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Abstract

In this paper we study traveling wave solutions to the free boundary incompressible Navier-Stokes system
with generalized Navier-slip conditions. The fluid is assumed to occupy a horizontally infinite strip-like
domain that is bounded below by a flat rigid surface and above by a moving surface. We assume that the
fluid is acted upon by a bulk force and a surface stress that are stationary in a coordinate system moving
parallel to the fluid bottom, and a uniform gravitational force that is perpendicular to the flat rigid surface.
We construct our solutions via an implicit function argument, and show that as the slip parameter shrinks to
zero, the Navier-slip solutions converge to solutions to the no-slip problem obtained previously.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The construction of traveling wave solutions to the inviscid, incompressible equations of fluid
dynamics is a classical subject in mathematics with a rich history. In comparison, progress on
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the corresponding viscous problems began quite recently: the series of papers [18,19,29,30]
developed a well-posedness theory for the free surface Navier-Stokes equations modeling in-
compressible fluids in a horizontally infinite strip-like domain of finite depth, subject to sources
of applied force and stress. In each of these papers, the fluid is assumed to obey the standard no-
slip boundary condition at its lower boundary with a flat, rigid floor. The purpose of this paper
is to continue the study of this type of problem by incorporating the more general Navier-slip
condition, which allows the fluid to slip along the bottom boundary, and show that a generic
well-posedness theory persists. The slip boundary condition, first proposed by Navier [23] in
1832, asserts that the tangential fluid velocity at the fluid bottom is proportional to the tangential
stress experienced by the fluid. The ratio of the tangential stress to the tangential fluid velocity
is referred to as the slip parameter. We will prove that not only are traveling wave solutions also
generic under the Navier-slip conditions, but that one recovers the no-slip solutions in the limit
as the characteristic slip parameter goes to zero.

1.1. Problem formulation

In this paper we consider a single layer of viscous, incompressible fluid evolving in a horizon-
tally infinite strip-like domain, bounded below by a flat, rigid surface and above by a free moving
surface that can be described by the graph of a continuous function, in dimensions n > 2. Even
though the only physically relevant cases are when n = 2, 3, the analysis in this paper can be ap-
plied more generally to higher dimensions as well. Since our primary interest is the construction
of traveling wave solutions, we will skip the somewhat lengthy discussion of the formulation
of the fully dynamic problem and the subsequent reformulation under a traveling wave ansatz
and jump straight to the traveling wave problem; these omitted details can be found in the intro-
duction of [18]. The equations for a traveling wave solution to the free boundary Navier-Stokes
system are

divS(g,v) —yer-Vo+v-Vo+g(V'n,0) =, inQp4y

divv =0, in Qpyy

—yoin+V'n-v =uv,, on Tpyy w1
S(q, VN =(—cHmI + TN, on Tpyy

—a(S(g, v)en) =[AW)], on o

vp =0, on X.

We now explain all the terms appearing in the system (1.1). The fluid occupies the unknown
domain €4, = {x = (x’,x,) € R" | 0 < x, < b+ n(x')}, where 7 : R"! — (=b, 00) is the
unknown free surface function and b > 0 is the equilibrium depth of the fluid. The graph ¥, =
{x = (', x) € R" | x, = b+ n(x’)} is the unknown upper boundary of the fluid, while the trivial
graph o = {x = (x/, x,) € R" | x;, = 0} denotes its fixed, rigid lower boundary. See Fig. 1 for a
graphical depiction of the fluid domain.

The fluid’s velocity field and pressure are denoted here by v : Qp4, — R" and g : Qp1,;, — R,
and together they determine the viscous stress tensor

S(q,v) = qluxn — WDV = qlysn — (Vo + (Vo)1) e R™" (1.2)
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Fig. 1. A sample portion of the unknown fluid domain in dimension n = 3.

with the viscosity coefficient . > 0. We emphasize, though, that the pressure g is not really
the fundamental fluid mechanical pressure, but rather a “good” pressure unknown obtained by
subtracting off a variant of the hydrostatic pressure (see [18] for details). The parameter g > 0
is the strength of the gravitational field, and the term g(V’n, 0) corresponds to the gravitational
force the fluid experiences, after the aforementioned reformulation of the pressure unknown.
Without loss of generality, we henceforth assume the convenient normalization u =g = 1.

The parameter y € R is the traveling wave speed, and its specific appearance in (1.1) cor-
responds to solutions to the dynamic problem that are stationary in a coordinate frame mov-
ing with velocity yej. The applied bulk force §: 54, — R” and the applied surface stress
T: Zpin — IRZ;;? are given data that are responsible for inducing the motion of the fluid. The
term N = (—V’n, 1) denotes the non-unit normal vector field to ¥4, while the term —o H(¢)
corresponds to surface tension on X4 ,, with o > 0 denoting the coefficient of surface tension

and H(n) =div/(V'n/y/1+ |V n|2) denoting the mean-curvature operator.

The system (1.1) is obtained from the incompressible Navier-Stokes system. The first two
equations in (1.1) correspond to the balance of momentum and conservation of mass. The third
equation is the kinematic boundary condition describing the evolution of the free surface. The
fourth equation is called the dynamic boundary condition, as it encodes the balance of forces
on the free surface. The fifth and sixth equations constitute a general nonlinear version of the
Navier-slip condition, which we now elaborate on. The sixth equation is called the no-penetration
condition, and it requires that the fluid is not able to detach from or pass through %(. Unlike in
the case of the no-slip boundary condition, the fluid is allowed to have a nontrivial tangential
component on X, which is described as “slip.” However, slip comes at a price: it generates a
tangential stress on the fluid that opposes the motion, which one should think of as being anal-
ogous to the way that air resistance is modeled in standard Newtonian point-particle mechanics.
The precise form we impose in the fifth equation is (using the sixth)

[AW)] = —a(S(g,v)e,) = —alge, —Dve,) =a(Dve,) =a(V'v, +3,v) =ad,v’ (1.3)

for a given smooth “slip parameter” o > 0 and “slip function” A : R” — R” satisfying (for
technical reasons we will discuss later)
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A(0) =0, A(w) - w > 0forweR"\ {0}, and A(w) - w >0 |w|* forw € B(0,8)\ {0}, (1.4)

where 8,6 > 0 are fixed constants. One should then think of (1.3) as a one-parameter family
(indexed by «) of nonlinear Robin boundary conditions with the extreme case o« = 0 recovering
the no-slip condition since then (1.3) requires 0 = A(v)’ on X, which together with the condition
v, =0 and (1.4) implies that v =0 on Xy. The most common form of the Navier-slip condition
in the literature is in a linear form, in which A is a linear map (often just the identity); we have
included the nonlinear form for the sake of generality, and our analysis certainly handles the
standard linear case.

1.2. Previous work

The Navier-slip condition was first proposed by Navier [23] and it is now used to model a
wide range of physical phenomena, including liquid-solid contact lines (we refer to Dussan’s
survey [8]) and flows through irregular surfaces (see, for instance, the work of Gérard-Varet and
Masmoudi [14]). It also plays a crucial role in the analysis of collisions in fluid-solid systems:
see, for example, [9,11-13,15,16,28]. The slip phenomenon has also been empirically observed
in recent experiments; we refer to the survey of Neto et al. [24] and the references therein for a
review of these results.

The well-posedness of the Navier-Stokes system with Navier-slip boundary conditions has
been investigated by several authors. Solonnikov-S¢adilov [27] studied the 3D linearized station-
ary Navier-Stokes system and proved the existence of weak solutions as well as their regularity.
Beirdo da Veiga [4] studied the stationary problem on the half space and proved strong regular-
ity up to the boundary. Ferreira [10] studied the inhomogeneous system on bounded space-time
domains and proved the existence of weak solutions. Masmoudi-Rousset [22] proved uniform in
time bounds with respect to the viscosity parameter. Kelliher [17] studied the 2D equations on
bounded domains and proved that 2D Navier-slip solutions with sufficiently smooth initial ve-
locities converge to the no-slip solutions as the slip parameter goes to zero. Murata-Shibata [26]
studied the compressible variant with slip boundary conditions on bounded domains and proved
a global in time unique existence theorem for small data.

The dynamical stability of Navier-slip solutions has also been studied by various authors. Li-
Pan-Zhang [20] studied the stability of steady state solutions to the 3D incompressible problem
on bounded domains. Ding-Lin [7] studied the stability of the Couette flow in 2D, and Li-Zhang
[21] studied the stability of Couette flow in 3D, and separately they proved that the Couette flow
is asymptotically stable under small perturbations with various conditions on the slip parameter
and viscosity.

The well-posedness of the traveling wave problem for the free boundary Navier-Stokes sys-
tem first appeared in the recent work of Leoni-Tice [19]. This work was extended to periodic
and tilted fluid configurations by Koganemaru-Tice [18]. Stevenson-Tice [29] studied multi-later
configurations [29], the vanishing wave speed limit [30], and the compressible traveling wave
problem [31]. Similar well-posedness result for the traveling wave formulation of the Muskat
problem were obtained by Nguyen-Tice [25].

1.3. Reformulation in a fixed domain

The fluid domain 54, is one of the unknowns in (1.1), so it is convenient to recast the
system in a fixed domain. We choose the equilibrium domain Q := Q) = R 1 x (0, b) for this,
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and write Xp = {x € R" | x, = b} for the flat upper boundary. The reformulation is achieved
by introducing the flattening map § : R” — R", associated to any n € C ,l (R"~1; R) satisfying
n > —b, defined via

SO x0) = (&, xn + 0 (), (1.5)

where ¢ € C;°(R; R) is some fixed function that it is a monotone and satisfies ¢ = 0 on
(—00,b/4] and ¢ =1 on [3b/4, 00). By construction, we have that F(Qp) = m, F(Zp) =
Ypin,and F=1 in R x (—o0, b/4), which in particular means that § is the identity on Xg.
Moreover, it’s easy to see that if ||n]| o is sufficiently small then § is a diffeomorphism.

We compute

o Tu-Dx@m-1 Om—-1yx1
Vg(x)‘(V/n(x/)Tgo(xn) 1+ (g () ) ™™

V'n(x"exn)
I _ B S v o

(V3 T(x) = < (}’(l) Dx(n—1) l+77(f g (xn)> . (1.6)
Ix(n—1) TGN Gan) *

We then define A : R" — R"*" via A(x) = (V) T(x) and J, L :R" — R via

1 1

Jx)=det V() =1+ n(x"N¢' (x,) and K(x) = = .

() (x) n(x)e (xn) (x) 70 - 1 nGhe (o)
Then we define the .4-dependent differential operators: (V4 f); = Z']': 1A, (X -V qu); =
>k XjAjidui, diva X = Y= Aijdi X, Dawi; = Y Aikdej + Ajidgui,
Salp,u) = pl — uDgu, divgSa(p,u) = Vap — ulAqu — uVadivau, (Agu); =
> i km=1 Ak (Ajm ;).

Next, we introduce the new unknowns u : 2 — R”, p: Q2 —> R, and f: Q2 — R"” viau =
vog, p=gqodg,and f =fogF. This yields the reformulation of (1.1):

(1.7)

divgSa(p,u) —yer - Vau+u-Vau+ (V'n,0=foF, inQ

divqu =0, in Q
—yoin—u-N=0, on ¥, (18)
SA(p, N =[—oHI +T o FIN, on ¥, ’
a[Sa(p,upvl =[AW)T, on Xy

u, =0, on X.

1.4. Main results and discussion

In this subsection we state the main results obtained in this paper. The first result establishes
the existence and uniqueness of solutions to the flattened problem (1.8); the spaces C 1]7(’ Cg ap-
pearing in the statement are defined in Section 1.5 and the space X* is defined in Definition 4.3.

Theorem 1.1 (Proved later in Section 5.2). Suppose N > s > 1 + |n/2] and that either ¢ > 0
and n > 2 or else 0 =0 and n = 2. Further suppose that A : R" — R" is smooth and obeys

(1.4). Then there exist open sets
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3. 5 mn—1.
U CRT x (R\{0}) x HSP R RE) x H P2 (R RIS

x H'T2(R"; R") x H*(R""1; R") (1.9)
and O° C X* such that the following hold.

(1) (0,0,0) € O, and for every (u, p,n) € O° we have that u € C8+17L"/2J(S2;R"), pE
CS_an (2;R), ne CSH_L(’I_I)/ZJ (R" 1, R) with maxgs-1 1| < %, and the flattening map
& is a CSHI=L=D/21 giffeomorphism.

(2) We have RT x (R \ {0}) x {0} x {0} x {0} x {0} C U°.

(3) Foreach (a,y,T,T,f, ) €U, there exists a unique (u, p,n) € O° classically solving

divaSalg,v) —yer - Vav+v-Vau+ (V0 =foF+Lg,f, inQ

div4v =0, in Q
—yom+V'n-v =uv,, onYp (1.10)
Sa(g, VN =(—oHMI+T oFly, + SsTIN, onYy
a[Sa(g, vl =[AW)], on o

v, =0, on X,

where Lg,, Sp are defined via (5.6).
(4) The map U* > (o, v, T, T.f, f) = (u, p,n) € O is C and locally Lipschitz.

The theorem is proved by way of the implicit function theorem by adapting the strategies
employed for the corresponding no-slip problem; we refer to Section 1.5 of [19] and Section 1.7
in [18] for a high-level summary of this plan. We emphasize, though, that while there is a serious
overlap in the strategies, there are interesting technical problems introduced by the Navier-slip
condition that must be dealt with along the way. We further note that by following the approach in
[19], solutions to the unflattened system (1.1) may be obtained from this theorem by employing
the inverse of the flattening map, F~'. We omit the details here for the sake of brevity.

Our second result, which is the principal novelty of this paper, establishes that if the slip map
A is linear then in the limit @ — 0 we can recover the no-slip solution to the incompressible
Navier-stokes system obtained in [18,19].

Theorem 1.2 (Proved later in Section 5.3). Suppose that N > s > 1 + |n/2] and that either
o >0andn =2 or else 0 =0 and n = 2. Further suppose that A(-) = - where € R"*" is
positive definite. Then there exist open sets

U CRY x R\ {0}) x HPR"; REW) x H IR R

sym

x H'P2(R"; R") x H'(R""1; R")  (1.11)

and O° C X* such that for each y, € R \ {0}, there exists an open set V (y,) such that for all
ay € (0, 1) the following hold.

(1) The open sets U, O° satisfy the first two items of Theorem 1.1.
(2) (otx, ¥%,0,0,0,0) € (0, 1) x V(ys) CU°.
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(3) For every (T,T,f, f) such that (ys,T,T,f, f) € V(yx), there exists a unique (uq,, pa,
Ne,) € O° classically solving (1.10). Furthermore, (U, , Pa,, Na,) cOnverges weakly to
(1o, po, no) in HST2(Q; R™) x HSTH(Q; R) x X5 /2(R* 1 R) as ay, — 0, where

(MOy 20, 7]0) c C;+l_Ln/2J (Q, R}’l)x c CZ_I_l’l/2J (Q, R) X CS+1—L(”—1)/2J (Rnil;R)

is the unique solution to

divaSa(g,v) —yer - Vav+v- Vo + (V0,00 =foF+ Lg, f. in

divqv =0, in Qp
—ydin+V'n-v' =y, on¥p (1.12)
Sa(g, VN =(=oHI + T oFls, + SpTIN, on %y
v=0, on X.

We now turn to a brief discussion of our strategy for proving this theorem. There are essen-
tially two key difficulties that must be dealt with. The first comes from the fact that we want to
fix the stress-force tuple (7, T, f, f) and produce a family of solutions (¢, Py, 1¢) to (1.10), pa-
rameterized by « € (0, 1). This is certainly plausible within the context of Theorem 1.1, but there
is nothing within the statement of that result that can guarantee that the tuple remains within the
open set of data that yields solutions. Indeed, in principle the open set could shrink dramatically
as o — 0, making it impossible to employ a fixed data tuple in the limiting argument. Provided
this problem can be dispatched, we then arrive at the second: we need to establish «-independent
estimates for the solutions (uy, py, 1) in order to invoke weak compactness results.

We resolve both of these problems by combining a careful analysis of the linearization of
(1.10) with some nonlinear tricks. In the linear analysis we achieve «-independent estimates by
focusing on the linearization (2.1) with / = 0. This is only reasonable insofar as we can encode
[ =0 in the nonlinear problem, which means that the fifth equation in (1.10) must already be
linear. To enforce this we require that A itself is linear and that the matrix A is the identity in a
neighborhood of X(. The latter condition is the motivation for the introduction of the cutoff ¢ in
the definition of the flattening map -§; unfortunately, its presence here requires us to retool many
previously established results.

In order to enforce the linear slip condition in an implicit function theorem argument we then
need to build this condition into the domain of the nonlinear map. For any fixed value of « this
is easy, but we need to do this for « € (0, 1), which means the linear subspace obeying the a-
slip condition changes as a function of «. This then requires us to develop a special version of
the implicit function theorem capable of handling maps f, : X x Y, — Z defined over a one-
parameter family of Banach spaces. We prove this variant of the implicit function theorem in
Appendix A.3 and demonstrate that with uniform control over the derivatives of the nonlinear
solution operator with respect to the parameter «v, we may also deduce uniform control over the
norms of solutions obtained via the parameter-dependent implicit function theorem. This is a
stronger mandate than that from the standard implicit function theorem, so we must then verify
these conditions in our linear analysis. This turns out to be doable but somewhat tricky because
it requires determining the asymptotics of an implicit Fourier multiplier as a function of «.
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1.5. Notational conventions and outline of the article

We will frequently use the “horizontal” Fourier transform for functions on 2 = R x (0, b),
defined by f(é, Xp) = fR'H fi, )cn)e_z"""/'g dx'. For k € N, a non-empty open set U C R,
and a finite-dimensional inner product space V, we write H* (U; V) for the usual L2-based
Sobolev space; when U = R4 we extend to H* (Rd; V) for s € R in the usual way. For s > 0 and
a function f € L2(R?; V), we write f € H~! to mean that the H ~'-seminorm of f defined via
[f]i'rl = fRd |£]72 |f(£;‘)|2d€ is finite. For k € N, a real Banach space V, and a nonempty open
set U C RY for d > 1, we define the space C lb‘(U ; V) of k-times continuous differentiable maps
from U — V with all derivatives bounded. We also define the space C'g R4 V)ycC Lf (R%: V) to
be the closed subspace of f such that lim|y|— o 9% f(x) =0 for all |o| < k.

2. The y-Stokes equations with stress boundary conditions

In this section our goal is to study the solvability of the linear problem

divS(p,u) —yoiu=f, inQ

divu =g, in 2

S(p,u)e, =k, on Xp 2.1
[aS(p,u)e, + Bu]l =1, onXy

u, =0, on X

with a given data tuple (f, g, k,!) and parameters « € (0,00), y € R, and 8 € R"*". Due to
techniques we will employ later, it will be convenient to have access to a well-posedness theory
over both the reals and the complex numbers. As such, throughout this section and the next we
let F € {R, C} denote either field, and we develop a well-posedness theory generically over F.
Recall that when F = C and X is a complex Hilbert space, the Riesz map is a linear isomorphism
from X to X*, where the latter denotes the anti-linear functionals on X. We will use this notation
a few times throughout this section.
We begin our analysis by fixing some notation.

Definition 2.1. Let 2 be defined as per Section 1.1. For R 5 s > 1/2, we define the spaces
anH* (2 F) ={u e H*(;F) : uy|s, =0} and tanH;(Q; F)={u € anH*(Q;F) : divu = 0}.
We equip these spaces with the standard H®-norm, and note that since these spaces are closed
subspaces of the Hilbert space H*($2; IF), they inherit the natural Hilbert structure. If in addi-
tion R 55 > 3/2 and @ € R, we define the space q_anH*(2;F) = {u € H (2 F) : uylz, =
0, [—aDue, + Bul'ls, = 0}, which is a closed subspace of anH*(2; F) and thus inherits the
natural Hilbert structure from H*(2; ) as well.

In order to produce weak solutions to the system (2.1) we will first need some functional
analytic tools in ¢y H* (2; F). We begin with a version of Korn’s inequality.

Lemma 2.2. We have that |lul 1) < IDull 2y + | Trse u 5, for u € H' (2 F"). Conse-
quently,
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2
”u”mnHl(Q) = \/”Du||iZ(Q) + ||Tr2() u ||L2(Q)’ (22)

generates the standard H' topology on the space 1z H* (; F).

Proof. The second assertion follows from the first bound and standard trace theory. To prove
the first, it suffices to prove the result when F = R, as the case F = C can then be recovered by
applying the real result to the real and imaginary parts of u. Assume F = R.

Consider a rectangle Q = {x' € R 1. |x’ ]oo < 1} x (0, b). The standard Korn inequality in
Lipschitz domains (see, for instance, Lemma IV.7.6 in [5]) shows that |lull ;1 ¢, < lullz2c0) +
[ Dz ||L2(Q). We claim that

”M”LZ(Q) 5 ||Du||L2(Q) + ||Tr8Q() M||L2(3Q()) ’ (2.3)

where dQp = dQ N {x, = 0}. Indeed, if not then we can produce a sequence {ur}>, C
H'(Q:R") such that |lugll;2g) = 1. [Dull 29y < 1/k, and | Tryo, ur ||L2(3Q0) < 1/k. Then,

by compactness, there exists u € anH'(Q; R™) with lullz2¢0y =1 such that up to passing to a
subsequence, Duy — Du =0 and Tryg, ux — Tryg, u =0 as k — oo. Since Du = 0, we then
have that u(x) = a + Bx for a constant a € R" and B skew-symmetric, but since Tryg, u = 0 we
deduce that a = 0 and B = 0. Thus u = 0, and we contradict the identity | u|| L2(0) = 1, proving
the claim.

With (2.3) in hand, we write 2 as a countable almost disjoint union (null intersections along
the boundary) of rectangles of the form Q; = {x € Q: |x’ — l!oo < 1) for I € Z"~!. Since each
Q is a translation of the rectangle Q from above, (2.3) allows us to bound

2 — 2 2 2
”M”LZ(Q) - Z ”M”LZ(QZ) 5 Z (”Du”Lz(Q[) + ||Tr20u||L2((3Qz)0))
LeZn-] LezZn!

2 2
= ||]D)M||L2(Q) + ”TrZ() u ||L2(E()) . (24)
This is the desired bound. O
The next result provides a right inverse to the divergence operator.

Lemma 2.3. There exists a linear and continuous mapping T1 : L>(S; F) — oH'(Q; F")
such that divIlg = g for all g € L*(Q;F). In particular, for all g € L*(Q;F) we have

Tlg ||wnH1(gz) Snbllg ||L2(Q)~

Proof. This follows from Lemma 2.1 in [19] and Lemma 2.2 in [29]. O
We next prove a Helmholtz decomposition of oy H L Fm).

Lemma 2.4. Define the bounded linear operator Q : L*(Q2; F) — @ H (2, F") via

/pdivi: (Qp, V), w1 (T forallv e anH' (S F™). (2.5)
Q
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Then Q has closed range, and (Ran Q)J‘ = tan H; (2; F™). Consequently, we have the orthogonal
decomposition

tanHl(Q§Fn) =tanH;(Q;F”) &, nt Ran Q. (2.6)

Proof. We first show that Q has closed range. To do so, we first note that for all p € L?(Q; F)
we have the bound || QpllmnHl(Q) S, p ||p||L2(Q). On the other hand, by Lemma 2.3 there exists

a v € wnH"'(€2; F") such that divig = p and llvoll,, 1 <n.p Il 2. Therefore by the Cauchy-
Schwartz inequality,

2 R
Ipl2, = / pdivig = (0p. v0),. e < 10PN e 100l w1
Q

Snb 19P 1w 1PN 2y - (27D

This implies that ||p| <,.» 1Opll,, m1» thus we have the equivalence of norms [|Qpl|, g1 =
lpll;2 for all p € L%(Q; F). This immediately implies that Q has closed range, and so
wnH (@ F") =Ran Q @_ ;1 (Ran Q). It remains to show that (Ran Q) = @ H1(Q; F™).
If v € (Ran Q)*, then (Qp, V), 1 = (p,divv);2 =0forall p e L?($2; F). Thus we must have
divv =0 L"-a.e., which implies that v € [anH; (Q;FY). If v e mnH;(Q; F™), then (Qp,v) =
prdivi =0 for any p € L3(Q;F), which implies that v € (Ran Q)*. This shows that
(Ran Q)J- = tanH; (2,F") as desired. Since the range of Q is closed, the Helmholtz decom-
position (2.6) follows. O

This gives us an immediate corollary.

Corollary 2.5. Let Ay € (an H' (2 JF")f be such that (A1, v) =0 for all v € uH!(Q; F").
Then there exists unique p € L%(Q2; F) such that (A1,v) = fQ pdivv forall v e an HH(Q; F™M).
Moreover, we have the estimate ||pll;2 Spop 1AL II( 1Y

tan

Proof. First we suppose that F = R and let A € (tanH L@, R"))* be such that it vanishes on
solenoidal fields. By the Riesz representation theorem, there exists w € yun H 1(©; R™) such that

(A, v) = (w,v), g forall ve anH ' (€2; R") and lwll o = ||A||( HIYF Then for all v €
an an tan

mnH; (2; R™), we have (w, V) H = (A,v) =0,thusw € (tanH; (22; R"))L. By Lemma 2.4, we

have w € Ran Q, therefore there exists a p € L?(2; R) such that Qp = w. So we have (A, v) =

(Qp. ), ;1 = Jq Pdivy forall v € 4 H'(Q; R"), with the estimate

112 S 10PN gt = N0l izt = NI - 2.8)

Moreover, p € L(2; R) is unique since Q is surjective.
Now we consider the case when F = C. If we have an antilinear functional A €
(tanH I(Q;(C”)yk vanishing on solenoidal fields, we can define the R-linear functionals

ARe, Alm € (tanHl(Q;R”))* via (Age, v) = Re(F, v) and (Am, v) = Re(F, iv) for any v €
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anH ' (€2: R™). Note that if v € taan} (2; R™), then (A, v) = 0 by assumption, so it follows
that ARe, Amm Vvanishes on real-valued solenoidal fields. Thus when F = R, there exist unique
q,r € Lz(Q; R) such that for all v, w € tanH] (2; R™),

Re[(A,v+iw)] = (ARe, V) + (Am, w) = /qdivv + rdivw
Q

=Re /(q—{—ir)div(v—l—iw) . (29
Q

Now define p € L?(Q;C) via p=q + ir, and for any u € uH'(Q; C") we write it as u =
v +iw. Then

(A,u)y=Re[(A,v+iw)]+iIm[(A,v+iw)] =Re[(A,v+iw)]+iRe[—i(A,v+iw)]
=Re[(A,v+iw)]+iRe[(A, —w +iv)]

=Re f(q—l—ir)div(v—i—iw) +iRe /(q—i—ir)div(—w—i—iv)
Q Q

=Re /(q+ir)div(v+iw) +iIm /(q+ir)div(v+iw)
Q Q

:/pdivﬁ. O (2.10)
Q

With these preliminary results in hand, we now turn to the question of weak solvability of
(2.1). We first set some notation.

Definition 2.6. Let R>s >0, R>«a >0,y € R, and g € R"*" be_positive definite. We define
the map L4 4,y : an HT/2(Q F") x HS (4 F) — (anH'(Q2; F"))* via
" _ . _ 1 _
(Sa,,s,y(u, 128 v)(tanHl)?tanHl = EDM :Dv — pdivo —yoju-v+ o Bu-v. (2.11)

Q o

Given F € (unH'(2; F7))* and g € L2(Q; F), we say that u € u H' (S F") and p € L*(Q; F)
are weak solutions to (2.1) if divu = g and

(ga’ﬁ,y (M, p)7 U>(tanH1)¥,tanH1 = (F’ U>(tanH1);,tanH1 : (212)
This notation allows us to efficiently state our weak well-posedness result.
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Theorem 2.7.Let R > a >0, y € R, and B € R"™" be positive definite. Define xap.y :
tanHl(Q; F") x L2(9§]F) g (tanHl(Q§ F™)* x LZ(Q; IF) via Xol,ﬂ,}/(uv p) = (Ea,ﬂ,y(“s p),
divu), where £ g is defined in (2.11). Then xq. g, is an isomorphism.

Proof. We first define the map B, : an HY QG F™) X an HH(Q:; F") — T via

1
Ba(u,v)z/%Du:DE—yBlu-E+afﬂu-ﬁ, (2.13)
Q o

which is clearly well-defined and continuous. Note that if u € zn H L(Q; F™), then integration by

parts shows that
falu-ﬁ=—fu-a]_u=—/alu-ﬁ=>Re/alu-ﬁzo. (2.14)

Q Q Q Q

Thus by the Korn’s inequality from Lemma 2.2, and using « > 0 and the fact that g is positive
definite, we have

1 1 _
Bt > ReButey =5 [ Dul = [ -z ul? 1. 2.15)
Q N

which shows that B, is nH!-coercive. Since tanHC}(Q; ") is a closed subspace of
anH (€2 F™), By is a well-defined, continuous, coercive functional that is bilinear when F = R
and sesquilinear when F = C.

Let (F, g) € (anH " (2; F")* x L?(2; F) and define the functional Ag € (ian H' (2 F")" via
(A, v) = —By(T1g, v) + (F,v)(, p1)7» where IT: L*(Q: F) — oH'(Q: F") is the right inverse
of the divergence operator introduced in Lemma 2.3. By applying the standard Lax-Milgram
theorem when F = R and the anti-dual Lax Milgram theorem (see, for instance, Theorem A.5 of
[29]) when F = C, there exists a unique u € tanH;(Q; ") such that B, (i, v) = (A, v) for all
vE [anH; (2; F"), obeying the estimate

10011 S 1A Nty S IF gy + gl 2 (2.16)

Furthermore, by Corollary 2.5 there exists a unique p € L>(2; F) such that

Ba(M,U)Z—Ba(Hg,U)+<F, v)(tanHl);ytanHl +/pd1v§ (217)
Q

for all v € un H'($2; F"). This shows that Xa,p,y ( +T1g, p) = (F, g), SO Xq,p,y 1S surjective.

On the other hand, if (u, p) € wn H'(Q; F") x L2(Q2; F) such that xq, ., (u, p) = (F, g), first
we can use the Helmholtz decomposition (2.6) to write u = w + I[1g. Then if we use v =TIIp in
the definition of the map £, g, from (2.11), we arrive at the estimate
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1122 St 1A gy S el + DF g (2.18)
The injectivity of xq, g, then follows from the estimates (2.16) and (2.18). O

Next we combine the weak isomorphism with standard elliptic regularity to arrive at our well-
posedness result.

Theorem 2.8. Let s > 0 and assume B € R™ " is positive definite. For any y € R, we de-
fine the bounded linear operator @y g Can HIT2(G FY x HSTHQ, F) —» HS (4 F) x

H Qi F) x HF (S5 F") x BV (S0; F1= 1) via g p., (u. p) = (divS(p.u) — ydyu,
divu, S(p,w)e,, [aS(p,u)e, + ﬂu]/). Then @y g, is an isomorphism for all y € R.

Proof. This follows from Theorem 2.7 and the regularity theory for elliptic systems (see, for
instance, [3]). O

Next we prove an important result that will be essential in the analysis to follow. We show
that the weak solution map x4, g,, and the strong solution map ®4 g, commute with tangential
multipliers, as defined in Definition A 4.

Theorem 2.9.Let s > 0 and suppose o € L¥(R""!;C). Consider the tangential multi-
plier M, defined via Definition A.4. If (F,g) € (anH"(Q2;F")* x L*(Q:F) and (u, p) =
Xa_,}i,y(F’ 8), then (Myu, Myp) = X;},yy(MwF, Myg). Furthermore, if f € H*(;F"), g €
H'F2(5y; T, k € HS T2 (5y: F), 1 € HV2(S0; F'~Y), and we set (u, p) = <I>;j3,,,(f, g k.1,
then (Mo, Myp) = @5 (Mo, f, Mg, Mk, Mol).

Proof. Letw € L(R"™!; C), (F, g) € (unH' (2 F™")* x L*(; F) and (u, p) = x4 4., (F, 8)-
We first note that by the definition of M,, on L2(Q;TF), the multiplier M,, commutes with differ-

ential operators and therefore we immediately Ilave M, g = M, divu = div M,u. We then note
that by the definition of M,, on (an H'(2; C™M)*, we may compute for all v € anH1(€2; C™)

<MwF’ v>(lanH1);atanH1 = (F’ va>(tanH1);stanH1

1
=/%]D)Mwu:Di—wadivi—yaleu~i+—/ﬂMa,uﬂ
o
Q o

= (La.p.y Mou, Myp),v). (2.19)

Combining these then shows that (M,u, M, p) = X/;:,(MwF, M,g). Next we note that again
that by the definition of M, on H*(U;F*) and L?>(Z;F¥) for = € {5, To} and k > 1, the
tangential multiplier M, commutes with differential operators and therefore

Mo f = Mo (div S(p, u) — yd1u) = div My, S(p, ) — y 91 My
=divS(Myp, Myu) — yo1 Myu,
Mok =M,S(p,ue, =SMy,p, Myu)e,, Myl =M, [aS(p,u)e, + Bul
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=[aS(M,p, Myu)e, + BMyul . (2.20)

Thus, (M,u, M,p) = My f, Mg, Mypk, My,l). O

-1

o, By
We conclude this section deriving an «-independent estimate for the operator from Theo-

rem 2.8, assuming that / = 0 and « € (0, 1). We only focus on the case when F = R, as we only

consider real-valued solutions later.

Proposition 2.10. Suppose y € R, and B € R"™" is positive definite. Let R 35 >0, f €
HS(Q;R"), g € HST1(Q; R), and k € H*3 (Zp; R™). Then there exists a constant C > 0 such
that if e € (0, 1) and u € @ H*T2(2; R") and p € H*Y(Q; R) satisfy (2.1) with [ = 0, then

lull,,ms+2 + 1Pl s < C <||f||Hs + 11l 51 + ”k”H”%(z,,))' 2.21)

Proof. Throughout the proof we will use the operators J?VI defined in Lemma A.3. Suppose
(u, p) € @nHT2(Q; R?) x HST1(Q;R) is the solution to (2.1) with f € H*(Q;R"), g €
HSTH(Q;R), k € H*t!/2(2,; R") and [ = 0. Then we note by Theorem 2.9, for any M >
0 the tuple (Jj‘jl'lu,fjijlp) € anH'(2; R") is the solution to (2.1) with data J;,';If €
HS (R, 35 g € HTH(Q: R), 35 'k € HSH/2(2p; R?) and [ = 0.

We may then use fjfjl u € anH(2; R") as a test function in the weak formulation (2.12) to

obtain

) 21 e e
/%‘Dfs}}lu‘ +5/ﬁd“M+1u:d}}1u
Q o

= st [ate e [ o s @2
Q Zp Q

Since « € (0, 1), by Lemmas 2.2 and A.3 and trace theory, we have that there exist constants
c1, ¢z independent of o and M such that

2
e |35 u
: )‘SM tanI"I1
A~ ~S+2 ~s+1 ~s+1 ~s+1 ~s+1
< [ f 1oz |3 M‘L2+‘JM kHH*l/Z(zb) Iu MHHI/Z(EI,)+ Iu p‘LZ Jm g‘LZ
2 2
~ 2 ~s+1 1 ~s+1 Cl || ~s+1
< s ‘ s+ H ‘ s+ s+ ‘ A+ H .
\02(||deHL2+ Iu H=1/2(5y) KLV N N PP R HI(Q)
(2.23)

By absorbing the last term on the right side of (2.23) and again using Lemma A.3, we have for
any ¢ > 0,
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S fllgs + - ||g||H,+1 + Wl s,y + 2 |

s+1
Iy

S+ s

S+1 ‘

1
o kH

tan H-1/2(%p) ‘ L2

~s+1 ‘

Iu (2.24)

Next, we seek to derive a priori estimates on the pressure. By Lemma 2.3 there exists

vo € 0H' (@ F") such that divvo = 3} ' p and [[voll, 1 Sus ‘ Jort

p” . Using vg in the weak

formulation (2.12) with the same data, we find that there exists a constant € = &(u, y, s, b) >0
independent of @ and M such that

lssto] f LDy Dug — y 33 - vo—dw:ﬁlvwf”“k v
Q p
Ko~ ~ ~
<£| ol 1135 ol 4 33 ] 2 ool
tan
~s+1
L TR PR I Pt
~ [
< Q:< ‘j‘j‘jlu + ”f”[—]: + ||k||Hr+l/2(2b)> + 2 S+l ‘ (225)
tan
Thus by another absorption argument we find that
~st1 ~st1
‘ s+ )Jj&r u o 1 f s + Mkl gstir2(s,) » (2.26)

where the universal constant is independent of o and M. By combining (2.24) and (2.26) we may
then choose ¢ > 0 sufficiently small so that

Since the universal constant in (2.27) is independent of M, we may apply the monotone conver-
gence theorem to conclude that

3 u

[

~s+1 ‘

0 S Nas + gl g+t + 1kl grs+12(5y) - 2.27)
tan

~s+1

~s+1u 3

J

.t
tanH

p| L SIF s + gl + Wl o, - (2.28)
Standard elliptic regularity results (see [2], for instance) then show that

||u||HS+2 + ”vP”HY 5 ”f”Hg + ||g||H-V+1 + ||Tr2b u || HSH3/2(2p) + ||Tr20 u”Hs+3/2(EO) .

(2.29)
Lemma A.3, the identity (A.5), and trace theory show that for ¥ € {¥, X},
_ ||lrs+1 ~s+1 < ‘ ~st1
Tz ullpene = |37 Tz o= T3] <o @30

Thus by combining (2.28), (2.29), and (2.30) we find that
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lull gs+2 + Il gser S W gs + 180 gs+r + Mkl gstizs,) » (2.31)
where the universal constant in (2.31) is uniform over « € (0, 1). O
Combining Theorem 2.8 and Proposition 2.10 gives us the following corollary.

Corollary 2.11. Let s > 0 and assume B € R™" is positive definite. For any y € R and
a € (0, 1), we define the bounded linear operator ©q g y : a_tanHHz(Q; F"*) x HsTHQ; F)—
HS (S F" x HSTHQ: F) x H”%(Eh;lﬁ’”) via Ogp.y(u, p) = (divS(p,u) — ydiu,divu,
S(p,u)ey). Then Oy p .\, is an isomorphism for all y € R. Furthermore, there exists a constant
M > 0 such that

sup |©a.p.y ||£( (2.32)

v+1 <
ae(0,1 w—tan HS P2 HS T HS x HS U HY T2 ()

Proof. The fact that ®, g , is an isomorphism follows immediately from the definition of the
space o_an H*1T?(Q; F") recorded as the second item of Definition 2.1 and Theorem 2.8, and
(2.32) follows immediately from Proposition 2.10. O

3. The overdetermined y-Stokes problem

Our goal in this section is to extend the linear analysis of the system (2.1) to the overdeter-
mined variant

divS(p,u) —yoiu=f, inQ
divu =g, in Q
u, =h, on X G.1)
S(p,u)en, =k, on %
[ S(p, u)e, + Bul’ =1, onXg
u, =0, on X
obtained from (2.1) by appending the equation u, = & on Xj.
3.1. The specified divergence problem and the divergence-trace compatibility condition
In this subsection we establish results concerning the specified divergence problem
divu=g, inQ
u, =h, on X 3.2)

u, =0, on X,

over F € {R, C}. The system (3.2) is overdetermined in the sense that a non-trivial compatibility
condition needs to be satisfied by the data g and 4. We record this condition below.
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Lemma 3.1. Let u € unH'(Q; F") and let g = divu € L*(Q; F) and h = u, |5, € H?(Zp: F).
Then

b b
hO) = [ gCom dx, e BT F and | b= [gCxdu, | <2mVblule.
0 0 0-1
3.3)
Proof. Theorem 3.1 in [19] establishes this for u that entirely vanish on ¥y. However, an in-
spection of the proof there shows that it really only requires u, = 0 on X, so the same argument

proves the result for u € anH! (Q;F". 0O

The next result constructs a right inverse to (3.2).

Proposition 3.2. Consider the Hilbert space H(S;F) = {(g,h) € L*(2;F) x H%(Q;IF) :
(g MYl < oo}, where (8. W)l is defined via N(z.1)I3, = gl + I41° | + [ -

2
fé)g(-, Xn) dxn]H_l. There exists a bounded linear operator G : H(%; F) — oH' (2 F") such
that u = G (g, h) satisfies (3.2).

Proof. This is Proposition 2.4 in [29]. O
3.2. Adjoint problem analysis

Now we are ready to study the R-solvability of the system (3.1). We first record its formal
adjoint, the underdetermined problem (here in homogeneous form)

divS(g,v) + yov =0, in

divv =0, in Q

(8(g,v)ey) =0, on X (3.4)
[@S(q,v)e, +BTv] =0, onX

v, =0, on X.

We note in particular that since fw - w = 7w - w for all w € R”, BT is positive definite
whenever 8 is. As a consequence, we can augment the third equation with the extra condition
S(p,u)e, - e, = for arbitrary € H® +1/2(2}) in order to parameterize the solution space via
the isomorphism @, gr _,, from Theorem 2.8.

Throughout the rest of this subsection we aim to develop the asymptotics of some special
functions associated to the map o, BT —y from Theorem 2.8, which we call the normal stress to

solution map. First we define symbols of the pseudodifferential operator associated to this map.

Definition 3.3. Let y € R, 8 € R"*" be positive definite, and s € [—1, co). We define the nor-
mal stress to velocity and the normal stress to pressure maps to be the bounded linear maps

Uy py : HT2(Sp: F) > H2(Q:F") and Py gy : HF2(3y: F) — HT1(Q: F) defined via
U,y V), Pa,gy (W) = @;ET’_}/(O,O, Ven,0), where @ gr _, is the isomorphism from
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Theorem 2.8. In other words, (Uy, g, (), Pa,p,y (¥)) is the unique solution to the adjoint prob-
lem (3.4) for a given ¥ € H+1 (Zp; ).

Theorem 3.4. There exist bounded, measurable functions Vy g, Qu.p 1 R x [0, b] x R — C such
that Vo g, X, ¥) = Va.p(—&. Xn. 1), Qu.p . X, ¥) = Qu.p(—E. Xn. v) for§ e R"" ! ae., and
fors € [—1,00) and all € HH%(Z;,; R), we have L[m/lg,y\(t//)(é,xn) = Vo8&, xp, —y)lﬁ(é)
and Pogy\(w)(é‘, xXp) = Qo g, xp, —)/)1&(%‘). Moreover, for all a € R there exists a constant
¢ > 0 such that for a.e. & € R" ! we have

Vi g €. %0, )| < (1 + €12 (3.5)

Proof. We note that for fixed x, € [0, b], the map ¥ > Uy g, (¥)(-, x,) is a bounded lin-
ear translation-invariant map between H*+!'/2(R4; F) and H*T3/>(R¢; F") and the map ¥ —
Pa.p,y (W), x,) is a bounded linear translation-invariant map between HstVZ(R4, F) and
HST/2(R4; F) by Theorem 2.8. Thus the existence of Vg, Qu,p, and the estimate (3.5) is
guaranteed by Proposition A.2. Since i is assumed to be real-valued, Uy, , Py, are also real-
valued, thus it follows that Vi, g (&, x,, ¥) = Vo, (=&, x4, ¥), Qu.p &, xn, ) = Qu p(—&, xn, ¥)
fora.e. £ € R”~!. The estimate (3.5) follows from trace theory and the estimate (A.2) recorded
as a part of Proposition A.2. O

We then define mq g : R x R — C via

ma,ﬁ(év V)ZVa,ﬂ(évb» V)‘é’m (36)

which can be viewed as the symbol of the normal stress to Dirichlet pseudodifferential operator
Y= upls,.

Recall that by Theorem 2.7 and trace theory, we have the equivalence || ||H7 1= lull g +
lpllz2. The next theorem shows that if we weaken the control of ¥ at low frequencies on the
Fourier side, we then have a norm equivalence without the pressure term. Note in particular that
the constant appearing in (3.8) can be made to be uniform in the parameter « if & € (0, 1). First
we need some notation.

Definition 3.5.Let F € {R,C},R > @ > 0. For s > —1, we define & : H”%(Zb;]F”) X

H*2 (S0: F"1) = (@anH ' (2: F)) by the action on v € g H ' (2; ") via

(. v’|20)H7% L (3.7

Q| =

(O, D, 0) g pi1yf it =Vl 1 =

where (k, U|Eb>H’% ) denotes the dual paring between k € H™ 3 (S F") = (H? (Sp: F"))F
and v|yg, € H1/2(E},; "), and similarly (l, MEO)H‘%
(H?(Zo: F*1))* and Vs, € H'/2(Zp; F"~1). Clearly, & is bounded and linear.

b denotes the dual paring between [ €

We can now state and prove the previously mentioned result.

398



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381-437

Theorem 3.6. Suppose R > « > 0,8 € R" " is positive definite, and y € R. Let ¥ €
H='2(2: F) and consider (u, p) = x ﬁ—Tl _,(0(Yen. 0),0). The following hold.

(1) There exists a constant ¢ > 0 such that

[SIE

N 2
" Hull it < /min{lélz,lél‘l}‘w(é)’ dg | <clull,p- (3.8)
n—1

(2) Furthermore, there exists a constant ¢ > 0 depending on physical parameters and y such that
(3.8) holds for all o € (0, 1). In other words, the constant ¢ can be chosen to be independent
ofa ifa € (0, 1).

Proof. First we note that by the weak form of the system (2.12) and the definition of the map &
via (3.7), we have

2 _ . _ 1 —
/ED” :]D)U_pdlvv+yalu’U+a/ﬁu/'U/:_(I/Ien,U|Eb)H*1/2(2h),Hl/2(Eb) (3.9)
Q >0

for all v e tanHl(Q; F"). By letting v=u € mnH; (2; F™"), taking the real part of (3.9), using
(2.14), Lemma 2.2, the fact that « > 0, (5.2) and the anti-dual representation of Sobolev spaces
(see Proposition A.6 of [29]) we have

W 1 —
Il gy SaRe | [ Sl [ g
Q Yo

— —Re(y, Try, ut - ) y-12 12 = — Re / V(&) Trs, u - en(§) dE
]Rnfl

=
ol

. 2 1y s 2 s 1 — 2
<| [ minteP e p@f ae | | [ maxis el e o] ae
(3.10)

In particular, we note that if « € (0, 1), then a~! > 1 and thus we may choose the constant on
the left hand side of (3.10) to be independent of «. By using the divergence-trace compatibility
estimate (3.3), we have

Sllull, g1 (311

— 2
-2 1
[ maxtel . 1s1 trs, e @ de <UTrs, el
n—1

R
This gives us the left hand side of (3.8).
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For the rightAhand side, we first define ¢ € Hl/z(Zh;]F) N H_I(Eb;F) via cj;(é) =
min{|&|*, |§]7 "} (€), where

A 2
Ig> <2 / max(|&[ 2, 1§1") |min{j& %, ||~ 1 ©) | d
Rn—1

. 2 IS 2
=2 [ mingeP e i@ de. Ga2)
Rn-1

Note that for |£] < 1, [€]2 < (14 €]))" Y2 and for €] > 1, |€]7' < (1 + €]~ Y/2. So we find
that ||¢||2 . . S l@llg-1/2, and therefore we can apply Proposition 3.2 and consider w =
H2NH-!

G(0,9) € OH; (2; IF), for which we have the estimate

N 2
1wl 1 SIGO, Pllrg) = 1011751512 S / min{|s|2,|s|—1}\w(s>] d§. (3.13)
Rnfl

Now using w € QH; (€2; F™) in the weak formulation of the adjoint problem (3.4) gives us

nw _ _
T _/ SDu: D~ you W, (3.14)
Q

and using the anti-dual representation of Sobolev spaces we have
AR . _ N 2
Wewnlsily iy oy = [ Dods= [ minel e @[ a5 Gas)
Rn—1 Rn—1

and

: N N " _ _
[ mintiei e[ @f ds < | [ 50w DT+ youu- B Sy Wl Nl
Rn—1 Q

(3.16)

Combining (3.16) with (3.13) gives us the desired inequality (3.8). We note that since the constant
appearing in (3.16) does not depend on «, the second item follows. O

Utilizing the energy equivalence established above, we are now ready to establish some key
estimates for Vy g, Q. g, My, g as defined in Theorem 3.4 and (3.6).

Theorem 3.7. Let R a > 0, y € R, and B € R™*" be positive definite. The following hold.

400



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381-437

(1) There exists a constant ¢ > 0 such that for all a.e. § € R"! we have

b
/|va,ﬂ<s,xn, —)|? dx, <cminflE?, €172, [Vap(E, 0, —p)|° <cminflg?, &72),
0

(3.17)

and

b
/|Qa,ﬁ($,xn,—7/)—1|2 dx, < cl&]”. (3.18)
0

(2) There exists a constant ¢ > 0 depending on physical parameters and y such that (3.17) and
(3.18) hold for all o € (0, 1). In other words, the constant ¢ can be chosen to be independent
ofaifa € (0,1).

Proof. To prove the first item, we note that by Parseval’s theorem, Tonelli’s theorem, and Theo-
rem 3.6, we have

/]

0 Rr-1

R 2
Va6 xn, =V )| didxy = llull7> S lul? 4

: 2 1 |7 2
So [ min(eP g7 o ag @19
Rr-1

for all ¥ € H’% (Zp;F). Let g € LY R"1; R) such that @(&) > 0 a.e. with compact support.
Define ¢ € (\,cp H* R, C)viagp =71 [/¢], and we take ¥ = ¢ in the inequality above.
This gives us

b
/ f\va,,a@,xn,—y)!z dx, | 0(8) dt <e / min{l£ P [ )o (&) d&.  (3.20)
0 Rn—l

Rn—l
Since this holds for all ¢ € LY R 1, R), for all & > 0 there exists a constant C > 0 such that

b
/ |V (&, X, —y)|2 dx, < Cmin{|€|?, €|} forae. & e R* L. (3.21)
0

Combining this with the estimate (3.5) gives us the first estimate in (3.17). Furthermore, we note
that by the second item of Theorem 3.6, the constants appearing on the right hand side of (3.19)
and (3.20) can be chosen to be independent of « if & € (0, 1).
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We note that since

/

Rr-1

A 2 2
Vo{,ﬂ(57 07 _V)W(g)‘ dgdxn = ||TI'20 u”LZ g ”u“inHl ’ (322)

applying the exact same argument as above gives us the second estimate in (3.17).
To prove (3.18), we note that p — ¢ = (Qq g — 1)¥ and recall that the weak formulation of
the system requires

1
/%Du:ﬂ)i—pdivi—i— Yo - T+ —/ﬂu’-v’: —(Yen. vls,) o1z g2
o :
Q o
=— / V(X dx’ (3.23)
]Rnfl
for all v € wH'(Q;F"). Let v =II(p — ¥ (x) € oH' (Q; F") where IT : L>(; F) —

oH'(; F™) is the right inverse to the divergence operator appearing in Lemma 2.3. Then by
testing v in the weak formulation we find that

b

/w(x/) v_n—/divﬁdxn dx'. (3.24)
n—1

/|p—w|2=/%m;m+y8m-v+
Q Q 0

R

By applying Cauchy-Schwartz and using the continuity of the trace operator, we have

b
f|p WP dx gy i Il + 9Ll [ /divvdxn
Q 0 -1
(3.25)
Note that
b b b
/divvdxn =/ / |§|*2|2ms-v|2dsdxn§/ / (. x)I? dedixy = o]l 2.
0 I_'Ifl 0 Rn-1 0 Rrn—1
(3.26)

Furthermore, since 1& = /¢ has compact support, using the left hand side of the energy equiva-
lence (3.8) we have

~ 2
2 g S [ 1P [0 =10 (3.27)

Rn-1

Combining the estimates (3.25), (3.26), (3.27) give us
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/ |p(x) - W(x/)|2 dx Sl SWglp — ¥l (3.28)
Q

Then

b

A2 ) .2
[ [ leer—n-vie| dean, = [l -verf axs [ 1er|ie] e
0 Rr-! Q Rr—1

(3.29)
Following the same argument as before, we arrive at the desired estimate. To prove the second
item, we also note that the constants appearing in (3.25), (3.26) do not depend on « and by

the second item of Theorem 3.6, the constant appearing on the right hand side of (3.27) can be
chosen to be uniform in « if @ € (0, 1). The second item then follows. O

We also need the asymptotics of mq g(§, y).
Lemma 3.8. Let R > o > 0 and y € R. The following hold.

(1) Fora.e. £ e R"™! Re mey g(&, —y) is strictly negative and there exists a constant C > 0 for
which

min{|£|?, |§]7'} < —CRemq g€, —y). (3.30)
(2) There exists a constant ¢ > 0 such that for a.e. € € R"~!, we have

¢ min{|g %, €7} < |ma,p&, —y)| < cmin{|E[*, &) (3.31)

(3) There exist constants C, c > 0 such that (3.30) and (3.31) hold for all a € (0, 1). In other
words, the constants can be chosen to be independent of a if a € (0, 1).

Proof. First we prove the second item and the right hand side of (3.31). Note that by the
divergence-trace compatibility condition and the energy equivalence (3.8), we have

_2 2 2 2 2
/ €] ‘ma,ﬁ(é, =Y @) dE=|Tru-enlly_, S llullys
Rr—1

. 2 Iy {7 2
So [ mingsP g fho] . 632

Rr-1

Setting Y = ¢ =.F ! [Vol€(Nser H? (R"~1: C) as in the proof for Theorem 3.7, we have

/ 16172 |map (€, )| (&) d& <o / min{|&|?, |6]7 o (&) d&. (3.33)
R"71 ]Rnfl
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Repeating the same argument as in the proof for Theorem 3.7, we can conclude that
Ima.p&, —y)| So min{|€[?, €] 3 Combining this with the estimate (3.5), we reach the desired
conclusion that [mq g (€, —y)| So minf&[?, [£]71}.

To prove the left side of (3.31), we let (u, p) = xﬁ}]’ﬁ(ﬁ(wen, 0), 0) be the unique weak

solution to (3.4) and test u € an H'(2; ") in the weak formulation to find

u _ 1 —
=@, Tru-en) g-1/2(s,), H'2(3) :f 5 |]D)u|2 —yoiu-u+ &/,Bu/ -u’. (3.34)
Q P}

By taking the real part on both sides, using (2.14), Lemma 2.2, the fact that « > 0, B satisfies
(5.2), and the anti-dual representation of Sobolev spaces gives us

/ min{[€1%, 1§17 o (©) d§ S Null? 1 Sa —Re(d, unls,) g11205,).112(5,)
Rn-1

— _Re f BE)Tru - en(6) de
Rnfl

- ~ 2 -
= Re / MapE& ) |$@)| df = —Re / Map @& —7)p(E) dE. (3.35)

Rr-1 Rn—1

Thus we have min{|£|*, |§|7'} <o —Remq g€, —y) < |ma,g(€, —y)| for ae. £ € R"~L. This
proves the first item and also the left side of the inequality in the second.

To prove the third item, we note that throughout the proof for the first and the second items,
by the second item of Theorem 3.6 and the fact that a !> 0if a € (0, 1), the constants in the
estimates above can be chosen to be independent of « if @ € (0, 1), therefore the third item
follows. O

We conclude this subsection by recording the properties of an auxiliary function defined in
terms of my g.

Lemma 3.9. Suppose R 5« > 0 and y € R\ {0}, and define

P py (&) =2miyE + (1 + 472 |E12 0)mg g (B, — 7). (3.36)
Then the following hold.

(1) Pa,p.y (&) =0ifand only if § =0, and pap.y () = pa,p,, (—€) for all § e R"~".
(2) For o > 0, there exists a constant C = C(a, n, y,o0,b) > 0 such that for all & € R we
have

C™ M pupy @ <E +1EM 0.0 E) + (1 + EP) 10,1y €) < C |papy E)]
(3.37)
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(3) For o =0 and n = 2, there exists a constant C = C(«, y, b) > 0 such that for all § € R
we have

C oupy & <IEP L1y &) + (1 + EP 101 () < C |papy ). (3.38)

(4) Furthermore, there exists a constant C = C(n, y,o0,b) > 0 such that (3.37) holds for all
o € (0, 1) and a constant C = C(y, b) > 0 such that (3.38) holds for all o € (0, 1). In other
words, the constants in (3.37) and (3.38) can be chosen to be independent of o.

Proof. To prove the first item, we note that the identity o4 8., (§) = po,g,,(—§) follows
from Theorem 3.4, therefore py g, (0) = 0. Furthermore, Re py g, (§) = (1 + 472 |§|20) X
Remg g(§, —y) <0 for & # 0 by the first item of Lemma 3.8. Thus py g, (§) = 0 if and only if
& = 0. This proves the first item.

Next we prove the second item, and we first prove the left hand side of (3.37). Recall that by
Lemma 3.8, |mq (&, —y)| satisfies [mgq (&, —y)| < min{|&|?, |&|~'}. This implies that

|0a.p,y ©)] S 1&1] +min{|&[%, €17} + min{|&[*, £]}. (3.39)

Then it immediately follows that

oy ] S &P+ 1ER + 1EH Lo &) + (& 12 + 7+ EIM Lp,1)c (€)
S &P+ 1E1D)Lpo.1)€) + £ 10,19 (B).  (3.40)

Next we prove the right hand side of (3.37). We first note that since 2mwiy £ is purely imaginary
and 1 4 472 |€|? o is real, we have

Re g p.,(£) = (1 + 412 |E[* o) Remg p (&, —y),
Im py g, (&) =2myE + (1 + 472 |E2 o) Immg g€, —y). (3.41)

Next we call that by (3.30), we have |&]* < —Remg (&, —y) for ae. |£] <1 and |£]7! <
—Remg (&, —y) for ae. |§] > 1; by (3.31), Imy(€,—y)| < |§* for ae. || <1 and
|ma,ﬂ(§, —y)| = |&|7! for a.e. |&€] > 1. Then for a.e. || < 1, since 2wiy&] is purely imagi-

nary and mgy g(§, —y)mq (€, —y) is real, we have

E11161* < |27y &1 Remg g (E, —7)|
= |Im(27iy1ma (€, =) + (1 + 472162 e p 6, ~)ma & —7)]|
< |Pare .y EMapE, —1)| < |parpy @] IEPP = 1611 S |papy @), (3.42)

and also by (3.41),
612 S |(1+ 472 1612 0) Re o p & —1)| = Re pu gy ©)] S lowpr @) (343)

405



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381-437

For a.e. |£] > 1, we have

&] S 1617 |[Rema g€, —1)| S [Re pupy )| S | oapy )] (3.44)

(3.37) then follows by combining (3.40), (3.42), (3.43), and (3.44). We also note that by the
third item of Lemma 3.8, the constants appearing in the estimates above can be chosen to be
independent of « if @ € (0, 1). This proves the second item.

The third item follows from a similar set of arguments. 0O

3.3. Data compatibility and the associated isomorphism

Now we are ready to discuss compatibility conditions associated to the solvability of (2.1). To
do so we first define some spaces associated to the data.

Definition 3.10. Let R > 5 > 0.

(1) We define the Hilbert space

YV ={(f.g.hk,])e H (R") x H(QR) x HP/2(Zp; R)
x H V2 (2 R™) x HSH2(S0; R | II(f, 8. b, k. Dllys <00}, (3.45)

where we equip )* with the norm defined via

ICf g h ke DS = 1 Igs 4 1815wt + MR N3z + Wkl 2 + 1211512
b 2
+ h—/g(-,xn)dxn . (3.406)
0 g1

(2) We define the Hilbert space

25 ={(f. 8 h.k) € H (2 R") x HTH(Q;R) x H /(8 R) x H V22 RY) |

where we equip Z° with the norm defined via

ICf 8 h N Zs = I I 4 185wt + 1N ass2 + Nk 2 4 11112
b 2
+ h—/g(~,xn)dxn . (3.48)
0 el

Next we define the bilinear maps associated to the data spaces )* and Z*.
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Definition 3.11. Let R > « > 0, 8 € R"*" be positive definite, y € R, and R 3 s > 0. We define
the bilinear map

Bopy  [H (R x HTH(QR) x H /22 R) x HH/2(2,; RY)
x HSP2(20; R D] x [HH2(25; R)] > R (3.49)

via

1
%’a,ﬂ,y((f,g,h,k,l),1/f)=f(f~v—gq)—f(k-v—hlﬁ)+;/ﬁv/, (3.50)
Q p 2o
where (v, q) = <I>;1_y g7 0,0, ¥en, 0) € anHT2(2; R") x HT1(Q; R) is the unique solution
to the normal stress problem (3.4) guaranteed by Theorem 2.8. Since CD;;T — is an isomor-
phism, we have that %, g, is continuous. We define the left kernel of %, g , as

Ket By g, = ((f g ho k1) € H (2 R") x HF(©; R) x HF3/2(); R)

x HH2 (2 RY) x H PV (80 R | Bapy ((f.80 bk D) =0V € HT2(8,: R))
(3.51)

<«
Since ker%e p, is a closed subspace of H*(Q;R") x HTL(QR) x HPY2(Tp R) x
HsTU2(3,: R x HSTY2(20; R"1) and )° N l:?r%a,ﬁ,y is a closed subspace of ))* inher-

iting the topology of ), we may regard )* N légre%’a’ .y as a Hilbert space equipped with the
inner product coming from )*.

Now we are ready to record the isomorphism associated to the overdetermined problem (3.1).

Theorem 3.12. Let R > o > 0, B € R"*" be positive definite, y € R and R 5 5 > 0. Con-
sider the bounded linear map Wy g, : an H*Y2(Q; R") x HSTH(Q; R) — Y* N l<(e—r¢%’a,,3,y de-
fined via Wy g, (u, p) = P(Py,p,y (u, p),uy), where @y g, is defined in Theorem 2.8 and
P HS(Q;RM) x HSt!1 (S R) x HX-‘rl/Z(Eb; R™) x HS-H/Z(EO; Rn—l) x HS-|-3/2(Eb; R) — )¢
is a permutation map defined via P(f, g, k,1,h) = (f, g, h, k,1). Then Wy g ,, is an isomorphism.

Proof. To prove the first item, we first show that the map W, g, is well-defined. Let (u, p) €
an P2 (2 R") x HP1(Q;R). By Theorem 2.8, Lemma 3.1 and trace theory, we have

Wy 8,y (U, p) € V°. To show that Wy g , (u, p) € 1<<e_r%a,,g,y, welet (f,g,k,1,h) =Wy 5, U, p),
and for any ¥ € H*1/2(Z,; R) we let (v, ¢) = q>;}57 _,(0.0, ¢y, 0). Then

1
%,ﬂ,y<<f,g,h,k,l>,1/f>=/<f~v—gq)—/<k~v—hw>+5/1«1/
Q 2p

P

:/(divS(p,u)—yalu)ov—(divu)q—/S(p,u)enov—uw/fen—i—if[aS(p,u)en+ﬁu]’~v’
Q p P
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1
=/u <(divS(v,q) +ydi1v) + pdive + —/u’ JaS(g, v)e, +BTv =0. (3.52)
o
Q o

This shows that the map Wy g, (4, p) is well-defined, and it is clearly linear and bounded.
The injectivity of Wy g, follows from Theorem 2.8. To prove that W, g, is surjective,

for any (f, g, h.k,[) € Y*N 1<<e_r<@a,ﬁ,y we let (u, p) = @;%’y(f,g,k,l), and for any ¢ €

HS'H/Z(Z[,; R) welet (v, g) = o _V(O, 0, ven, 0). Since (f, g, h, k, 1) € l<<e_r<%’a,ﬂ,y, we then

a, BT,

—/u,ﬂ/r:/(fﬂ)—gq)—/k-v—l—é/l-v/z—/hl/f, (3.53)
Q

p b %o o

have

and so u, = h on X,. This shows that W, g ,, is surjective, and the desired conclusion follows.

To prove the second item we follow a similar set of arguments as above, where we use the
isomorphism ®g, g, in place of & g ,,, Corollary 2.11 in place of Theorem 2.8, the bilinear map
%, in place of %, g, and the Hilbert space Z* in place of V*. The fact that the operator norm
of Wy g, is independent of « for a € (0, 1) follows from Proposition 2.10. O

Next we would like to introduce a quantitative way of measuring how close a data tuple
(f, &, h,k,1)is to being compatible. To do so we introduce the linear map Ay g, : H*(£2; R") x
HTHQ; R) x HSPY2(Z: R) x HTV2(2,: R x HSH/2(2y; R — L2(Zp; R) induced
by the bilinear map %, g,, . The induced linear map A g, is defined via

(Napy(frgh kD), W) 2 = By ((f, 8, bk, D), ), (3.54)

where we use the canonical injection i : H*11/2(2y; F) < L%*(Zp; F) to identify ¥ with an
element of L2. First we show that Ay gy (f, g h,k,1) commutes with tangential multipliers
defined in Definition A .4.

Proposition 3.13. Suppose v € L°(R"~; C) and consider the tangential multiplier M,, defined
in Definition A.4. Then

MyAapy(f, 8. h k1) =Agpy(Myf, Mg, Muh, Myk, Myl). (3.55)

Proof. For a given ¥ € H*t1/2(2,; R) we define (v, q) = d>;}37 _,(0.0.ye,. 0). Then by
Theorem 2.9, we have

(Mont,,B,)/(f’ &, hs kv l)’ w)LZ = (Aa,ﬁ,y(fs 8, hv k’ l)v Ma)l/f)L2 = t%ot,ﬁ,y((fv 8, h’ k» l)v MwW)

=/<f-va—ngq)—/(k~va—thw>+lfz-va’=/(wa~v—ngq)
o
Q Q

p o

1
— /(ka v — Myhyr) + " / Myl V' = (Ag,p.y (Mo f, Mg, Mk, Myl, Myh), ).
Zp o
(3.56)
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Since this is true for all ¢ € H s+1/2(3,: R), the desired conclusion follows. O

Next we prove the main theorem of this section, which describes the low-frequency behavior
of the images of J* and Z° under Ay g, .

Theorem 3.14. Suppose R > o > 0, R 5 5 > 0. The following hold.

(1) If (f,8 h.k,1) € Y, then Ag g (f, 8 h k1) € H™'(Zp; R) N HT/2(Ty; R) and there
exists a constant ¢ > 0 for which

| Aapy (fr g kD goippgssse <€ ICfo 80 Rk, Dllys - (3.57)

(2) If (f, g, h,k) € 2 then A g, (f, g h,k,0) € H'(Zp; R) N HF3/2(Zy; R) and there
exists a constant ¢ > 0 for which

HAOl,ﬂ,y(fa 8> h5 k7 0) H H-1nHs+3/2 < c ”(f’ 8 h’ k) ”2,’T . (358)

(3) Furthermore, there exists a constant ¢ > 0 for which the estimate (3.57) holds for all « €
(0, 1). In other word, the constant ¢ > 0 can be chosen to be independent of o if o € (0, 1).

Proof. We first note that the second item follows immediately from the first item. To prove the
first item, we first note that by Proposition 3.13,

”Aa,ﬂ,y(fs g’hvk’l)”H—lmH.H—}/z
5 ||M13(0,1)Aa,ﬁ,y(fv gvhakvl)”]_']—] + HM]IB(OJ)CAOL/S,)/(]Q gvhvk7l)H
= HM]IB(Oql)Aa,,B‘)/(fv g9hvk9l)”1.'1—l

+ HAO‘»ﬁsV(M]lB(O,l)f f’ MﬂB(O,l)" ga MﬂB(O,l)L‘k’ M]13(0'|>cly M]lg(()’])rh)‘

Hs+3/2

Hs+3/2

Sa | M1non B (18 1k D s + | Mg |+ [ Migoes]

) LGP S L

#1001

Hs+1/2 ’Hs+1/2 Hs+3/2

S Mg Bapy (s 80k, D g+ 1 s + 181 gsst 1k ez + 1 o2+ 1l gssssa -
(3.59)

To arrive at the desired estimate it then suffices to control H Mg, Aapy(fs 8 0 kD) || g-1- We

note that for any y € L%(Z: R), we may let (v,q) =d~

a,lsT,—y (0,0, Yep, 0) and compute

LgZ[AOl,ﬂ,}/(fﬂ 8 h’ k? l)](E) : <g\[‘(;/f](é) dé = <M13(0,1)Aa,ﬂ,y(f’ 8 hv k’ l), 1)Z/>L2
B(0,1)

= <Aa,;3,y(fv gs hv ks l)s M]-B(O,l)w)Lz = %a,ﬂ,y((fv gv h7 kv l)s Mlg(o_l)l//.)
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1
=/(f'M13(0,1)v _ngB(O,l)q) _/(k'MﬂB(O,l)v _hM]lB(o,])W)'i' E/Z'M]IB(O.I)U/
Q Zp %o

b
:/f'M]lB(O.l)v_gM]lB(O,l)(q_w)_fk'MﬂB(O,l)v+/MlB(0.l)w h—/g
0

Q p Zp

1
+ ;/l . M]IB((),I)U/' (3.60)
2o

Therefore,

/ FlAapy(f g h k. DIE) - FIYIE) di
0,1)
o (I s + 1Kl sz + 10 gs2) | Mg 0]
b

+lgllz2 [ Mo, @ =) 2+ [Migon ¥ | 4 h—fg X))
0 g1

where we have used the second estimate in (3.17) on V;, g(§, 0, —y) to handle to integral involv-
ing /.
By Theorem 2.9, we have (M1 ,,v, M1,,,9) = @;If}rﬁy(O, 0, M1, ¥en, 0). Then by

(3.19) we have the bound H MﬂB(O,l)UH 12 Se H Mig, ¥ ”Hl’ and by Plancherel’s theorem and

the second estimate on Qg4 in (3.18), we have | M1, (g — 1//)HL2 Se | M]IB(O_I)l/f”Hl. By
combining the previous estimates and the divergence-trace estimate (3.3) we then have

/ T Dapy (g 1k, DIE) - FLY1E) dE| Sa IS g0 1k, Dllys | Mg ¥ 41 -
O, 1)
(3.62)

Thus by duality,
” My g1 Napy (fs 8 0k, D) ” H-!

=sup{ / FlAapy(f g hk,DIE) - FIYIE) dt |[M13<0_.>w];,1<1}
©O,1

Se lI(f. g, h k. Dllys. (3.63)
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To prove the third item, we note that if / = 0 then « does not appear in (3.59) and by the second
items of Theorem 3.6 and Theorem 3.7, the constants in the estimates above can be chosen to be
uniform in «. The third item then follows. O

4. Linear analysis with 7

In this section we would like to establish the R-solvability of the y-Stokes system with gravity
capillary boundary conditions

divS(p,u) — yoru + (V'n,0)= f  inQ

divu =g, in Q

Uy +yoin=n, onY, @1
S(p,u)e, +0oAne, =k, on X,

(aS(p,w)ey) + pu’ =1, on %o

u, =0, on Xg.

4.1. Preliminaries
First, we introduce the container space for the free surface function 5.

Definition 4.1. Let 0 < s € R. We define the specialized anisotropic Sobolev space X* RY) to

consist of f € Y/(]Rd R) such that f € LIOC(Rd, C) and
FE* . 2 a2
171 = [ i |s||f| Fefdss [ aviprliofd<c @2
B(0.1) B(0,1)¢

The following proposition summarizes the important properties of this space.

Theorem 4.2. Suppose R 55 > 0 and d > 1. The following hold.

(1) X*(RY) is a separable Hilbert space, and if t € R and s < t, then we have the continuous
inclusion X'(R?) < X5 (RY).

(2) Ifd =1, we have H*(R%) = X*(R%) and ||-|| s and ||-|| xs are equivalent norms. For d > 2,
we have the continuous inclusion H*(R?) — X*(R?).

(3) If s > 1, then |V £l gs—1 S| fllxs for f € X5(RY). In particular, the map V : X*(R?) —
HSL(RY; R?) is continuous.

(4) For every f € X*(R?) and t > 0, we can write f = fit + fui, where fi; =
F oy ZLf11€ CPRY) and fr: =F g\ po.oZf1] € H (RY). Furthermore,
we have the estimates

[ frelles = 22 10" frrll oo < 1 fi|

|| <k

s Joreachk e N and | fit| s < | fis|

o - @3)

(5) Ifk € N and s > k + d /2, then we have the continuous inclusion X*(R¢) — Cg(Rd; R).
(6) If s > d/2, then for any f € X*(RY), g € H(RY) we have fg € H*(RY); moreover,
I£elms SN Fllxs Igllpgs for all f € X*(RY) and g € H* (RY).
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(7) If s > 1, then [91n] -1 S | fllxs for all f € X*(RY). In particular, the map 9y : X* (RY) —
HYRY N HS~YR?) is continuous and injective.

Proof. All of these except the separability assertion from the first item are proved in Proposition
5.3 and Theorems 5.6 in [19]. Separability follows from the calculations leading up to equation
(B.1.20) in the proof for the second item of Proposition B.2 in [31]. O

Next, we introduce the container space for the solution tuple (u, p, n).
Definition 4.3. For R > 5 > 0.
(1) We define the separable Hilbert space

XS ={(u, p,n) € an H T2 RY) x HTH(QR) x XSP2RLR)) (44)

endowed with the squared norm |G, p, [ 3e = lull? oo + 1P 1000 + 11115052
(2) We define the separable Hilbert space

X3 ={(, p.n) €amanH P (QR") x HP(Q:R) x XS 2R™LR)) (4.5)
endowed with the squared norm |[|(u, p, ’7)”3\@' = ||u||57umH_v+2 + ”p”iﬂ“ + ||17||§(H5/2.
Next, we record an embedding result for X* and A7}.

Proposition 4.4. Suppose R 5 s > 0 and X°, X is the Banach space in Definition 4.3. If s >
n/2, then we have the continuous inclusion

XS, X(; C C;‘f‘l_\_n/zj (Q, ]Rn) X C;_L”/ZJ (gz7 R) X C(;+1_I'(n_1)/2J (Rn_l; R) (46)

Moreover, if (u, p,n) € X° or (u, p,n) € X, then

lim 0%u(x) =0foralla € N" such that || < s+ 1— |n/2] 4.7
|x"|—00
‘ llim 0% p(x) =0forall o € N" such that |a| <s — |n/2]. 4.8)
x/|—o00

Proof. This follows from Proposition 6.3 in [19] and the continuous injections
P22 R, 0 H P22 RY) > H9PH(QRY). O

Next we study the linear maps Yo g0 : X° — V¥ and Ty g,y : Xy — Z° defined via
Ta,ﬂ,y,a(u» p,n) = divS(p,u) — yoiu+ (V/ﬁ, 0), divu, uanb
+ Vaﬂ?, S(p’ u)eHIZb + UA/nen’ [aS(pv u)en + ﬁu]/)’ (49)
and
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Tapoy.0 W, pom) = (divS(p,u) — ydiu+ (V'n,0), divu, uyls,
+ydin, S(p,weyls, +o0Ane,), (4.10)

which are the solution operators corresponding to the system (4.1) with generic [ €
H'2(Zo; R*~1) and with [ = 0, respectively. The next result shows that these maps are well-
defined, bounded, and also injective.

Proposition 4.5. Suppose R 3 a > 0, 8 € R™" is positive definite, y € R\ {0}, R>0 >0, and
R > 5 > 0. The following the hold.

(1) The linear map Y g,y : X° — V° defined in (4.9) is well-defined, continuous, and injec-
tive.

(2) The linear map %y g,y.o : Xy — Z° defined in (4.10) is well-defined, continuous, and injec-
tive.

(3) Furthermore, there exists a constant ¢ > 0 for which sup,. ||‘Ia,ﬂ,y,g ”ﬁ(Xg;ZS) <ec.

Proof. To prove the first and second items, we first note that by Proposition 3.13 in [18] and

standard trace theory, the maps Yy g+ and €y g,y are well-defined and continuous. To show

that Yy g,y.0 is injective, we suppose (u, p,n) € X* and Yy 8.y.0 (1, p, n) = 0. We note that if

p=p—n,then Vp=Vp—(V'n,0) and pI = pI —nl. Therefore Yy g0 (u, p,n) =0 if and

only if (u, p, n) satisfies

divS(p,u) —yoju =0, in

divu =0, inQ

S(p,u)en = (n—oA'ne,, onZp @10
u, +yoin=0, on X,

[aS(p,u)e, + Bul =0, on X

u, =0, on X.

We note that by Tonelli’s theorem, Parseval’s theorem, and the fifth item of Theorem 4.2 we
have u (&, -) € H*((0, b) C™) and p(é ) e HY((0, b); (C) for a.e. £ € R"~!. By the second item
in Theorem 4.2, 1 € LR, R) + L2R" !, (1 + |£| )<S+5/2)/2d§ R). Thus, we may apply
the horizontal Fourier transform to (4.11) to deduce for a.e. £ € R* ', w = (¢, ), g = p(&, )
satisfies

(=92 +4n? |E°) w' +27ikq — 2mi§yw' =0, in(0,b)

(=92 + 472 &%) wy + 3yq — 27i&yw, =0,  in(0,b)

2i& - w' + 0w, =0, in (0, b)

—Opw' —2mwikw, =02, - forx, =b @.12)
q —20,w, = (1 +4x~|&|° o)1, forx, =b
wn+2nif§1yﬁ_0 forx,=b

[0, — ﬂ)w]’ forx, =0

w, =0, for x,, =0.
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For a.e. &£ € R"~!, by the first three equations in (4.12) we have

2riEyw = (-a,f + 472 |g|2> w +2miEq — 2miEQiE - w' + ywy)
=2rifq — QriE @ w 4+ w Q2mi€)2wiE — 8,(Opw’ 4+ 2wikw,) (4.13)

and

2TiEIY W, = (—a,% +4x? |§|2) W + g — 0p i€ - W' + Buwp)

= —27iE - (Bgw + 27iEWy) + (g — 28, wp).  (4.14)

Using (4.13), (4.14), integration by parts and the boundary conditions in (4.12), for a.e. &£ € R-1
we have

b
/Zniélyw/~den
0
b
=/—qm+(2mg®w/+w’®wmg):m—a,,(anwurzmgwn)-wcixn
0

b
=/—q2m'§ cw + QriE@w +w @ wrif) v ®2wik
0

+ (O w +2wiEwy) - dpw’ dxp + lﬁw(O) -w(0) (4.15)
o

and

b b
/2ni.§1ywnw_ndxn = /(Bnu/ +2mikwy,) - 2wiEw, + 9,(q — 20, wy)w, dx
0 0

b
= /(a,lu/ +27iEwy) - 2miEwy, — (q — 20,wn) 0wy dx + (1 + 472 |E12 o) fiwn (D). (4.16)
0

We also note that by exploiting the symmetry of 27i§ ® w’' + w’' ® 27§, we can write

Qrit@uw +w @2mi&) v ®2wik

1
= E(Zm’é QuW +w @2mif) 2miE QW +w ®2mik. (4.17)
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Upon rearranging (4.15), (4.16), and (4.17), and the third to last equation w, + 27wi&;y7n =0, we
can deduce that

b
~ 2 2 / . SR S Sy 2
—y2mi&y [w|® + 218,wpl* + | 9w’ + 2miw,|” + 3 2miE @ w' 4+ w' ®2mi&|” dxy,
0
1 __
+ &,Bw(O) -w(0)
b
= / —y2miEiw - W + 20, W, 0wy, + Bpw’ + 2wiEw,) - ,w’ + 2wiEw,
0
+QriE@uw +w ®2mif) v ®2wi& dx,

= —(1+47° |EP 0)i(E)wa (&, b) = —2mikry (1 + 47§ o) InE)P . (4.18)
By taking the real part of this expression and applying the coercivity condition (5.1), we see that
we must have for a.e. £ € R"~ !, 9,w, =01in (0, b), ,w’ +27iEw, =01in (0, b), and w(0) = 0.
This implies that w, = 0 in [0, ], which in turn implies that we must have w = 0 in [0, b]. Then
by the first equation, we must have g = 0. By the third to last equation, we find that n = 0. From
this we find that (u, p, n) = (0,0, 0), so we can conclude that Yy g, » is injective. The same

argument shows that €, g , o is injective. The last item follows from the observation that & does
not appear on the right hand side of (4.10). O

Next we show that Yy g, s and Ty g, 6 surjective. To do so we must construct the free
surface function n from a given data tuple (f, g,h,k,1) € V° or (f, g, h,k) € Z° in the case
when [ = 0. We record this set of constructions in the next subsection.

4.2. Construction of the free surface function and the isomorphism associated to (4.1)

Lemma 4.6. Suppose R 3 a > 0, 8 € R"*" is positive definite, y e R\ {0}, 0 >0, Non >2,
R 25 >0, and let Y*, Z° be the Banach spaces defined in Definition 3.10. The following hold.

(1) For every (f, g, h,k,1) € VS, there exists an ny € X”%(R”’I;R) for which the modified
data tuple

(f = (V'14.0), 8. h — ydina, k — 0 A'ngen, 1) € H (2 R") x HT(Q)
X H'F3 (5, R") x H T3 (S R") x HF2(S0: R)  (4.19)

belongs to the range of Yy g,y.o defined in (4.9) and there exists a constant C > 0 for which

Iall ov5 < CUCS 80K Dllys - (4.20)

3
2

(2) Forevery (f,g,h,k) e Z°, there exists an ny € X5+3 (R"=1; R) for which the modified data
tuple
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(f - (V,ﬂaa 0)7 L) h — 78177» k — O—A/naen)

€ H (Q; R") x H*T1(Q) x HS+%(2,,; R™) x H”%(Eb; R™) (4.21)

belongs to the range of Ty g,y .o defined in (4.10) and there exists a constant C > 0 for which

Iall oos < CUCL 8RBl - (4.22)

(3) Furthermore, there exists a constant C > 0 for which (4.20) holds for all « € (0, 1). In other
words, the constant C > 0 can be chosen to be independent of o if & € (0, 1).

Proof. We proceed to prove the first item. Given (f, g, h, k,[) € V°, we propose to define 1y €

X”z(R” L'R) via g = Py ﬁ F{Aa.p,y(f. 8 h,k, 1)}, where the operator Ay g, is defined
in (3.54) and pq,g,, is defined in (3.36).

Note that 7, = 7]y, SO 7 is real-valued. Furthermore, by using Lemma 3.9 and the continuity
of the operator Ay g, established in Theorem 3.14 we have the estimate

4
/ (fl |§||f| 13<o,n<5)+(1+|s|2>”313(o,1y-(é)>|n;(s)|2 dt

Se f max{[§172, 1§13} | F[Aapy (f. 8 h k. DIE) dE Sa I(f.g.h k. DIRx. (4.23)
Rn—l

This shows that if we define 1, = ()", Ny is a well-defined real-valued tempered distribution
that belongs to X5+3 (R,
Next we show that the modified data given in (4.19) belongs to the range of Yy g, o . To show

this we invoke Theorem 3.12 and show that it belongs to f<e_r<%a,y. For any ¥ € HT1/2(2;; R),
by Plancherel’s theorem we have

<Aa,ﬂ,y(f - (V/T)a’ 0), g, h— ]/31/’1, k— UA/naena D), w>L2

= / y[Aa,ﬂ,y(f_(V/ﬂa’o)agvh_Valna’k_O—A/naen’l)](g)g[W](E)
Rr-1

_ / Flhapy(f g h k. DIEFTIIE)
Rnfl

+ / FAapy (—(V'Ne, 0),0,0 = yding, —o A'ngen, O1E)FY1E).  (4.24)
R»-1

Furthermore, by letting (v, q) = ®~ }ST (0,0, Yen, 0) we have
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/9[Aa,ﬂ,y(f,g,h,k,l)](é)f[lﬁ](é“)= / PaB,y ) () F Y 1(§) d§
Rr—1 Rr-1

_ / e 7)) FTUIE) dé + / 42 £ oTig B, =) () FTUIE) de

Rr-1 Rr-1

+ / iR ZHIE)
Rn—l

b
_ / e C =) (&) FIVIE) d + / o A na(&)en - T
Rn—l 0

+ / F[Na,py(0,0,y01m4,0,01(8)F Y1)
Rr-1

= / mq(§, —y)Na(§)F Y1) dé + / F[Aa,p,y(0,0,0,0A'ngen, 0)1(5) F[Y1(E)
Rnr—1 Rn—1

+ / FAa,py(0,0,y0110,0,0)16) F[¥1(E). (4.25)
Rr-1

By the second and last equations in (3.4), we have

b b

g / 0, VoG ooms =) d& = / 2mit - VIE xmi )dE, 4.26)
0

0

therefore

b
/ mq (&, —y)Na(§)F Y1) d& = / /(27”'510)7?(5)-9[v(-,xn)]($) dxpd§
Rn—1 Rr—1 0

= / F[Aa,p,y (V'14,0),0,0,0,01E) F[¥]1E). (4.27)
Rr-1

Thus upon rearranging, we have

(Aa,ﬁ,y(f - (V/Ua, O)v 8> h— Valh, k— UA/’]aen: l)’ I/f)LZ = O’ (4’28)

and the first item follows immediately.

The second item follows similarly from the first item, where given (f, g, h, k) € Z° we pro-
pose to define 1, € X”%(R”’l; R) via 7y = ,oa_}g J/54’{A0(,,37),(f, g, h, k,0)}. For the last item,
we note that by the last items of Lemma 3.9, and Theorem 3.14, the constants appearing on the
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right hand side of (4.23) can be chosen to be independent of « if @ € (0, 1). The third item then
follows. O

For the special case of n = 2, we can also construct the free surface function 7 in the case
without surface tension.

Lemma 4.7. Suppose y e R\ {0}, c =0andn =2, s >0, and let Y°, Z° be the Banach space
defined in Definition 3.10. The following hold.

(1) For every (f,g,h,k,1) € YV°, there exists an n € HH%(R"_I;]R) for which the modified
data tuple

(f —0iner, g, h —yoin, k+nez,l)
€ HY(Q:R?) x H*\(Q: R) x H'*3(5,: R) x HV2(5p: R?) x H1(S0: R)  (4.29)

belongs to the range of Yo g,y.0 defined in (4.9). Moreover, there exists a constant C > 0 for
which |nll .5 < CICS g bk Dllys.

(2) Forevery (f,g,h,k) € Z°, there exists an n € H3 (R"=1: R) for which the modified data
tuple

(f —diner, g, h —yoin, k+nez)

€ H'(92: R?) x HP'(Q: R) x H'*3(5,: R) x HF2(Sp: R2)  (4.30)

belongs to the range of %y g y.o defined in (4.10). Moreover, there exists a constant C > 0
for which

Il o5 < CUCS 8. Bl gs - (4.31)

(3) Furthermore, there exists a constant C > 0 for which (4.31) holds for all « € (0, 1). In other
words, the constant C > 0 can be chosen to be independent of o if & € (0, 1).

Proof. To prove the first item, we note that by Theorem 4.2, in dimension n = 2 the specialized
space X* (R"~!; R) is the standard Sobolev space H*(R"~!; R). So given (f, g, h, k, 1) € V*, we
similarly define n € H*/2(R*; R) via 5y = ()" where , = p;}g’yﬁ{l\a,ﬁ,y(f, g, h, kD).
Lemma 3.9 and Theorem 3.14 imply that

1761352 = / A+ 6P 27 dt

Rn-1

< f(1+|s|2)s+5/2|s|—2|3Z{Aa,ﬂ,y(f,g,h,k,l>}<5)|2sa ICf g kNI . (4.32)
Rnfl
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This shows that g = ()Y € H*T/2(R"~!; R). To conclude the first item we follow the same
calculations as the previous lemma to show that the modified data tuple belongs to the range
of Y¢,8,y,0. The second and third items follow from a similar set of arguments presented in the
proof of Lemma 4.6. O

Now we are ready to prove that Yy g, : X° — V° and Ty g,y,6 : X3 — Z° are isomor-
phisms when ¢ > 0 and n > 2, and when 0 =0 and n =2.

Theorem 4.8. Suppose R > a > 0, 8 € R"*" is positive definite, y € R\ {0}, and s > 0. The
following hold.

(1) If o > 0 and n > 2, then the bounded linear maps Yo gy o : X° — V° defined in (4.9) and
La,B.y.0 - Xy — Z° defined in (4.10) are isomorphisms.

(2) If o =0 and n =2, then the bounded linear maps Yo g,y.0 : X° — V° defined in (4.9) and
La.B,y.0 - Xo — Z° defined in (4.10) are isomorphisms.

(3) If o > 0 and n > 2, then there exists a constant C > 0 for which

sup (|% et ‘S_l ) < (4.33)
0 (Ienso ooz + [Fahval o) <
If 0 =0 and n =2, then there exists a constant ¢ > 0 for which
sup (| Fasyoll s e + ’T‘l H )gc. (4.34)
0 (%ol oz + [Tahol o

Proof. To prove the first item, by Proposition 4.5, it suffices to show that Yy g, o and Ty g 5 o
are surjective. To prove that Yy g, , is surjective, we suppose (f, g, h, k,I) € V* and de-
fine the free surface function n € X*+>/2(R"~!;R) by the construction in Lemma 4.6. By
Theorem 3.12, there exists (u, p) € wn H*T2(Q2; R") x H*1(Q; R) such that Wy g, (u, p) =
(Po,p,y (U, p)yunls,) = (f — (V'n,0), 8,k —oA'ne,, I, h — ydin). Therefore, we find that
Yo,g,y,0, p,n) = (f, g h,k,1). This shows that Yy g, , is surjective, and it follows that
Yo,8,y,0 1s an isomorphism. The surjectivity of Ty g, - follows from a similar set of arguments.
To prove the second item we follow the same argument as above, using Lemma 4.7 in place of
Lemma 4.6, Y g,y,0 in place of Yy g,y.0, and Ty g 5,0 in place of Ty g.y,6-

The third item follows the last item of Proposition 4.5, the «-independent estimate (2.21)
recorded in Proposition 2.10 and the last items in Lemma 4.6 and Lemma 4.7. O

5. Nonlinear analysis
5.1. Preliminaries
We begin by discussion some assumptions about the slip map A. We set § = DA(0) € R"™*"

and note since A is smooth we have A(w) = A(0) + Bw + O(w]?), so by (1.4) and a simple
scaling argument, we have

Bw-w =6 |w> >0, YweR"\ {0}, (5.1
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for some positive constant 8’ > 0. We also note that if w = u + iv for u, v € R", then

Re(Bw - w) =Bu-u+pv-v=6 |w|2 >0,Vw e C"\ {0}. 5.2)

Next, we record a set of results on the smoothness of various maps defined in terms of 7 that
we will use in the subsequent analysis.

Theorem 5.1. Let N>5n > 2, R>s >n/2, and V be a real finite dimensional inner product
space.

(1) Suppose ¢ € C,°(R;R). Then for 0 <r <s, f e H'(R"; V), ne X*R":R) and
onf : R" — V defined via (pnf)(x) = ¢(x,)n(x") f(x), we have onf € H" (R"; V) and

lonflmr S lnlixs 1 f 1l g
(2) Let ¢ € C;°(R; R) be such that ¢ > 0. Then there exists r| > 0 depending on n, b, s, go such

that the maps F1 Iy :Bxs(0,r1) x HS(2; V) > H*(2; V) given by I'1(n, ) = m and
a(n, f)= Tng are well-defined and smooth.
(3) There exzsls a constant 2 > 0 depending on d,s such that the map T : Bys(0,1r2) —

HS (R™; R™) given by T'(f) = f/y/1+ | fI? is well-defined and smooth.

Proof. We first note that the first item follows from Theorem 5.13 in [19], the third item follows
from Theorem A.14 in [19], so it suffices to only prove the second item.

To prove the second item, we first note that since ['2(n, f) = nl'1(n, f), if ['; is well-defined
and smooth and then so is I'> by the first item. Therefore it suffices to show that I'y is well-
defined and smooth. By the eighth item of Theorem 4.2, ||77||C2 < |Inllxs, and by the ninth

item of Theorem 4.2 and an induction argument, we have ||fnk || s SN s ||n||]§(5 for all

>1, f € H(Q; V) and n € X*(R"~!; R). The first aforementioned estimate implies that there
ex1sts a constant r > 0 such that for n € Bxs (0, r) we have Zk 0 ||r]<p||c0 S Zk —0 ||r)||XY < 00,

and the second aforementioned estimate implies that Y 22, | fn*| ;s < ||f||Hg S lnlks <
00. This shows that the series Zk o(— DK )k converges uniformly to m in Q and the
series Y oo 1(—l)kfn converges in H*(2; R). Now we note that "1 (n, f) = 1+W =f+
Zkzl(—l)kf(mp)k € H*(Q2; R), and therefore the map I'y is well-defined. To show that I'; is
smooth, we consider the map 7 : X*(R"~!; R) — L(H*(Q; V)) defined via T'(n) f = ¢nf. By
the first item of Theorem 5.1, the map 7T is bounded. Furthermore, in the unital Banach algebra
L(H*(2; V)), the power series F (L) = Z,fio Lk converges and defines a smooth function in the
unit ball B gs(q:vy) (0, 1), thus the composition F o T : X* (R" 1 R) — L(H*(Q; V)) defines
a smooth function. Since I'( f, g) = F (T (1)) f, we may deduce that there exists a constant r; > 0
for which I'y is smooth on Bys(0,r1) x H*(2; V). O

Now we can synthesize the aforementioned results to show that all the nonlinear maps ap-
pearing in (1.8) are well-defined and C2.

Theorem 5.2. Suppose n > 2 and 0 >0, orn =2 and 0 =0. Let N >s > 1 + |n/2]. The
following hold.
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(1)

(2)

For any §, M > 0, define the open set U ,, of X* via
Us yy =, p,n) € X" | ullgse2 + I pll st < M, lrll svg <83 (5.3)
Consider the Hilbert space

& =R xR x H'P R, RED) x HF (R R x H P2 (R™; R™) x HY(R"™ 1 R™).
(5.4)

Let § be as defined in (1.5), J, A, H be as defined in (1.7), (1.6), and the A-dependent
operators be defined as in Section 1.3. We define the solution operator & : E° x U ,, — J*
associated to (1.8) via

E(e,y, T,T,f, fu,p,n)
=(diva Sa(p,u)+w—ye1) Vau+u-Vau—FfoF — Lo, f, Tdivau,

u-N+yon, Sa(p, N — @HI +T oF+ SpTIx,)N, [aSalp, u)v — A1)
(5.5)

where
Lo, f(x)= f(x"and ST (x',b) =T (x'). (5.6)

Then there exists a § > 0 for which 2 is well-defined and belongs to Cg(é‘s X Ug 43 V).
Furthermore, we have the estimate

< 0. (5.7)

sup | 8. erxu,, |
b

a>0

Similarly, for any §, M > 0, define the open set Ué,S,M of X% via
wom =L, pom) € X | ull sz + Ipllgser < M, ll sig <63 (5.8)

Consider the Hilbert space E° defined via (5.4). We define the solution operator X : £5 x
US’S’M — Z5 associated to (1.8) with A(-) = B- where B € R"*" satisfies (5.1) via

o

.’*t(Ol, Vs T9 T’ f’ fvu’ P, 77)
=divaSalp,u)+(u—ye) Vau+u-Vau—Ffo§— Lo, [, Tdivau,
u-N+ydn, Sa(p, N — (@HMI+T oF+ SpTls,)N). (5.9)

Then there exists a § > 0 for which X is well-defined and belongs to Cg(é’s X U(‘;B’M; Z%).
Furthermore, we have the estimate

< 00. (5.10)

su
1% c?

a>0

‘%|SS><U;,5YM‘
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Proof. We proceed to prove the first item. Let § = min{r{, r2/cy, 8.}, where ry, rp are the radii
from the second and third items of Theorem 5.1, ¢ is the embedding constant from X* (RY) —
H"1(R4;R?) and 0 < 8, < 1 is from Theorem A.7. We note that since ¢ € C;°(R; R), by the
first and second items of Theorem 5.1, the maps I'1, 2 : Bx(0,8) x H"(2; R) - H"(2; R)
given by T'1(n, ) = IJ{Z’W and Th(n, ) = 11{;@’ are well-defined and smooth for r > n/2.
Utilizing this observation, the definition of the .4 and the .A-dependent operators in Section 1.3,
the fifth and ninth items of Theorem 4.2, the fact that H" (R?; R) is an algebra for r > d /2, trace
theory and the assumption that A is smooth, the map

R xR x Ug’Ma(oz,y,T,u,p,n)H
(divgSa(p,u)+ W —yer) - Vau+u-Vau, Jdivgu,u-N+yon,
SA(p, Nz, a[Salp, wv]'|zy)

e HS(Q, Rn) x HS+1(Q; R) x HS+3/2(Eb; R) x HS+1/2(Eb; Rn) % HS+1/2(20; ]Rn—l)
(5.11)

is well-defined and smooth.

By the supercritical Sobolev embedding H'T"/21(Q; R") — Cg(Q; R™), the map A €
C°(R"™; R™) agrees with the map A=vyAe Cp°(R"; R") on Bys+2(q.rny (0, M) since s +2 >
3 4 |n/2], where ¢ is a smooth cutoff function on Bgrx(0,r(M)), r(M) depends on M and
the embedding constant from H'*!"/2/(Q; R") < C)(2;R"). Since A € C°(R"; R") and
A(O) =0, by Theorem A.8 we may then conclude that the map Ug',M >5,p,n) v Au)lsg, €
HS3/2(20: R) is well-defined and C2.

By the fifth item of Theorem 4.2, the third item of Theorem 5.1, and the fact that
HSt1/2(R"=1; R) is an algebra, the map

/

V'

V141V

Bys+52(0,8) 3 > o H(IN = o div/ Lixn(—=V'n, 1) € H V2RI R)

(5.12)

is well-defined and smooth.
By Theorem 7.3 and Lemma A.10 in [19], the map

1/2 —1.
H 2R R

n
ym

) x HY (R 3 (T, f) v (SpT, Lo, f) € H T2 (Zp; R") x HS(2; R")
(5.13)

is well-defined and smooth.
By Theorem A.7, we may conclude that the map

HY PR R x HT R RY) X Bysisage-1k) (0:8) 3 (T, ;) = (Fo§, T 0 8ls,)
€ H*(R";R") x H*T12@R""1: R") (5.14)
is well-defined and CZ2.
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Finally, following the same calculations as Theorem 7.3 in [19], we find that

R xUs >y u,p,mr>u-N+ )/3117—/._7divu(',xn)dxn

e HPPR"LR)NH 'R R) (5.15)

is well-defined and smooth. Combining the aforementioned results then shows that the map =
£ x U§ 4y — V* is well-defined and C2.

Next we note that by the form of the matrix A : Q@ — R"*" defined in Section 1.3, the non-
linear terms in the map E are either products between standard Sobolev functions or products
between specialized Sobolev and standard Sobolev functions. The same is true for DE and D E.
Then by utilizing this observation and the ninth item of Theorem 4.2, we may conclude that the
restriction of the solution map & |gvav &5 x Ua = Vs Cb (&* x Ua > V). Furthermore,
since we assume that « € (0, 1) and o only appears in the linear terms of the last component of
E, we may conclude that the C2 5, norm of Elgsy US is independent of .

The second item and in particular (5.10) follows from a similar set of arguments as above and
the observation that o does not appear on the right hand side of (5.9). O

5.2. Solvability of the flattened system (1.8)
Now we are ready to construct solutions to (1.8) by using the implicit function theorem.

Proof of Theorem 1.1. We first consider the case with surface tension, o > 0 and n > 2. Let §
be the minimum of the §; > 0 from Theorem 5.2, §, > 0 from the third item of Theorem 5.1, and
84 > 0in (5.1). We fix M > 0 and consider the open subset U;M of X' defined via (5.3). Using
Proposition 4.4 and standard Sobolev embedding, any open subset of U g » containing (0, 0, 0)
satisfies the first assertion of the theorem. This proves the first item.

To prove the remaining items, we consider the Hilbert space £° defined in (5 4) and the so-
lution map & : ¥ x Uy ), — V* defined in (5.5). By Theorem 5.2, the map & is well-defined
and C2. By the product structure of £ x Us y» We can define D1 B : £ x Ua u — LE YY)
and D, E : £ x UgM — L(X%;)%) to be the derivatives of E with respect to £ and USM,
respectively. Note that by the second item of Theorem 5.1, we have D;S,(0,0) = 0 and
Dy Aq(0,0) =0. Therefore, forany @ € R, y € R, E(«, y,0,0,0,0,0,0,0)=(0,0,0,0,0) and
D>8(a,y,0,0,0,0,0,0,0,0)(u, p,n) = Yo,8,y,6(u, p,n) Where Yy g, o is defined in (4.9).
By Theorem 4.8, for every oy > 0 and y, # 0 the map D> E(w, ¥x,0,0,0,0,0,0,0, 0) is a lin-
ear isomorphism. Thus, by the implicit function theorem there exists an open sets U (o, yx) S
E% and O(as, yx) C U;M such that (o, ¥%,0,0,0,0) € U(ax, yx), (0,0,0) € O(ax, Yx),
and there exists a C! Lipschitz map @y, y, @ U, Ys) = Oas, v5) C Ug,M such that
Blo, v, T, 1,5, f, @ay,p. (0, v, T, T,f, £)) =(0,0,0,0,0) forall (o, ¥, T, T, f, f) € Ulox, y).
Moreover, (i, p, 1) = @q,.y, (o, ¥, T, T,§, f)is the unique solution to E(y,7T,T.f, f,u, p,n) =
(0,0,0,0,0) in O(ax, ys)-

Next, we define the open sets

U = U U, 7)) CE and O° = U O(ats, y4) S U3 yy. (5.16)
a€R*,y, eR\{0} a€RT,y, eR\{0}
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We note that by construction, RT x (R \ {0}) x {0} x {0} x {0} x {0} C U*. Furthermore, for
every (o, y, 7T, T,f, f) € U*, there exists an oy > 0, y, € R\ {0} for which (o, y, T, T,§, f) €
U(as, vs) and (u, p, 1) = @y, 5, (@, ¥, T, T,§, f) € O(oy, vs). By the observation above and
the implicit function theorem, the map @ : U* — O° defined via w(a,y,T,T.f, ) =
Do,y @, v, T, T,f, f), where o > 0, v, € R\ {0} is such that (a, y, T, T, f, f) € U(o, ys),
is well-defined, C', and locally Lipschitz. This proves the remaining items for o > 0 and n > 3.

To prove the remaining items in the case without surface tension and n = 2, we argue along the
same lines but use the second item of Theorem 4.8 instead of the first and use the isomorphism
Yap,y,0- O

5.3. The solutions to (1.1) as a — 0

Proof of Theorem 1.2. We first note that Theorem 4.2 shows that the space Z = H SH2(Q: R™) x
HTHQ; R) x X5P/2(R"~1; R) is a separable Hilbert space, and therefore the ball Bz (0, M)
is metrizable in the weak topology for any M > 0 (see Theorem 3.29 in [6]).

Let § > 0 be the same as in the proof for Theorem 1.1 above and for a fixed M > 0 con-
sider the solution map X : &% x U(f“s y — 2° defined via (5.9). We note that if o € (0, 1),
the last item of Theorem 4.8 and the second item of Theorem 5.2 imply that X satisfies
the «-independent estimate (A.16). Furthermore, the arguments presented above in the proof
of Theorem 1.1 show that X also satisfies the rest of the requirements of Theorem A.6.
Thus by applying Theorem A.6, for every y, € R \ {0}, there exists an w,-independent

open set V(yx) € (R \ {0}) x H"FP(R"; REX!) X HS+%(R"_1;R’;),XH’11) x HSP2(R™; R") x
H*(R"~1: R") and an ay-independent constant M > 0 such that for every o, € (0, 1), there
exists an open set O(ay, yx) C U, M such that (¢, 3%, 0,0,0,0) € (0, 1) x V(y4), (0,0,0) €
O(ay, y4), and there exists a C! Lipschitz map Doy, - (0, 1) X V(ye) = Oy, ys) C Ua,a,M
such that X(co, y, T, T, 1, f, @a,.y. (0, v, T, T, 5, f)) = (0,0,0,0) for all (o, y,T,T,f, f) €
(0,1) x V(ys). Moreover, (iy, Pas Na) = @a,,y, (0, vy, T, T,§, f) is the unique solution to
Xy, T.T.f, fou, p,n) = (0,0,0,0) in O(a, y+) and satisfies supye (o, 1) | (Ua, P o)l g <
M. See Fig. 2.

We now fix yx € R\ {0}, (¥, T, T.f, f) € V(yx) and consider the function f : (0,1) —
Bz(0, M) defined via f(a) = (Ua, Pas Na) = @B,y (@, ¥, T, T, §, f). Let {oz,} 2, C(0,1) be
any sequence such that «j — 0 as j — oo and let {a, }72 | C {Ol.,} - be any subsequence of the

original sequence. We note that since sup, || Sflaj) || ys < 00, there exists a further subsequence
{f(Otjkl)}loi1 such that f(aj,q) converges weakly to fo € Bz(0, M) in Z as [ — oo.

By the sixth item of Theorem 4.2, we may decompose any element 7; € X*t3/2(R"~!; R) as
1 = Now + Nhigh, Where niow € C(‘)’O(R”_l; R) and npigh € H”S/Z(R”_l; R) satisfy the bounds
(4.3). Thus we may define for every / € N,

8= (u Py (”“sz)high) € HP(@R" x H T (@ R) x HPPR"™LR),
hy = (na,- ) e CC®R"R), (5.17)
ki / low
satisfying sup; (1| g1l gs+2()x ms+1 () x Hs+52®Rn-1y + 11 ||Ck ]Rn—l)) < oo forany k > 1.
Now consider the nested sequence of compact sets {Ey, }_; defined via E,, = [-m ,m]" 1 x

[0, ] C Q. On E|, we consider the restriction of the sequence {gl|E1 }1 | and {h[lEl} °, and note
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Z = tan HSFP2(QR) x HHL(Q;R) x X5+5/2(Rn—1;R)
A

Y = (R\ {0}) x B3 (RM RN x HoV3 (R R x HOV2(RP1R™) x H*(RM-1;R™)

- x ViR -

< - (e TIRS) -7

‘\\<i/(a‘1010,0,0,0) =

«

Fig. 2. A toy picture of the schematics of the proof.

that since the restriction operator is continuous, g;|g, belongs to Z(E;) := HP2(E; R") x
HTYE;R) x HSP/2([—1, 11" R) and Ay, belongs to C®([—1, —1]""!; R). Further-
more, we have supl(“gmgI ”e%’(Eﬂ + Hh;|E1 ”C{j([—l,—l]"*l)) < oo for any k > 1. Since A(E1)
is also a Hilbert space, we may conclude that up to passing to a subsequence, there exists
g1,1 € #(E)) for which {g/|g,)}[2, converges weakly to g1; in Z(E) as | — oo.

We next note that since for any r > 0, the identity operator id : HS*"(K; V) — H*(K; V)
is compact for any compact Lipschitz domain K € R? and any finite dimensional vector space
V. Furthermore, for sufficiently small ¢ > 0 we also have HSY=¢(E1; V) — CK(E; V) by
standard Sobolev embedding, therefore we may conclude that up to passing to a subsequence,
{g11E))};2, converges strongly to (g1,7) in Cg(El; R") x C}], (E1; R) x Cll([—l, 11" L Ryas! —
co. By the Arzela-Ascoli theorem, we may also conclude that up to passing to a subsequence,
there exists an i1 ; € C'([—1, 17"~ !; R) for which hy| g, — hy strongly in C} ([—1, 11"~ 15 R).

Now we consider the subsequences of the original sequences {g;};°,, {h;};2,; constructed in
the previous step that converge strongly to g1 ; and h ; respectively. We note that we may repeat
the same argument as above to obtain a further subsequence converging strongly to some g ; and
hay in CZ(Ex; R") x CH(Ex;R) x CL([-2,21""1; R) and C}([—2, —2]"~!; R), respectively.
Furthermore, g2/, h2,; must coincide with g; ;, i1 respectively on Ej.

Thus, by continuing this procedure ad infinitum and employing a standard diagonal argu-
ment, we may upon relabeling identify a subsequence {(uy iy Do iy (n“./k, Now> (Na i )high)}loil C

{(uot_,-k » Pajy (na_,'k)IOWa (na_/k)high)}](zil converging strongly to some (1o, po, (170)1ow> (nO)high) in
Cg(Q; R") x CA(Q; R) x Cll (R"1; R) x Cll (R"~!: R). Since g € R"*" is assumed to satisfy
(5.1), we have

U € goran H T2 R™) > 10 HH2(92; R™) and [Bu]’ = 0 on g

= Bu-u=[Bul -u +[Bul, u,=00nXy = u=00n%,. (5.18)
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Therefore as o — 0, by passing to the limit in we may conclude that (ug, po, no) (where
10 = (M0)1ow + (M0)high) solve the incompressible Navier-Stokes system (1.12) with the no-slip
condition on X classically.

Finally, by invoking the uniqueness part of Theorem A.1, we may conclude that (ug, po, o) €
oHT2(Q; R x HSTH(Q; R) x XSTY/2(R"~1; R). Thus, every subsequence {f(a;)}%>, =
{(ua_/.k s Py » 17,1/.k)},f°=1 of the sequence {f(aj)};?‘;l = {(Ua;, Pa;> naj)};?ozl has a further subse-
quence converging weakly to fo := (1o, po, no) in Z. Since the ball Bz(0, M) is metrizable
in the weak topology for any M > 0, we may then conclude that (uy, po, o) — (40, Po, N0)
weakly in HSt2(Q; R") x H*TH(Q; R) x XSP2R" L R)asa — 0. O
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Appendix A. Analysis tools
In this section we record some tools utilized in our analysis.
A.l. The incompressible Navier Stokes system with no-slip conditions
In this subsection we record a result from [19] adapted to the flattening map (1.5).

Theorem A.1l. Suppose that either o > 0 and n > 2 or 0 =0 and n = 0. Assume that N 5 s >
1+ [n/2], and let X* be as defined by (4.4), Lg, and Sp, be as defined as in (5.6). Then there

exist open sets

VS C R+ x (R \ {O}) x HS-Q—Q,(RH; Rnxn) X HS-‘,-%(Rn—l; Rnxn

sym sym

x HSTHR"™LR") x HS(R" 1 R") (A1)

and O C X° such that for each (y,T,T,{, f), there exists a unique (u, p,n) € O° classically
solving (1.12) with the flattening map defined via (1.5).

Proof. This essentially follows from the work in [18] for « = 0 and the proof for the third item
of Theorem 1.2 in the same paper, though we note that the flattening map § defined via (1.5) is
slightly different from the one employed in [18], which is given by &, (x", x,) = x + %(x/)en.
Though, since § and &, are both diffeomorphisms for n € X*+3/2(R"~1; R) such that ||| ys+s/2
is sufficiently small, and both maps satisfy the C! w-lemma, the flattening map § can be used in

the arguments in [18] to arrive at the desired result. O
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A.2. Tangential Fourier multipliers

In this subsection we record a few essential results concerning bounded translation invariant
operators on Sobolev spaces and tangential Fourier multipliers. Recall that the reflection operator
§_1: FRY; C®) - FRY; C%) is defined via 8_; f(x) = f(—x).

The first proposition gives a characterization of bounded linear maps on Sobolev spaces that
commute with tangential multipliers.

Proposition A.2. Let F € {R,C}, s, € R, and T € L(H*(R?;F); H (R?; F)). The following
are equivalent.

(1) T commutes with translation operators.

(2) There exists a measurable function o : R? — C such that @ = é_ fF=R, Tf=
FNwZ[f1), and

so =esssup{(1 + €11 [ (&)| : £ € RY} < o0. (A2)
Furthermore, we have the estimate |T || zcgs. 5ty < So < 2T | geas 11y
Proof. This follows from Proposition A.101in [29]. O
Lemma A.3. Suppose N>d,k>1andletF € {R,C}. Let s >0, M >0 and U = R4 x (0, b).
Define the operator J), : HS(U;F* — HS(U; F*) via Iy fCxn) = ﬁ_l[xg(oﬁM)(J(l +
|-|2)S/29[f(-,xn)]]. Then J), is well-defined, and for all f € H*(U; F¥) and t € R such that

t < s, we have the M-independent estimate ||3§\4f||L2(U) Sd.s.b Hﬁi/l_tf”H,(U).

Proof. Using Corollary A.7 in [19], we estimate

b
1355 1720 = / 135" £ o) s ay dn S 1337 F sy B (AD)
0

We conclude this subsection by recalling some results on tangential multipliers from [29].

Lemma A.4. Suppose N>d, k> 1, F € {R,C}, and let w € L®(RY: Ck*%Y be a Fourier mul-
tiplier such that if F =R, then o =§_1w. Let U = RY x (0,b) and s > 0.

(1) We define the tangential Fourier multiplier on L>(R?; K¥*) as the operator M,, : L*>(R%;
KX — L*(R4; KX) defined via M, f (-) = F o Z [ f()]].
(2) We define the tangential Fourier multiplier on H*(U;F*) as the operator M, : H*(U;

FX) — HS(U;F*) defined via M, f (-, x,) = .F o Z[f (-, x)]] for all x, € (0, b). Then
M,, is well-defined and satisfies the estimate

1Mo sy Sdos loll ooy L N ggs oy for all f € HS(U; FX). (A4)
Furthermore, if s > 1/2 and ¥ € {Zp, Xo} then
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Trs My, f = M, Trs, f forall f € HS(U; FX). (A5)
(3) We extend the notion of tangential Fourier multipliers to (¢H ' (U; F*))* by defining the op-

erator M, : (0H'(U; F*)* - (cH' (U ]Fk))¥ using the action of the anti-linear functional
acting on test functions via

(Mo F, ) o111y ot = (F, M) pys, o1 for all g € oH' (U FY), F € (0H' (U3 F)™.
(A.6)

Then M,, is well-defined and satisfies the estimate
1Mo Fll i1y S leoll ooy 1F g it yy= for all F € GH' (U F¥)*. (A7)
Proof. This follows from Lemma A.12in [29]. O
A.3. A parameter dependent implicit function theorem
In this subsection we aim to prove a variant of the implicit function theorem, for functions of
the form fy(-) = f(«, -) where @ € R and where the underlying spaces are allowed to vary with
the parameter «. First, we establish a variant of the inverse function theorem.
Theorem A.5. Let X,Y be Banach spaces and suppose {Xqy}ae©,1) C X is a one-parameter
family of closed subspaces of X. For any a € (0, 1), suppose fy € C*(Uy; Y) for a non-empty

open set Uy, C X, containing 0, f,(0) =0, and Df,(0) € L(Xy; Y) is a linear homeomorphism.
Furthermore, we suppose there exists constants € >0, C > 2 such that Bx,(0, ¢) € Uy and

<C
£2(X;Y)> =

(A.8)

D fu(2)|

sup IIDfa(O)HL(xa;Y)"‘HDf“(O)_lu T oy
we.) [:(Y§Xa) zEBx,I(Oyé‘)

Then the following hold.

(1) There exists a § > 0 such that for all a € (0, 1), there exists an open set Vy such that

Bx, (0, 3%) C Vo C Bx(0,8), fu(Va) = By (0, ), and the restriction fuly, : Vo —
fou(Vy) is a bi-Lipschitz homeomorphism.
(2) There exists a constant K > 0 such that

it (A.9)

i <”f“”C'9‘V“;Y) * c,"(fuwayxa)) s

ae(0,1)
(3) We have fy € C}l(Va; Y) and f;' € C}(fu(Va); Xa). Furthermore, Dfy(x) € L(Xq: Y) is

a linear homeomorphism for every x € V,, and Dfo[_l (y) € L(Y; Xy) is a linear homeomor-
phism for every y € fy(Vy), and the two are related via

DS ) = (Dfu (£ o)) (A.10)
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fa(Va) = By (0, 35)

Bx, (0, 5&7)

Fig. 3. A depiction of the sets Vi, fy(Vy) and the ¢-independent “core” By (0, 8/(3C)2).

forevery y € fou(Vy).
(4) If f € CK(Uy: Y) for some k =2, then f € CK(Vy: Y) and f € CF(fo(Va); Xa).

Proof. It suffices to only prove the first two items as the third and fourth items follow from the
standard inverse function theorem applied to each « € (0, 1), see Theorem 2.5.2 in [1].

For any « € (0,1) we consider the function F, : Uy — X defined via F,(x) = x —
Dfa(O)_lfa(x). Then for all @ € (0, 1), F, € C2(Uy; X), F4(0) =0, and DF,(0) = 0. Fur-
thermore, by applying the mean value inequality over By, (0, €) and (A.8) we may conclude that
for all x € By, (0, ¢),

IDFlcn < sup [D*Fac)] , ]
a0 S te[OPl] ¢ L2

<|pr.o|

D% fa0)] 1y Il € lrlly, - (AID

LY Xy) ,CZ(XQ;Y

By (A.8), we may choose § > 0 sufficiently small and independent of & for which § < (2C?)~!
and [|[DFy (X))l £(x) < % for all x € Bx, (0, 8) C E,. By the mean value inequality, we also have

[Fo(x) = FaWllx, <lx—yllx, sup [IDFa(2)llex,)
z€Bx, (0,8)

1
< 3 lx —ylx, forallx,y € Bx,(0,6). (A.12)

Fix y € By (0,8(2C)~ 1) and define the function kg : Bx,[0,8] — Bx,(0,6) C Bx,[0, 8] via
he(x) = Dfy(0)~1(y + Dfy(0)Fy(x)), where By, [0, 8] denotes the closed ball in X, with ra-
dius §. To check that the map is well-defined, we note that since F,(0) = 0, by the writing
ha(x) = Dfo(0)"'y + Fo(x) and using (A.12) we have [l (0)llx, < ClIylly + 1 lIxlly, <8
for all x € By,[0,§]. This shows that the map is well-defined. Next we note that since A
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and Fy, differ by a constant, by the estimate on DF, we also have [|Dhy(x)llz(x,) < % for
all x € By, [0, 6], which implies that &, is a contraction on the complete metric space By, [0, §].
Therefore by the contraction mapping theorem, there exists a unique x € By, [0, §] for which
he(x) = x, but since hq(By, [0, 8]) € By, (0,d), we get the inclusion x = hy(x) € By, (0, 8).
Since hy(x) = x is equivalent to fy(x) = y, we find that for every y € By (0, 8§(2C)~") there
exists a unique x € By, (0, §) such that fi, (x) =y.

Now we define the set V, = fw_1 (By (0, 5(2C)~1H)N Bx (0, 8), which by the contraction map-
ping argument above is an open subset of By, (0, §) C Bx (0, §). We first note that by (A.12), we
have

I fa () = falx, < NIDfaO)lcex,:vy (Ix = ylix, + 1 Fa(x) = Fallx,)
3
< EC Ix —ylx, forallx,y e Bx,(0,8). (A.13)
In particular, since fy(0) =0 we have || fo(x)|ly <3C/2|x|x, for all x € Bx(0, §). This im-
plies the inclusion f,(Bx,(0,8(3C)™2)) € By(0,8(2C)~!), and subsequently By, (0,
8(3C)7%) C V,. See Fig. 3.

By the contradiction mapping argument above, the restriction fyly, : Vo = fo(Vo) =
By (0, 8(2C)~ 1) is invertible. Next we note that for all x, x» € V,,, we have

It = xally, < IFa) = Fallly, + | DR o) = Foly,

1
S3 lxr —x2llx, +C 1 fa(x1) = f(x2)x, . (A.14)

This then implies

o0 = £ oo

o == xllx, S2CNF ) = f)lly =2C 1y = y2lly (A15)

forall y1, y» € fo (V) = By (0, §(2C)™"). From (A.13) and (A.15) we may conclude that fy|y, :
Vo = fo(Vy) is a bi-Lipschitz homeomorphism and the estimate (A.9) holds. O

Now we are ready to prove a parameter dependent implicit function theorem.

Theorem A.6. Let X, Y, Z be Banach spaces over I and let {Yy}qc0,1) C Y be a one-parameter
family of closed subspaces of Y. We equip the Cartesian products X x Y, X x Z with the co-norm
defined via || (x,x") HXXX/ =max{||x| x, x’| X,}, and we equip the Cartesian products X X Yy
with the norm inherited from X x Y.

For all a € (0, 1), we suppose Uy, € X X Yy is a non-empty open set containing 0, f, €
C%(Uy: Z), f2(0,0)=0, D f4(0,0) € L(Y; Z) is a linear homeomorphism, and there exists a
constant C > 2 and a non-empty open set Ey C U, containing 0 such that

sup [ 1D£y(0.0) rex. +HD o,o*IH + su H1)2 X, H <C
ote(OI,)l)<” fo (0, 0)ll £(x:v) fa (0, 0) LX) (x’y)gEa Ja(x,y) )

(A.16)
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Then there exists a §1 > 0 such that for all o € (0, 1), there exists g4 € Cg(Bx(O, 81); Ye) N
C)' (Bx(0,81); Yy) such that the following hold.

(1) g«(0) =0 and (x, g4 (x)) € Bx(0,81) X By,(0,81) C Uy for all x € Bx(0, 51).
(2) fu(x,ga(x)) =0 for all x € Bx(0,61), and if (x,y) € Bx(0,61) x By,(0,81) satisfy
fu(x,y) =0, then y = g4 (x). Furthermore, there exists a constant M > 0 for which

sup  sup  iga () ly < M. (A.17)
«€(0,1) xeBx (0,81)

Proof. For any « € (0, 1) consider the function F, : U, — X x Z defined via Fy(x,y) =
(x, fu(x,y)). Then Fy € C*(Uy; X x Z) and DF, € L(X X Yo; X X Z) may be represented
in matrix form by

_ Ix Oy,
DFalx.y) = (lea(x,y) sza<x,y))' (A.18)

Since D; f,(0, 0) is a linear homeomorphism, we readily conclude that D F;, (0, 0) is also a linear
homeomorphism. Thus, we may apply the standard inverse function theorem to conclude that Fy
is a local C2-diffeomorphism around 0. Note that D F, is then locally invertible with

—1 Ix OYa

(PFaley) = <—<D2fa(x, WD faxy) (D2 fulx, y»—l) A19)
for all (x, y) in a sufficiently small neighborhood of (0, 0). Combining the expression (A.19)
with (A.16), we may then conclude that F, also satisfies the estimate (A.8) and the rest of
the hypothesis of Theorem A.5. Thus, by Theorem A.5 there exists 1, §2, 63 > 0 such that for
all @ € (0, 1), there exists an open set V, such that we have (0,0) € Bx (0, §;) x By,(0,81) €
Vo € Bx(0,82) x By, (0,82) € Uy and Fyly, : Vo = Fo(Vy) = Bx(0,683) x Bz(0,83) is a C,Z—
diffeomorphism and a bi-Lipschitz homeomorphism. Furthermore, the C,?(Va; X x Z) norm of

F, and the C,?(Fa(Va); X X Y,) norm of Foj1 are independent of «. See Fig. 4.

Now we propose to define the function g, € C,%(BX(O,Sl); Yo) N C,?’I(BX(O,Sl); Yy) by

8a(-) = Gy(+,0), where the function G, : F,(Vy) — Y, is defined via G, = m> o Fm_1 €
C,f(Fa(Va); Yo) N C,?’I(Fa(Va); Yy). To prove the first item, we note that since (0,0) € V,
and Fy(0,0) = (0, f4(0,0)) = (0, 0), this immediately implies that g,(0) = G,(0,0) = w3 o
Fa_l(O, 0) = 0. Next we note that by the definition of F, we have (x,0) € F,(Bx(0,481) x
By,(0,61)) for all x € Bx(0,81). This implies that g4 (x) = G4 (x,0) € m2(Bx(0,81) X
By, (0, 81)) = By, (0, 81) for all x € Bx (0, 61).

To prove the second item, we note that by construction we have F, L(x,0) = (x, Gy (x,0))
for all x € Bx (0, ;). Therefore

(x, fa(x, ga(x))) = (x, fa(x, Gu(x,0))) = Fy(x, G4 (x,0))
= Fy o0 F, '(x,0)=(x,0) forall x € Bx(0,51), (A.20)

431



J. Koganemaru and I. Tice Journal of Differential Equations 411 (2024) 381-437

A

Bx(0,81) x {0}

-

Fy
E—
X X

Bx xv,(0,01) Fo(Bx xy,(0,01))

Fo(Va)

Fig. 4. A toy picture of the sets Vi, Fy (Vy) and the a-independent “core” By (0, §1).

which implies that fy (x, go(x)) = 0 for all x € Bx (0, §1). Moreover, if f,(x,y) =0 for x €
Bx(0,61) and y € By, (0,d1), then Fy(x,y) = (x, fo(x,y)) = (x,0) and so (x,y) = Fojl(x, 0).
This in turn implies that y = G4 (x, 0) = g4 (x).

Furthermore, since the Cg(Fa(Va); X x Yy) norm of F, ! is independent of « and Y, is a
closed subspace of Y, we may conclude that there exists a positive constant M for which (A.17)
holds. 0O

A.4. Smoothness of composition operators between Sobolev spaces

In this subsection we record composition results involving the flattening map § defined via

(1.5).

Theorem A.7. Let N>k > 1+ [n/2],d > 1, and m € {0,1,2}. Let ¢ € C}‘,’O(R; R) be as in
(1.5), and for every n € XH/2Z(R; R) define the map § : R" — R" via F(x) = x + ¢ (x,)n(x )ey.
Then there exists a 0 < 8, < 1 for which the map A : Hktm (R™; Rd) X Bxk+1/2(Rn—l;R) 0,48) >
H*¥R"; RY) defined via A(f,n) = f o is well-defined and the following hold.

(1) Forallm € {0, 1,2}, A is continuous.

(2) If m =1, then A is Cland satisfies DA(f, n)(f1,n1) = Onfod)en + fioF.

(3) If m =2, then A is C* and satisfies D*A(f, MI(f1,10), (f2,m2)] = (D*f o H)(¢nien,
®n2en) + (On f1 0 F)en2 + (9n f2 0 Hen.

Proof. The first and second items follow from Theorem 5.20 in [19], and a close examination of
the proof therein shows that the argument can be extended to prove the third item. 0O

Next we prove a variant of Theorem A.7 for compositions between C ,’; functions and Sobolev
functions.

Theorem A.8. Let Q2 C R" be an extension domain and assume N >k > 2+ [n/2],m €
{0,1,2}). Let f € C],;'H"'m (R™; R"™) and assume f(0) =0 if Q has infinite measure. Then the
map Ay : H*(Q; R") — HX(Q; R") defined via A r(u) = f ou is well-defined and C™.
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Proof. We prove this in four steps.
Step 1: A multiplier estimate. We first prove via finite induction the statement IP; for all 0 <

J <k, where IP; denotes the proposition that for all f € CZH(R”; R") and u,v € Hk(Q; R™),
we have the a priori estimate

[ &y @ ]y SUFN s Ul ) Tollys forall u,v e H (SR, (A21)

where (-) = (1 + |-|2)1/2 denotes the Japanese bracket.

In the case when j = 0, by the supercritical Sobolev embedding H'*1"/2(Q; R") —
CS(Q; R™) and the assumption that f € C [} (R™; R™), the estimate (A.21) is satisfied trivially.
Thus Py holds.

Next we proceed inductively and suppose that [P; holds for all 0 </ < j < k — 1 and consider
the case j 4+ 1 < k. We first note that forany 1 < p<nandu,v € Hk(Q; R™) we have

0pAy(u)= Z N, f)dpu)g, 3p(Ap(u)v) = A r(u)dpv+ Z Ay, f)dpu)gv.  (A22)
q=1 g=1

Then by the supercritical Sobolev embedding, applying the estimate (A.22) from the induction
hypothesis on f € C} 2R R, dfecC ZH (R"; R"™) and the standard Sobolev product esti-
mate with the factthat k — 1 > 1 4 [n/2], we have

A @) i S [A @] o + D 185 A @) g5 S |A @ o + D A @30 ]
p=1 p=1

n
- Z] [ Aa, £ @3p gy ST F g 100 +1F gy el i) 1ol e
p.q=

n
+ 20 Wl lall) 3yl s
p.q=l1

Sl vl o + 1Al (Naell g} Mol e + Il (el ) Naall g vl g

S Ngger el ) vl o (A23)

which shows P; 11 holds. This completes the induction argument.
Step 2: A difference estimate. Next we use the multiplier estimate from the previous step
to prove the statement Q; for 0 < j < k, where QQ; denotes the proposition that for all f €

CJT (R R™) and u, v € H(; R™), the difference A r(u) — A ;(v) € HY (2; R") and satisfies
|Afw)—Af@)],; — 0ifv—uin H*(Q: RM). (A.24)

To prove Q; for each admissible j we proceed by finite induction again.
In the case when j = 0, we note that by applying the mean value inequality we may deduce

that
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|Af@) = Ar@)] 4o < Iflle) e =vligo < Wfligy lu = vll e (A.25)

Thus Ay(u) — Ap(v) € HY(Q:R") and |[Af(u) — Ay()] 0 = 0 as v — u € HY(Q; R).
Thus Qg holds.

Next we suppose that (Q; holds for all 0 <1 < j <k — 1 and consider the case j + 1 < k. We
note that (A.22) implies that for all 1 < p <n,

Op(Ar(m) —Ar(v) = Z No, s W)dp(u)g — Ng, £ (v)0p(v)g
g=1

= Z (A;;qf(u) — Aaqf(v)) 0p(u)g + ZAaqf(v)ap(u —v), forallu,v e Hk(Q; R™),
q=1 gq=1
(A.26)

thus by (A.25), the multiplier estimate (A.21), the induction hypothesis, and basic product esti-
mates, we have

A @) = Ar@)] g = Ar@) = Ar@)] 4o+ Y [0p(A @) = Ar @),
p=1

SNAr@) = Ar@) | o+ D (Mg, r @) = Mgy p () 3p@g |,
p.q=1

+ Z ”Af’qf(v)ap(” —V)g ”Hj
p.q=1

SIAra) = Ap@)| o + lull g Y [ As, 5 @) — Aoy p @) ] 1y
q=1

n
300 g Mol e = vl s (A27)
g=1

This shows that A r(u) — A r(v) € Hj‘H(Q; R") and ||Af(u) — A.,r(v)”h”»+1 —0ifv—uc
H/+1(Q; R"). Thus Q4 holds and the induction argument is complete.

Step 3: Well-definedness and continuity. Next we utilize the result from the previous step to
show that A ¢ : H*(€2; R") — H*(S; R") is well-defined and continuous. We note that in the
case when 2 has infinite measure, using the additional assumption f(0) = 0 we may apply the
mean value inequality to deduce that

[Af@)|=1f@w) — £O)| < IDfllco lul for allu & HY(Q: R, (A.28)
which in turn implies that
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A @) o S I ey Nl gro S W Fll ey Maell e for allu € H*(Q: R™). (A.29)

In the case when 2 has finite measure, the estimate (A.29) also holds. In either case, we may use
v=0¢e H*(Q;R") in the estimate (A.27) for j + 1 = k from the previous step and (A.29) to
immediate deduce that

A £ @) | e S TA @] o + Nl g D [ Ay ) = Ay s O ooy + Y g £ ¢ Nl
q=1 q=1

n
Sl Nl g+ el e Y [ Mgy @) = Aa, £ O) |
q=1

+ ||f||C1l; lue|| g« for allu € HM(Q; R™).  (A30)

Since 9, f € CK(R™;R"), from Qi1 we know that Ay, p(u) — Ay, r(0) € H! for all
1 < g < n, therefore Ar(u) € HK(Q: R") for all u € H*(Q; R"). From Q; we also have
|Af@) = Ap@)| e = 0if v— u in H*(Q;R"), thus we may conclude that the map A :
HF(; R") — H*(Q; R") is well-defined and continuous.

Step 4: Continuous differentiability. To conclude the proof we show that A ¢ is C™ given
fe Cf+1+m R™; R™) for m € {1, 2}. In the case when m = 1, we note that by the fundamental
theorem of calculus for all u, v € H¥(€2; R") we have

1

Apu+v)—Ap@) =Y Ay, r)(v)g =Y (v) / Ag, p(u+1v) — Ay, r(u)dt, (A31)
qg=1 qg=1 0

=R

and thus by the fact that H*($2; R”) is an algebra and applying the statement Qy from the induc-
tion argument above to 9, f € C'g“ (R™; R™), we have

IR 11l g

lvll g

1
n
< Z/ [ Mg, r e +1v) — Ay, p)| i dt — Oas vl ge > 0. (A32)
q=1 0
Thus we may conclude that A ¢ is differentiable when m =1 and

DA W) =" Ag, ()W), (A33)
g=1

Since DA ¢(u) is in terms Aj, s which satisfies (A.24), we may then conclude that DAy is
continuously differentiable.

To conclude in the case of m = 2, we note that by (A.33) and the fundamental theorem of
calculus again we have
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DAf(u+w)() = DAp)(®) = Y Ag,i, r@)(0)p(w)g

p.q=1
n 1
= Z (v)p(w)q/Aapaqf(u+tw)—Aapaqf(u) dt. (A34)
pq=1 0

=R,

Using the fact that H¥(; R") is an algebra and applying the statement Qj, from the induction
argument above to 9,9, f € C, l,f“ (R™; R™), we then have

1
IR2l £ "
W(k) S Z f “Aal’a‘ff(u +iw) - A3p3qf(u)|| Hk dt — 0as |lwl gz« — 0. (A.35)
H

pg=ly

This shows that A ¢ is twice-differentiable with

D*Af@)(w, w)= Y Ag,s,r@)(®)w),. (A.36)
P.q=1

Since Ay, r satisfies (A.24), we may then conclude that A ¢ is C Zwhenm=2. O
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