rn) such that ‖uk‖L2(Q) = 1, ‖Duk‖L2(Q) < 1/k, and 

∥∥Tr∂Q0 uk
∥∥
L2(∂Q0)

< 1/k. Then, 

by compactness, there exists u ∈ tanH
1(Q; Rn) with ‖u‖L2(Q) = 1 such that up to passing to a 

subsequence, Duk → Du = 0 and Tr∂Q0 uk → Tr∂Q0 u = 0 as k→∞. Since Du = 0, we then 

have that u(x) = a+Bx for a constant a ∈Rn and B skew-symmetric, but since Tr∂Q0 u = 0 we 

deduce that a = 0 and B = 0. Thus u = 0, and we contradict the identity ‖u‖L2(Q) = 1, proving 

the claim.
With (2.3) in hand, we write � as a countable almost disjoint union (null intersections along 

the boundary) of rectangles of the form Ql = {x ∈� :
∣∣x′ − l

∣∣
∞ � 1} for l ∈ Zn−1. Since each 

Q� is a translation of the rectangle Q from above, (2.3) allows us to bound

‖u‖2
L2(�)

=
∑

�∈Zn−1

‖u‖2
L2(Ql)

�
∑

�∈Zn−1

(
‖Du‖2

L2(Ql)
+
∥∥Tr�0 u

∥∥2
L2((∂Q�)0)

)

= ‖Du‖2
L2(�)

+
∥∥Tr�0 u

∥∥2
L2(�0)

. (2.4)

This is the desired bound. �

The next result provides a right inverse to the divergence operator.

Lemma 2.3. There exists a linear and continuous mapping � : L2(�; F) → 0H
1(�; Fn)

such that div�g = g for all g ∈ L2(�; F). In particular, for all g ∈ L2(�; F) we have 

‖�g‖
tanH 1(�) �n,b ‖g‖L2(�).

Proof. This follows from Lemma 2.1 in [19] and Lemma 2.2 in [29]. �

We next prove a Helmholtz decomposition of tanH
1(�; Fn).

Lemma 2.4. Define the bounded linear operator Q :L2(�; F) → tanH
1(�, Fn) via

∫

�

p divv = (Qp,v)
tanH 1(�;F) for all v ∈ tanH

1(�;Fn). (2.5)
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Then Q has closed range, and (RanQ)⊥ = tanH
1
σ (�; Fn). Consequently, we have the orthogonal 

decomposition

tanH
1(�;Fn)= tanH

1
σ (�;Fn)⊕

tanH 1 RanQ. (2.6)

Proof. We first show that Q has closed range. To do so, we first note that for all p ∈ L2(�; F)
we have the bound ‖Qp‖

tanH 1(�) �n,p ‖p‖L2(�). On the other hand, by Lemma 2.3 there exists 
a v0 ∈ tanH

1(�; Fn) such that divv0 = p and ‖v0‖tanH 1 �n,b ‖p‖L2 . Therefore by the Cauchy-
Schwartz inequality,

‖p‖2
L2 =

∫

�

p divv0 = (Qp,v0)tanH 1(�) � ‖Qp‖tanH 1(�) ‖v0‖tanH 1(�)

�n,b ‖Qp‖tanH 1(�) ‖p‖L2(�) . (2.7)

This implies that ‖p‖ �n,b ‖Qp‖tanH 1 , thus we have the equivalence of norms ‖Qp‖
tanH 1 �

‖p‖L2 for all p ∈ L2(�; F). This immediately implies that Q has closed range, and so 

tanH
1(�; Fn) = RanQ ⊕

tanH 1 (RanQ)⊥. It remains to show that (RanQ)⊥ = tanH
1
σ (�; Fn). 

If v ∈ (RanQ)⊥, then (Qp,v)
tanH 1 = (p, divv)L2 = 0 for all p ∈ L2(�; F). Thus we must have 

divv = 0 Ln-a.e., which implies that v ∈ tanH
1
σ (�; Fn). If v ∈ tanH

1
σ (�; Fn), then (Qp,v) =∫

�
p divv = 0 for any p ∈ L2(�; F), which implies that v ∈ (RanQ)⊥. This shows that 

(RanQ)⊥ = tanH
1
σ (�, F

n) as desired. Since the range of Q is closed, the Helmholtz decom-
position (2.6) follows. �

This gives us an immediate corollary.

Corollary 2.5. Let �1 ∈
(

tanH
1(�;Fn)

)∗
be such that 〈�1, v〉 = 0 for all v ∈ tanH

1
σ (�; Fn). 

Then there exists unique p ∈ L2(�; F) such that 〈�1, v〉 =
∫
�
p divv for all v ∈ tanH

1(�; Fn). 

Moreover, we have the estimate ‖p‖L2 �n,b ‖�1‖(
tanH 1

)∗ .

Proof. First we suppose that F = R and let � ∈
(

tanH
1(�;Rn)

)∗
be such that it vanishes on 

solenoidal fields. By the Riesz representation theorem, there exists w ∈ tanH
1(�; Rn) such that 

〈�, v〉 = (w,v)
tanH 1 for all v ∈ tanH

1(�; Rn) and ‖w‖
tanH 1 = ‖�‖(

tanH 1
)∗ . Then for all v ∈

tanH
1
σ (�; Rn), we have (w, v)

tanH 1 = 〈�, v〉 = 0, thus w ∈
(

tanH
1
σ (�;Rn)

)⊥
. By Lemma 2.4, we 

have w ∈ RanQ, therefore there exists a p ∈ L2(�; R) such that Qp =w. So we have 〈�, v〉 =
(Qp,v)

tanH 1 =
∫
�
p divv for all v ∈ tanH

1(�; Rn), with the estimate

‖p‖L2 �n,b ‖Qp‖tanH 1 = ‖w‖
tanH 1 = ‖�‖(

tanH 1
)∗ . (2.8)

Moreover, p ∈ L2(�; R) is unique since Q is surjective.
Now we consider the case when F = C. If we have an antilinear functional � ∈(

tanH
1(�;Cn)

)∗
vanishing on solenoidal fields, we can define the R-linear functionals 

�Re, �Im ∈
(

tanH
1(�;Rn)

)∗
via 〈�Re, v〉 = Re〈F, v〉 and 〈�Im, v〉 = Re〈F, iv〉 for any v ∈
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tanH
1(�; Rn). Note that if v ∈ tanH

1
σ (�; Rn), then 〈�, v〉 = 0 by assumption, so it follows 

that �Re, �Im vanishes on real-valued solenoidal fields. Thus when F = R, there exist unique 

q, r ∈ L2(�; R) such that for all v, w ∈ tanH
1(�; Rn),

Re[〈�,v+ iw〉] = 〈�Re, v〉 + 〈�Im,w〉 =
∫

�

q divv+ r divw

= Re

⎡
£
∫

�

(q + ir)div (v+ iw)

¤
⎦ . (2.9)

Now define p ∈ L2(�; C) via p = q + ir , and for any u ∈ tanH
1(�; Cn) we write it as u =

v+ iw. Then

〈�,u〉 = Re[〈�,v+ iw〉] + i Im[〈�,v+ iw〉] = Re[〈�,v+ iw〉] + iRe[−i〈�,v + iw〉]

= Re[〈�,v+ iw〉] + iRe[〈�,−w+ iv〉]

= Re

⎡
£
∫

�

(q + ir)div (v + iw)

¤
⎦+ iRe

⎡
£
∫

�

(q + ir)div (−w+ iv)

¤
⎦

= Re

⎡
£
∫

�

(q + ir)div (v + iw)

¤
⎦+ i Im

⎡
£
∫

�

(q + ir)div (v+ iw)

¤
⎦

=
∫

�

p divu. � (2.10)

With these preliminary results in hand, we now turn to the question of weak solvability of 
(2.1). We first set some notation.

Definition 2.6. Let R 
 s � 0, R 
 α > 0, γ ∈R, and β ∈Rn×n be positive definite. We define 

the map Lα,β,γ : tanH
s+3/2(�; Fn) ×H s(�; F) → (tanH

1(�; Fn))∗ via

〈
Lα,β,γ (u,p), v

〉
(tanH 1)∗,tanH 1 =

∫

�

μ

2
Du :Dv− p divv− γ ∂1u · v+

1

α

∫

�0

βu · v. (2.11)

Given F ∈ (tanH
1(�; Fn))∗ and g ∈ L2(�; F), we say that u ∈ tanH

1(�; Fn) and p ∈ L2(�; F)
are weak solutions to (2.1) if divu = g and

〈
Lα,β,γ (u,p), v

〉
(tanH 1)∗,tanH 1 = 〈F,v〉(tanH 1)∗,tanH 1 . (2.12)

This notation allows us to efficiently state our weak well-posedness result.
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Theorem 2.7. Let R 
 α > 0, γ ∈ R, and β ∈ Rn×n be positive definite. Define χα,β,γ :
tanH

1(�; Fn) × L2(�; F) → (tanH
1(�; Fn))∗ × L2(�; F) via χα,β,γ (u, p) = (Lα,β,γ (u, p),

divu), where Lα,β,γ is defined in (2.11). Then χα,β,γ is an isomorphism.

Proof. We first define the map Bα : tanH
1(�; Fn) × tanH

1(�; Fn) → F via

Bα(u, v)=
∫

�

μ

2
Du :Dv− γ ∂1u · v+

1

α

∫

�0

βu · v, (2.13)

which is clearly well-defined and continuous. Note that if u ∈ tanH
1(�; Fn), then integration by 

parts shows that

∫

�

∂1u · u=−
∫

�

u · ∂1u=−
∫

�

∂1u · u =⇒ Re
∫

�

∂1u · u= 0. (2.14)

Thus by the Korn’s inequality from Lemma 2.2, and using α > 0 and the fact that β is positive 

definite, we have

|Bα(u,u)|� ReBα(u,u)=
1

2

∫

�

|Du|2 + 1

α

∫

�0

βu · u� ‖u‖2
tanH 1 , (2.15)

which shows that Bα is tanH
1-coercive. Since tanH

1
σ (�; Fn) is a closed subspace of

tanH
1(�; Fn), Bα is a well-defined, continuous, coercive functional that is bilinear when F =R

and sesquilinear when F =C.

Let (F, g) ∈ (tanH
1(�; Fn))∗×L2(�; F) and define the functional �α ∈

(
tanH

1(�;Fn
)∗

via 

〈�α, v〉 =−Bα(�g, v) + 〈F, v〉(tanH 1)∗ , where � : L2(�; F) → 0H
1(�; Fn) is the right inverse 

of the divergence operator introduced in Lemma 2.3. By applying the standard Lax-Milgram 

theorem when F =R and the anti-dual Lax Milgram theorem (see, for instance, Theorem A.5 of 
[29]) when F =C, there exists a unique u ∈ tanH

1
σ (�; Fn) such that Bα(u, v) = 〈�α, v〉 for all 

v ∈ tanH
1
σ (�; Fn), obeying the estimate

‖u‖
tanH 1 � ‖�‖(tanH 1(�;Fn))∗ �α,n,b ‖F‖(

tanH 1
)∗ + ‖g‖L2 . (2.16)

Furthermore, by Corollary 2.5 there exists a unique p ∈ L2(�; F) such that

Bα(u, v)=−Bα(�g,v)+ 〈F,v〉(tanH 1)∗,tanH 1 +
∫

�

p divv (2.17)

for all v ∈ tanH
1(�; Fn). This shows that χα,β,γ (u +�g, p) = (F, g), so χα,β,γ is surjective.

On the other hand, if (u, p) ∈ tanH
1(�; Fn) ×L2(�; F) such that χα,β,γ (u, p) = (F, g), first 

we can use the Helmholtz decomposition (2.6) to write u =w+�g. Then if we use v =�p in 

the definition of the map Lα,β,γ from (2.11), we arrive at the estimate
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‖p‖L2 �n,b ‖�‖(
tanH 1

)∗ �α,n,b ‖u‖tanH 1 + ‖F‖(
tanH 1

)∗ . (2.18)

The injectivity of χα,β,γ then follows from the estimates (2.16) and (2.18). �

Next we combine the weak isomorphism with standard elliptic regularity to arrive at our well-
posedness result.

Theorem 2.8. Let s � 0 and assume β ∈ Rn×n is positive definite. For any γ ∈ R, we de-

fine the bounded linear operator �α,β,γ : tanH
s+2(�; Fn) × H s+1(�; F) → H s(�; Fn) ×

H s+1(�; F) × H s+ 1
2 (�b; Fn) × H s+ 1

2 (�0; Fn−1) via �α,β,γ (u, p) = (divS(p,u)− γ ∂1u,

divu,S(p,u)en, [αS(p,u)en + βu]′
)
. Then �α,β,γ is an isomorphism for all γ ∈R.

Proof. This follows from Theorem 2.7 and the regularity theory for elliptic systems (see, for 
instance, [3]). �

Next we prove an important result that will be essential in the analysis to follow. We show 

that the weak solution map χα,β,γ and the strong solution map �α,β,γ commute with tangential 
multipliers, as defined in Definition A.4.

Theorem 2.9. Let s � 0 and suppose ω ∈ L∞(Rn−1; C). Consider the tangential multi-

plier Mω defined via Definition A.4. If (F, g) ∈ (tanH
1(�; Fn))∗ × L2(�; F) and (u, p) =

χ−1
α,β,γ (F, g), then (Mωu, Mωp) = χ−1

α,β,γ (MωF, Mωg). Furthermore, if f ∈ H s(�; Fn), g ∈
H s+ 1

2 (�b; Fn), k ∈H s+ 1
2 (�b; Fn), l ∈H s+ 1

2 (�0; Fn−1), and we set (u, p) =�−1
α,β,γ (f, g, k, l), 

then (Mωu, Mωp) =�−1
α,β,γ (Mωf, Mωg, Mωk, Mωl).

Proof. Let ω ∈ L∞(Rn−1; C), (F, g) ∈ (tanH
1(�; Fn))∗×L2(�; F) and (u, p) = χ−1

α,β,γ (F, g). 

We first note that by the definition of Mω on L2(�; F), the multiplier Mω commutes with differ-
ential operators and therefore we immediately have Mωg =Mω divu = divMωu. We then note 

that by the definition of Mω on (tanH
1(�; Cn))∗, we may compute for all v ∈ tanH

1(�; Cn)

〈MωF,v〉(tanH 1)∗,tanH 1 = 〈F,Mωv〉(tanH 1)∗,tanH 1

=
∫

�

μ

2
DMωu :Dv −Mωp divv − γ ∂1Mωu · v +

1

α

∫

�0

βMωu · v

= 〈Lα,β,γ (Mωu,Mωp), v〉. (2.19)

Combining these then shows that (Mωu, Mωp) = χ−1
β,γ (MωF, Mωg). Next we note that again 

that by the definition of Mω on H s(U ; Fk) and L2(�; Fk) for � ∈ {�b, �0} and k � 1, the 

tangential multiplier Mω commutes with differential operators and therefore

Mωf =Mω(divS(p,u)− γ ∂1u)= divMωS(p,u)− γ ∂1Mωu

= divS(Mωp,Mωu)− γ ∂1Mωu,

Mωk =MωS(p,u)en = S(Mωp,Mωu)en, Mωl =Mω [αS(p,u)en + βu]′
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= [αS(Mωp,Mωu)en + βMωu]′ . (2.20)

Thus, (Mωu, Mωp) =�−1
α,β,γ (Mωf, Mωg, Mωk, Mωl). �

We conclude this section deriving an α-independent estimate for the operator from Theo-
rem 2.8, assuming that l = 0 and α ∈ (0, 1). We only focus on the case when F =R, as we only 

consider real-valued solutions later.

Proposition 2.10. Suppose γ ∈ R, and β ∈ Rn×n is positive definite. Let R 
 s � 0, f ∈
H s(�; Rn), g ∈H s+1(�; R), and k ∈H s+ 1

2 (�b; Rn). Then there exists a constant C > 0 such 

that if α ∈ (0, 1) and u ∈ tanH
s+2(�; Rn) and p ∈H s+1(�; R) satisfy (2.1) with l = 0, then

‖u‖
tanH s+2 + ‖p‖H s+1 � C

(
‖f ‖H s + ‖g‖H s+1 + ‖k‖

H
s+ 1

2 (�b)

)
. (2.21)

Proof. Throughout the proof we will use the operators JtM defined in Lemma A.3. Suppose 

(u, p) ∈ tanH
s+2(�; Rn) × H s+1(�; R) is the solution to (2.1) with f ∈ H s(�; Rn), g ∈

H s+1(�; R), k ∈ H s+1/2(�b; Rn) and l = 0. Then we note by Theorem 2.9, for any M >

0 the tuple (Js+1
M u, Js+1

M p) ∈ tanH
1(�; Rn) is the solution to (2.1) with data Js+1

M f ∈
H s(�; Rn), Js+1

M g ∈H s+1(�; R), Js+1
M k ∈H s+1/2(�b; Rn) and l = 0.

We may then use Js+1
M u ∈ tanH

1(�; Rn) as a test function in the weak formulation (2.12) to 

obtain

∫

�

μ

2

∣∣∣DJs+1
M u

∣∣∣
2
+ 1

α

∫

�0

βJs+1
M u : Js+1

M u

=
∫

�

JsMf : Js+2
M u−

∫

�b

Js+1
M k : Js+1

M u+
∫

�

Js+1
M pJs+1

M g. (2.22)

Since α ∈ (0, 1), by Lemmas 2.2 and A.3 and trace theory, we have that there exist constants
c1, c2 independent of α and M such that

c1

∥∥∥Js+1
M u

∥∥∥
2

tanH 1

�
∥∥JsMf

∥∥
L2

∥∥∥Js+2
M u

∥∥∥
L2
+
∥∥∥Js+1

M k

∥∥∥
H−1/2(�b)

∥∥∥Js+1
M u

∥∥∥
H 1/2(�b)

+
∥∥∥Js+1

M p

∥∥∥
L2

∥∥∥Js+1
M g

∥∥∥
L2

� c2

(∥∥JsMf
∥∥2
L2 +

∥∥∥Js+1
M k

∥∥∥
2

H−1/2(�b)

)
+
∥∥∥Js+1

M p

∥∥∥
L2

∥∥∥Js+1
M g

∥∥∥
L2
+ c1

2

∥∥∥Js+1
M u

∥∥∥
2

H 1(�)
.

(2.23)

By absorbing the last term on the right side of (2.23) and again using Lemma A.3, we have for 
any ε > 0,
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∥∥∥Js+1
M u

∥∥∥
tanH 1

�
∥∥JsMf

∥∥
L2 +

1

ε

∥∥∥Js+1
M g

∥∥∥
L2
+
∥∥∥Js+1

M k

∥∥∥
H−1/2(�b)

+ ε
∥∥∥Js+1

M p

∥∥∥
L2

� ‖f ‖H s + 1

ε
‖g‖H s+1 + ‖k‖H s+1/2(�b)

+ ε
∥∥∥Js+1

M p

∥∥∥
L2
. (2.24)

Next, we seek to derive a priori estimates on the pressure. By Lemma 2.3 there exists 

v0 ∈ 0H
1(�; Fn) such that divv0 = Js+1

M p and ‖v0‖0H
1 �n,b

∥∥∥Js+1
M p

∥∥∥
L2

. Using v0 in the weak 

formulation (2.12) with the same data, we find that there exists a constant C = C(μ, γ, s, b) > 0
independent of α and M such that

∥∥∥Js+1
M p

∥∥∥
2

L2
=
∫

�

μ

2
DJs+1

M u :Dv0 − γ ∂1J
s+1
M u · v0 − JsMf : J1v0 +

∫

�b

Js+1
M k : v0

�
μ

2

∥∥∥Js+1
M u

∥∥∥
tanH 1

‖v0‖0H
1 + |γ |

∥∥∥Js+1
M u

∥∥∥
tanH 1

‖v0‖L2 +
∥∥JsMf

∥∥
L2 ‖v0‖0H

1

+
∥∥∥Js+1

M k

∥∥∥
H−1/2(�b)

‖v0‖0H
1

� C

(∥∥∥Js+1
M u

∥∥∥
2

tanH 1
+ ‖f ‖2

H s + ‖k‖2
H s+1/2(�b)

)
+ 1

2

∥∥∥Js+1
M p

∥∥∥
2

L2
. (2.25)

Thus by another absorption argument we find that

∥∥∥Js+1
M p

∥∥∥
L2

�
∥∥∥Js+1

M u

∥∥∥
tanH 1

+ ‖f ‖H s + ‖k‖H s+1/2(�b)
, (2.26)

where the universal constant is independent of α and M . By combining (2.24) and (2.26) we may 

then choose ε > 0 sufficiently small so that

∥∥∥Js+1
M u

∥∥∥
tanH 1

+
∥∥∥Js+1

M p

∥∥∥
L2

� ‖f ‖H s + ‖g‖H s+1 + ‖k‖H s+1/2(�b)
. (2.27)

Since the universal constant in (2.27) is independent of M , we may apply the monotone conver-
gence theorem to conclude that

∥∥∥Js+1u

∥∥∥
tanH 1

+
∥∥∥Js+1p

∥∥∥
L2

� ‖f ‖H s + ‖g‖H s+1 + ‖k‖H s+1/2(�b)
. (2.28)

Standard elliptic regularity results (see [2], for instance) then show that

‖u‖H s+2 + ‖∇p‖H s � ‖f ‖H s + ‖g‖H s+1 +
∥∥Tr�b u

∥∥
H s+3/2(�b)

+
∥∥Tr�0 u

∥∥
H s+3/2(�0)

.

(2.29)

Lemma A.3, the identity (A.5), and trace theory show that for � ∈ {�b, �0},

‖Tr� u‖H s+3/2(�) =
∥∥∥Js+1 Tr� u

∥∥∥
H 1/2(�)

=
∥∥∥Tr� Js+1u

∥∥∥
H 1/2(�)

�
∥∥∥Js+1u

∥∥∥
H 1(�)

. (2.30)

Thus by combining (2.28), (2.29), and (2.30) we find that
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‖u‖H s+2 + ‖p‖H s+1 � ‖f ‖H s + ‖g‖H s+1 + ‖k‖H s+1/2(�b)
, (2.31)

where the universal constant in (2.31) is uniform over α ∈ (0, 1). �

Combining Theorem 2.8 and Proposition 2.10 gives us the following corollary.

Corollary 2.11. Let s � 0 and assume β ∈ Rn×n is positive definite. For any γ ∈ R and 

α ∈ (0, 1), we define the bounded linear operator �α,β,γ : α−tanH
s+2(�; Fn) ×H s+1(�; F) →

H s(�; Fn) × H s+1(�; F) × H s+ 1
2 (�b; Fn) via �α,β,γ (u, p) = (divS(p,u)− γ ∂1u,divu,

S(p,u)en). Then �α,β,γ is an isomorphism for all γ ∈R. Furthermore, there exists a constant 

M > 0 such that

sup
α∈(0,1)

∥∥�α,β,γ

∥∥
L(α−tanH s+2×H s+1;H s×H s+1×H s+ 1

2 (�b))
�M. (2.32)

Proof. The fact that �α,β,γ is an isomorphism follows immediately from the definition of the 

space α−tanH
s+2(�; Fn) recorded as the second item of Definition 2.1 and Theorem 2.8, and 

(2.32) follows immediately from Proposition 2.10. �

3. The overdetermined γ -Stokes problem

Our goal in this section is to extend the linear analysis of the system (2.1) to the overdeter-
mined variant

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

divS(p,u)− γ ∂1u= f, in�

divu= g, in�

un = h, on�b
S(p,u)en = k, on�b
[αS(p,u)en + βu]′ = l, on�0

un = 0, on�0

(3.1)

obtained from (2.1) by appending the equation un = h on �b.

3.1. The specified divergence problem and the divergence-trace compatibility condition

In this subsection we establish results concerning the specified divergence problem

⎧
⎪«
⎪¬

divu= g, in�

un = h, on�b
un = 0, on�0,

(3.2)

over F ∈ {R, C}. The system (3.2) is overdetermined in the sense that a non-trivial compatibility 

condition needs to be satisfied by the data g and h. We record this condition below.
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Lemma 3.1. Let u ∈ tanH
1(�; Fn) and let g = divu ∈ L2(�; F) and h = un|�b ∈ H

1
2 (�b; F). 

Then

h(·)−
b∫

0

g(·, xn) dxn ∈ Ḣ−1(Rn−1;F) and

⎡
£h−

b∫

0

g(·, xn) dxn

¤
⎦

Ḣ−1

� 2π
√
b ‖u‖L2 .

(3.3)

Proof. Theorem 3.1 in [19] establishes this for u that entirely vanish on �0. However, an in-
spection of the proof there shows that it really only requires un = 0 on �0, so the same argument 
proves the result for u ∈ tanH

1(�; Fn). �

The next result constructs a right inverse to (3.2).

Proposition 3.2. Consider the Hilbert space H(�; F) = {(g, h) ∈ L2(�; F) × H
1
2 (�; F) :

‖(g,h)‖H < ∞}, where ‖(g,h)‖H is defined via ‖(g,h)‖2
H = ‖g‖2

L2 + ‖h‖2

H
1
2
+
[
h −

∫ b
0 g(·, xn) dxn

]2

Ḣ−1
. There exists a bounded linear operator G :H(�; F) → 0H

1(�; Fn) such 

that u =G(g, h) satisfies (3.2).

Proof. This is Proposition 2.4 in [29]. �

3.2. Adjoint problem analysis

Now we are ready to study the R-solvability of the system (3.1). We first record its formal 
adjoint, the underdetermined problem (here in homogeneous form)

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

divS(q, v)+ γ ∂1v = 0, in�

divv = 0, in�

(S(q, v)en)
′ = 0, on�b

[αS(q, v)e′n + βT v]′ = 0, on�0

vn = 0, on�0.

(3.4)

We note in particular that since βw · w = βTw · w for all w ∈ Rn, βT is positive definite 

whenever β is. As a consequence, we can augment the third equation with the extra condition 

S(p, u)en · en =ψ for arbitrary ψ ∈H s+1/2(�b) in order to parameterize the solution space via 

the isomorphism �α,βT ,−γ from Theorem 2.8.
Throughout the rest of this subsection we aim to develop the asymptotics of some special 

functions associated to the map �α,βT ,−γ from Theorem 2.8, which we call the normal stress to 

solution map. First we define symbols of the pseudodifferential operator associated to this map.

Definition 3.3. Let γ ∈ R, β ∈ Rn×n be positive definite, and s ∈ [−1, ∞). We define the nor-

mal stress to velocity and the normal stress to pressure maps to be the bounded linear maps 

Uα,β,γ : H s+ 1
2 (�b; F) →H s+2 (�;Fn) and Pα,β,γ : H s+ 1

2 (�b; F) → H s+1(�; F) defined via 

(Uα,β,γ (ψ), Pα,β,γ (ψ)) = �−1
α,βT ,−γ (0, 0, ψen, 0), where �α,βT ,−γ is the isomorphism from 
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Theorem 2.8. In other words, (Uα,β,γ (ψ), Pα,β,γ (ψ)) is the unique solution to the adjoint prob-

lem (3.4) for a given ψ ∈H s+ 1
2 (�b; F).

Theorem 3.4. There exist bounded, measurable functions Vα,β, Qα,β :R ×[0, b] ×R →C such 

that Vα,β(ξ, xn, γ )= Vα,β(−ξ, xn, γ ), Qα,β(ξ, xn, γ )=Qα,β(−ξ, xn, γ ) for ξ ∈Rn−1 a.e., and 

for s ∈ [−1, ∞) and all ψ ∈ H s+ 1
2 (�b; R), we have ̂Uα,β,γ (ψ)(ξ, xn) = Vα,β(ξ, xn, −γ )ψ̂(ξ)

and ̂Pα,β,γ (ψ)(ξ, xn) =Qα,β(ξ, xn, −γ )ψ̂(ξ). Moreover, for all α ∈ R there exists a constant 

c > 0 such that for a.e. ξ ∈Rn−1, we have

∣∣Vα,β(ξ, xn, γ )
∣∣� c(1+ |ξ |2)− 1

2 . (3.5)

Proof. We note that for fixed xn ∈ [0, b], the map ψ �→ Uα,β,γ (ψ)(·, xn) is a bounded lin-
ear translation-invariant map between H s+1/2(Rd ; F) and H s+3/2(Rd ; Fn) and the map ψ �→
Pα,β,γ (ψ)(·, xn) is a bounded linear translation-invariant map between H s+1/2(Rd ; F) and 

H s+1/2(Rd ; F) by Theorem 2.8. Thus the existence of Vα,β , Qα,β , and the estimate (3.5) is 
guaranteed by Proposition A.2. Since ψ is assumed to be real-valued, Uα,γ , Pα,γ are also real-
valued, thus it follows that Vα,β(ξ, xn, γ )= Vα,β(−ξ, xn, γ ), Qα,β(ξ, xn, γ )=Qα,β(−ξ, xn, γ )
for a.e. ξ ∈Rn−1. The estimate (3.5) follows from trace theory and the estimate (A.2) recorded 

as a part of Proposition A.2. �

We then define mα,β :R ×R →C via

mα,β(ξ, γ )= Vα,β(ξ, b, γ ) · en, (3.6)

which can be viewed as the symbol of the normal stress to Dirichlet pseudodifferential operator 
ψ �→ un|�b .

Recall that by Theorem 2.7 and trace theory, we have the equivalence ‖ψ‖
H
− 1

2
� ‖u‖

0H
1 +

‖p‖L2 . The next theorem shows that if we weaken the control of ψ at low frequencies on the 

Fourier side, we then have a norm equivalence without the pressure term. Note in particular that 
the constant appearing in (3.8) can be made to be uniform in the parameter α if α ∈ (0, 1). First 
we need some notation.

Definition 3.5. Let F ∈ {R, C}, R 
 α > 0. For s � −1, we define O : H s+ 1
2 (�b; Fn) ×

H s+ 1
2 (�0; Fn−1) → (tanH

1(�; Fn))∗ by the action on v ∈ tanH
1(�; Fn) via

〈O(k, l), v〉(tanH 1)∗,tanH 1 =
〈
k, v|�b

〉
H
− 1

2 ,H
1
2
− 1

α

〈
l, v′|�0

〉
H
− 1

2 ,H
1
2
, (3.7)

where 
〈
k, v|�b

〉
H
− 1

2 ,H
1
2

denotes the dual paring between k ∈ H− 1
2 (�b; Fn) = (H

1
2 (�b; Fn))∗

and v|�b ∈ H 1/2(�b; Fn), and similarly 
〈
l, v′|�0

〉
H
− 1

2 ,H
1
2

denotes the dual paring between l ∈

(H
1
2 (�0; Fn−1))∗ and v′|�b ∈H 1/2(�0; Fn−1). Clearly, O is bounded and linear.

We can now state and prove the previously mentioned result.
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Theorem 3.6. Suppose R 
 α > 0, β ∈ Rn×n is positive definite, and γ ∈ R. Let ψ ∈
H−1/2(�b; F) and consider (u, p) = χ−1

βT ,−γ (O(ψen, 0), 0). The following hold.

(1) There exists a constant c > 0 such that

c−1‖u‖
tanH 1 �

»
¼½
∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ

¾
¿À

1
2

� c‖u‖
tanH 1 . (3.8)

(2) Furthermore, there exists a constant c > 0 depending on physical parameters and γ such that 

(3.8) holds for all α ∈ (0, 1). In other words, the constant c can be chosen to be independent 

of α if α ∈ (0, 1).

Proof. First we note that by the weak form of the system (2.12) and the definition of the map O

via (3.7), we have

∫

�

μ

2
Du :Dv− p divv+ γ ∂1u · v+

1

α

∫

�0

βu′ · v′ =−〈ψen, v|�b〉H−1/2(�b),H
1/2(�b)

(3.9)

for all v ∈ tanH
1(�; Fn). By letting v = u ∈ tanH

1
σ (�; Fn), taking the real part of (3.9), using 

(2.14), Lemma 2.2, the fact that α > 0, (5.2) and the anti-dual representation of Sobolev spaces 
(see Proposition A.6 of [29]) we have

‖u‖2
tanH 1 �α Re

»
¼½
∫

�

μ

2
|Du|2 + 1

α

∫

�0

βu′ · u′

¾
¿À

=−Re〈ψ,Tr�b u · en〉H−1/2,H 1/2 =−Re
∫

Rn−1

ψ̂(ξ) ̂Tr�b u · en(ξ) dξ

�

»
¼½
∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ

¾
¿À

1
2
»
¼½
∫

Rn−1

max{|ξ |−2 , |ξ |1}
∣∣∣ ̂Tr�b u · en(ξ)

∣∣∣
2
dξ

¾
¿À

1
2

.

(3.10)

In particular, we note that if α ∈ (0, 1), then α−1 > 1 and thus we may choose the constant on 

the left hand side of (3.10) to be independent of α. By using the divergence-trace compatibility 

estimate (3.3), we have

∫

Rn−1

max{|ξ |−2 , |ξ |1}
∣∣∣ ̂Tr�b u · en(ξ)

∣∣∣
2
dξ � ‖Tr�b u · en‖

Ḣ−1∩H
1
2
� ‖u‖

tanH 1 . (3.11)

This gives us the left hand side of (3.8).
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For the right hand side, we first define φ ∈ H 1/2(�b; F) ∩ Ḣ−1(�b; F) via φ̂(ξ) =
min{|ξ |2 , |ξ |−1}ψ̂(ξ), where

‖φ‖2

H
1
2 ∩Ḣ−1

� 2
∫

Rn−1

max{|ξ |−2 , |ξ |1}
∣∣∣min{|ξ |2 , |ξ |−1}ψ̂(ξ)

∣∣∣
2
dξ

= 2
∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ. (3.12)

Note that for |ξ |� 1, |ξ |2 � (1 + |ξ |2)−1/2 and for |ξ |� 1, |ξ |−1 � (1 + |ξ |2)−1/2. So we find 

that ‖φ‖2

H
1
2 ∩Ḣ−1

� ‖φ‖H−1/2 , and therefore we can apply Proposition 3.2 and consider w =
G(0, φ) ∈ 0H

1
σ (�; F), for which we have the estimate

‖w‖2
tanH 1 � ‖G(0, φ)‖H(�) = ‖φ‖2

Ḣ−1∩H 1/2 �

∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ. (3.13)

Now using w ∈ 0H
1
σ (�; Fn) in the weak formulation of the adjoint problem (3.4) gives us

〈
ψ,wn|�b

〉
H−1/2(�b),H

1/2(�b)
=−

∫

�

μ

2
Du :Dw− γ ∂1u ·w, (3.14)

and using the anti-dual representation of Sobolev spaces we have

〈
ψ,wn|�b

〉
H−1/2(�b),H

1/2(�b)
=
∫

Rn−1

ψ̂φ̂ dξ =
∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ (3.15)

and

∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ �

∣∣∣∣∣∣

∫

�

μ

2
Du :Dw+ γ ∂1u ·w

∣∣∣∣∣∣
�μ,γ,β ‖u‖tanH 1 ‖w‖

tanH 1 .

(3.16)

Combining (3.16) with (3.13) gives us the desired inequality (3.8). We note that since the constant 
appearing in (3.16) does not depend on α, the second item follows. �

Utilizing the energy equivalence established above, we are now ready to establish some key 

estimates for Vα,β , Qα,β , mα,β as defined in Theorem 3.4 and (3.6).

Theorem 3.7. Let R 
 α > 0, γ ∈R, and β ∈Rn×n be positive definite. The following hold.
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(1) There exists a constant c > 0 such that for all a.e. ξ ∈Rn−1, we have

b∫

0

∣∣Vα,β(ξ, xn,−γ )
∣∣2 dxn � cmin{|ξ |2 , |ξ |−2},

∣∣Vα,β(ξ,0,−γ )
∣∣2 � cmin{|ξ |2 , |ξ |−2},

(3.17)

and

b∫

0

∣∣Qα,β(ξ, xn,−γ )− 1
∣∣2 dxn � c |ξ |2 . (3.18)

(2) There exists a constant c > 0 depending on physical parameters and γ such that (3.17) and 

(3.18) hold for all α ∈ (0, 1). In other words, the constant c can be chosen to be independent 

of α if α ∈ (0, 1).

Proof. To prove the first item, we note that by Parseval’s theorem, Tonelli’s theorem, and Theo-
rem 3.6, we have

b∫

0

∫

Rn−1

∣∣∣Vα,β(ξ, xn,−γ )ψ̂(ξ)
∣∣∣
2
dξdxn = ‖u‖2

L2 � ‖u‖2
tanH 1

�α

∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ, (3.19)

for all ψ ∈ H− 1
2 (�b; F). Let ϕ ∈ L1(Rn−1; R) such that ϕ(ξ) � 0 a.e. with compact support. 

Define φ ∈
⋂
s∈R

H s(Rn−1; C) via φ =F−1[√ϕ], and we take ψ = φ in the inequality above. 
This gives us

∫

Rn−1

»
½

b∫

0

∣∣Vα,β(ξ, xn,−γ )
∣∣2 dxn

¾
Àϕ(ξ) dξ �α

∫

Rn−1

min{|ξ |2 , |ξ |−1}ϕ(ξ) dξ. (3.20)

Since this holds for all ϕ ∈ L1(Rn−1; R), for all α > 0 there exists a constant C > 0 such that

b∫

0

∣∣Vα,β(ξ, xn,−γ )
∣∣2 dxn � Cmin{|ξ |2 , |ξ |−1} for a.e. ξ ∈Rn−1. (3.21)

Combining this with the estimate (3.5) gives us the first estimate in (3.17). Furthermore, we note 

that by the second item of Theorem 3.6, the constants appearing on the right hand side of (3.19)
and (3.20) can be chosen to be independent of α if α ∈ (0, 1).
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We note that since
∫

Rn−1

∣∣∣Vα,β(ξ,0,−γ )ψ̂(ξ)
∣∣∣
2
dξdxn =

∥∥Tr�0 u
∥∥2
L2 � ‖u‖2

tanH 1 , (3.22)

applying the exact same argument as above gives us the second estimate in (3.17).
To prove (3.18), we note that p̂ − ψ̂ = (Qα,β − 1)ψ̂ and recall that the weak formulation of 

the system requires

∫

�

μ

2
Du :Dv− p divv + γ ∂1u · v+

1

α

∫

�0

βu′ · v′ =−〈ψen, v|�b 〉H−1/2,H 1/2

=−
∫

Rn−1

ψ(x′)vn dx
′ (3.23)

for all v ∈ tanH
1(�; Fn). Let v = �(p − ψ(x′)) ∈ 0H

1(�; Fn) where � : L2(�; F) →
0H

1(�; Fn) is the right inverse to the divergence operator appearing in Lemma 2.3. Then by 

testing v in the weak formulation we find that

∫

�

|p−ψ |2 =
∫

�

μ

2
Du :Dv + γ ∂1u · v +

∫

Rn−1

ψ(x′)

⎡
£vn −

b∫

0

divv dxn

¤
⎦dx′. (3.24)

By applying Cauchy-Schwartz and using the continuity of the trace operator, we have

∫

�

|p−ψ |2 dx �μ,γ,β ‖u‖tanH 1‖v‖
tanH 1 + [ψ]Ḣ 1‖v‖tanH 1 + [ψ]Ḣ 1

⎡
£

b∫

0

divv dxn

¤
⎦

Ḣ−1

.

(3.25)

Note that

⎡
£

b∫

0

divv dxn

¤
⎦

Ḣ−1

=
b∫

0

∫

Rn−1

|ξ |−2 |2πiξ · v|2 dξdxn �
b∫

0

∫

Rn−1

|v(ξ, xn)|2 dξdxn = ‖v‖L2 .

(3.26)

Furthermore, since ψ̂ =√ϕ has compact support, using the left hand side of the energy equiva-
lence (3.8) we have

‖u‖2
tanH 1 �α

∫

Rn−1

|ξ |2
∣∣∣ψ̂(ξ)

∣∣∣
2
= [ψ]2

Ḣ 1 . (3.27)

Combining the estimates (3.25), (3.26), (3.27) give us
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∫

�

∣∣p(x)−ψ(x′)
∣∣2 dx � [ψ]Ḣ 1‖v‖tanH 1 � [ψ]Ḣ 1‖p−ψ‖L2 . (3.28)

Then

b∫

0

∫

Rn−1

∣∣∣(Qα(ξ, xn,−γ )− 1)ψ̂(ξ)
∣∣∣
2
dξdxn =

∫

�

∣∣p(x)−ψ(x′)
∣∣2 dx �

∫

Rn−1

|ξ |2
∣∣∣ψ̂(ξ)

∣∣∣
2
dξ.

(3.29)

Following the same argument as before, we arrive at the desired estimate. To prove the second 

item, we also note that the constants appearing in (3.25), (3.26) do not depend on α and by 

the second item of Theorem 3.6, the constant appearing on the right hand side of (3.27) can be 

chosen to be uniform in α if α ∈ (0, 1). The second item then follows. �

We also need the asymptotics of mα,β(ξ, γ ).

Lemma 3.8. Let R 
 α > 0 and γ ∈R. The following hold.

(1) For a.e. ξ ∈Rn−1, Remα,β(ξ,−γ ) is strictly negative and there exists a constant C > 0 for 

which

min{|ξ |2 , |ξ |−1}�−CRemα,β(ξ,−γ ). (3.30)

(2) There exists a constant c > 0 such that for a.e. ξ ∈Rn−1, we have

c−1 min{|ξ |2 , |ξ |−1}�
∣∣mα,β(ξ,−γ )

∣∣� cmin{|ξ |2 , |ξ |−1}. (3.31)

(3) There exist constants C, c > 0 such that (3.30) and (3.31) hold for all α ∈ (0, 1). In other 

words, the constants can be chosen to be independent of α if α ∈ (0, 1).

Proof. First we prove the second item and the right hand side of (3.31). Note that by the 

divergence-trace compatibility condition and the energy equivalence (3.8), we have

∫

Rn−1

|ξ |−2
∣∣∣mα,β(ξ,−γ )ψ̂(ξ)

∣∣∣
2
dξ = ‖Tru · en‖2

Ḣ−1 � ‖u‖2
L2

�α

∫

Rn−1

min{|ξ |2 , |ξ |−1}
∣∣∣ψ̂(ξ)

∣∣∣
2
. (3.32)

Setting ψ = φ =F−1[√ϕ] ∈
⋂
s∈R

H s(Rn−1; C) as in the proof for Theorem 3.7, we have

∫

Rn−1

|ξ |−2
∣∣mα,β(ξ,−γ )

∣∣2 ϕ(ξ) dξ �α

∫

Rn−1

min{|ξ |2 , |ξ |−1}ϕ(ξ) dξ. (3.33)
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Repeating the same argument as in the proof for Theorem 3.7, we can conclude that∣∣mα,β(ξ,−γ )
∣∣�α min{|ξ |2 , |ξ | 1

2 }. Combining this with the estimate (3.5), we reach the desired 

conclusion that 
∣∣mα,β(ξ,−γ )

∣∣�α min{|ξ |2 , |ξ |−1}.
To prove the left side of (3.31), we let (u, p) = χ−1

βT ,−γ (O(ψen, 0), 0) be the unique weak 

solution to (3.4) and test u ∈ tanH
1(�; Fn) in the weak formulation to find

−〈φ,Tru · en〉H−1/2(�b),H
1/2(�b)

=
∫

�

μ

2
|Du|2 − γ ∂1u · u+

1

α

∫

�0

βu′ · u′. (3.34)

By taking the real part on both sides, using (2.14), Lemma 2.2, the fact that α > 0, β satisfies 
(5.2), and the anti-dual representation of Sobolev spaces gives us

∫

Rn−1

min{|ξ |2 , |ξ |−1}ϕ(ξ) dξ � ‖u‖2
tanH 1 �α −Re〈φ,un|�b 〉H−1/2(�b),H

1/2(�b)

=−Re
∫

Rn−1

φ̂(ξ)T̂ru · en(ξ) dξ

=−Re
∫

Rn−1

mα,β(ξ,−γ )
∣∣∣φ̂(ξ)

∣∣∣
2
dξ =−Re

∫

Rn−1

mα,β(ξ,−γ )ϕ(ξ) dξ. (3.35)

Thus we have min{|ξ |2 , |ξ |−1} �α − Remα,β(ξ,−γ ) �
∣∣mα,β(ξ,−γ )

∣∣ for a.e. ξ ∈ Rn−1. This 
proves the first item and also the left side of the inequality in the second.

To prove the third item, we note that throughout the proof for the first and the second items, 
by the second item of Theorem 3.6 and the fact that α−1 > 0 if α ∈ (0, 1), the constants in the 

estimates above can be chosen to be independent of α if α ∈ (0, 1), therefore the third item 

follows. �

We conclude this subsection by recording the properties of an auxiliary function defined in 

terms of mα,β .

Lemma 3.9. Suppose R 
 α > 0 and γ ∈R \ {0}, and define

ρα,β,γ (ξ)= 2πiγ ξ1 + (1+ 4π2 |ξ |2 σ)mα,β(ξ,−γ ). (3.36)

Then the following hold.

(1) ρα,β,γ (ξ) = 0 if and only if ξ = 0, and ρα,β,γ (ξ)= ρα,β,γ (−ξ) for all ξ ∈Rn−1.

(2) For σ > 0, there exists a constant C = C(α, n, γ, σ, b) > 0 such that for all ξ ∈ Rn−1, we 

have

C−1
∣∣ρα,β,γ (ξ)

∣∣2 � (ξ2
1 + |ξ |4)1B(0,1)(ξ)+ (1+ |ξ |2)1B(0,1)c (ξ)� C

∣∣ρα,β,γ (ξ)
∣∣2 .

(3.37)

404



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381–437

(3) For σ = 0 and n = 2, there exists a constant C = C(α, γ, b) > 0 such that for all ξ ∈Rn−1, 

we have

C−1
∣∣ρα,β,γ (ξ)

∣∣2 � |ξ |2 1B(0,1)(ξ)+ (1+ |ξ |2)1B(0,1)c (ξ)� C
∣∣ρα,β,γ (ξ)

∣∣2 . (3.38)

(4) Furthermore, there exists a constant C = C(n, γ, σ, b) > 0 such that (3.37) holds for all 

α ∈ (0, 1) and a constant C = C(γ, b) > 0 such that (3.38) holds for all α ∈ (0, 1). In other 

words, the constants in (3.37) and (3.38) can be chosen to be independent of α.

Proof. To prove the first item, we note that the identity ρα,β,γ (ξ) = ρα,β,γ (−ξ) follows 
from Theorem 3.4, therefore ρα,β,γ (0) = 0. Furthermore, Reρα,β,γ (ξ) = (1 + 4π2 |ξ |2 σ)×
Remα,β(ξ,−γ ) < 0 for ξ �= 0 by the first item of Lemma 3.8. Thus ρα,β,γ (ξ) = 0 if and only if 
ξ = 0. This proves the first item.

Next we prove the second item, and we first prove the left hand side of (3.37). Recall that by 

Lemma 3.8, 
∣∣mα,β(ξ,−γ )

∣∣ satisfies 
∣∣mα,β(ξ,−γ )

∣∣�min{|ξ |2 , |ξ |−1}. This implies that

∣∣ρα,β,γ (ξ)
∣∣� |ξ1| +min{|ξ |2 , |ξ |−1} +min{|ξ |4 , |ξ |}. (3.39)

Then it immediately follows that

∣∣ρα,β,γ (ξ)
∣∣2 � (|ξ1|2 + |ξ |2 + |ξ |4)1B(0,1)(ξ)+ (|ξ1|2 + |ξ |2 + |ξ |4)1B(0,1)c (ξ)

� (|ξ1|2 + |ξ |2)1B(0,1)(ξ)+ |ξ |2 1B(0,1)c (ξ). (3.40)

Next we prove the right hand side of (3.37). We first note that since 2πiγ ξ1 is purely imaginary 

and 1 + 4π2 |ξ |2 σ is real, we have

Reρα,β,γ (ξ)= (1+ 4π2 |ξ |2 σ)Remα,β(ξ,−γ ),
Imρα,β,γ (ξ)= 2πγ ξ1 + (1+ 4π2 |ξ |2 σ) Immα,β(ξ,−γ ). (3.41)

Next we call that by (3.30), we have |ξ |2 � − Remα,β(ξ,−γ ) for a.e. |ξ | � 1 and |ξ |−1 �

− Remα,β(ξ,−γ ) for a.e. |ξ | � 1; by (3.31), |mα(ξ,−γ )| � |ξ |2 for a.e. |ξ | � 1 and∣∣mα,β(ξ,−γ )
∣∣ � |ξ |−1 for a.e. |ξ | � 1. Then for a.e. |ξ | � 1, since 2πiγ ξ1 is purely imagi-

nary and mα,β(ξ, −γ )mα,β(ξ,−γ ) is real, we have

|ξ1| |ξ |2 �
∣∣2πγ ξ1 Remα,β(ξ,−γ )

∣∣

=
∣∣∣Im[2πiγ ξ1mα,β(ξ,−γ )+ (1+ 4π2 |ξ |2 σ)mα,β(ξ,−γ )mα(ξ,−γ )]

∣∣∣

�
∣∣ρα,α,ββ,γ (ξ)mα,β(ξ,−γ )

∣∣�
∣∣ρα,β,γ (ξ)

∣∣ |ξ |2 =⇒ |ξ1|�
∣∣ρα,β,γ (ξ)

∣∣ , (3.42)

and also by (3.41),

|ξ |2 �
∣∣∣(1+ 4π2 |ξ |2 σ)Remα,β(ξ,−γ )

∣∣∣=
∣∣Reρα,β,γ (ξ)

∣∣�
∣∣ρα,β,γ (ξ)

∣∣ . (3.43)
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For a.e. |ξ |� 1, we have

|ξ |� |ξ |2
∣∣Remα,β(ξ,−γ )

∣∣�
∣∣Reρα,β,γ (ξ)

∣∣�
∣∣ρα,β,γ (ξ)

∣∣ . (3.44)

(3.37) then follows by combining (3.40), (3.42), (3.43), and (3.44). We also note that by the 

third item of Lemma 3.8, the constants appearing in the estimates above can be chosen to be 

independent of α if α ∈ (0, 1). This proves the second item.
The third item follows from a similar set of arguments. �

3.3. Data compatibility and the associated isomorphism

Now we are ready to discuss compatibility conditions associated to the solvability of (2.1). To 

do so we first define some spaces associated to the data.

Definition 3.10. Let R 
 s � 0.

(1) We define the Hilbert space

Ys =
{
(f, g,h, k, l) ∈H s(�;Rn)×H s+1(�;R)×H s+3/2(�b;R)

×H s+1/2(�b;Rn)×H s+1/2(�0;Rn−1) | ‖(f, g,h, k, l)‖Ys <∞
}
, (3.45)

where we equip Ys with the norm defined via

‖(f, g,h, k, l)‖2
Ys = ‖f ‖2

H s + ‖g‖2
H s+1 + ‖h‖2

H s+3/2 + ‖k‖2
H s+1/2 + ‖l‖2

H s+1/2

+

⎡
£h−

b∫

0

g(·, xn) dxn

¤
⎦

2

Ḣ−1

. (3.46)

(2) We define the Hilbert space

Zs =
{
(f, g,h, k) ∈H s(�;Rn)×H s+1(�;R)×H s+3/2(�b;R)×H s+1/2(�b;Rn) |

‖(f, g,h, k)‖Ys <∞
}
, (3.47)

where we equip Zs with the norm defined via

‖(f, g,h, k)‖2
Zs = ‖f ‖2

H s + ‖g‖2
H s+1 + ‖h‖2

H s+3/2 + ‖k‖2
H s+1/2 + ‖l‖2

H s+1/2

+

⎡
£h−

b∫

0

g(·, xn) dxn

¤
⎦

2

Ḣ−1

. (3.48)

Next we define the bilinear maps associated to the data spaces Ys and Zs .
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Definition 3.11. Let R 
 α > 0, β ∈Rn×n be positive definite, γ ∈R, and R 
 s � 0. We define 

the bilinear map

Bα,β,γ : [H s(�;Rn)×H s+1(�;R)×H s+3/2(�b;R)×H s+1/2(�b;Rn)

×H s+1/2(�0;Rn−1)] × [H s+1/2(�b;R)]→R (3.49)

via

Bα,β,γ ((f, g,h, k, l),ψ)=
∫

�

(f · v− gq)−
∫

�b

(k · v − hψ)+ 1

α

∫

�0

l · v′, (3.50)

where (v, q) =�−1
α,−γ,βT (0, 0, ψen, 0) ∈ tanH

s+2(�; Rn) ×H s+1(�; R) is the unique solution 

to the normal stress problem (3.4) guaranteed by Theorem 2.8. Since �−1
α,βT ,−γ is an isomor-

phism, we have that Bα,β,γ is continuous. We define the left kernel of Bα,β,γ as

←−
kerBα,β,γ = {(f, g,h, k, l) ∈H s(�;Rn)×H s+1(�;R)×H s+3/2(�b;R)
×H s+1/2(�b;Rn)×H s+1/2(�0;Rn−1) |Bα,β,γ ((f, g,h, k, l),ψ)= 0 ∀ψ ∈H s+1/2(�b;R)}.

(3.51)

Since 
←−
kerBα,β,γ is a closed subspace of H s(�; Rn) × H s+1(�; R) × H s+3/2(�b; R) ×

H s+1/2(�b; Rn) × H s+1/2(�0; Rn−1) and Ys ∩←−kerBα,β,γ is a closed subspace of Ys inher-

iting the topology of Ys , we may regard Ys ∩←−kerBα,β,γ as a Hilbert space equipped with the 

inner product coming from Ys .

Now we are ready to record the isomorphism associated to the overdetermined problem (3.1).

Theorem 3.12. Let R 
 α > 0, β ∈ Rn×n be positive definite, γ ∈ R and R 
 s � 0. Con-

sider the bounded linear map �α,β,γ : tanH
s+2(�; Rn) × H s+1(�; R) → Ys ∩←−kerBα,β,γ de-

fined via �α,β,γ (u, p) = P(�α,β,γ (u, p), un), where �α,β,γ is defined in Theorem 2.8 and 

P :H s(�; Rn) ×H s+1(�; R) ×H s+1/2(�b; Rn) ×H s+1/2(�0; Rn−1) ×H s+3/2(�b; R) → Ys

is a permutation map defined via P(f, g, k, l, h) = (f, g, h, k, l). Then �α,β,γ is an isomorphism.

Proof. To prove the first item, we first show that the map �α,β,γ is well-defined. Let (u, p) ∈
tanH

s+2(�; Rn) × H s+1(�; R). By Theorem 2.8, Lemma 3.1 and trace theory, we have 

�α,β,γ (u, p) ∈ Ys . To show that �α,β,γ (u, p) ∈
←−
kerBα,β,γ , we let (f, g, k, l, h) =�α,β,γ (u, p), 

and for any ψ ∈H s+1/2(�b; R) we let (v, q) =�−1
α,βT ,−γ (0, 0, ψen, 0). Then

Bα,β,γ ((f, g,h, k, l),ψ)=
∫

�

(f · v− gq)−
∫

�b

(k · v − hψ)+ 1

α

∫

�0

l · v′

=
∫

�

(divS(p,u)−γ ∂1u) ·v−(divu)q−
∫

�b

S(p,u)en ·v−u ·ψen+
1

α

∫

�0

[αS(p,u)en+βu]′ ·v′
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=
∫

�

u · (divS(v, q)+ γ ∂1v)+ p divv+ 1

α

∫

�0

u′ · [αS(q, v)en + βT v]′ = 0. (3.52)

This shows that the map �α,β,γ (u, p) is well-defined, and it is clearly linear and bounded.
The injectivity of �α,β,γ follows from Theorem 2.8. To prove that �α,β,γ is surjective, 

for any (f, g, h, k, l) ∈ Ys ∩ ←−kerBα,β,γ we let (u, p) = �−1
α,β,γ (f, g, k, l), and for any ψ ∈

H s+1/2(�b; R)we let (v, q) =�−1
α,βT ,−γ (0, 0, ψen, 0). Since (f, g, h, k, l) ∈←−kerBα,β,γ , we then 

have

−
∫

�b

unψ =
∫

�

(f · v− gq)−
∫

�b

k · v + 1

α

∫

�0

l · v′ =−
∫

�0

hψ, (3.53)

and so un = h on �b. This shows that �α,β,γ is surjective, and the desired conclusion follows.
To prove the second item we follow a similar set of arguments as above, where we use the 

isomorphism �α,β,γ in place of �α,β,γ , Corollary 2.11 in place of Theorem 2.8, the bilinear map 

Bγ in place of Bα,β,γ and the Hilbert space Zs in place of Ys . The fact that the operator norm 

of �α,β,γ is independent of α for α ∈ (0, 1) follows from Proposition 2.10. �

Next we would like to introduce a quantitative way of measuring how close a data tuple 

(f, g, h, k, l) is to being compatible. To do so we introduce the linear map �α,β,γ :H s(�; Rn) ×
H s+1(�; R) ×H s+3/2(�b; R) ×H s+1/2(�b; Rn) ×H s+1/2(�0; Rn−1) → L2(�b; R) induced 

by the bilinear map Bα,β,γ . The induced linear map �α,β,γ is defined via

〈
�α,β,γ (f, g,h, k, l),ψ

〉
L2 =Bα,β,γ ((f, g,h, k, l),ψ), (3.54)

where we use the canonical injection i : H s+1/2(�b; F) ↪→ L2(�b; F) to identify ψ with an 

element of L2. First we show that �α,β,γ (f, g, h, k, l) commutes with tangential multipliers 
defined in Definition A.4.

Proposition 3.13. Suppose ω ∈ L∞(Rn−1; C) and consider the tangential multiplier Mω defined 

in Definition A.4. Then

Mω�α,β,γ (f, g,h, k, l)=�α,β,γ (Mωf,Mωg,Mωh,Mωk,Mωl). (3.55)

Proof. For a given ψ ∈ H s+1/2(�b; R) we define (v, q) = �−1
α,βT ,−γ (0, 0, ψen, 0). Then by 

Theorem 2.9, we have

〈
Mω�α,β,γ (f, g,h, k, l),ψ

〉
L2 =

〈
�α,β,γ (f, g,h, k, l),Mωψ

〉
L2 =Bα,β,γ ((f, g,h, k, l),Mωψ)

=
∫

�

(f ·Mωv − gMωq)−
∫

�b

(k ·Mωv− hMωψ)+
1

α

∫

�0

l ·Mωv
′ =
∫

�

(Mωf · v−Mωgq)

−
∫

�b

(Mωk · v −Mωhψ)+
1

α

∫

�0

Mωl · v′ = 〈�α,β,γ (Mωf,Mωg,Mωk,Mωl,Mωh),ψ〉.

(3.56)
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Since this is true for all ψ ∈H s+1/2(�b; R), the desired conclusion follows. �

Next we prove the main theorem of this section, which describes the low-frequency behavior 
of the images of Ys and Zs under �α,β,γ .

Theorem 3.14. Suppose R 
 α > 0, R 
 s � 0. The following hold.

(1) If (f, g, h, k, l) ∈ Ys , then �α,β,γ (f, g, h, k, l) ∈ Ḣ−1(�b; R) ∩ H s+3/2(�b; R) and there 

exists a constant c > 0 for which

∥∥�α,β,γ (f, g,h, k, l)
∥∥
Ḣ−1∩H s+3/2 � c ‖(f, g,h, k, l)‖Ys . (3.57)

(2) If (f, g, h, k) ∈ Zs , then �α,β,γ (f, g, h, k, 0) ∈ Ḣ−1(�b; R) ∩ H s+3/2(�b; R) and there 

exists a constant c > 0 for which

∥∥�α,β,γ (f, g,h, k,0)
∥∥
Ḣ−1∩H s+3/2 � c ‖(f, g,h, k)‖Zs . (3.58)

(3) Furthermore, there exists a constant c > 0 for which the estimate (3.57) holds for all α ∈
(0, 1). In other word, the constant c > 0 can be chosen to be independent of α if α ∈ (0, 1).

Proof. We first note that the second item follows immediately from the first item. To prove the 

first item, we first note that by Proposition 3.13,

∥∥�α,β,γ (f, g,h, k, l)
∥∥
Ḣ−1∩H s+3/2

�
∥∥M1B(0,1)�α,β,γ (f, g,h, k, l)

∥∥
Ḣ−1 +

∥∥∥M1B(0,1)c�α,β,γ (f, g,h, k, l)

∥∥∥
H s+3/2

=
∥∥M1B(0,1)�α,β,γ (f, g,h, k, l)

∥∥
Ḣ−1

+
∥∥∥�α,β,γ (M1B(0,1)cf,M1B(0,1)c g,M1B(0,1)c k,M1B(0,1)c l,M1B(0,1)ch)

∥∥∥
H s+3/2

�α

∥∥M1B(0,1)�α,β,γ (f, g,h, k, l)
∥∥
Ḣ−1 +

∥∥∥M1B(0,1)c f
∥∥∥
H s
+
∥∥∥M1B(0,1)c g

∥∥∥
H s+1

+
∥∥∥M1B(0,1)c k

∥∥∥
H s+1/2

+
∥∥∥M1B(0,1)c l

∥∥∥
H s+1/2

+
∥∥∥M1B(0,1)ch

∥∥∥
H s+3/2

�α

∥∥M1B(0,1)�α,β,γ (f, g,h, k, l)
∥∥
Ḣ−1+‖f ‖H s+‖g‖H s+1+‖k‖H s+1/2+‖l‖H s+1/2+‖h‖H s+3/2 .

(3.59)

To arrive at the desired estimate it then suffices to control 
∥∥M1B(0,1)�α,β,γ (f, g,h, k, l)

∥∥
Ḣ−1 . We 

note that for any ψ ∈ L2(�; R), we may let (v, q) =�−1
α,βT ,−γ (0, 0, ψen, 0) and compute

∫

B(0,1)

F [�α,β,γ (f, g,h, k, l)](ξ) ·F [ψ](ξ) dξ = 〈M1B(0,1)�α,β,γ (f, g,h, k, l),ψ〉L2

= 〈�α,β,γ (f, g,h, k, l),M1B(0,1)ψ〉L2 =Bα,β,γ ((f, g,h, k, l),M1B(0,1)ψ)
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=
∫

�

(f ·M1B(0,1)v− gM1B(0,1)q)−
∫

�b

(k ·M1B(0,1)v − hM1B(0,1)ψ)+
1

α

∫

�0

l ·M1B(0,1)v′

=
∫

�

f ·M1B(0,1)v− gM1B(0,1)(q −ψ)−
∫

�b

k ·M1B(0,1)v+
∫

�b

M1B(0,1)ψ

»
½h−

b∫

0

g

¾
À

+ 1

α

∫

�0

l ·M1B(0,1)v′. (3.60)

Therefore,

∣∣∣∣∣∣∣

∫

B(0,1)

F [�α,β,γ (f, g,h, k, l)](ξ) ·F [ψ](ξ) dξ

∣∣∣∣∣∣∣

�α (‖f ‖H s + ‖k‖H s+1/2 + ‖l‖H s+1/2)
∥∥M1B(0,1)v

∥∥
L2

+ ‖g‖L2

∥∥M1B(0,1)(q −ψ)
∥∥
L2 +

∥∥M1B(0,1)ψ
∥∥
Ḣ 1

⎡
£h−

b∫

0

g

¤
⎦

Ḣ−1

, (3.61)

where we have used the second estimate in (3.17) on Vα,β(ξ, 0, −γ ) to handle to integral involv-
ing l.

By Theorem 2.9, we have (M1B(0,1)v, M1B(0,1)q) = �−1
α,βT ,−γ (0, 0, M1B(0,1)ψen, 0). Then by 

(3.19) we have the bound 
∥∥M1B(0,1)v

∥∥
L2 �α

∥∥M1B(0,1)ψ
∥∥
Ḣ 1 , and by Plancherel’s theorem and 

the second estimate on Qα,β in (3.18), we have 
∥∥M1B(0,1)(q −ψ)

∥∥
L2 �α

∥∥M1B(0,1)ψ
∥∥
Ḣ 1 . By 

combining the previous estimates and the divergence-trace estimate (3.3) we then have

∣∣∣∣∣∣∣

∫

B(0,1)

F [�α,β,γ (f, g,h, k, l)](ξ) ·F [ψ](ξ) dξ

∣∣∣∣∣∣∣
�α ‖(f, g,h, k, l)‖Ys

∥∥M1B(0,1)ψ
∥∥
Ḣ 1 .

(3.62)

Thus by duality,

∥∥M1B(0,1)�α,β,γ (f, g,h, k, l)
∥∥
Ḣ−1

= sup

{
∣∣∣∣∣∣∣

∫

B(0,1)

F [�α,β,γ (f, g,h, k, l)](ξ) ·F [ψ](ξ) dξ

∣∣∣∣∣∣∣
| [M1B(0,1)ψ]Ḣ 1 � 1

}

�α ‖(f, g,h, k, l)‖Ys . (3.63)

410



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381–437

To prove the third item, we note that if l = 0 then α does not appear in (3.59) and by the second 

items of Theorem 3.6 and Theorem 3.7, the constants in the estimates above can be chosen to be 

uniform in α. The third item then follows. �

4. Linear analysis with η

In this section we would like to establish the R-solvability of the γ -Stokes system with gravity 

capillary boundary conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

divS(p,u)− γ ∂1u+ (∇ ′η,0)= f in�

divu= g, in�

un + γ ∂1η= h, on�b
S(p,u)en + σ
′ηen = k, on�b
(αS(p,u)en)

′ + βu′ = l, on�0

un = 0, on�0.

(4.1)

4.1. Preliminaries

First, we introduce the container space for the free surface function η.

Definition 4.1. Let 0 � s ∈ R. We define the specialized anisotropic Sobolev space Xs(Rd) to 

consist of f ∈S ′(Rd ; R) such that f̂ ∈ L1
loc(R

d; C) and

‖f ‖2
Xs :=

∫

B(0,1)

ξ2
1 + |ξ |4

|ξ |2
∣∣∣f̂ (ξ)

∣∣∣
2
dξ +

∫

B(0,1)c

(1+ |ξ |2)s
∣∣∣f̂ (ξ)

∣∣∣
2
dξ <∞. (4.2)

The following proposition summarizes the important properties of this space.

Theorem 4.2. Suppose R 
 s � 0 and d � 1. The following hold.

(1) Xs(Rd) is a separable Hilbert space, and if t ∈ R and s < t , then we have the continuous 

inclusion Xt (Rd) ↪→Xs(Rd).

(2) If d = 1, we have H s(Rd) =Xs(Rd) and ‖·‖H s and ‖·‖Xs are equivalent norms. For d � 2, 

we have the continuous inclusion H s(Rd) ↪→Xs(Rd).

(3) If s � 1, then ‖∇f ‖H s−1 � ‖f ‖Xs for f ∈ Xs(Rd). In particular, the map ∇ : Xs(Rd) →
H s−1(Rd ; Rd) is continuous.

(4) For every f ∈ Xs(Rd) and t > 0, we can write f = fl,t + fh,t , where fl,t =
F−1[1B(0,t)F [f ]] ∈ C∞0 (Rd) and fh,t =F−1[1Rd\B(0,t)F [f ]] ∈H s(Rd). Furthermore, 

we have the estimates

∥∥fl,t
∥∥
Ckb
=
∑

|α|�k

∥∥∂αfl,R
∥∥
L∞ �

∥∥fl,t
∥∥
Xs

for each k ∈N and
∥∥fh,t

∥∥
H s �

∥∥fh,t
∥∥
Xs
. (4.3)

(5) If k ∈N and s > k + d/2, then we have the continuous inclusion Xs(Rd) ↪→ Ck0(R
d ; R).

(6) If s > d/2, then for any f ∈ Xs(Rd), g ∈ H s(Rd) we have fg ∈ H s(Rd); moreover, 

‖fg‖H s � ‖f ‖Xs ‖g‖H s for all f ∈Xs(Rd) and g ∈H s(Rd).
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(7) If s � 1, then [∂1η]Ḣ−1 � ‖f ‖Xs for all f ∈Xs(Rd). In particular, the map ∂1 :Xs(Rd) →
Ḣ−1(Rd) ∩H s−1(Rd) is continuous and injective.

Proof. All of these except the separability assertion from the first item are proved in Proposition 

5.3 and Theorems 5.6 in [19]. Separability follows from the calculations leading up to equation 

(B.1.20) in the proof for the second item of Proposition B.2 in [31]. �

Next, we introduce the container space for the solution tuple (u, p, η).

Definition 4.3. For R 
 s � 0.

(1) We define the separable Hilbert space

X s = {(u,p,η) ∈ tanH
s+2(�;Rn)×H s+1(�;R)×Xs+5/2(Rn−1;R)} (4.4)

endowed with the squared norm ‖(u,p,η)‖2
X s = ‖u‖2

tanH s+2 + ‖p‖2
H s+1 + ‖η‖2

Xs+5/2 .
(2) We define the separable Hilbert space

X s
α = {(u,p,η) ∈ α−tanH

s+2(�;Rn)×H s+1(�;R)×Xs+5/2(Rn−1;R)} (4.5)

endowed with the squared norm ‖(u,p,η)‖2
X s
α
= ‖u‖2

α−tanH s+2 + ‖p‖2
H s+1 + ‖η‖2

Xs+5/2 .

Next, we record an embedding result for X s and X s
α .

Proposition 4.4. Suppose R 
 s � 0 and X s, X s
α is the Banach space in Definition 4.3. If s >

n/2, then we have the continuous inclusion

X s,X s
α ⊆ C

s+1−�n/2�
b (�;Rn)×C

s−�n/2�
b (�;R)×C

s+1−�(n−1)/2�
0 (Rn−1;R). (4.6)

Moreover, if (u, p, η) ∈X s or (u, p, η) ∈X s
α , then

lim
|x′|→∞

∂αu(x)= 0 for all α ∈Nn such that |α|� s + 1− �n/2� (4.7)

lim
|x′|→∞

∂αp(x)= 0 for all α ∈Nn such that |α|� s − �n/2�. (4.8)

Proof. This follows from Proposition 6.3 in [19] and the continuous injections
tanH

s+2(�; Rn), α−tanH
s+2(�; Rn) ↪→H s+2(�; Rn). �

Next we study the linear maps ϒα,β,γ,σ :X s → Ys and Tα,β,γ,σ :X s
α →Zs defined via

ϒα,β,γ,σ (u,p,η)= (divS(p,u)− γ ∂1u+ (∇ ′η,0),divu,un|�b
+ γ ∂1η,S(p,u)en|�b + σ
′ηen, [αS(p,u)en + βu]′), (4.9)

and
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Tα,β,γ,σ (u,p,η)= (divS(p,u)− γ ∂1u+ (∇ ′η,0),divu,un|�b
+ γ ∂1η,S(p,u)en|�b + σ
′ηen), (4.10)

which are the solution operators corresponding to the system (4.1) with generic l ∈
H 1/2(�0; Rn−1) and with l = 0, respectively. The next result shows that these maps are well-
defined, bounded, and also injective.

Proposition 4.5. Suppose R 
 α > 0, β ∈Rn×n is positive definite, γ ∈R \ {0}, R 
 σ � 0, and 

R 
 s � 0. The following the hold.

(1) The linear map ϒα,β,γ,σ : X s → Ys defined in (4.9) is well-defined, continuous, and injec-

tive.

(2) The linear map Tα,β,γ,σ :X s
α →Zs defined in (4.10) is well-defined, continuous, and injec-

tive.

(3) Furthermore, there exists a constant c > 0 for which supα>0

∥∥Tα,β,γ,σ
∥∥
L(X s

α ;Zs )
� c.

Proof. To prove the first and second items, we first note that by Proposition 3.13 in [18] and 

standard trace theory, the maps ϒα,β,γ,σ and Tα,β,γ,σ are well-defined and continuous. To show 

that ϒα,β,γ,σ is injective, we suppose (u, p, η) ∈ X s and ϒα,β,γ,σ (u,p,η)= 0. We note that if 
p̃ = p− η, then ∇p̃ =∇p− (∇ ′η, 0) and p̃I = pI − ηI . Therefore ϒα,β,γ,σ (u, p, η) = 0 if and 

only if (u, p̃, η) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

divS(p̃, u)− γ ∂1u= 0, in�

divu= 0, in�

S(p̃, u)en = (η− σ
′η)en, on�b
un + γ ∂1η= 0, on�b
[αS(p,u)en + βu]′ = 0, on�0

un = 0, on�0.

(4.11)

We note that by Tonelli’s theorem, Parseval’s theorem, and the fifth item of Theorem 4.2 we 

have û(ξ, ·) ∈H s((0, b); Cn) and ̂̃p(ξ, ·) ∈H 1((0, b); C), for a.e. ξ ∈Rn−1. By the second item 

in Theorem 4.2, η̂ ∈ L1(Rn−1; R) + L2(Rn−1, (1 + |ξ |2)(s+5/2)/2dξ ; R). Thus, we may apply 

the horizontal Fourier transform to (4.11) to deduce for a.e. ξ ∈ Rn−1, w = û(ξ, ·), q = ̂̃p(ξ, ·)
satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

(
−∂2

n + 4π2 |ξ |2
)
w′ + 2πiξq − 2πiξ1γw

′ = 0, in (0, b)(
−∂2

n + 4π2 |ξ |2
)
wn + ∂nq − 2πiξ1γwn = 0, in (0, b)

2πiξ ·w′ + ∂nwn = 0, in (0, b)

−∂nw′ − 2πiξwn = 0, for xn = b

q − 2∂nwn = (1+ 4π2 |ξ |2 σ)η̂, for xn = b

wn + 2πiξ1γ η̂= 0, for xn = b

[(∂n − 1
α
β)w]′ = 0, for xn = 0

wn = 0, for xn = 0.

(4.12)
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For a.e. ξ ∈Rn−1, by the first three equations in (4.12) we have

2πiξ1γw
′ =
(
−∂2

n + 4π2 |ξ |2
)
w′ + 2πiξq − 2πiξ(2πiξ ·w′ + ∂nwn)

= 2πiξq − (2πiξ ⊗w′ +w′ ⊗ 2πiξ)2πiξ − ∂n(∂nw′ + 2πiξwn) (4.13)

and

2πiξ1γwn =
(
−∂2

n + 4π2 |ξ |2
)
wn + ∂nq − ∂n(2πiξ ·w′ + ∂nwn)

=−2πiξ · (∂nw′ + 2πiξwn)+ ∂n(q − 2∂nwn). (4.14)

Using (4.13), (4.14), integration by parts and the boundary conditions in (4.12), for a.e. ξ ∈Rn−1

we have

b∫

0

2πiξ1γw
′ ·w′ dxn

=
b∫

0

−q2πiξ ·w′ + (2πiξ ⊗w′ +w′ ⊗wπiξ) : v′ ⊗ 2πiξ − ∂n(∂nw′ + 2πiξwn) ·w′ dxn

=
b∫

0

−q2πiξ ·w′ + (2πiξ ⊗w′ +w′ ⊗wπiξ) : v′ ⊗ 2πiξ

+ (∂nw′ + 2πiξwn) · ∂nw′ dxn +
1

α
βw(0) ·w(0) (4.15)

and

b∫

0

2πiξ1γwnwn dxn =
b∫

0

(∂nw
′ + 2πiξwn) · 2πiξwn + ∂n(q − 2∂nwn)wn dx

=
b∫

0

(∂nw
′ + 2πiξwn) · 2πiξwn − (q − 2∂nwn)∂nwn dx + (1+ 4π2 |ξ |2 σ)η̂wn(b). (4.16)

We also note that by exploiting the symmetry of 2πiξ ⊗w′ +w′ ⊗ 2πiξ , we can write

(2πiξ ⊗w′ +w′ ⊗ 2πiξ) : v′ ⊗ 2πiξ

= 1

2
(2πiξ ⊗w′ +w′ ⊗ 2πiξ) : 2πiξ ⊗w′ +w′ ⊗ 2πiξ . (4.17)
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Upon rearranging (4.15), (4.16), and (4.17), and the third to last equation wn+2πiξ1γ η̂= 0, we 

can deduce that

b∫

0

−γ 2πiξ1 |w|2 + 2 |∂nwn|2 +
∣∣∂nw′ + 2πiξwn

∣∣2 + 1

2

∣∣2πiξ ⊗w′ +w′ ⊗ 2πiξ
∣∣2 dxn

+ 1

α
βw(0) ·w(0)

=
b∫

0

−γ 2πiξ1w ·w+ 2∂nwn∂nwn + (∂nw′ + 2πiξwn) · ∂nw′ + 2πiξwn

+ (2πiξ ⊗w′ +w′ ⊗ 2πiξ) : v′ ⊗ 2πiξ dxn

=−(1+ 4π2 |ξ |2 σ)η̂(ξ)wn(ξ, b)=−2πiξ1γ (1+ 4π2 |ξ |2 σ) |η(ξ)|2 . (4.18)

By taking the real part of this expression and applying the coercivity condition (5.1), we see that 
we must have for a.e. ξ ∈Rn−1, ∂nwn ≡ 0 in (0, b), ∂nw′+ 2πiξwn ≡ 0 in (0, b), and w(0) = 0. 
This implies that wn ≡ 0 in [0, b], which in turn implies that we must have w≡ 0 in [0, b]. Then 

by the first equation, we must have q ≡ 0. By the third to last equation, we find that η≡ 0. From 

this we find that (u, p, η) = (0, 0, 0), so we can conclude that ϒα,β,γ,σ is injective. The same 

argument shows that Tα,β,γ,σ is injective. The last item follows from the observation that α does 
not appear on the right hand side of (4.10). �

Next we show that ϒα,β,γ,σ and Tα,β,γ,σ surjective. To do so we must construct the free 

surface function η from a given data tuple (f, g, h, k, l) ∈ Ys or (f, g, h, k) ∈ Zs in the case 

when l = 0. We record this set of constructions in the next subsection.

4.2. Construction of the free surface function and the isomorphism associated to (4.1)

Lemma 4.6. Suppose R 
 α > 0, β ∈Rn×n is positive definite, γ ∈R \ {0}, σ > 0, N 
 n � 2, 

R 
 s � 0, and let Ys, Zs be the Banach spaces defined in Definition 3.10. The following hold.

(1) For every (f, g, h, k, l) ∈ Ys , there exists an ηα ∈ Xs+ 5
2 (Rn−1; R) for which the modified 

data tuple

(f − (∇ ′ηα,0), g,h− γ ∂1ηα, k − σ
′ηαen, l) ∈H s(�;Rn)×H s+1(�)

×H s+ 3
2 (�b;Rn)×H s+ 1

2 (�b;Rn)×H s+ 1
2 (�0;R) (4.19)

belongs to the range of ϒα,β,γ,σ defined in (4.9) and there exists a constant C > 0 for which

‖ηα‖
X
s+ 5

2
� C ‖(f, g,h, k, l)‖Ys . (4.20)

(2) For every (f, g, h, k) ∈Zs , there exists an ηα ∈Xs+ 5
2 (Rn−1; R) for which the modified data 

tuple
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(f − (∇ ′ηα,0), g,h− γ ∂1η, k − σ
′ηαen)

∈H s(�;Rn)×H s+1(�)×H s+ 3
2 (�b;Rn)×H s+ 1

2 (�b;Rn) (4.21)

belongs to the range of Tα,β,γ,σ defined in (4.10) and there exists a constant C > 0 for which

‖ηα‖
X
s+ 5

2
� C ‖(f, g,h, k)‖Zs . (4.22)

(3) Furthermore, there exists a constant C > 0 for which (4.20) holds for all α ∈ (0, 1). In other 

words, the constant C > 0 can be chosen to be independent of α if α ∈ (0, 1).

Proof. We proceed to prove the first item. Given (f, g, h, k, l) ∈ Ys , we propose to define ηα ∈
Xs+ 5

2 (Rn−1; R) via η̂α = ρ−1
α,β,γF {�α,β,γ (f, g, h, k, l)}, where the operator �α,β,γ is defined 

in (3.54) and ρα,β,γ is defined in (3.36).

Note that η̂α = η̂α , so ηα is real-valued. Furthermore, by using Lemma 3.9 and the continuity 

of the operator �α,β,γ established in Theorem 3.14 we have the estimate

∫

Rn−1

(
ξ2

1 + |ξ |4

|ξ |2
1B(0,1)(ξ)+ (1+ |ξ |2)s+

5
21B(0,1)c(ξ)

)
∣∣η̂α(ξ)

∣∣2 dξ

�α

∫

Rn−1

max{|ξ |−2 , |ξ |2s+3}
∣∣F [�α,β,γ (f, g,h, k, l)](ξ)

∣∣2 dξ �α ‖(f, g,h, k, l)‖2
Ys . (4.23)

This shows that if we define ηα = (η̂α)
∨, ηα is a well-defined real-valued tempered distribution 

that belongs to Xs+ 5
2 (Rn−1).

Next we show that the modified data given in (4.19) belongs to the range of ϒα,β,γ,σ . To show 

this we invoke Theorem 3.12 and show that it belongs to 
←−
kerBα,γ . For any ψ ∈H s+1/2(�b; R), 

by Plancherel’s theorem we have

〈
�α,β,γ (f − (∇ ′ηα,0), g,h− γ ∂1h, k − σ
′ηαen, l),ψ

〉
L2

=
∫

Rn−1

F [�α,β,γ (f − (∇ ′ηα,0), g,h− γ ∂1ηα, k − σ
′ηαen, l)](ξ)F [ψ](ξ)

=
∫

Rn−1

F [�α,β,γ (f, g,h, k, l)](ξ)F [ψ](ξ)

+
∫

Rn−1

F [�α,β,γ (−(∇ ′ηα,0),0,0− γ ∂1ηα,−σ
′ηαen,0)](ξ)F [ψ](ξ). (4.24)

Furthermore, by letting (v, q) =�−1
α,βT ,−γ (0, 0, ψen, 0) we have

416



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381–437

∫

Rn−1

F [�α,β,γ (f, g,h, k, l)](ξ)F [ψ](ξ)=
∫

Rn−1

ρα,β,γ (ξ)η̂α(ξ)F [ψ](ξ) dξ

=
∫

Rn−1

mα(ξ,−γ )η̂α(ξ)F [ψ](ξ) dξ +
∫

Rn−1

4π2 |ξ |2 σmα(ξ,−γ )η̂α(ξ)F [ψ](ξ) dξ

+
∫

Rn−1

2πiγ ξ1η̂α(ξ)F [ψ](ξ)

=
∫

Rn−1

mα(ξ,−γ )η̂α(ξ)F [ψ](ξ) dξ +
b∫

0

σ
′ηα(ξ)en · v dxn

+
∫

Rn−1

F [�α,β,γ (0,0, γ ∂1ηα,0,0)](ξ)F [ψ](ξ)

=
∫

Rn−1

mα(ξ,−γ )η̂α(ξ)F [ψ](ξ) dξ +
∫

Rn−1

F [�α,β,γ (0,0,0, σ

′ηαen,0)](ξ)F [ψ](ξ)

+
∫

Rn−1

F [�α,β,γ (0,0, γ ∂1ηα,0,0)](ξ)F [ψ](ξ). (4.25)

By the second and last equations in (3.4), we have

mα(ξ,−γ )=
b∫

0

∂nVn(ξ, xn,−γ ) dξ =
b∫

0

2πiξ · V ′(ξ, xn,−γ )dξ, (4.26)

therefore

∫

Rn−1

mα(ξ,−γ )η̂α(ξ)F [ψ](ξ) dξ =
∫

Rn−1

b∫

0

(2πiξ,0)η̂(ξ) ·F [v(·, xn)](ξ) dxndξ

=
∫

Rn−1

F [�α,β,γ ((∇ ′ηα,0),0,0,0,0)](ξ)F [ψ](ξ). (4.27)

Thus upon rearranging, we have

〈
�α,β,γ (f − (∇ ′ηα,0), g,h− γ ∂1h, k − σ
′ηαen, l),ψ

〉
L2 = 0, (4.28)

and the first item follows immediately.
The second item follows similarly from the first item, where given (f, g, h, k) ∈ Zs we pro-

pose to define ηα ∈ Xs+ 5
2 (Rn−1; R) via η̂α = ρ−1

α,β,γF {�α,β,γ (f, g, h, k, 0)}. For the last item, 
we note that by the last items of Lemma 3.9, and Theorem 3.14, the constants appearing on the 
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right hand side of (4.23) can be chosen to be independent of α if α ∈ (0, 1). The third item then 

follows. �

For the special case of n = 2, we can also construct the free surface function η in the case 

without surface tension.

Lemma 4.7. Suppose γ ∈R \ {0}, σ = 0 and n = 2, s � 0, and let Ys, Zs be the Banach space 

defined in Definition 3.10. The following hold.

(1) For every (f, g, h, k, l) ∈ Ys , there exists an η ∈ H s+ 5
2 (Rn−1; R) for which the modified 

data tuple

(f − ∂1ηe1, g,h− γ ∂1η, k + ηe2, l)

∈H s(�;R2)×H s+1(�;R)×H s+ 3
2 (�b;R)×H s+ 1

2 (�b;R2)×H s+ 1
2 (�0;R) (4.29)

belongs to the range of ϒα,β,γ,σ defined in (4.9). Moreover, there exists a constant C > 0 for 

which ‖η‖
H
s+ 5

2
� C ‖(f, g,h, k, l)‖Ys .

(2) For every (f, g, h, k) ∈Zs , there exists an η ∈H s+ 5
2 (Rn−1; R) for which the modified data 

tuple

(f − ∂1ηe1, g,h− γ ∂1η, k + ηe2)

∈H s(�;R2)×H s+1(�;R)×H s+ 3
2 (�b;R)×H s+ 1

2 (�b;R2) (4.30)

belongs to the range of Tα,β,γ,σ defined in (4.10). Moreover, there exists a constant C > 0
for which

‖η‖
H
s+ 5

2
� C ‖(f, g,h, k)‖Zs . (4.31)

(3) Furthermore, there exists a constant C > 0 for which (4.31) holds for all α ∈ (0, 1). In other 

words, the constant C > 0 can be chosen to be independent of α if α ∈ (0, 1).

Proof. To prove the first item, we note that by Theorem 4.2, in dimension n = 2 the specialized 

space Xs(Rn−1; R) is the standard Sobolev space H s(Rn−1; R). So given (f, g, h, k, l) ∈ Ys , we 

similarly define η ∈H s+5/2(Rn−1; R) via ηα = (η̂)∨ where η̂α = ρ−1
α,β,γF {�α,β,γ (f, g, h, k, l)}. 

Lemma 3.9 and Theorem 3.14 imply that

‖ηα‖2
H s+5/2 =

∫

Rn−1

(1+ |ξ |2)s+5/2
∣∣η̂(ξ)

∣∣2 dξ

�

∫

Rn−1

(1+ |ξ |2)s+5/2 |ξ |−2
∣∣F {�α,β,γ (f, g,h, k, l)}(ξ)

∣∣2 �α ‖(f, g,h, k)‖2
Ys . (4.32)
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This shows that ηα = (η̂α)
∨ ∈H s+5/2(Rn−1; R). To conclude the first item we follow the same 

calculations as the previous lemma to show that the modified data tuple belongs to the range 

of ϒα,β,γ,0. The second and third items follow from a similar set of arguments presented in the 

proof of Lemma 4.6. �

Now we are ready to prove that ϒα,β,γ,σ : X s → Ys and Tα,β,γ,σ : X s
α → Zs are isomor-

phisms when σ > 0 and n � 2, and when σ = 0 and n = 2.

Theorem 4.8. Suppose R 
 α > 0, β ∈ Rn×n is positive definite, γ ∈ R \ {0}, and s � 0. The 

following hold.

(1) If σ > 0 and n � 2, then the bounded linear maps ϒα,β,γ,σ : X s → Ys defined in (4.9) and 

Tα,β,γ,σ :X s
α →Zs defined in (4.10) are isomorphisms.

(2) If σ = 0 and n = 2, then the bounded linear maps ϒα,β,γ,σ : X s → Ys defined in (4.9) and 

Tα,β,γ,σ :X s
α →Zs defined in (4.10) are isomorphisms.

(3) If σ > 0 and n � 2, then there exists a constant C > 0 for which

sup
α∈(0,1)

(∥∥Tα,β,γ,σ
∥∥
L(X s

α ;Zs )
+
∥∥∥T−1

α,β,γ,σ

∥∥∥
L(Zs ;X s

α )

)
� C. (4.33)

If σ = 0 and n = 2, then there exists a constant c > 0 for which

sup
α∈(0,1)

(∥∥Tα,β,γ,0
∥∥
L(X s

α ;Zs )
+
∥∥∥T−1

α,β,γ,0

∥∥∥
L(Zs ;X s

α )

)
� c. (4.34)

Proof. To prove the first item, by Proposition 4.5, it suffices to show that ϒα,β,γ,σ and Tα,β,γ,σ
are surjective. To prove that ϒα,β,γ,σ is surjective, we suppose (f, g, h, k, l) ∈ Ys and de-
fine the free surface function η ∈ Xs+5/2(Rn−1; R) by the construction in Lemma 4.6. By 

Theorem 3.12, there exists (u, p) ∈ tanH
s+2(�; Rn) × H s+1(�; R) such that �α,β,γ (u, p) =

(�α,β,γ (u, p), un|�b ) = (f − (∇ ′η, 0), g, k − σ
′ηen, l, h − γ ∂1η). Therefore, we find that 
ϒα,β,γ,σ (u, p, η) = (f, g, h, k, l). This shows that ϒα,β,γ,σ is surjective, and it follows that 
ϒα,β,γ,σ is an isomorphism. The surjectivity of Tα,β,γ,σ follows from a similar set of arguments. 
To prove the second item we follow the same argument as above, using Lemma 4.7 in place of 
Lemma 4.6, ϒα,β,γ,0 in place of ϒα,β,γ,σ , and Tα,β,γ,0 in place of Tα,β,γ,σ .

The third item follows the last item of Proposition 4.5, the α-independent estimate (2.21)
recorded in Proposition 2.10 and the last items in Lemma 4.6 and Lemma 4.7. �

5. Nonlinear analysis

5.1. Preliminaries

We begin by discussion some assumptions about the slip map A. We set β =DA(0) ∈Rn×n

and note since A is smooth we have A(w) = A(0) + βw +O(|w|2), so by (1.4) and a simple 

scaling argument, we have

βw ·w � θ ′ |w|2 > 0, ∀w ∈Rn \ {0}, (5.1)
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for some positive constant θ ′ > 0. We also note that if w= u + iv for u, v ∈Rn, then

Re(βw ·w)= βu · u+ βv · v � θ ′ |w|2 > 0,∀w ∈Cn \ {0}. (5.2)

Next, we record a set of results on the smoothness of various maps defined in terms of η that 
we will use in the subsequent analysis.

Theorem 5.1. Let N 
 n � 2, R 
 s > n/2, and V be a real finite dimensional inner product 

space.

(1) Suppose ϕ ∈ C∞b (R; R). Then for 0 � r � s, f ∈ H r(Rn; V ), η ∈ Xs(Rn−1; R) and 

ϕηf : Rn → V defined via (ϕηf )(x) = ϕ(xn)η(x
′)f (x), we have ϕηf ∈ H r(Rn; V ) and 

‖ϕηf ‖H r � ‖η‖Xs ‖f ‖H r .

(2) Let ϕ ∈ C∞b (R; R) be such that ϕ � 0. Then there exists r1 > 0 depending on n, b, s, ϕ such 

that the maps  1,  2 : BXs (0, r1) ×H s(�; V ) →H s(�; V ) given by  1(η, f ) = f
1+ηϕ and 

 2(η, f ) = ηf
1+ηϕ are well-defined and smooth.

(3) There exists a constant r2 > 0 depending on d, s such that the map   : BH s (0, r2) →
H s(Rn; Rn) given by  (f ) = f/

√
1+ |f |2 is well-defined and smooth.

Proof. We first note that the first item follows from Theorem 5.13 in [19], the third item follows 
from Theorem A.14 in [19], so it suffices to only prove the second item.

To prove the second item, we first note that since  2(η, f ) = η 1(η, f ), if  1 is well-defined 

and smooth and then so is  2 by the first item. Therefore it suffices to show that  1 is well-
defined and smooth. By the eighth item of Theorem 4.2, ‖η‖C0

b
� ‖η‖Xs , and by the ninth 

item of Theorem 4.2 and an induction argument, we have 
∥∥f ηk

∥∥
Xs

� ‖f ‖H s ‖η‖kXs for all 
k � 1, f ∈H s(�; V ) and η ∈Xs(Rn−1; R). The first aforementioned estimate implies that there 

exists a constant r > 0 such that for η ∈ BXs (0, r) we have 
∑∞

k=0 ‖ηϕ‖kC0
b

�
∑∞

k=0 ‖η‖kXs <∞, 

and the second aforementioned estimate implies that 
∑∞

k=1

∥∥f ηk
∥∥
H s � ‖f ‖H s

∑∞
k=1 ‖η‖kXs <

∞. This shows that the series 
∑∞

k=0(−1)k(ηϕ)k converges uniformly to 
1

1+ηϕ in �, and the 

series 
∑∞

k=1(−1)kf ηk converges in H s(�; R). Now we note that  1(η, f ) = f
1+ηϕ = f +∑∞

k=1(−1)kf (ηϕ)k ∈ H s(�; R), and therefore the map  1 is well-defined. To show that  1 is 
smooth, we consider the map T :Xs(Rn−1; R) → L(H s(�; V )) defined via T (η)f = ϕηf . By 

the first item of Theorem 5.1, the map T is bounded. Furthermore, in the unital Banach algebra 

L(H s(�; V )), the power series F(L) =
∑∞

k=0L
k converges and defines a smooth function in the 

unit ball BL(H s(�;V ))(0, 1), thus the composition F ◦ T :Xs(Rn−1; R) → L(H s(�; V )) defines 
a smooth function. Since  (f, g) = F(T (η))f , we may deduce that there exists a constant r1 > 0
for which  1 is smooth on BXs (0, r1) ×H s(�; V ). �

Now we can synthesize the aforementioned results to show that all the nonlinear maps ap-
pearing in (1.8) are well-defined and C2.

Theorem 5.2. Suppose n � 2 and σ > 0, or n = 2 and σ = 0. Let N 
 s � 1 + �n/2�. The 

following hold.
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(1) For any δ, M > 0, define the open set U s
δ,M of X s via

U s
δ,M = {(u,p,η) ∈X s | ‖u‖H s+2 + ‖p‖H s+1 <M,‖η‖

X
s+ 5

2
< δ}. (5.3)

Consider the Hilbert space

E s =R×R×H s+3(Rn;Rn×n
sym )×H s+ 1

2 (Rn−1;Rn×n
sym )×H s+2(Rn;Rn)×H s(Rn−1;Rn).

(5.4)

Let F be as defined in (1.5), J , A, H be as defined in (1.7), (1.6), and the A-dependent 

operators be defined as in Section 1.3. We define the solution operator ! : E s ×U s
δ,M → Ys

associated to (1.8) via

!(α,γ,T , T , f, f,u,p,η)

= (divA SA(p,u)+ (u− γ e1) · ∇Au+ u · ∇Au− f ◦ F−L�bf,J divA u,

u ·N + γ ∂1η,SA(p,u)N − (σH(η)I + T ◦ F+ SbT |�b )N , [αSA(p,u)ν −A(u)]′)
(5.5)

where

L�bf (x)= f (x′) and SbT (x
′, b)= T (x′). (5.6)

Then there exists a δ > 0 for which ! is well-defined and belongs to C2
b(E

s × U s
δ,M ; Ys). 

Furthermore, we have the estimate

sup
α>0

∥∥∥!(α, ·)|Es×U s
δ,M

∥∥∥
C2
b

<∞. (5.7)

(2) Similarly, for any δ, M > 0, define the open set U s
α,δ,M of X s via

U s
α,δ,M = {(u,p,η) ∈X s

α | ‖u‖H s+2 + ‖p‖H s+1 <M,‖η‖
X
s+ 5

2
< δ}. (5.8)

Consider the Hilbert space E s defined via (5.4). We define the solution operator X : E s ×
U s
α,δ,M →Zs associated to (1.8) with A(·) = β· where β ∈Rn×n satisfies (5.1) via

X(α, γ,T , T , f, f,u,p,η)

= (divA SA(p,u)+ (u− γ e1) · ∇Au+ u · ∇Au− f ◦ F−L�bf,J divA u,

u ·N + γ ∂1η,SA(p,u)N − (σH(η)I + T ◦ F+ SbT |�b )N ). (5.9)

Then there exists a δ > 0 for which X is well-defined and belongs to C2
b(E

s × U s
α,δ,M ; Zs). 

Furthermore, we have the estimate

sup
α>0

∥∥∥X|Es×U s
α,δ,M

∥∥∥
C2
b

<∞. (5.10)
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Proof. We proceed to prove the first item. Let δ =min{r1, r2/c1, δ∗}, where r1, r2 are the radii 
from the second and third items of Theorem 5.1, c1 is the embedding constant from Xs(Rd) →
H s−1(Rd ; Rd) and 0 < δ∗ < 1 is from Theorem A.7. We note that since ϕ ∈ C∞b (R; R), by the 

first and second items of Theorem 5.1, the maps  1,  2 : BXr (0, δ) × H r(�; R) → H r(�; R)
given by  1(η, f ) = f ϕ

1+ηϕ′ and  2(η, f ) = ηf ϕ
1+ηϕ′ are well-defined and smooth for r > n/2. 

Utilizing this observation, the definition of the A and the A-dependent operators in Section 1.3, 
the fifth and ninth items of Theorem 4.2, the fact that H r(Rd; R) is an algebra for r > d/2, trace 

theory and the assumption that A is smooth, the map

R×R×U s
δ,M 
 (α, γ,T ,u,p,η) �→
(divA SA(p,u)+ (u− γ e1) · ∇Au+ u · ∇Au,J divA u,u ·N + γ ∂1η,

SA(p,u)N |�b , α[SA(p,u)ν]′|�0)

∈H s(�;Rn)×H s+1(�;R)×H s+3/2(�b;R)×H s+1/2(�b;Rn)×H s+1/2(�0;Rn−1)

(5.11)

is well-defined and smooth.
By the supercritical Sobolev embedding H 1+�n/2�(�; Rn) ↪→ C0

b(�; Rn), the map A ∈
C∞(Rn; Rn) agrees with the map Ã=ψA ∈ C∞b (Rn; Rn) on BH s+2(�;Rn)(0, M) since s + 2 �

3 + �n/2�, where ψ is a smooth cutoff function on BRn(0, r(M)), r(M) depends on M and 

the embedding constant from H 1+�n/2�(�; Rn) ↪→ C0
b(�; Rn). Since Ã ∈ C∞b (Rn; Rn) and 

Ã(0) = 0, by Theorem A.8 we may then conclude that the map U s
δ,M 
 (u, p, η) �→ A(u)|�0 ∈

H s+3/2(�0; R) is well-defined and C2.
By the fifth item of Theorem 4.2, the third item of Theorem 5.1, and the fact that 

H s+1/2(Rn−1; R) is an algebra, the map

BXs+5/2(0, δ) 
 η �→ σH(η)IN = σ div′

»
¼½

∇ ′η√
1+ |∇ ′η|2

¾
¿À In×n(−∇ ′η,1) ∈H s+1/2(Rn−1;R)

(5.12)

is well-defined and smooth.
By Theorem 7.3 and Lemma A.10 in [19], the map

H s+1/2(Rn−1;Rn×n
sym )×H s(�;Rn) 
 (T ,f ) �→ (SbT ,L�bf ) ∈H s+1/2(�b;Rn)×H s(�;Rn)

(5.13)

is well-defined and smooth.
By Theorem A.7, we may conclude that the map

H s+3(Rn;Rn×n
sym )×H s+2(Rn;Rn)×BXs+5/2(Rn−1;R)(0, δ) 
 (T , f, η) �→ (f ◦ F,T ◦ F|�b )

∈H s(Rn;Rn)×H s+1/2(Rn−1;Rn) (5.14)

is well-defined and C2.
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Finally, following the same calculations as Theorem 7.3 in [19], we find that

R× U sδ 
 (γ,u,p,η) �→ u ·N + γ ∂1η−
b∫

0

J divu(·, xn) dxn

∈H s+3/2(Rn−1;R)∩ Ḣ−1(Rn−1;R) (5.15)

is well-defined and smooth. Combining the aforementioned results then shows that the map ! :
E s × U sδ,M → Ys is well-defined and C2.

Next we note that by the form of the matrix A :� →Rn×n defined in Section 1.3, the non-
linear terms in the map ! are either products between standard Sobolev functions or products 
between specialized Sobolev and standard Sobolev functions. The same is true for D! and D2!. 
Then by utilizing this observation and the ninth item of Theorem 4.2, we may conclude that the 

restriction of the solution map !|Es×U s
δ,M
: E s×U s

δ,M → Ys is C2
b(E

s×U s
δ,M ; Ys). Furthermore, 

since we assume that α ∈ (0, 1) and α only appears in the linear terms of the last component of 
!, we may conclude that the C2

b norm of !|Es×U s
δ,M

is independent of α.
The second item and in particular (5.10) follows from a similar set of arguments as above and 

the observation that α does not appear on the right hand side of (5.9). �

5.2. Solvability of the flattened system (1.8)

Now we are ready to construct solutions to (1.8) by using the implicit function theorem.

Proof of Theorem 1.1. We first consider the case with surface tension, σ > 0 and n � 2. Let δ
be the minimum of the δ1 > 0 from Theorem 5.2, δ∗ > 0 from the third item of Theorem 5.1, and 

δA > 0 in (5.1). We fix M > 0 and consider the open subset U s
δ,M of X s defined via (5.3). Using 

Proposition 4.4 and standard Sobolev embedding, any open subset of U s
δ,M containing (0, 0, 0)

satisfies the first assertion of the theorem. This proves the first item.
To prove the remaining items, we consider the Hilbert space E s defined in (5.4) and the so-

lution map ! : E s × U s
δ,M → Ys defined in (5.5). By Theorem 5.2, the map ! is well-defined 

and C2. By the product structure of E s × U s
δ,M , we can define D1! : E s × U s

δ,M → L(E s; Ys)

and D2! : E s × U s
δ,M → L(X s; Ys) to be the derivatives of ! with respect to E s and U s

δ,M , 
respectively. Note that by the second item of Theorem 5.1, we have D2Sb(0, 0) = 0 and 

D2��(0, 0) = 0. Therefore, for any α ∈R, γ ∈R, !(α, γ, 0, 0, 0, 0, 0, 0, 0) = (0, 0, 0, 0, 0) and 

D2!(α, γ, 0, 0, 0, 0, 0, 0, 0, 0)(u, p, η) = ϒα,β,γ,σ (u, p, η) where ϒα,β,γ,σ is defined in (4.9). 
By Theorem 4.8, for every α∗ > 0 and γ∗ �= 0 the map D2!(α∗, γ∗, 0, 0, 0, 0, 0, 0, 0, 0) is a lin-
ear isomorphism. Thus, by the implicit function theorem there exists an open sets U(α∗, γ∗) ⊆
E s and O(α∗, γ∗) ⊆ U s

δ,M such that (α∗, γ∗, 0, 0, 0, 0) ∈ U(α∗, γ∗), (0, 0, 0) ∈ O(α∗, γ∗), 

and there exists a C1 Lipschitz map "α∗,γ∗ : U(α∗, γ∗) → O(α∗, γ∗) ⊆ U s
δ,M such that 

!(α, γ, T , T , f, f, "α∗,γ∗(α, γ, T , T , f, f )) = (0, 0, 0, 0, 0) for all (α, γ, T , T , f, f ) ∈ U(α∗, γ∗). 
Moreover, (u, p, η) ="α∗,γ∗(α, γ, T , T , f, f ) is the unique solution to !(γ ,T ,T ,f, f, u, p, η) =
(0, 0, 0, 0, 0) in O(α∗, γ∗).

Next, we define the open sets

U s =
⋃

α∗∈R+,γ∗∈R\{0}
U(α∗, γ∗)⊆ E s and Os =

⋃

α∗∈R+,γ∗∈R\{0}
O(α∗, γ∗)⊆U s

δ,M . (5.16)
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We note that by construction, R+ × (R \ {0}) × {0} × {0} × {0} × {0} ⊂ U s . Furthermore, for 
every (α, γ, T , T , f, f ) ∈ U s , there exists an α∗ > 0, γ∗ ∈R \ {0} for which (α, γ, T , T , f, f ) ∈
U(α∗, γ∗) and (u, p, η) = "α∗,γ∗(α, γ, T , T , f, f ) ∈ O(α∗, γ∗). By the observation above and 

the implicit function theorem, the map " : U s → Os defined via "(α, γ, T , T , f, f ) =
"α∗,γ∗(α, γ, T , T , f, f ), where α∗ > 0, γ∗ ∈ R \ {0} is such that (α, γ, T , T , f, f ) ∈ U(α∗, γ∗), 
is well-defined, C1, and locally Lipschitz. This proves the remaining items for σ > 0 and n � 3.

To prove the remaining items in the case without surface tension and n = 2, we argue along the 

same lines but use the second item of Theorem 4.8 instead of the first and use the isomorphism 

ϒα,β,γ,0. �

5.3. The solutions to (1.1) as α→ 0

Proof of Theorem 1.2. We first note that Theorem 4.2 shows that the space Z =H s+2(�; Rn) ×
H s+1(�; R) ×Xs+5/2(Rn−1; R) is a separable Hilbert space, and therefore the ball BZ(0, M)

is metrizable in the weak topology for any M > 0 (see Theorem 3.29 in [6]).
Let δ > 0 be the same as in the proof for Theorem 1.1 above and for a fixed M > 0 con-

sider the solution map X : E s × U s
α,δ,M → Zs defined via (5.9). We note that if α ∈ (0, 1), 

the last item of Theorem 4.8 and the second item of Theorem 5.2 imply that X satisfies 
the α-independent estimate (A.16). Furthermore, the arguments presented above in the proof 
of Theorem 1.1 show that X also satisfies the rest of the requirements of Theorem A.6. 
Thus by applying Theorem A.6, for every γ∗ ∈ R \ {0}, there exists an α∗-independent 

open set V (γ∗) ⊆ (R \ {0}) × H s+3(Rn; Rn×n
sym ) × H s+ 1

2 (Rn−1; Rn×n
sym ) × H s+2(Rn; Rn) ×

H s(Rn−1; Rn) and an α∗-independent constant M > 0 such that for every α∗ ∈ (0, 1), there 

exists an open set O(α∗, γ∗) ⊆ U s
α,δ,M such that (α, γ∗, 0, 0, 0, 0) ∈ (0, 1) × V (γ∗), (0, 0, 0) ∈

O(α∗, γ∗), and there exists a C1 Lipschitz map "α∗,γ∗ : (0, 1) × V (γ∗) →O(α∗, γ∗) ⊆ U s
α,δ,M

such that X(α, γ, T , T , f, f, "α∗,γ∗(α, γ, T , T , f, f )) = (0, 0, 0, 0) for all (α, γ, T , T , f, f ) ∈
(0, 1) × V (γ∗). Moreover, (uα, pα, ηα) = "α∗,γ∗(α, γ, T , T , f, f ) is the unique solution to 

X(γ, T , T , f, f, u, p, η) = (0, 0, 0, 0) in O(α∗, γ∗) and satisfies supα∈(0,1) ‖(uα,pα, ηα)‖X s
α
�

M . See Fig. 2.
We now fix γ∗ ∈ R \ {0}, (γ∗, T , T , f, f ) ∈ V (γ∗) and consider the function f : (0, 1) →

BZ(0, M) defined via f (α) = (uα, pα, ηα) = "α∗,γ∗(α, γ, T , T , f, f ). Let {αj }∞j=1 ⊂ (0, 1) be 

any sequence such that αj → 0 as j→∞ and let {αjk }∞k=1 ⊂ {αj }∞j=1 be any subsequence of the 

original sequence. We note that since supk
∥∥f (αjk )

∥∥
X s <∞, there exists a further subsequence 

{f (αjkl )}
∞
l=1 such that f (αjkl ) converges weakly to f0 ∈ BZ(0, M) in Z as l→∞.

By the sixth item of Theorem 4.2, we may decompose any element ηl ∈Xs+5/2(Rn−1; R) as 
η = ηlow + ηhigh, where ηlow ∈ C∞0 (Rn−1; R) and ηhigh ∈H s+5/2(Rn−1; R) satisfy the bounds 
(4.3). Thus we may define for every l ∈N ,

gl =
(
uαjkl

,pαjkl
,
(
ηαjkl

)
high

)
∈H s+2(�;Rn)×H s+1(�;R)×H s+5/2(Rn−1;R),

hl =
(
ηαjkl

)
low
∈ C∞0 (Rn−1;R), (5.17)

satisfying supl(‖gl‖H s+2(�)×H s+1(�)×H s+5/2(Rn−1) + ‖hl‖Ckb (Rn−1)) <∞ for any k � 1.

Now consider the nested sequence of compact sets {Em}∞m=1 defined via Em = [−m, m]n−1×
[0, b] ⊂�. On E1, we consider the restriction of the sequence {gl|E1}∞l=1 and {hl |E1}∞l=1 and note 
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Fig. 2. A toy picture of the schematics of the proof.

that since the restriction operator is continuous, gl|E1 belongs to B(E1) := H s+2(E1; Rn) ×
H s+1(E1; R) × H s+5/2([−1, 1]n−1; R) and hl |E1 belongs to C∞([−1, −1]n−1; R). Further-
more, we have supl(

∥∥gl |E1

∥∥
B(E1)

+
∥∥hl |E1

∥∥
Ckb ([−1,−1]n−1)

) <∞ for any k � 1. Since B(E1)

is also a Hilbert space, we may conclude that up to passing to a subsequence, there exists 
g1,l ∈B(E1) for which {gl|E1)}∞l=1 converges weakly to g1,l in B(E1) as l→∞.

We next note that since for any r � 0, the identity operator id : H s+r(K; V ) → H s(K; V )
is compact for any compact Lipschitz domain K ⊆Rd and any finite dimensional vector space 

V . Furthermore, for sufficiently small ε > 0 we also have H s+k−ε(E1; V ) ↪→ Ck(E1; V ) by 

standard Sobolev embedding, therefore we may conclude that up to passing to a subsequence, 
{gl |E1)}∞l=1 converges strongly to (g1,l) in C2

b(E1; Rn) ×C1
b(E1; R) ×C1

b([−1, 1]n−1; R) as l→
∞. By the Arzelà-Ascoli theorem, we may also conclude that up to passing to a subsequence, 
there exists an h1,l ∈ C1([−1, 1]n−1; R) for which hl|E1 → h1,l strongly in C1

b([−1, 1]n−1; R).
Now we consider the subsequences of the original sequences {gl}∞l=1, {hl}∞l=1 constructed in 

the previous step that converge strongly to g1,l and h1,l respectively. We note that we may repeat 
the same argument as above to obtain a further subsequence converging strongly to some g2,l and 

h2,l in C2
b(E2; Rn) × C1

b(E2; R) × C1
b([−2, 2]n−1; R) and C1

b([−2, −2]n−1; R), respectively. 
Furthermore, g2,l, h2,l must coincide with g1,l, h1,l respectively on E1.

Thus, by continuing this procedure ad infinitum and employing a standard diagonal argu-
ment, we may upon relabeling identify a subsequence {(uαjkl , pαjkl , (ηαjkl )low, (ηαjkl

)high)}∞l=1 ⊆
{(uαjk , pαjk , (ηαjk )low, (ηαjk

)high)}∞k=1 converging strongly to some (u0, p0, (η0)low, (η0)high) in 

C2
b(�; Rn) × C1

b(�; R) × C1
b(R

n−1; R) × C1
b(R

n−1; R). Since β ∈Rn×n is assumed to satisfy 

(5.1), we have

u ∈ α−tanH
s+2(�;Rn) ↪→ tanH

s+2(�;Rn) and [βu]′ = 0 on�0

=⇒ βu · u= [βu]′ · u′ + [βu]n · un = 0 on�0 =⇒ u= 0 on�0. (5.18)

425



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381–437

Therefore as α → 0, by passing to the limit in we may conclude that (u0, p0, η0) (where 

η0 = (η0)low + (η0)high) solve the incompressible Navier-Stokes system (1.12) with the no-slip 

condition on �0 classically.
Finally, by invoking the uniqueness part of Theorem A.1, we may conclude that (u0, p0, η0) ∈

0H
s+2(�; Rn) × H s+1(�; R) × Xs+5/2(Rn−1; R). Thus, every subsequence {f (αjk )}∞k=1 =

{(uαjk , pαjk , ηαjk )}
∞
k=1 of the sequence {f (αj )}∞j=1 = {(uαj , pαj , ηαj )}∞j=1 has a further subse-

quence converging weakly to f0 := (u0, p0, η0) in Z. Since the ball BZ(0, M) is metrizable 

in the weak topology for any M > 0, we may then conclude that (uα, pα, ηα) ⇀ (u0, p0, η0)

weakly in H s+2(�; Rn) ×H s+1(�; R) ×Xs+5/2(Rn−1; R) as α→ 0. �
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Appendix A. Analysis tools

In this section we record some tools utilized in our analysis.

A.1. The incompressible Navier Stokes system with no-slip conditions

In this subsection we record a result from [19] adapted to the flattening map (1.5).

Theorem A.1. Suppose that either σ > 0 and n � 2 or σ = 0 and n = 0. Assume that N 
 s �
1 + �n/2�, and let X s be as defined by (4.4), L�b and Sb be as defined as in (5.6). Then there 

exist open sets

Vs ⊂R+ × (R \ {0})×H s+2(Rn;Rn×n
sym )×H s+ 1

2 (Rn−1;Rn×n
sym )

×H s+1(Rn−1;Rn)×H s(Rn−1;Rn) (A.1)

and Os ⊂ X s such that for each (γ, T , T , f, f ), there exists a unique (u, p, η) ∈Os classically 

solving (1.12) with the flattening map defined via (1.5).

Proof. This essentially follows from the work in [18] for κ = 0 and the proof for the third item 

of Theorem 1.2 in the same paper, though we note that the flattening map F defined via (1.5) is 

slightly different from the one employed in [18], which is given by Gη(x
′, xn) = x + xnη(x

′)
b

en. 
Though, since F and Gη are both diffeomorphisms for η ∈Xs+5/2(Rn−1; R) such that ‖η‖Xs+5/2

is sufficiently small, and both maps satisfy the C1 ω-lemma, the flattening map F can be used in 

the arguments in [18] to arrive at the desired result. �
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A.2. Tangential Fourier multipliers

In this subsection we record a few essential results concerning bounded translation invariant 
operators on Sobolev spaces and tangential Fourier multipliers. Recall that the reflection operator 
δ−1 :F(Rd1; Cd2) →F(Rd1; Cd2) is defined via δ−1f (x) = f (−x).

The first proposition gives a characterization of bounded linear maps on Sobolev spaces that 
commute with tangential multipliers.

Proposition A.2. Let F ∈ {R, C}, s, t ∈ R, and T ∈ L(H s(Rd; F); H t (Rd ; F)). The following 

are equivalent.

(1) T commutes with translation operators.

(2) There exists a measurable function ω : Rd → C such that ω = δ−1ω if F = R, Tf =
F−1[ωF [f ]], and

sω = esssup{(1+ |ξ |2)t−s |ω(ξ)| : ξ ∈Rd}<∞. (A.2)

Furthermore, we have the estimate ‖T ‖L(H s ;H t ) � sω � 2 ‖T ‖L(H s ;H t ).

Proof. This follows from Proposition A.10 in [29]. �

Lemma A.3. Suppose N 
 d, k � 1 and let F ∈ {R, C}. Let s � 0, M > 0 and U =Rd × (0, b). 
Define the operator JsM : H s(U ; Fk) → H s(U ; Fk) via JsMf (·, xn) = F−1[χB(0,M)(·)(1 +
|·|2)s/2F [f (·, xn)]]. Then JsM is well-defined, and for all f ∈ H s(U ; Fk) and t ∈ R such that 

t � s, we have the M-independent estimate 
∥∥JsMf

∥∥
L2(U)

�d,s,b

∥∥Js−tM f
∥∥
H t (U)

.

Proof. Using Corollary A.7 in [19], we estimate

∥∥JsMf
∥∥2
L2(U)

=
b∫

0

∥∥Js−tM f (·, xn)
∥∥2
H s(Rd )

dxn �d,s,b

∥∥Js−tM f
∥∥2
H s(U)

. � (A.3)

We conclude this subsection by recalling some results on tangential multipliers from [29].

Lemma A.4. Suppose N 
 d, k � 1, F ∈ {R, C}, and let ω ∈ L∞(Rd ; Ck×k) be a Fourier mul-

tiplier such that if F =R, then ω= δ−1ω. Let U =Rd × (0, b) and s � 0.

(1) We define the tangential Fourier multiplier on L2(Rd ; Kk) as the operator Mω : L2(Rd ;
Kk) → L2(Rd ; Kk) defined via Mωf (·) =F−1[ωF [f (·)]].

(2) We define the tangential Fourier multiplier on H s(U ; Fk) as the operator Mω : H s(U ;
Fk) → H s(U ; Fk) defined via Mωf (·, xn) =F−1[ωF [f (·, xn)]] for all xn ∈ (0, b). Then 

Mω is well-defined and satisfies the estimate

‖Mωf ‖H s(U) �d,s ‖ω‖L∞(U) ‖f ‖H s(U) for all f ∈H s(U ;Fk). (A.4)

Furthermore, if s > 1/2 and � ∈ {�b, �0} then
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Tr�Mωf =Mω Tr� f for all f ∈H s(U ;Fk). (A.5)

(3) We extend the notion of tangential Fourier multipliers to (0H
1(U ; Fk))∗ by defining the op-

erator Mω : (0H 1(U ; Fk))∗→ (0H
1(U ; Fk))∗ using the action of the anti-linear functional 

acting on test functions via

〈MωF,ϕ〉(0H 1)∗,0H 1 = 〈F,Mωϕ〉(0H 1)∗,0H 1 for all ϕ ∈ 0H
1(U ;Fk),F ∈ (0H 1(U ;Fk))∗.

(A.6)

Then Mω is well-defined and satisfies the estimate

‖MωF‖(0H 1(U))∗ � ‖ω‖L∞(U) ‖F‖(0H 1(U))∗ for all F ∈ (0H 1(U ;Fk))∗. (A.7)

Proof. This follows from Lemma A.12 in [29]. �

A.3. A parameter dependent implicit function theorem

In this subsection we aim to prove a variant of the implicit function theorem, for functions of 
the form fα(·) = f (α, ·) where α ∈R and where the underlying spaces are allowed to vary with 

the parameter α. First, we establish a variant of the inverse function theorem.

Theorem A.5. Let X, Y be Banach spaces and suppose {Xα}α∈(0,1) ⊂ X is a one-parameter 

family of closed subspaces of X. For any α ∈ (0, 1), suppose fα ∈ C2(Uα; Y) for a non-empty 

open set Uα ⊆Xα containing 0, fα(0) = 0, and Dfα(0) ∈ L(Xα; Y) is a linear homeomorphism. 

Furthermore, we suppose there exists constants ε > 0, C > 2 such that BXα (0, ε) ⊆Uα and

sup
α∈(0,1)

(
‖Dfα(0)‖L(Xα;Y) +

∥∥∥Dfα(0)−1
∥∥∥
L(Y ;Xα)

+ sup
z∈BXα (0,ε)

∥∥∥D2fα(z)

∥∥∥
L2(X;Y)

)
� C.

(A.8)

Then the following hold.

(1) There exists a δ > 0 such that for all α ∈ (0, 1), there exists an open set Vα such that 

BXα

(
0, δ

3C2

)
⊂ Vα ⊂ BX(0, δ), fα(Vα) = BY

(
0, δ

2C

)
, and the restriction fα|Vα : Vα →

fα(Vα) is a bi-Lipschitz homeomorphism.

(2) There exists a constant K > 0 such that

sup
α∈(0,1)

(
‖fα‖C0

b (Vα;Y)
+
∥∥∥f−1

α

∥∥∥
C0
b (fα(Vα);Xα)

)
�K. (A.9)

(3) We have fα ∈ C1
b(Vα; Y) and f−1

α ∈ C1
b(fα(Vα); Xα). Furthermore, Dfα(x) ∈ L(Xα; Y) is 

a linear homeomorphism for every x ∈ Vα and Df−1
α (y) ∈ L(Y ; Xα) is a linear homeomor-

phism for every y ∈ fα(Vα), and the two are related via

Df−1
α (y)= (Dfα(f

−1
α (y)))−1 (A.10)
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Fig. 3. A depiction of the sets Vα, fα(Vα) and the α-independent “core” BX(0, δ/(3C)
2).

for every y ∈ fα(Vα).
(4) If f ∈ Ck(Uα; Y) for some k � 2, then f ∈ Ck(Vα; Y) and f ∈ Ck(fα(Vα); Xα).

Proof. It suffices to only prove the first two items as the third and fourth items follow from the 

standard inverse function theorem applied to each α ∈ (0, 1), see Theorem 2.5.2 in [1].
For any α ∈ (0, 1) we consider the function Fα : Uα → X defined via Fα(x) = x −

Dfα(0)−1fα(x). Then for all α ∈ (0, 1), Fα ∈ C2(Uα; X), Fα(0) = 0, and DFα(0) = 0. Fur-
thermore, by applying the mean value inequality over BXα(0, ε) and (A.8) we may conclude that 
for all x ∈ BXα (0, ε),

‖DFα(x)‖L(X) � sup
t∈[0,1]

∥∥∥D2Fα(tx)

∥∥∥
L2(Xα)

‖x‖Xα

�
∥∥∥Dfα(0)−1

∥∥∥
L(Y ;Xα)

∥∥∥D2fα(x)

∥∥∥
L2(Xα;Y)

‖x‖Xα � C2 ‖x‖Xα . (A.11)

By (A.8), we may choose δ > 0 sufficiently small and independent of α for which δ < (2C2)−1

and ‖DFα(x)‖L(X) � 1
2 for all x ∈ BXα (0, δ) ⊆Eα . By the mean value inequality, we also have

‖Fα(x)− Fα(y)‖Xα � ‖x − y‖Xα sup
z∈BXα (0,δ)

‖DFα(z)‖L(Xα)

�
1

2
‖x − y‖Xα for all x, y ∈ BXα (0, δ). (A.12)

Fix y ∈ BY (0, δ(2C)−1) and define the function hα : BXα [0, δ] → BXα (0, δ) ⊂ BXα [0, δ] via 

hα(x) =Dfα(0)−1(y +Dfα(0)Fα(x)), where BXα [0, δ] denotes the closed ball in Xα with ra-
dius δ. To check that the map is well-defined, we note that since Fα(0) = 0, by the writing 

hα(x) = Dfα(0)−1y + Fα(x) and using (A.12) we have ‖hα(x)‖Xα � C ‖y‖Y + 1
2 ‖x‖Xα < δ

for all x ∈ BXα [0, δ]. This shows that the map is well-defined. Next we note that since hα
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and Fα differ by a constant, by the estimate on DFα we also have ‖Dhα(x)‖L(Xα) � 1
2 for 

all x ∈ BXα [0, δ], which implies that hα is a contraction on the complete metric space BXα [0, δ]. 
Therefore by the contraction mapping theorem, there exists a unique x ∈ BXα [0, δ] for which 

hα(x) = x, but since hα(BXα [0, δ]) ⊆ BXα (0, δ), we get the inclusion x = hα(x) ∈ BXα (0, δ). 
Since hα(x) = x is equivalent to fα(x) = y, we find that for every y ∈ BY (0, δ(2C)−1) there 

exists a unique x ∈ BXα (0, δ) such that fα(x) = y.
Now we define the set Vα = f−1

α (BY (0, δ(2C)−1)) ∩BX(0, δ), which by the contraction map-
ping argument above is an open subset of BXα (0, δ) ⊂ BX(0, δ). We first note that by (A.12), we 

have

‖fα(x)− fα(y)‖Xα � ‖Dfα(0)‖L(Xα;Y)
(
‖x − y‖Xα + ‖Fα(x)− Fα(y)‖Xα

)

�
3

2
C ‖x − y‖Xα for all x, y ∈ BXα (0, δ). (A.13)

In particular, since fα(0) = 0 we have ‖fα(x)‖Y � 3C/2 ‖x‖Xα for all x ∈ BX(0, δ). This im-
plies the inclusion fα(BXα (0, δ(3C)

−2)) ⊆ BY (0, δ(2C)−1), and subsequently BXα (0,
δ(3C)−2) ⊆ Vα . See Fig. 3.

By the contradiction mapping argument above, the restriction fα|Vα : Vα → fα(Vα) =
BY (0, δ(2C)−1) is invertible. Next we note that for all x1, x2 ∈ Vα , we have

‖x1 − x2‖Xα � ‖Fα(x1)− Fα(x2)‖Xα +
∥∥∥Dfα(0)−1

∥∥∥
L(Y ;X)

‖fα(x1)− f (x2)‖Xα

�
1

2
‖x1 − x2‖Xα +C ‖fα(x1)− f (x2)‖Xα . (A.14)

This then implies

∥∥∥f−1
α (y1)− f−1

α (y2)

∥∥∥
Xα
= ‖x1 − x2‖Xα � 2C ‖f (x1)− f (x2)‖Y = 2C ‖y1 − y2‖Y (A.15)

for all y1, y2 ∈ fα(Vα) = BY (0, δ(2C)−1). From (A.13) and (A.15) we may conclude that fα|Vα :
Vα→ fα(Vα) is a bi-Lipschitz homeomorphism and the estimate (A.9) holds. �

Now we are ready to prove a parameter dependent implicit function theorem.

Theorem A.6. Let X, Y, Z be Banach spaces over F and let {Yα}α∈(0,1) ⊂ Y be a one-parameter 

family of closed subspaces of Y . We equip the Cartesian products X×Y, X×Z with the ∞-norm 

defined via 
∥∥(x, x′)

∥∥
X×X′ =max{‖x‖X , 

∥∥x′
∥∥
X′}, and we equip the Cartesian products X× Yα

with the norm inherited from X× Y .

For all α ∈ (0, 1), we suppose Uα ⊆ X × Yα is a non-empty open set containing 0, fα ∈
C2(Uα; Z), fα(0, 0) = 0, D2fα(0, 0) ∈ L(Y ; Z) is a linear homeomorphism, and there exists a 

constant C > 2 and a non-empty open set Eα ⊆Uα containing 0 such that

sup
α∈(0,1)

(
‖Dfα(0,0)‖L(X;Y) +

∥∥∥Dfα(0,0)−1
∥∥∥
L(Y ;X)

+ sup
(x,y)∈Eα

∥∥∥D2fα(x, y)

∥∥∥
L(X;Y)

)
� C.

(A.16)
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Then there exists a δ1 > 0 such that for all α ∈ (0, 1), there exists gα ∈ C2
b(BX(0, δ1); Yα) ∩

C
0,1
b (BX(0, δ1); Yα) such that the following hold.

(1) gα(0) = 0 and (x, gα(x)) ∈ BX(0, δ1) ×BYα (0, δ1) ⊆Uα for all x ∈ BX(0, δ1).

(2) fα(x, gα(x)) = 0 for all x ∈ BX(0, δ1), and if (x, y) ∈ BX(0, δ1) × BYα (0, δ1) satisfy 

fα(x, y) = 0, then y = gα(x). Furthermore, there exists a constant M > 0 for which

sup
α∈(0,1)

sup
x∈BX(0,δ1)

‖gα(x)‖Y �M. (A.17)

Proof. For any α ∈ (0, 1) consider the function Fα : Uα → X × Z defined via Fα(x, y) =
(x, fα(x, y)). Then Fα ∈ C2(Uα; X × Z) and DFα ∈ L(X × Yα; X × Z) may be represented 

in matrix form by

DFα(x, y)=
(

IX 0Yα
D1fα(x, y) D2fα(x, y)

)
. (A.18)

Since D2fα(0, 0) is a linear homeomorphism, we readily conclude that DFα(0, 0) is also a linear 
homeomorphism. Thus, we may apply the standard inverse function theorem to conclude that Fα
is a local C2-diffeomorphism around 0. Note that DFα is then locally invertible with

(DFα(x, y))
−1 =

(
IX 0Yα

−(D2fα(x, y))
−1D1fα(x, y) (D2fα(x, y))

−1

)
(A.19)

for all (x, y) in a sufficiently small neighborhood of (0, 0). Combining the expression (A.19)
with (A.16), we may then conclude that Fα also satisfies the estimate (A.8) and the rest of 
the hypothesis of Theorem A.5. Thus, by Theorem A.5 there exists δ1, δ2, δ3 > 0 such that for 
all α ∈ (0, 1), there exists an open set Vα such that we have (0, 0) ∈ BX(0, δ1) × BYα (0, δ1) ⊆
Vα ⊆ BX(0, δ2) ×BYα (0, δ2) ⊆ Uα and Fα|Vα : Vα → Fα(Vα) = BX(0, δ3) ×BZ(0, δ3) is a C2

b -
diffeomorphism and a bi-Lipschitz homeomorphism. Furthermore, the C0

b(Vα; X × Z) norm of 
Fα and the C0

b(Fα(Vα); X× Yα) norm of F−1
α are independent of α. See Fig. 4.

Now we propose to define the function gα ∈ C2
b(BX(0, δ1); Yα) ∩ C0,1

b (BX(0, δ1); Yα) by 

gα(·) = Gα(·, 0), where the function Gα : Fα(Vα) → Yα is defined via Gα = π2 ◦ F−1
α ∈

C2
b(Fα(Vα); Yα) ∩ C

0,1
b (Fα(Vα); Yα). To prove the first item, we note that since (0, 0) ∈ Vα

and Fα(0, 0) = (0, fα(0, 0)) = (0, 0), this immediately implies that gα(0) = Gα(0, 0) = π2 ◦
F−1
α (0, 0) = 0. Next we note that by the definition of Fα we have (x, 0) ∈ Fα(BX(0, δ1) ×
BYα (0, δ1)) for all x ∈ BX(0, δ1). This implies that gα(x) = Gα(x, 0) ∈ π2(BX(0, δ1) ×
BYα (0, δ1)) = BYα (0, δ1) for all x ∈ BX(0, δ1).

To prove the second item, we note that by construction we have F−1
α (x, 0) = (x, Gα(x, 0))

for all x ∈ BX(0, δ1). Therefore

(x, fα(x, gα(x)))= (x, fα(x,Gα(x,0)))= Fα(x,Gα(x,0))

= Fα ◦ F−1
α (x,0)= (x,0) for all x ∈ BX(0, δ1), (A.20)
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Fig. 4. A toy picture of the sets Vα,Fα(Vα) and the α-independent “core” BX(0, δ1).

which implies that fα(x, gα(x)) = 0 for all x ∈ BX(0, δ1). Moreover, if fα(x, y) = 0 for x ∈
BX(0, δ1) and y ∈ BYα (0, δ1), then Fα(x, y) = (x, fα(x, y)) = (x, 0) and so (x, y) = F−1

α (x, 0). 
This in turn implies that y =Gα(x, 0) = gα(x).

Furthermore, since the C0
b(Fα(Vα); X × Yα) norm of F−1

α is independent of α and Yα is a 

closed subspace of Y , we may conclude that there exists a positive constant M for which (A.17)
holds. �

A.4. Smoothness of composition operators between Sobolev spaces

In this subsection we record composition results involving the flattening map F defined via 

(1.5).

Theorem A.7. Let N 
 k � 1 + �n/2�, d � 1, and m ∈ {0, 1, 2}. Let ϕ ∈ C∞b (R; R) be as in 

(1.5), and for every η ∈Xk+1/2(R; R) define the map F :Rn→Rn via F(x) = x+ϕ(xn)η(x′)en. 

Then there exists a 0 < δ∗ < 1 for which the map � :H k+m(Rn; Rd) ×BXk+1/2(Rn−1;R)(0, δ) →
H k(Rn; Rd) defined via �(f, η) = f ◦ F is well-defined and the following hold.

(1) For all m ∈ {0, 1, 2}, � is continuous.

(2) If m = 1, then � is C1 and satisfies D�(f, η)(f1, η1) = (∂nf ◦ F)ϕη1 + f1 ◦ F.

(3) If m = 2, then � is C2 and satisfies D2�(f, η)[(f1, η1), (f2, η2)] = (D2f ◦ F)(ϕη1en,

ϕη2en) + (∂nf1 ◦ F)ϕη2 + (∂nf2 ◦ F)ϕη1.

Proof. The first and second items follow from Theorem 5.20 in [19], and a close examination of 
the proof therein shows that the argument can be extended to prove the third item. �

Next we prove a variant of Theorem A.7 for compositions between Ckb functions and Sobolev 

functions.

Theorem A.8. Let � ⊆ Rn be an extension domain and assume N 
 k � 2 + �n/2� , m ∈
{0, 1, 2}. Let f ∈ Ck+1+m

b (Rn; Rn) and assume f (0) = 0 if � has infinite measure. Then the 

map �f :H k(�; Rn) →H k(�; Rn) defined via �f (u) = f ◦ u is well-defined and Cm.
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Proof. We prove this in four steps.
Step 1: A multiplier estimate. We first prove via finite induction the statement Pj for all 0 �

j � k, where Pj denotes the proposition that for all f ∈ Cj+1
b (Rn; Rn) and u, v ∈H k(�; Rn), 

we have the a priori estimate

∥∥�f (u)v
∥∥
H j � ‖f ‖Cjb 〈‖u‖H k 〉j ‖v‖H j for all u,v ∈H k(�;Rn), (A.21)

where 〈·〉 = (1 + |·|2)1/2 denotes the Japanese bracket.
In the case when j = 0, by the supercritical Sobolev embedding H 1+�n/2�(�; Rn) ↪→

C0
b(�; Rn) and the assumption that f ∈ C1

b(R
n; Rn), the estimate (A.21) is satisfied trivially. 

Thus P0 holds.
Next we proceed inductively and suppose that Pl holds for all 0 � l � j � k− 1 and consider 

the case j + 1 � k. We first note that for any 1 � p � n and u, v ∈H k(�; Rn) we have

∂p�f (u)=
n∑

q=1

�∂qf (u)∂p(u)q , ∂p(�f (u)v)=�f (u)∂pv +
n∑

q=1

�∂qf (u)∂p(u)qv. (A.22)

Then by the supercritical Sobolev embedding, applying the estimate (A.22) from the induction 

hypothesis on f ∈ Cj+2
b (Rn; Rn), ∂qf ∈ Cj+1

b (Rn; Rn) and the standard Sobolev product esti-
mate with the fact that k− 1 � 1 + �n/2�, we have

∥∥�f (u)v
∥∥
H j+1 �

∥∥�f (u)v
∥∥
H 0 +

n∑

p=1

‖∂p(�f (u)v)‖H j �
∥∥�f (u)v

∥∥
H 0 +

n∑

p=1

∥∥�f (u)∂pv
∥∥
H j

+
n∑

p,q=1

∥∥�∂qf (u)∂p(u)qv
∥∥
H j � ‖f ‖C0

b
‖v‖H 0 + ‖f ‖

C
j
b

〈‖u‖H k 〉j ‖v‖H j+1

+
n∑

p,q=1

‖f ‖
C
j+1
b

〈‖u‖H k 〉j
∥∥∂p(u)qv

∥∥
H j

� ‖f ‖C0
b
‖v‖H 0 + ‖f ‖

C
j
b

〈‖u‖H k 〉j ‖v‖H j+1 + ‖f ‖
C
j+1
b

〈‖u‖H k 〉j ‖u‖H k ‖v‖H j

� ‖f ‖
C
j+1
b

〈‖u‖H k 〉j+1 ‖v‖Hj+1
, (A.23)

which shows Pj+1 holds. This completes the induction argument.
Step 2: A difference estimate. Next we use the multiplier estimate from the previous step 

to prove the statement Qj for 0 � j � k, where Qj denotes the proposition that for all f ∈
C
j+1
b (Rn; Rn) and u, v ∈H k(�; Rn), the difference �f (u) −�f (v) ∈H j (�; Rn) and satisfies

∥∥�f (u)−�f (v)
∥∥
H j → 0 if v→ u inH k(�;Rn). (A.24)

To prove Qj for each admissible j we proceed by finite induction again.
In the case when j = 0, we note that by applying the mean value inequality we may deduce 

that
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∥∥�f (u)−�f (v)
∥∥
H 0 � ‖f ‖C1

b
‖u− v‖H 0 � ‖f ‖C1

b
‖u− v‖H k . (A.25)

Thus �f (u) − �f (v) ∈ H 0(�; Rn) and 
∥∥�f (u)−�f (v)

∥∥
H 0 → 0 as v→ u ∈ H k(�; Rn). 

Thus Q0 holds.
Next we suppose that Ql holds for all 0 � l � j � k− 1 and consider the case j + 1 � k. We 

note that (A.22) implies that for all 1 � p � n,

∂p(�f (u)−�f (v))=
n∑

q=1

�∂qf (u)∂p(u)q −�∂qf (v)∂p(v)q

=
n∑

q=1

(
�∂qf (u)−�∂qf (v)

)
∂p(u)q +

n∑

q=1

�∂qf (v)∂p(u− v)q for all u,v ∈H k(�;Rn),

(A.26)

thus by (A.25), the multiplier estimate (A.21), the induction hypothesis, and basic product esti-
mates, we have

∥∥�f (u)−�f (v)
∥∥
H j+1 =

∥∥�f (u)−�f (v)
∥∥
H 0 +

n∑

p=1

∥∥∂p(�f (u)−�f (v))
∥∥
H j

�
∥∥�f (u)−�f (v)

∥∥
H 0 +

n∑

p,q=1

∥∥(�∂qf (u)−�∂qf (v)
)
∂p(u)q

∥∥
H j

+
n∑

p,q=1

∥∥�∂qf (v)∂p(u− v)q
∥∥
H j

�
∥∥�f (u)−�f (v)

∥∥
H 0 + ‖u‖H k

n∑

q=1

∥∥�∂qf (u)−�∂qf (v)
∥∥
H j

+
n∑

q=1

∥∥∂qf
∥∥
C
j
b

〈‖v‖H k 〉j ‖u− v‖H j+1 . (A.27)

This shows that �f (u) −�f (v) ∈ H j+1(�; Rn) and 
∥∥�f (u)−�f (v)

∥∥
H j+1 → 0 if v→ u ∈

H j+1(�; Rn). Thus Qj+1 holds and the induction argument is complete.
Step 3: Well-definedness and continuity. Next we utilize the result from the previous step to 

show that �f : H k(�; Rn) → H k(�; Rn) is well-defined and continuous. We note that in the 

case when � has infinite measure, using the additional assumption f (0) = 0 we may apply the 

mean value inequality to deduce that

∣∣�f (u)
∣∣= |f (u)− f (0)|� ‖Df ‖C0

b
|u| for all u ∈H k(�;Rn), (A.28)

which in turn implies that
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∥∥�f (u)
∥∥
H 0 � ‖f ‖C1

b
‖u‖H 0 � ‖f ‖C1

b
‖u‖H k for all u ∈H k(�;Rn). (A.29)

In the case when � has finite measure, the estimate (A.29) also holds. In either case, we may use 

v = 0 ∈ H k(�; Rn) in the estimate (A.27) for j + 1 = k from the previous step and (A.29) to 

immediate deduce that

∥∥�f (u)
∥∥
H k �

∥∥�f (u)
∥∥
H 0 + ‖u‖H k

n∑

q=1

∥∥�∂qf (u)−�∂qf (0)
∥∥
H k−1 +

n∑

q=1

∥∥∂qf
∥∥
C
j
b

‖u‖H k

� ‖f ‖C1
b
‖u‖H k + ‖u‖H k

n∑

q=1

∥∥�∂qf (u)−�∂qf (0)
∥∥
H k−1

+ ‖f ‖Ckb ‖u‖H k for all u ∈H k(�;Rn). (A.30)

Since ∂qf ∈ Ck(Rn; Rn), from Qk−1 we know that �∂qf (u) − �∂qf (0) ∈ H k−1 for all 
1 � q � n, therefore �f (u) ∈ H k(�; Rn) for all u ∈ H k(�; Rn). From Qk we also have ∥∥�f (u)−�f (v)

∥∥
H k → 0 if v→ u in H k(�; Rn), thus we may conclude that the map �f :

H k(�; Rn) →H k(�; Rn) is well-defined and continuous.
Step 4: Continuous differentiability. To conclude the proof we show that �f is Cm given 

f ∈ Ck+1+m
b (Rn; Rn) for m ∈ {1, 2}. In the case when m = 1, we note that by the fundamental 

theorem of calculus for all u, v ∈H k(�; Rn) we have

�f (u+ v)−�f (u)−
n∑

q=1

�∂qf (u)(v)q =
n∑

q=1

(v)q

1∫

0

�∂qf (u+ tv)−�∂qf (u) dt

︸ ︷︷ ︸
:=R1

, (A.31)

and thus by the fact that H k(�; Rn) is an algebra and applying the statement Qk from the induc-
tion argument above to ∂qf ∈ Ck+1

b (Rn; Rn), we have

‖R1‖H k

‖v‖H k

�

n∑

q=1

1∫

0

∥∥�∂qf (u+ tv)−�∂qf (u)
∥∥
H k dt→ 0 as ‖v‖H k → 0. (A.32)

Thus we may conclude that �f is differentiable when m = 1 and

D�f (u)(v)=
n∑

q=1

�∂qf (u)(v)q . (A.33)

Since D�f (u) is in terms �∂qf which satisfies (A.24), we may then conclude that D�f is 
continuously differentiable.

To conclude in the case of m = 2, we note that by (A.33) and the fundamental theorem of 
calculus again we have
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D�f (u+w)(v)−D�f (u)(v)−
n∑

p,q=1

�∂p∂qf (u)(v)p(w)q

=
n∑

p,q=1

(v)p(w)q

1∫

0

�∂p∂qf (u+ tw)−�∂p∂qf (u) dt

︸ ︷︷ ︸
:=R2

. (A.34)

Using the fact that H k(�; Rn) is an algebra and applying the statement Qk from the induction 

argument above to ∂p∂qf ∈ Ck+1
b (Rn; Rn), we then have

‖R2‖L(H k)

‖w‖H k

�

n∑

p,q=1

1∫

0

∥∥�∂p∂qf (u+ tw)−�∂p∂qf (u)
∥∥
H k dt→ 0 as ‖w‖H k → 0. (A.35)

This shows that �f is twice-differentiable with

D2�f (u)(v,w)=
n∑

p,q=1

�∂p∂qf (u)(v)p(w)q . (A.36)

Since �∂p∂qf satisfies (A.24), we may then conclude that �f is C2 when m = 2. �
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