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To the best of our knowledge, this is the first proof of well-
posedness of the solitary stationary wave problem and the
first continuous embedding of the stationary wave problem
into the traveling wave problem. Our techniques are based on
vector-valued harmonic analysis, a novel method of indirect

symbol calculus, and the implicit function theorem.
© 2024 Elsevier Inc. All rights are reserved, including those
for text and data mining, Al training, and similar
technologies.

1. Introduction
1.1. The free boundary Navier-Stokes system

Our goal in this paper is to study stationary and slowly traveling solutions to the free
boundary incompressible Navier-Stokes equations in three dimensions. These equations
govern the dynamics of a finite-depth layer of viscous, incompressible fluid lying between
a fixed, rigid, flat bottom and an unknown (free) top that evolves with the fluid. In
order to properly phrase the equations, we first establish some notation for describing
the unknown fluid domain.

The fluids we study will always be assumed to occupy three-dimensional sets of the
form

Qnl ={(z,9) eR*?xR : 0 <y <b+n(z)}, (1.1)

where b € R* is a fixed parameter giving the equilibrium depth of the fluid, and 7 : R? —
(—b, 00) is the unknown free surface function. We will always have that n is continuous
so that the fluid domain Q[n] is open and connected. The upper free boundary and the
fixed lower boundary will be denoted by

Y[ ={(z,y) €ER*x R : y=b+n(z)} and By = R? x {0}. (1.2)
Throughout the paper we will also denote the equilibrium sets with the short-hand
Q= Q[0] =R? x (0,b) and ¥ = X[0] = R? x {b}. (1.3)

The motion of the fluid domain is encoded through the use of a time-dependent free
surface function ¢ (¢,-) : R? — R satisfying ¢ (,-)+b > 0, which then generates the mov-
ing fluid domain Q[¢ (£,-)] C R3 and the free upper boundary %[ (¢,-)] as above. The
fluid is described by its velocity vector field w (¢, -) : Q[C (¢,-)] = R™ and its scalar pres-
sure 7 (t,-) : Q[C (¢,-)] = R. The viscous stress tensor within the fluid is the symmetric
tensor

Su(r,w) = rlzxs — pDw, (1.4)
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where Dw = Vw + Vw® is the symmetrized gradient, and p € R is the fluid viscos-
ity.

In this paper we will assume that there are two sources of bulk force that act on
the fluid through vector fields defined on Q[( (¢,-)] for all ¢, as well as three sources of
stress that act on the fluid through vector fields defined on X[¢ (¢,-)]. The first bulk
force is a uniform gravitational field —pges, where p € R™ is the constant fluid den-
sity, g € RT is the gravitational constant, and e3 = (0,0,1) € R3. The second is a
spatially-varying generic bulk force F (¢,-) : Q[C (¢,-)] — R3. The first of the stresses
is due to a constant external pressure Pey; € R, which then acts via the vector field
PextV¢(t,.y, where ve( ) is the unit normal to the free surface at time ¢. The second is
generated by a generic spatially-varying stress tensor 7 (t,-) : $[C (¢, )] — R3*3, which
then defines the stress vector T (t,-) v¢(+,.). We note that in continuum mechanics it
is usually the case that T (¢,-) is symmetric, but this condition plays no role in our
analysis, so we have allowed for the most general case. The third, and final, source
of stress is due to surface tension and is given by the vector field k(¢ (t,-)))vc(t,.)s
where k € RT is the coefficient of surface tension and the mean curvature operator
is

2, _
Q) =V - ((L+ V<) 72y 0). (15)
Here we have written V|| = (01, 02) to refer to the ‘tangential gradient.

The free boundary incompressible Navier-Stokes equations then dictate how (, w, and
r evolve in time as the result of applied stresses and forces:

p(Oyw +w - Vw) + V- S, (r,w) = —pges + F in Q[((t,-)],

V-w=0 in Q[C(2, )]

=S, (ryw)ve + (Poxt — k7 (Q))ve = Tue on X[¢(t, )], (1.6)
¢ +w- (Vi¢,-1)=0 on X[¢(t, )],

w=20 on Y.

The first equation in (1.6) is the momentum equation, and it requires a Newtonian
balance of forces in the fluid bulk. Next is the incompressibility constraint, which
asserts conservation of mass. After this is the dynamic boundary condition, which en-
forces a balance of stresses acting on the free surface. The penultimate equation is the
kinematic boundary condition, which determines how the free surface evolves accord-
ing to the fluid velocity. The final equation in (1.6) is simply the no-slip boundary
condition for the velocity on the rigid bottom. For the sake of simplicity, we will
henceforth assume that p = 1. This is no loss of generality, as we will continue to
track the generic constants (g, u,x) € (RT)3 as well as generic sources of force and
stress.
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1.2. Equilibria, stationary and traveling reformulations, and the role of stresses and
forces

The free boundary incompressible Navier-Stokes equations admit a flat, stationary
solution in the absence of external stress or forces, i.e. F = 0 and 7 = 0; namely, fluid
domain Q = Q[0] and

(Teqs Weqs Geq) = (Pext + 9(b — idgs - e3),0,0). (1.7)

In this paper, we work perturbatively around this equilibrium to study stationary and
slowly traveling solutions. To describe these, we let v € R denote a fixed speed and make
the ansatz that F and 7T are time-independent in the frame moving at velocity ~ve;. In
turn, we assume that ((t,-) = n(- —vte1), w(t,-) = v(- —~vtey), r(t,:) = Pexy + 9(b—idgs -
e3) +q(- — ~yter) + gn(- — ytey), for new unknowns 7 : R? — (—b,00), v : Q[n] — R3, and
q : Q[n] — R. Rewriting the system (1.6) under this ansatz yields:

(v—ne1)-Vo+V-S,(¢+gnv)=F inQn,

V-v=0 in Q[n],

=S, v)Ny = kI (N, = TN, on X[n], (1.8)
yoin+v-N,; =0 on X[n],

v=0 on X,

where NV, = (—=Vn,1). We emphasize three key features of this reformulation. First,
the external pressure, Peyt, only appears in the hydrostatic background that has been
subtracted off and will play no further role in the analysis of (1.8). Second, the constant
gravitational force field has been shifted into the term gn in the first equation. Third,
while the set Q[n] is determined by 7, only derivatives of n appear in the equations
themselves.

The problem (1.8) lies at the confluence of two distinct lines of inquiry in the
mathematical fluid mechanics literature. The first line of inquiry treats the dynamic
problem (1.6) as an initial value problem. In this context, the stationary problem (y =0
in (1.8)) arises naturally as a special type of global-in-time solution with stationary
sources of force and stress. One then expects solutions to the stationary problem to play
an essential role in the study of long-time asymptotics or attractors for the dynamic
problem (see, for instance, Robinson [78]). The second line of inquiry, which dates back
essentially to the beginning of mathematical fluid mechanics, concerns the search for
traveling wave solutions moving with speed v # 0. In this context, a huge literature
exists for the corresponding inviscid problem, but progress on the viscous problem was
initiated much more recently in the work of Leoni and Tice [58], and further developed by
Stevenson and Tice [93,92], Koganemaru and Tice [55], and Nguyen and Tice [63]. The
analysis in [55,58,63,93,92] crucially relies on the condition v # 0 to provide an estimate
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for the free surface function in a scale of anisotropic Sobolev spaces. When v = 0, this
estimate degenerates, and [58] fails to construct solutions within their functional frame-
work. Thus, a natural question is whether there exists an alternate functional framework
in which solutions can be constructed for all v in a neighborhood of 0.

Our main goal in the paper can now be roughly summarized as follows. For every
(g,1,k) € (RT)? and ~ in an open set containing 0 we wish to identify an open set of
force and stress data that give rise to locally unique nontrivial solutions. Moreover, we
aim to prove well-posedness in the sense of continuity of the solution triple with respect
to the force-stress data as well as the various physical parameters and wave speed.

The stated goal suggests that the force and stress should play an essential role in
the construction of solutions. This is indeed the case, as we now aim to justify. An
elementary formal calculation yields the following balance between dissipation and power
for solutions to (1.8):

/%|Dv|2: /}‘.v—|—/TVn~U. (1.9)

Q[n] Q[n] =[n]

The physical interpretation of this identity is that if a stationary or traveling wave
solution exists, then the power supplied by the forces and stress (the right side of (1.9))
must be in exact balance with the energy dissipation rate due to viscosity (the left side
of (1.9)). Identity (1.9) tells us even more if we take F = 0 and 7 = 0, in which case the
L?-norm of Dv vanishes in Q[n]. By a version of the Korn inequality, this implies that
v = 0, and in turn, this implies that ¢ = 0 and 7 is constant. Thus, we only expect to
be able to generate non-trivial stationary or traveling wave solutions (in a Sobolev-type
framework in which (1.9) is valid) via the application of nontrivial F or T.

1.8. Previous work

We now turn our attention to a brief survey of the mathematical literature associated
to (1.6) and (1.8). This is vast, so we will restrict our focus to those results most closely
related to ours.

For a thorough review of the fully dynamic problem (1.6) in various geometries we refer
to the surveys of Zadrzytiska [99] and Shibata and Shimizu [80]. Beale [16] established
local well-posedness with surface tension neglected. With surface tension accounted for,
Beale [17] established the existence of global solutions and derived their decay properties
with Nishida [18]. Solutions with surface tension were also constructed in other settings
by Allain [12], Tani [95], Bae [14], and Shibata and Shimizu [81]. Solutions without
surface tension were also constructed in various settings by Abels [6], Guo and Tice
[44,45], and Wu [98]. Related analysis of linearized and resolvent problems can be found
in the work of Abe and Shibata [1,2], Abels [4,5,7], Abels and Wiegner [8], and Abe and
Yamazaki [3].



6 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617

The inviscid analog of the traveling wave problem, (1.8) with v # 0, which is also
known as the traveling water wave problem, has been the subject of intense work for
more than a century. The survey articles of Toland [97], Groves [43], Strauss [94], and
Haziot, Hur, Strauss, Toland, Wahlén, Walsh, and Wheeler [48] contain a thorough
review. Focusing entirely on the case of solitary (i.e. non-periodic) waves, in analogy
with what is studied in this paper, the only positive existence results on the stationary
(v = 0) inviscid problem we are aware of are the recent constructions by Ehrnstrom,
Walsh, and Zeng [35] and by Matthies, Sewell, and Wheeler [60].

In contrast, progress on the viscous traveling wave problem has only recently com-
menced. Leoni and Tice [58] developed a well-posedness theory for small forcing and
stress data, provided v # 0. This was generalized to multi-layer, inclined, and periodic
configurations by Stevenson and Tice [93] and Koganemaru and Tice [55]. The corre-
sponding well-posedness theory for the compressible analog of (1.8) was developed by
Stevenson and Tice [92]. Traveling waves for the Muskat problem were constructed with
similar techniques by Nguyen and Tice [63]. There are also experimental studies of vis-
cous traveling waves; for details, we refer to the work of Akylas, Cho, Diorio, and Duncan
[29,34], Masnadi and Duncan [59], and Park and Cho [65,66].

We now turn our attention to the viscous, stationary (y = 0) literature. To the best
of our knowledge, the precise configuration we study in (1.8) - including bulk force, a
surface stress, and a non-compact free surface - has not yet appeared in the literature for
either the three-dimensional or two-dimensional problem. However, numerous models of
similar physical scenarios have been considered.

The non-compactness of the free boundary presents a fundamental difficulty in study-
ing (1.8), as it creates a low-mode degeneracy that simply is not present in, say,
the spatially periodic variant or related problems with compact free boundaries. As
such, we only briefly review the stationary literature for compact free boundaries. Ben-
jamin [22] studied periodic disturbances to steady flow along an inclined plane in two
dimensions. Periodic solutions in two dimensions were also studied by Puhnadev [76].
Solonnikov [85,86], Jean [54], and Ja Jin [53] studied various compact free surface prob-
lems with sources and sinks or inflow and outflow conditions in a bounded container
with an applied force. In three dimensions, Bemelmans [19-21] studied various sta-
tionary droplet problems, considering both the cases with and without surface tension.
Abergel [9] gave a geometric approach for studying various configurations in both two
and three dimensions, which was expanded on in Abergel and Rouy [10]. We refer also
to Solonnikov and Denisova [89] for more references regarding the bounded free surface
stationary literature.

Next, we discuss the literature involving unbounded domains and non-compact free
surfaces. Much of the attention of the existing work is devoted to steady flows driven
by gravity down inclined planes with possibly non-uniform structure. In two dimensions,
this configuration was considered by Socolescu [82], Nazarov and Pileckas [62], Pelickas
and Socolowsky [67,68], Socolowsky [84], and Pileckas and Solonnikov [69]. In three
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dimensions Gellrich [37] studied stationary flows with large viscosity and small localized
bulk force.

The remaining non-compact literature in two dimensions is primarily devoted to more
complicated geometries. For instance, Pileckas [70-73] considered boundary inflows, mov-
ing lower boundaries, gliding plates, and flow down a plane making a corner, while
Socolowsky [83] described fluid flowing out of a pipe, driven by gravity. In three dimen-
sions the situation is similar: Pileckas [74] studied liquid coming out of a narrow channel
onto an incline plane, and Solonnikov [87,88] studied the flow generated by the slow
rotation of an immersed rod and flow out of a circular tube.

To conclude, we again emphasize that, to the best of our knowledge, there are no
results in the literature that study either: (1) the well-posedness in all parameter regimes
of the three dimensional, non-compact stationary wave problem with applied bulk force
and surface stress, i.e. system (1.8) with v = 0; or (2) the continuous connection between
the recent developments in the viscous free boundary traveling wave literature and the
stationary wave problem. We address both of these in this paper.

1.4. Flattened reformulation

It will be convenient to reformulate the system (1.8) in the stationary domain
Q = R2? x (0,b). To this end, we construct a flattening map (also called a Hanzawa
transformation in the free boundary literature) from n by way of §, : Q@ — Q[n] defined
via

STI(JZ?Z-/) = (33794'577(%11))7 (110>

where £ is the extension operator considered in Proposition 5.17. Note that in Proposi-
tion 7.1 we show that the above flattening map is well-defined and enjoys a collection of
useful properties on the class of free surface functions considered in this paper.

Given 7 in an appropriate function space (which will be specified later), and hence
Ty, we define two related quantities: the Jacobian J,, : @ — R™ and (when J,, is nowhere
vanishing) the geometry matrix A, :  — R3*3, defined respectively via

J»,, = det(V&]) =14+ 83577 = 83(Sn . 63) and "477 = (V&n)_t. (1.11)

Provided that J, > 0 and J,,1/J,, € L*(£), we then have that §,(Q) = Q[n] and
3, is a homeomorphism from Q to Q[n] such that its restriction to Q defines a smooth
diffeomorphism to Q[n], §,(X) = X[n], and §,, is the identity on ¥¢. It will also be useful
to introduce the map

- ¢ [((L+05En)Taxa O2x1 )\ . 3x3

when reformulating (1.8).
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We then introduce the new unknowns p = gog, : @ — R and u = M, (vogF,) : @ — R3.
The problem (1.8) then transforms to the following system:

My ((u =y Myer) - (M w)) + 9 (p + o)
—uMy UV - (Da, (M ) M) = J, M F o §y in £,
V-u=0 in €,

. . . . (1.13)
—(pI — puD 4, (M, u))Mypes — k7 (n)Mpes =T o §,M,es on 3,
u-ez+yn=0 on X,
u=20 on Y.

Here we have used the notation Dyw = VwM" + MVw*, for M = A, and w = M, "u.
1.5. Statement of main result and discussion

In order to state and discuss our principal results, we must first introduce the function
spaces we will employ in our analysis. We will do so rapidly here, emphasizing that these
spaces are more thoroughly developed in Sections 1.6 and 5.

Given an open set I' C R%, k € N, and a normed vector space V, we will write C*(I"; V)
for the k-times continuously differentiable maps from I' to V. The notation C§(I'; V)
denotes the (possible) subspace of functions f € C*(I'; V) for which Sup|o <k |0 f(n)] —
0 along any sequence {zp fneny C I for which |z,| — oo as n — oo.

Fix 1 < r < 2. For I denoting either the set (0,b) or else R and U = R? x I,
we define L,»(U) = L"(R?% L%(I)) to be the mixed-type Lebesgue space. For s € N
we define the mixed-type Sobolev spaces H, ,(U) modeled on L,3(U) in the natural
way (see Definition 5.1). For ¢ € [0,00), we let H*"(R?) = {f € L"(R?) : (D)!f €
L"(R?)} denote the standard Bessel potential Sobolev space (see, e.g., Section 1.3.1 in
Grafakos [42] or Section 6.2 in Berg and Lofstrom [23]) and let H'%"(R2) denote the
space of L?"/(2=7)(R?) functions whose distributional derivatives belong to H*"(R?) (see
Definition 5.14).

For s e N, 1 < r < 2 we set X;, = HTIJQFS(Q) X Hf’gs(Q;Rg’) x H5/2+s7(%) and
W, , = Hﬁ;s (R3; R3*%) x H»(R?* R?). With the notation established, we come to our
main theorem, which packages together several results in a fairly concise form but may be
briefly summarized as follows: solitary stationary solutions to the free boundary incom-
pressible Navier-Stokes equations are generic and depend continuously on the physical
parameters and the data; moreover, every such solution lies along a one parameter fam-
ily of slowly traveling waves. After the theorem statement we will further unpack and
discuss its various statements.

Theorem 1 (Proved in Section 7: see Theorem 7.13, Proposition 7.1, and Corollary 7.1/).
Let1 <r<2and N > s> 3/r+1. Then there exist open sets Wy C R x (RT)? x W,

and {Vs(g7ua K‘)}(g,u,n)G(R*)i‘ - Xs,m Satisfying
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{0} x (R*)% x {0} C W, and 0 € (N Velg.pr), (1.14)
(g,p,5)E(RT)3

and a continuous map
WS 9 (779’;“7"{/77’7 ]:) = (p7 uu 77) E V;(g,/},, “i) C XS,”‘ (115)

such that the following hold.

(1) Classical regularity and flattening map diffeomorphism: Let k = s —2 — |3/r| € N.
Then X, < C2th(Q) x C3TH(Q;R3) x CTF(X). Moreover, for every (p,u,n) €
U(g’N7H)E(R+)3 Vs(g, 1, k), the associated flattening map §, defined in (1.10) is a
smooth diffeomorphism from 0 to Q[n] that extends to a C*** diffeomorphism from
Q to W

(2) Solution operator: The map (1.15) is a solution operator to the flattened sys-
tem (1.13) in the sense that for each (v,g,u,k,T,F) € Wy the corresponding
pressure, velocity, and free surface (p,u,n) € Vi(g,u,k) is the unique triple in
Vs(g, 1, k) classically solving (1.13) with stress-force data (T, F), wave speed vy, and
physical parameters (g, u, k). Moreover, the free surface n obeys an extra ‘degenerat-
ing anisotropic estimate’ in the sense that the composition map

W2 (v, 8,1, 5, T, F) = (p,u,n) = yRin € L"(X) (1.16)

is well-defined and continuous. Here Ry refers to the Riesz transform in the e;-
direction.

(3) Eulerian transfer: Each solution to the flattened system (1.13) produced by (1.15)
gives rise to a classical solution to the stationary-traveling Eulerian formulation
of the problem given by system (1.8) by undoing the change of unknowns that led
from (1.8) to (1.13).

We now pause to unpack the content of this theorem with a few comments. The the-
orem guarantees that for every choice of positive physical parameters g, i, and & there
exists a non-empty open neighborhood of the origin in wave-speed, stress, and force data
(v, T, F)-space for which we can uniquely solve (1.13), and the solution depends contin-
uous on the data and wave speed, as well as the physical parameters. One should think
of this as being analogous to a small-data global existence theory for the corresponding
dynamic problem, which is all one should expect due to potential singularity formation
in the boundary geometry [28,31].

It is worth highlighting both the superfluous and concrete boundaries of our main
theorem. We choose to work in three spatial dimensions for the following two reasons.
First, our methods here simply do not work for the two-dimensional variant of (1.13).
This is due to the fact that in two spatial dimensions the interface is one dimensional,
and hence the container space for the free surface function is degenerate for all choices
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for tangential integrability parameters 1 < r. The choice r = 1 would be an adequate
replacement, but the harmonic analysis methods employed here are unavailable in that
setting. The second reason we chose to study the three dimensional problem is physical
relevance. The entirety of the theorem can be generalized to handle dimension four
and higher, but in this case it would actually be possible to construct solutions in a
simpler functional framework utilizing only L?-based spaces. Another hard boundary in
our theorem is seen in the signs of the physical parameters. We crucially use the strict
positivity of the coefficient of gravity g, the viscosity u, and the surface tension coefficient
x and are simply unable to relax any of these parameters to zero. On the other hand,
we believe that the lower regularity threshold of N s > 3/r + 1 in Theorem 1 is a
soft boundary. We chose this numerology in an effort to minimize the complexity of the
nonlinear analysis, but it could potentially be improved upon with sufficient additional
work.

The final remark is on the qualitative nature of the waves produced by Theorem 1.
Thanks to the embedding guaranteed by the first item of this theorem, we see that the
free surface perturbation 7 decays to zero at infinity. This means that the waves we
construct are solitary waves, to borrow a phrase from the traveling wave literature. Due
to the level of generality of our main result, there is not much more we can say about
the qualitative nature of our solutions; however, our well-posedness result opens to the
door to more detailed qualitative studies given a fixed wave speed and applied stress and
force data.

We now state a couple consequences of the main theorem that formalize the above
discussion. The first clarifies what we know for a fixed choice of physical parameters

(9.1, 1) € (RT)?.

Corollary 2 (Proved in the third item of Corollary 7.14). Let r and s be as in Theorem 1.
Then for each (g, i, ) € (RT)3 there exists an open set (0,0,0) € Ws(g, pu, k) C Rx Wy,
with the property that for every triple of wave-speed, stress, and force data (v,T,F) €
Ws(g, u, k) there exists a unique (p,u,n) € Vi(g, u, k) such that system (1.13) is satisfied
classically.

The second corollary elucidates how we formulate well-posedness of the stationary
wave problem.

Corollary 3 (Proved in the fourth item of Corollary 7.14). Let r and s as in Theorem 1.
Then there exists an open set

(RT3 x {0} c Z, c (RT)? x W, (1.17)
and a continuous mapping

Zs 3 (9, 1ty 5, T, F) = (pu,m) € Vi(g, i1, k) C X r (1.18)
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with the property that for each (g,u,k,T,F) € Zs there exists a unique (p,u,n) €
Vs(g, 1, k) such that the stationary free boundary incompressible Navier-Stokes equations,
system (1.13) with v = 0, is satisfied classically.

We now aim to summarize the principal difficulties in proving Theorem 1 and our
strategies for overcoming them. This discussion also serves as an outline of the paper.

As is the case for the traveling wave problems studied in [55,58,63,93,92], the station-
ary boundary value problem (1.13) lies in an unbounded domain of infinite measure and
possesses a non-compact free boundary. The equations are quasilinear and do not enjoy
a variational formulation. Consequently, compactness, Fredholm, and variational tech-
niques are unavailable. This suggests that the production of solutions ought to proceed
via a perturbative argument, such as the implicit function theorem, which has proved
successful in the aforementioned work on traveling waves. As such, we begin our dis-
cussion by stating the linearization of (1.13) at zero-wave speed around the equilibrium
solution:

Vip+gn) — pAu=f in €,

V-u=0 in Q,

—(pI — pDu)ez — kAynes =k on X, (1.19)
u-e3 =0 on X,

u=0 on Y.

The most natural linear theory for system (1.19) lies within L?-based Sobolev
spaces. In Section 2 we prove that for every choice of s € N, f € H*(;R3), and
k € HY?*t$(3;R3), there exists a solution p € H'™*(Q), u € H?>T*(Q;R?), and
n € H%2+5() (meaning Vy € H3/2t(3;R?)) that is unique up to modifications of
n by constants. Moreover, we have an estimate of the solution (p,u,n) in terms of the
data (f, k).

While this basic L?-based linear theory is encouraging, it is ill-suited for the actual
task at hand. The problem is two-fold. First, there is no canonical choice of 7, as it is
only determined up to a constant, and this is highly problematic in using 1 to generate
the set [n] in which the nonlinear problem (1.8) is posed. Second, and more severe,
is that the inclusion Vn € H3/2+5(%;R?) can never provide an estimate of 7 € L>°(X)
for any choice of s € N. This is due to the nature of the critical Sobolev embedding in
two dimensions, since V) € L?(3;R?) only guarantees that n € BMO(X). The potential
unboundedness of 7 is an even more severe obstruction in building Q[n]. It is worth
noting that for the traveling problem with  # 0, the papers [55,58,63,93,92] exploit an
essential auxiliary estimate of yR1n € L?*(X), where R; is the Riesz transform in the
ey direction, in order to guarantee 1 belongs to a special anisotropic Sobolev space that
embeds into C§(3;R); this then overcomes the criticality problem and allows for the
construction of solutions in the anisotropic space. We see from (1.16) that we obtain
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an analogous estimate here when « # 0, but when v = 0 there is simply no auxiliary
estimate available, and so the anisotropic space is of no use.

Our path forward begins with the following observation. If we could develop a theory
for (1.19) that ensured the inclusion Vi € W L7 (3;R?) for some 1 < r < 2 and
N > ¢ > 2/r, then the subcritical Sobolev embedding would provide a canonical way
to modify n by a constant to guarantee the inclusion n € LQT'/(Q_T')(E). Due to the
embedding (L?"/Z=7) nWET)(8) < CJ(X), free surface functions in this space are not
only admissible for the nonlinear problem, but also enjoy a wealth of nonlinear properties
that permit the transition from (1.19) to the full nonlinear problem (1.8).

We thus arrive at the principal task of developing a linear well-posedness theory
for (1.19) that yields L"-estimates (for 7 < 2) on the gradient of the free surface and
its derivatives. One possible strategy for this would be to pose the problem in purely
L"-based Sobolev spaces. There are existing techniques in the literature (for instance,
[1-5,7,8]) that provide an L"-based well-posedness theory for the Stokes problems with
various boundary conditions. Modifying these to incorporate a coupling to a free surface
function n appears to present a number of serious challenges. Rather than start with this
L"-Stokes theory and attempt to build in a coupling to the free surface function, we have
instead identified an alternate approach that is more deeply connected to the symmetries
of the equilibrium domain and the natural L?-energy structure of the problem. This
technique allows for the simultaneous construction of the solution triple (p,w,n), has
clear connections to the relatively simple L2-existence theory, and has the potential for
generalization to other problems with similar symmetries.

Our approach aims only to develop the L"-theory in the horizontal variables, while
maintaining an L?-theory in the vertical variable. More concretely, we utilize mixed-type
Sobolev spaces modeled on the mixed-type Lebesgue spaces L, 2(2) = L"(R?; L?(0,b))
for the bulk unknowns p and u and the bulk data, and we use Bessel potential Sobolev
spaces H*"(R?) for the (gradient of the) boundary unknown 1 and the boundary data.

At first glance it might seem that the mixed nature of these spaces will make them
cumbersome to work with, but in fact they are a natural and streamlined choice of a
functional framework to satisfy our stated goals, as we now aim to justify. First, we
observe that the domain € is invariant under translations in the two horizontal variables
and that the solution operator to system (1.19), denoted

T: L*(Q;R%) x H'?(3;R?) — HY(Q) x H?(Q;R?) x (HY?(2)/R), (1.20)

with (p,u,n) = T(f, k) solving the PDE, commutes with all horizontal translations. By
making the identification 3 ~ R? and employing the factorization (see Lemma 5.2)

H3(Q;RY) = H*(R%;, L2((0,b); RY)) N L2(R%; H*((0,b); RY)) for 5,¢ € N, (1.21)

we see that T is a translation-commuting linear operator acting between certain infinite-
dimensional Hilbert-valued Sobolev spaces. Building on some well-established tools in



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 13

harmonic analysis (see Section 3.1), we deduce from this that T is diagonalized by the
Fourier transform in the two horizontal variables. More precisely, this grants us the
existence of an operator-valued symbol

m: R? — L(L*((0,b); C3) x C3; H'((0,b); C) x H?((0,b);C3) x C) (1.22)

such that T = m(D) and the operator norm of T is equivalent to a certain weighted
L*>-type norm on the symbol m. Harmonic analysis provides numerous frameworks for
extending Fourier multiplication operators, such as m(D), from L2-based spaces to L"-
based spaces for 1 < r < co. A celebrated tool in this area is the Mikhlin-Hérmander
multiplier theorem; briefly, this result says that if the derivatives of the symbol obey cer-
tain estimates, then the corresponding multiplication operator can be uniquely extended
from L2-based spaces to L"-based spaces for every 1 < r < oo. In our context, with the
symbol m and the map T, there is an appropriate vector-valued version of this result to
which we appeal and subsequently generalize (see Theorems 3.8 and 3.14). Taking for
granted, for the moment, that m satisfies the necessary symbol estimates, we then learn
that

T : L"(R? L?((0,b); R?))
x H'Y/27 (% R%) — (H'"(R% L2((0,b);R)) N L™ (R* H'((0,b);R)))
x (H>(R? L2((0,0); R%)) N L7 (R H2((0,0); R?)) x (H*>7(%:R)/R),  (1.23)

is a bounded linear extension of (1.20) for any 1 < r < oco. The mixed-type Sobolev
spaces now simply show up by undoing the factorization (1.21), i.e.

H*"(R? L?((0,b); R*)) N L"(R? H*((0,b); R")) = HS ([ RY) for 5,0 €N, r € (1, 00),
(1.24)
which means that (1.23) rewrites as

T HY (R x HY27T(S;R?) — HEH(Q) x HE 5 (4 R?) x (H%/>7(2)/R).  (1.25)

In a similar manner, the mixed-spaces admit a simple Hilbert-valued Littlewood-Paley
theory that allows for a rapid development of their properties.

Further evidence of the utility of the mixed-type Sobolev spaces and the tangential-L"”
framework is seen in the fact that it allows us to verify that the vector-valued symbol
m satisfies the necessary Mikhlin-Hoérmander hypotheses in a surprisingly effective and
efficient manner. Our proof requires no more than the vector-valued harmonic analysis
toolbox of Section 3, paired with the identification of a certain recursive structure present
in the L? theory for (1.19). In fact, this technique does not rely on any explicit formula
for m, nor any specific fluid-dynamical structure of the equations themselves, and so
we expect it can serve as a general method for other problems posed in domains with
a partial translation symmetry. The main idea of our technique is that derivatives of
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the symbol are obtained from its difference quotients, which can be computed explicitly
in terms of compositions of the solution operator T with modulation operators (see
Proposition 4.5). The solution operator T interacts with modulation in a very simple
manner due to the product rule, and this allows us to deduce differentiability properties
of the symbol m by recursively employing 7" itself and the correspondence between its
operator norm and L°°-type norms of m. This not only yields the estimates needed to
invoke Mikhlin-Hérmander, but also yields analyticity of m away from the origin (see
Theorem 4.13).

Section 5 records a number of properties, linear and nonlinear, about the mixed-type
Sobolev spaces and the subcritical gradient spaces. We combine these with the L?-linear
theory and the above vector-valued harmonic analysis ideas in Section 6, which culmi-
nates in the linear well-posedness result of Theorem 6.6. In Section 7 we then formulate
the nonlinear system (1.13) as a nonlinear mapping between appropriate mixed-type
spaces and then produce solutions via the implicit function theorem. The proofs of The-
orem 1 and Corollaries 2 and 3 are recorded in Section 7.2.

The above discussion has focused entirely on the stationary (y = 0) problem, so we
conclude with a couple comments about the slowly traveling problem (v =< 0). Previous
work on the traveling problem [55,58,63,93,92] considered linearized operators with gen-
eral v € R\ {0}, but here we only study the case v = 0. This explains how our result
only ends up handing slowly traveling waves: the solutions with v # 0 are obtained per-
turbatively from the v = 0 analysis. Based on the L? theory, one would expect the free
surface function to belong to the obvious L™-analog of the anisotropic L?-based Sobolev
spaces mentioned above, and this is indeed the case. To handle the mismatch between
these anisotropic spaces with v # 0 and the isotropic space with v = 0, we employ
a special y-dependent Fourier multiplier (see Definition 7.6) that reparameterizes the
anisotropic function spaces in terms of the stationary isotropic function space. Inverting
this operator (see Proposition 7.7) then shows the anisotropic inclusion that is recorded
in (1.16).

We emphasize that our work establishes continuity of the solution map into the fixed
isotropic space used for the stationary problem, even though the free surface function
belongs to a strict subspace (determined by the anisotropic estimate (1.16)) when v # 0.
The limit v — 0 can then be understood as a singular limit, in the sense that this
extra anisotropic estimate degenerates when v = 0, resulting in a change in the topology
of the container space. Another impact of this singular limit is that the anisotropic
parameterization operators we use are at best continuous with respect to 7 and not
differentiable at v = 0.

1.6. Notation
The set {0,1,2,...} is denoted by N; Nt = N \ {0}. The positive real numbers

are RT = (0,00). F denotes either R or C. The notation @ < [ means that there
exists C € RT, depending only on the parameters that are clear from context, for
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which a < CS. To highlight the dependence of C on one or more particular parameters
a,...,b, we will occasionally write a <,,..» 5. We also express that two quantities «, S
are equivalent, written o < 8 if both @ < # and 8 < a. We shall also employ the bracket
notation

() = VIt i+ faef? for o € C". (1.26)

If {X;}¢_, are normed spaces and X is their product, endowed with any choice of product
norm ||-||x, then we shall write

lz1,. .. zellx = [|[(z1,...,ze)||x for (x1,...,2¢) € X. (1.27)

We identify the dual of a complex Banach space X, denoted X*, as the set of antilinear
and continuous functionals, so that the dual pairing is sesquilinear (i.e. linear in the right
argument) and, in the case that X is Hilbert, the Riesz map is linear.

If H is a separable Hilbert space, we will denote the Fourier and inverse Fourier trans-
forms (normalized to be unitary on L?) in the space of H-valued tempered distributions
over RY, .7*(R%; H), via .# and .Z !, respectively. For functions defined in the equi-
librium domain €2, we view them as vector-valued tempered distributions on R? in the
natural way; for example, L?(Q; C) = L?(R?; L?((0,b); C)) — .#*(R?; L?((0,b); C)). It
is in these sense that we are to interpret the Fourier transform acting on functions defined
on Q. We frequently make the natural identification 3 ~ R? when performing Fourier
analysis for functions defined on X.

We write V = (01,...,04) to denote the gradient on R¢ for d € NT. We refer to
dimensions 2 and 3 simultaneously, in which case the R2-gradient is denoted by V=
(01, 02), while the R? gradient obeys the aforementioned notation. In R? we denote the
rotated-gradient operator as Vﬁ- = (=02,01). We also let D = V /27i or D = V| /2mi,
depending on context. The divergence and tangential divergence operators are written
V-f= 2321 0i(f - e;) and (V,0) - f = Z?Zl 9j(f - €j), for appropriate R3-valued
functions f.

If # and K are Hilbert spaces and m : R — £(#;K) is a sufficiently nice symbol,
we will write m(D) for the linear operator, acting on certain subspaces of tempered
distributions, defined via .# ~1[m.Z[-]]. In other words, m(D) is the Fourier multiplication
operator corresponding to the symbol m. If ¢ € R%, we also let m(D+¢) = (m(-+¢))(D).
The vector of Riesz transforms is R = (Ry,...,Rq4), where R; = |D|710;/2n, i €
{1,...,d}.

We now turn our attention to the notation for various types of standard Sobolev spaces
employed in this paper. First, we address certain negative homogeneous type Spaces. For
1 < p < 2 we define the space

HYREF) = {f € HWREF) ¢ DI f e PREF)),  (129)

which is equipped with the norm [f]z-1., = |||D|™' f| . We also define
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HY(R%F)={f € H'(R%F) : |- |7 F[f] € LA(R%;C)} (1.29)

and endow it the norm [f];;—1 = |||-|"*Z[f]lz2. We will sometimes write H 12 = H~1.
We then denote

b
i @F) = {g € HUOF) [ o) dy € B REE)) (1.30)
0

. 2 \1/2
which has the norm ||g|| 7. = (lg]|%- + [fob g(-,y) dy]H,l) /2,

For R > s > 1 we also define the gradient spaces:

{f € LL (R%LF) : Vf e H=LP(R%LF2)} ifp>2,

loc

1.31
{f € L?/C~P)(R%F) : Vfe H'P(R%F?)} ifl<p<2. (131)

H*P(R%F) = {

The norm (seminorm if p > 2) is given by || f{| 7., = [[Vf|zs-1». When p = 2, we shall
again write H*(R?;F) in place of H*?(R?;F). The spaces H*?(R?;F) are complete for
p < 2 (see Section 5.3 for this and other properties), while the quotient ﬁs’p(R2;F)/F
is complete for p > 2.

Now we consider the classical Bessel-potential Sobolev spaces. Given H a separable
Hilbert space and R 3 s > 0 we write

HYP(R*H) = {f € LP(R*H) : (D)°f € LP(R* M)} (1.32)

and equip this space with the standard norm || f| gs»# = [[{D)® f||zr#. When p = 2, we
simply write H*(R2;H) in place of H*?%(R?;#). Since we are considering the Hilbert-
valued case, the theory follows from straightforward adaptations of the scalar theory; for
more information on the general Banach-valued cases, we refer the reader to Amann [13]
or Section 5.6 in Hytonen, Neerven, Veraar, and Weis [51].

The trace operators on to the hypersurfaces ¥ and ¥y, acting on functions defined
on {), are denoted by Try and Try,, respectively. We will utilize the following closed
subspace of H'(;F?):

oHY (Q;F3) = {u e H'(Q;F3) : Trg,u = 0}. (1.33)
For functions like 17 : ¥ — [ we can view them as defined on 2 in the natural way, e.g.
n(z,y) = n(x) for (x,y) € Q. In particular, the expression of V7 in the bulk equations
of say (1.13) refers to the R3-vector (917, 21, 0).

2. Basic linear theory

In this section we are concerned with the well-posedness of the following linear system
of equations in the framework of L2-based Sobolev spaces:
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Vip+an) —pV-Du=f in Q,

Viu=g in Q,

—(pI — pDu)es — kAnes =k on %, (2.1)
u-ez3=h on X,

u=20 on Y.

Here the (complex) data are f: Q — C3, k: X - C3 h:¥Y - C,and g: Q — C
while the (complex) unknowns are u : @ — C3 p : Q@ — C, and  : ¥ — C.
One of the minor technical issues with this system of equations is that the lowest
order term appearing for 7 is its gradient thus there is a kernel for the differential
operator consisting of p = 0, v = 0, and 7 = constant € C. We get around this
issue in the following two ways. First, in Sections 2.1 and 2.2, we work in a semi-
normed space functional framework, rather than a normed one. More precisely, we utilize
the H*(R2) spaces as in (1.31) as the containers for the linearized free surface vari-
able.

As it turns out, working in seminormed spaces is not ideally suited for the next stage
of our linear analysis, Section 4, in which we perform operator-valued symbol calculus
on a solution operator to the linear problem. Thus, our second way of dealing with the
kernel of (2.1) is that in the latter half of Section 2.2, we use an equivalent reformulation
of (2.1) for data and solutions both belonging to normed spaces. The reformulation is
given by:

90, 0)+Vp—uV-Du=f in Q,

V-ou=g in §,

—(pI — pDu)e3 — V) - xe3 =k on X, (2.2)
Vﬁ-X:w on X,

u-e3=nh on X,

u=0 on Y.

Here the data f, k, h are the same as before, and w : ¥ — C is a new datum. The
solution is (p,u, x), with p and u as before and x : ¥ — C2.

2.1. Weak solutions

The strategy for the theory of weak solutions is to prove a priori estimates and then
handle existence via a sequence of approximate problems. The initial bounds allow us
to deduce that this approximating sequence is Cauchy and has a limit that solves the
equations.

The following definition sets the notation for the weak solution theory.
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Definition 2.1 (Weak formulation operators). We define the linear map
I L2 C) x oHY(Q: C?) x H¥?(3;C) — (oH'(Q: C?))*, (2.3)

through the action

(I (p,u,n), V) (oH ) o HY = / g]D)u :Dv—pV v+ gVn -0 —k(An, Trsv-e3) g-1/2 /2.

Q
(2.4)

Recall that our notational convention is that the (-)* of a Banach space is its anti-dual

and the bracket pairing is antilinear in the right argument.
We also define the following closed subspaces of H'(2;C?):

CHY(C) ={ue H' (Q;C%) : V-u=0, Trsu-ez =0}, (2.5)
and for e € (0,1)
GHE(Q;C?) = {u e (H'(Q;C?) : supp Flu] CR?*\ B(0,¢)}. (2.6)

Note that in the above we are interpreting supp.% [u] C R? as the support of the vector-
valued tempered distribution .F [u] € .#*(R?; L*((0,b); C3)).

We quote the following construction of a solution operator to the divergence equation
with Dirichlet boundary conditions. Recall that a linear map 7 on a vector space of
functions defined on  is said to be translation commuting, or tangential translation
commuting, if (TX)(- + h) = T(X(- + h)) for all functions X and all h € R? with
h - €3 = 0.

Lemma 2.2 (Solution operators to divergence equations). The following hold.

(1) There exists a bounded, linear, and translation commauting map B such that for £ € N
we have

B:H'(Q;C) — H}(Q;C3)n H(Q;C?) (2.7)
and for all f € HO(Q;C) we have
V-Bf=f and TragoBf =0. (2.8)

(2) There exists a bounded, linear, and translation commuting map B such that for £ € N
we have

B: HY(QC) = oHY (Q;C3) N H(Q;C?) (2.9)

and for all f € H°(Q;C) we have V - Bf = f.
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(3) There exists a bounded, linear, and translation commuting map By such that for
¢ € N we have

By : HY*(2;C)n H™Y(2;C) — H(Q; C?) (2.10)

and for all p € HY?(3;C) N H~(%; C) we have
V- -Bop=0 and TrsByp = pes. (2.11)
Proof. The R-valued variants of these operators are constructed in Proposition C.2 and
Corollaries C.3 and C.4 in Stevenson and Tice [92]. Inspection of the proof shows that
the solution operators are indeed translation commuting. The C-valued assertions above

follow from separate considerations of real and imaginary parts. O

We now prove a priori estimates for system (2.1) in the reduced case that g = 0 and
h=0.

Proposition 2.3 (A priori estimates for weak solutions). Suppose that
(p,u,n) € L3(Q;C) x yH (9, C3) x H¥?(2;C) and F € (oH'(;C?))* (2.12)
satisfy the equation
A (p,u,n) =F, (2.13)
or in other words, we have a weak solution to (2.1). Then we have the a priori estimate
1wl o o g S IV oy (2.14)
with an implicit constant depending on g, k, and L.

Proof. Fix A € (0,1), and let ny = .F ! [1r2\ o) ZF ]| € H3/2(%;C). Then (p,u,ny)
solves the equation

F(p,u,ma) = F = 7(0,0,7 = ny). (2.15)
Testing this with u and integrating by parts, we acquire the identity
(F— 7(0,0,7 — 12), u) 1) o = / EIDuf? = pV -+ Vi, -7 = / LIDuf®. (2.16)
Q Q

Thus, by applying Korn’s inequality (see, for instance, Proposition A.3 in Stevenson and
Tice [92]) and sending A — 0, we obtain the estimate
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Nullzre S E (rry=- (2.17)

We now derive an estimate on 7. With 7, as before, we define vy € (H'(Q;C?)
via vy = =Bo((V)) ' Ayma), with By from Lemma 2.2. The lemma provides the bound
loallzr S 0l gs/2- With the understanding that duality pairings are antilinear in the
right argument, we then test (2.15) with vy and integrate by parts to learn that

(F' = F(0,0,7 = 0x), 0A) (o 111y o 11

=/gDu:Dvwrng-W+F»<A\|m,<V\|>_1A\|UA>H—1/2,H1/2
Q

:/gDU5M+<(9*“AH)?DU*<V|\>71A\|7I>\>H—1/2,H1/27 (2.18)
Q

from which we deduce the estimate

13752 < Illgzss2 (lullz + 1F = #(0,0,0 = )| o) (2.19)

By sending A — 0 and combining with the already established estimate on u, we then
derive the bound ||n|zs,2 S |1 Fll(om1)--

Finally, we derive an estimate on p. For this, we test (2.13) with Bp € o H(Q; C?),
where B is again from Lemma 2.2, to see that

Py o = [ 5Du B+ -0 - ol (2.20)
Q

which then implies the estimate

||p||L2 S HuanaF”Hlxﬁs/zx(oHl)* N ||FH(0H1)*~ (2-21)
Synthesizing the above estimates then completes the proof. O

Our next result examines the existence of weak solutions.

Proposition 2.4 (Ezistence and uniqueness of weak solutions). For any F € (oH(
C3))* there exists a (p,u,n) € L*(QC) x (H'(Q;C3) x H32(;C) satisfying (2.13).
The triple (p,u,n) is unique modulo changes of n by constant functions.
Proof. Uniqueness, modulo constants in the linearized free surface variable, is a conse-

quence of estimate (2.14) from Proposition 2.3. To prove existence let € € (0,1) and
consider the sesquilinear form B : i H}(Q; C?) x ;H2(Q; C?) — C given by
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B(u,v) = / %]D)u : Do. (2.22)
Q
B is bounded and also coercive thanks to the Korn inequality (see, e.g., Proposition
A.3 in [92]). Thus, the Lax-Milgram lemma shows that for every F € (oH!(Q;C3))*
(which defines an element of (,H!(£2;C3))* via restriction), there exists a unique u. €
H1 (€ C3) such that B(ue,v) = (F,v) for all v € yH}(Q; C3).
Next, we introduce the Hilbert spaces

L2(;C) = {g € L*(C) : supp F[g] S R?\ B(0,¢)},
oH2(;C?) = {v € Hy(%,C%) : supp F[v] CR*\ B(0,¢)}, (2.23)
H:(%;C)={h € H*(%;C) : supp.Z[h] CR?\ B(0,¢)} for s € R,

which are all endowed with the inner-product from their defining container spaces.
Clearly, we have the embeddings L2(Q; C) < H°(Q;C), and H5(%;C) — H~1(%;C) for
any s > —1. Hence, Lemma 2.2 allows us to consider the bounded antilinear functional

L2(Q;C)xHY*(2;C) 3 (g,h) — Ge(g, h) = B(ue, Bg+Boh)—(F, Bg+Boh) € C (2.24)

and apply the Riesz-representation theorem to acquire (ge, (:) € L2(Q;C) x Hsl/z(E; Q)
such that

G=(g.h) = (¢e, 9)r2 + ((D)/2¢, (D)/2h) 12 (x) for all (g,h) € L2(QC) x HY?(%;C).

2.25
For any v € oH2(Q; C3) we can use Lemma 2.2 to decompose v = Pv + Qu via 22
Pv=v—B(V-v)—By(Trgv - e3) and Qv = B(V - v) + By(Trgv - e3), (2.26)

for bounded, linear, and translation commuting maps
P:oHMQ;C?) — (HI(Q;C?) and Q : ¢H2(Q;C?) — (HL(;C?). (2.27)

Now, by the construction of u. we know that for any v € ¢H!(Q;C?) we have the
identity B(ue, Pv) — (F,Pv) = 0, and hence, by the definition of G, and identity (2.25),
we have

B(ue,v) — (F,v) = B(ug, Qu) — (F, Qv) = G.(V - v, Trgv - e3)

:/QEV"U+(<D>1/2Cs,<D>1/2Trzv'€3)L2(z)~ (2.28)
)

We then set
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e = (D)(—g + kA)) "1 € HY?(%;0), (2.29)

pe =g —gne € L2(Q;C), and F. = g2\ p(o,)(D)F € (0H'(€;C?))* to learn from this
identity and Definition 2.1 that

I (Pes ues M) = Fr. (2.30)

Pick a sequence {e,}nen C (0,1) such that £, — 0 as n — oco. We claim that
{(pe, e, s Me, ) Inen € L2(Q;C) x yHY(Q;C3) x H3/2(X;C) is Cauchy. To this end, we
first note that (2.30) shows that

j(psn — Pep s Ue,, — UepysNe,, — nem) = (]IRZ\B(O,sn) - ]lRZ\B(O,sm))(D)F' (231)
Then the a priori estimates for weak solutions in Proposition 2.3 grant the estimate
(72 T Pegy Uey — Uegs Ney — nsoHszHl « H3/2 N ||(]1R2\B(0,sn) - ]IRQ\B(O,sm))(D)FH(oHl)*

S (Ir2\B(0,c,) — IR2\B(0,6,,)) (D) (—=A) " Fllymr,  (2.32)

where (—A)~! is the (translation commuting) inverse to the ¥o-Dirichlet 3-Neumann
Laplacian in §2. The claim is then proved by noting that

lim sup|(1g2\5(0,e,) — LR2\B(0,6)) (D) (=A) T Fl 1 = 0, (2.33)

n,m—oo

which follows from Lemma 5.2, Plancherel’s theorem, and the monotone convergence
theorem. The claim is proved.

With the claim in hand, we send n — oo to obtain (p,u,n) belonging to the same
space as the sequence. Testing against v € o H'(Q; C?) in identity (2.30), and sending
n — 00, we then conclude that the limit (p,u,n) satisfies (2.13). O

2.2. Strong solutions

The purpose of this subsection is to obtain estimates in strong norms of solutions to
the equations (2.1) and (2.2). We begin with the former.

Theorem 2.5 (Analysis of strong solutions, I). Let s € N. For every
(9, f,k,h) € HT5(Q;C) x H3(Q;C3) x HY?75(%;C?) x H3/?+3(%;C) (2.34)

satisfying

b
h— /g(-,y) dy € H'(%C) (2.35)
0
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there exists a unique (again, with the understanding that n is only unique modulo constant
functions)

(pyu,m) € H'FH(Q;€) x H>T*(Q;C%) x HY?H4(53;C) (2.36)

such that system (2.1) is solved with data (2.34) and solution (2.36); moreover, we have
the estimate

b
1Dy s | pprga s prose s gpssaes S NG ok Bl gies s mres x sres + [h - /9(',9) dy}H_l-
0

Proof. We begin by introducing a useful linear operator. Let
B:{(g,h) € HF5(Q;C) x H3>T5(Q;C) : (2.35) is satisfied} — (H>T*(Q;C?) (2.38)
be defined via
B(g,h) = Bg+ By(h — TrsBg - e3), (2.39)

where B and By are from Lemma 2.2; B is well-defined thanks to the lemma and the fact
that

b b
h-TrsBy-es = (h- [ gy d) + ([ o) dy~TrsBy-es) € H(EC). (240)
0 0

Given a data tuple (2.34), we set f = f + uV -DB(g,h) € H*(Q;C?) and k = k —
pTrsDB(g, h)es € HY/?T5(%; C3). Thanks to the mapping properties of B, the reduced
data satisfy the estimate

(2.41)

-1

b
”kaHHSle/QJrS 5 ”gvfu k7h||H1+S><HS><H1/2+S><H3/2+S + [h_ /g('»y) dy} .
0

We then consider the reduced problem of finding
(p,w,m) € H'F(Q;C) x (,H'(;C*) 0 H>T#(2;,C?)) x H?/*T*(%;C) (2.42)

solving
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Vp+gn) —pV-Du=f  inQ

V-w=0 in Q,

—(pI — pDw)es — KA|nes = k ony, (2.43)
w-e3 =0 on %,

w=20 on Y,

where the reduced data (f, k) are determined as above by a data tuple (2.34). We claim
that the data (g, f, k, h) uniquely determine solutions to the reduced problem, provided
they exist. Indeed, if (p,w,n) solve the reduced problem with data (g, f,k,h) = 0,
then (f,k) = 0 and (p,w,n) satisfy .#(p,w,n) = 0; then the a priori estimates of
Proposition 2.3 imply that (p,w,n) = 0. This proves the claim.

The connection between the reduced problem and the original is as follows. Given
(p,u,n) as in (2.36) solving (2.1), then upon setting w = u — B(g, h) € (H' (;C3) N
H?t5(Q; C3) we arrive at a solution (p, w,n) to the reduced system. Conversely, if (p, w,7)
as in (2.42) solve the reduced problem, then we obtain a solution to the original problem
by setting v = w + B(g, h); moreover,

H-t

(2.44)
We thus reduce to solving the reduced problem and deriving the high regularity bounds

b
HUHH2+S S HwHH?‘*'S + Hg7f,/€,h||H1+stst1/2+st3/2+s + |:h - /g(-,y) dy:|
0

prwa77||H1+s><H2+s><ﬁ5/2+s SRl e scmirees. (2.45)

Now, with (f,k) in hand, we define F € ((H*(€2; C3))* via
<F,v>=/f-ﬂ+/?€-@e<c, (2.46)
Q b

and use Proposition 2.4 to obtain a weak solution (p,w,n) to the reduced system. To
complete the proof, it is thus sufficient to prove that for every s € N and every (f, E) €
H#(;C%) x HY?2+5(%;C) the associated unique weak solution (p,w,n) € L?(£;C) x
JHL(Q;C3) x H3/2($;C) to (2.43) satisfies the higher regularity bounds (2.45).

We proceed via induction. The case s = 0 is handled first. We let A € (0,1) and apply
|D|14, (D) to weak solution identity (here D = V/2xi and Ay = B(0,A7")\ B(0,)))
and obtain that

j(|D|]1A>\ (D)p7 |D‘]1A>\ (D)U, |D|]1A>\ (D)U) = |D|]1A>\ (D)F7 (247)

where F' is as in (2.46). Thus we may invoke the a priori estimates of Proposition 2.3 to
bound



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 25

1. (DI, 1Dl 2 rrscgiose S H0supl[[ DA (D)o S 1kl Loz, (2.48)
which is the desired tangential regularity. To establish normal regularity, we note that
O3p = pAjw - ez — u(Vy,0) - 3w + f e3 (2.49)
and
poFw = —pAyw + V(p + gn) — f. (2.50)

Identity (2.49) (paired with (2.48)) establishes that dsp € L?(£2;C). Then we use iden-
tity (2.50) to establish that 03w € L?*(Q;C?) as well. This completes the proof of the
base case.

Now suppose that s € N and assume the induction hypothesis at s. Further suppose

(f, k) € H5(Q;R?) x H3/>T5(x; R?). (2.51)

By the induction hypothesis and a tangential regularity argument similar to the one used
in the base case, we obtain the estimate

2

llp, w, 77||H1+s  H2+s x F5/24s T ZHajP» djw, a]‘77||Hl+s X H2+s x H5/2+s Skl avexmsrts.
j=1

(2.52)

To complete the proof, we once more employ identities (2.49) and (2.50) to estimate ds3p

and 93w as before, which then proves the induction hypothesis at level s +1. O

Our final result of this subsection reformulates the previous result in an equivalent
way that avoids the use of seminormed spaces. This will be the main take away of our
linear analysis for utilization in the next section.

Theorem 2.6 (Analysis of strong solutions, II). Let s € N. For every
(9, [k, hyw) € HF(Q; C) x H3(Q; C3) x HY2F3(2; C3) x H3/2T35(%; C) x HY?*+5(%; C)

(2.53)
satisfying

b
h— /g(~,y) dy e H1(%;C) and w € HY(;C) (2.54)
0

there exists a unique

(p,u,x) € H'W*(Q;,C) x H*5(Q;C%) x HY>H5(%;C?) (2.55)



26 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617
such that the equations (2.2) are satisfied. Moreover, we have the estimate

||p, u, X||H1+s X H2+s 5 H3/2+s S Hg, f, k, h, OJ||H1+5 X HSx H1/2+s x H3/2+s x H1/2+s
b

+ [h—/g(-,y) dy,w}Hilei1 (2.56)
0

Proof. For any y € H3/?%5(%; C?) we have that
X:AFVHVH .X+Ailvﬁvﬁ X (2.57)

Hence, given a solution to (2.2), we can set n = A7V, -y € H5/2+s ¥; C) and observe
[
that

V(p+gn) —puV-Du=f—g(A'Viw,0) inQ,

Vou=yg in Q,

—(pI — pDu)es — kAynes = k on X, (2.58)
u-e3=h on X,

u=0 on Y.

On the other hand, given a data tuple (g, f, k, h,w), we may use Theorem 2.5 to obtain
the existence of a solution triples (p, u,n) to (2.58), which is unique modulo constants in
the free surface variable. The solution also obeys the estimate

Hp’ u’77||H1+s><H2+s><ﬁ5/2+s 5 Hg’ Ik, haW”H“ﬂ*><HS><H1/2+S><H3/2+5><H1/2+S

g (2:59)

b
+ {h—/g(-,y) dy,w}
0
We then obtain the unique solution to (2.2) upon setting x = Vyn + ArVﬁ-w. The
bound (2.56) follows easily from (2.59). O

3. Vector-valued harmonic analysis

This section is a necessary step back from the main PDE line of the story into abstract,
vector-valued harmonic analysis. Our goal moving forward is to take the solution operator
to the reformulated linear system (2.2) granted by Theorem 2.6 and prove that we can
extend it from its domain of L?-based Sobolev spaces to some kind of L™-based Sobolev
spaces for an integrability parameter 1 < r < 2. The reason for doing so is potentially
opaque at this point, but it is exactly this change in integrability parameter to below the
threshold 2 that makes it possible to come back to system (2.1) and pose it in normed
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spaces, rather than seminormed ones in such a way that the linkage with the nonlinear
theory of Section 7 becomes possible.

Implementing the above program requires both old and new ideas in vector-valued
harmonic analysis. It is thus the goal of this section of the document to record variants
of classical results in harmonic analysis adapted to the vector-valued setting relevant
for this paper and to showcase our new tools in the subject, which are Theorem 3.5,
Corollary 3.6, and Theorem 3.14. We make an effort to include as many abbreviated
proofs and external references as possible, striving for a concise treatment.

3.1. Translation commuting linear maps

This section is devoted to the diagonalization, via the Fourier transform, of vector-
valued translation commuting linear maps on L2-based Sobolev spaces. In the finite-
dimensional vector-valued case, we have the following formulation.

Theorem 3.1 (Translation commuting linear maps, finite dimensional case). Let Vy, Vi
be finite dimensional complex Hilbert spaces. The following are equivalent for a bounded
linear map T : L*(R%; Vy) — L2(R4; V).

(1) T commutes with translations in the sense that (T'f)(- + h) = T(f(- + h)) for all
f € L*R% V) and all h € R

(2) There exists m € L>(R%L(Vy, V1)) such that T = m(D) in the sense that
FITF = m, where the right hand side is simply a multiplication operator.

In either case, we have that the operator norm of T' coincides with the essential supremum
of m, i.e.

1T\ 2c2vosz2vey = Ml Loe £vosva) (3.1)

Proof. The proof with V; = V; = C is standard; see, for instance, Theorem 2.5.10 in
Grafakos [41]. The general finite dimensional case follows easily from this using orthonor-
mal bases. O

We require an infinite dimensional generalization of Theorem 3.1. To formulate this
we first need an appropriate notion of measurable maps taking values in a space of
bounded linear operators. This can be found in Hille and Phillips [50] (Definition 3.5.4,
the subsequent remark applied for o-finite measure spaces, and Definition 3.5.5), and we
record it now in the second item in the definition below.

Definition 3.2 (Some notions of measurability). Let X be a complete and o-finite measure
space.



28 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617

(1) Bochner measurability: Let Y be a Banach space. We say that a function g: X —»Y
is Bochner measurable if it is the almost everywhere limit of a sequence of finitely-
valued measurable (simple) functions.

(2) Operator-valued strong measurability: Let Vy, V1 be Banach spaces over F € {R,C}.
We say that a function f: X — L(Vp; V1) is strongly measurable if for allv € Vi we
have that the map fv: X — Vi is Bochner measurable.

Next we record some essential properties of this notion of measurability.

Theorem 3.3 (Properties of operator-valued strongly measurable functions). Let Vo and
V1 be separable Hilbert spaces over F € {R,C} and X be a complete and o-finite measure
space. Let f : X — L(Vy; V1). Then the following hold.

(1) f is strongly measurable in the sense of the second item of Definition 3.2 if and only
if for all vg € Vi and vy € Vi we have that {fvg,v1) : X = F is measurable.

(2) If f is strongly measurable and g : X — Vy is Bochner measurable in the sense of
the first item of Definition 3.2, then fg: X — Vi is also Bochner measurable.

(3) If f is strongly measurable and g : X — L(Vo; V1) is such that f = g almost every-
where, then g is strongly measurable.

Proof. The first item follows from Theorem 3.5.5 in [50]. To prove the second item, we
note that Theorem 3.5.4 in [50] shows that if ¢ : X — V4 is simple, then fi¢: X — V; is
Bochner measurable. Thus, fg is the almost everywhere limit of a sequence of Bochner
measurable functions and is then measurable, again by Theorem 3.5.4 in [50]. The third
item follows by noting that if h € Vj, then f(x)h = g(x)h for almost every z € X, and
hence g(-)h is Bochner measurable. O

The notion of operator-valued strong measurability leads us to the following space of
essentially bounded functions (see Blasco and van Neerven [24] for the generalization to
p < oo and applications in the study of multiplication operators between vector-valued
Lebesgue spaces).

Definition 3.4 (Space of essentially bounded and strongly measurable operator-valued
functions). Let Vi and Vi be separable Hilbert spaces over F € {R,C} and X be a
complete and o-finite a measure space. We define

LE(X, LV, V1) ={1f] | f : X = L(Vo; V1) is strongly measurable (3.2)
and essentially bounded} '
where [f] denotes the usual equivalence class formed via almost everywhere equality.
Note, though, that as per usual we will dispense with the equivalence class notation in
what follows. For f € L(X; L(Vo; V1)) we write
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11

Lz c(vovi) = e8SUp [ f(2) g viuvg) = inf{C € RT | flleqvpvy < C ae}. (33)
pAS

We emphasize that although the notion of almost everywhere is used in the definition of
the essential supremum, it does not actually require the map f to be measurable; conse-
quently, the essential supremum is well-defined even on the space of strongly measurable
L(Vo; Vi)-valued maps.

We can now state and prove our first infinite dimensional generalization of Theo-
rem 3.1. To the best of our knowledge, the following result does not appear in the
literature.

Theorem 3.5 (Translation commuting linear maps, infinite dimensional case I). Suppose
that Vi and Vi are separable infinite dimensional Hilbert spaces over C and that

T: L*(R% V) — LR V7) (3.4)
s a bounded linear map. Then the following are equivalent.

(1) T commutes with translations in the sense that (T'f)(- + h) = T(f(- + h)) for all
h € RY and f € L?(R%; V).
(2) There exists m € L (R%; L(Vo; V1)) such that

Tf = FZ  mZ[f]] for every f € L*(R%V)). (3.5)
In either case, we have the equality

ImllLecovova) = (Tl e2viiz2vay- (3.6)

Proof. If T is given by (3.5), then it is a trivial matter to verify that it commutes with
translations, so we only need to prove the converse and (3.6). We begin with the proof
of the latter, assuming that 7' = m(D) for m € L2 (RY; L(Vy; V1)).

Let f € L% R% V). Since for any null set £ C R? and ¢ € R?\ E we have
lm(&)F[f1(E) v, < sude\EHmHE(VO;Vl)Hﬁ[f](f)”vo, we are free to integrate the square
of this, take the infimum over such F, and apply Plancherel’s theorem to deduce that
ITflI72v, = ImflZ2y, < ImlZf1I72y,- Thus, [T < [lm].

For the opposite inequality, we let px = Lg(\)/v/|B(0,A)] € L2(R%R). Then for
any x € Vo, & € R?, and A > 0 we have that

|B(0, )]
B(&o,M)

S [ i@l de - R/d||m(€)33||%/1|%(§—€0)|2df

=177 (wea(- — &l Z2v, < ITIP (I
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Since m € L (R4 L(Vo; V1)), the map & +— ||m(§):1:||%,1 is locally integrable; thus, by
Lebesgue’s differentiation theorem, for each = € V) we obtain a full measure set £, C R¢
such that & € E, implies that [|[m(&)z|vy < ||T|||lz]lv;,. Since V is separable, we can
let {z}nen be a dense subset of Vy and set E = (1, .y Ex,, € R% It follows that E has
full measure and &y € E implies that [|m(£o)|z(v,,vi) < ||T']]. Thus, [|m|| < ||T'|], and the
proof of (3.6) is complete.

We now turn to the construction of the multiplier m from the map T, assuming it
commutes with translations. Since Vy and V; are separable Hilbert spaces, we can find
sequences {II% }3°_, of orthogonal projection operators on V; such that for i € {0,1} we
have that dim(I14V;) = N and I}, V; C H§v+1Vi for all N € N, and limy_, U4z = for
all x € V.

For N € N, define the maps Sy : L2(R% 11 Vy) — L2(R%G T4 V) via Sy f = TTLT'f.
It is a simple matter to check that each Sy commutes with translations. Since H‘])\,Vo and
14, V; are finite dimensional, Theorem 3.1 then provides uy € L (R%; £L(TI, Vo; TT4, V1))
such that Sy = pn(D) and || Sn ||, = ||~ || - We then define the symbols {my}nen C
L= (R%; L(Vp, V1)) via my = punTI%;, which means that

my(D) = Sylly = INTHY,  [mullpecvs vy < [Tl and Tyma 111y = my.
(3.8)
Note that we are free to modify each symbol in the sequence on a set of measure zero
and obtain the pointwise inequality ||my (€)|z(vy,v1) < [|T| for all £ € R%.
Given & € R%, 2 € Vi, y € Vi, and N, M € N, we have that

(y, (mnim (&) —mu(&0))z) = (v myyar(&o) (1 —TX)z) + (y, (1 —II§)myar (o) TN z),

(3.9)
and hence

limsup [(y, (mxa1(éo) — ma (o)) < lim [ T(|(lyllv; (1 = TR v,

N,M—>OO N—oc0 (3.10)

+ 1 =TN)ylva ll2llv,) = 0.

Thus, {(y,mn(&0)x)}nven C L(Vo, V1) is Cauchy, and hence convergent. Using this and
the established bounds on my together with Theorem VI.1 of Reed and Simon [77], we
acquire m(&p) € L(Vp, V1) such that [[m(&)| < |7 and (y, mn(€o)x) — (y, m(&)z) as
N — oo for all x € V and y € V4. It then follows from Theorem 3.3 that & — m(&p) is
strongly measurable, since (y, mx) is the pointwise limit of measurable functions for every
y € V; and = € Vj. Synthesizing this information, we find that m € L (R%; L(Vy; V1)).

To complete the proof, it only remains to check that m(D) = T. For this, we use
Parseval’s theorem for fixed f € L?(R%;V;) and g € L?(R%; V1) to write

<97Tf>=/<9[g](§),mw(€)3z[f](§)> d€+((1-TIy)g, TN f) +({g, T(1=TI}) f). (3.11)

Q
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We then apply the dominated convergence theorem while sending N — oo to deduce
that (¢, Tf) = (ZF|g], nZ[f]). Hence, m(D) =T. O

The following generalization will also be of use to us. In fact, this corollary is the main
workhorse of Section 4 in that it is the dictionary that allows us to transfer operator
bounds derived from solving PDEs to bounds on the derivatives of the symbol of a special
vector-valued Fourier multiplication operator.

Corollary 3.6 (Translation commuting linear maps, infinite dimensional case II). Suppose
that W, Vo, V1 are separable Hilbert spaces over C with Vi — V4, and suppose that for
some sg, S1,S € R we have a translation commuting and continuous linear map

T: H* (R4 Vo) N HS (R V) — HS(REGW). (3.12)

Then, there exists a unique (up to modification on sets of measure zero) locally essentially
bounded and strongly measurable (in the sense of the second item of Definition 3.2)
function m : RY — L(Vi; W) such that T = m(D); moreover, m obeys the estimate

©°lm©zllw S TN lzllve + (&) zllvi), Ve eW (3.13)

for almost every € € R:. The above implicit constant only depends on d, s, s, and s1.

Proof. For / € N we let

B(0,1 if £ =0,
A, — 1 BOD ' (3.14)
B(0,2\ B(0,27Y) ife>1,
Tg = T]lAz (D), and
lyllweo =2 lyllw, llzlyo = \/<2f>280||x||2'vo + (262 ||lz]13, (3.15)

for y € W and z € Vi. We consider W equipped with the norm ||-||y ), denoted W),
and Vi equipped with the norm [|-[|,,c», similarly denoted Vl(e), and apply Theorem (3.5)

to Ty, viewed as a map Ty : L2(R% W) = L2(R4 W®). The hypothesis (3.12) and
the usual Fourier characterization of H" Sobolev norms then provide the estimate

||T£H£(L2V1(€);L2W“)) S HTHL'(HSOVOWH”VNHSW)’ (316)

where the implicit constant depends on d, s, sg, and s; but not on . Then the associated
multiplier m, € L (RY; E(Vl(e), W®)) granted from Theorem 3.5 obeys the bounds

297 Ime(©allw < ITIRE > 2l meo + (29 zlva) (3.17)
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for every x € V; and almost every £ € Ay. Note that m, can be modified on a set of
measure zero and made to have support contained in A,. To conclude, we take m =
> reome. It is then straightforward to check that m(D) = T and, by using (3.17), that
estimate (3.13) holds. O

3.2. Classical results in vector-valued Harmonic analysis

We now turn our attention to a collection of classical results in vector-valued harmonic
analysis. We showcase these here for two reasons. First, in the subsequent subsection we
will develop some variants and generalizations that will play a crucial role in our study
of the linear PDEs (2.1) and (2.2). Second, we will need them in our development of
some Sobolev-type function spaces in Section 5.1.

We begin by recording a pair of well-known multiplier theorems. The first up is the
scalar-valued Marcinkiewicz theorem, for which a proof can be found in Corollary 6.25
of Grafakos [41].

Theorem 3.7 (Marcinkiewicz). Let m : RY — C be a bounded function that is d-times
continuously differentiable away from the coordinate azes in R®. Assume that there exists
a constant A > 0 such that for oll k € {1,...,d}, each choice of distinct ji,...,Jx €
{1,...,d}, and every £ € RY such that &. # 0 forr ¢ {j1,...,7x} we have that

(8, -+ 0, m) (&) < Al [~ &, [~ (3.18)

Then the map m(D) = L*(R%;,C) — L?(R% C) uniquely extends to a bounded linear
map m(D) : LP(R%; C) — LP(R%; C) for every 1 < p < 0o, and

[m(D)ll £ry < CpalA+[[m]l <) (3.19)

for a constant C,, 4 > 0 depending only on d and p. If, in addition, we have that m(—§) =
m(€) for a.e. £ € R, then m is reality preserving in the sense that m(D) : LP(R% R) —
LP(R%R).

We next record a vector-valued version of the celebrated Mikhlin-Hérmander multi-
plier theorem, originally due to Schwartz [79]. For a proof of the following formulation
we refer to Proposition 6.16 in Bergh and Lofstrom [23].

Theorem 3.8 (Mikhlin-Hormander). Let Vi and Vi be two separable complex Hilbert
spaces and let N > £ > d/2. Suppose that m € C*(R4\ {0}; L(Vy, V1)) satisfies

max sup |1 0°m(&) || £ (ao.11,) < Ct (3.20)
[l < g£0

for a constant Cy, € R*. Then the map m(D) : L*(R%; V) — L?(R%; Vy) uniquely extends
to a bounded linear map m(D) : LP(R%; Vy) — LP(R%Vy), and
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[m(D)llc(Lrvo,Levi) S Cos (3.21)
where the implicit constant depends only on d and p.

We now record an important maximal inequality due to Fefferman and Stein [36]
(see also Theorem 1 in Chapter 2 of Stein [91]). In what follows M denotes the usual
Hardy-Littlewood maximal function.

Theorem 3.9 (Fefferman-Stein mazximal inequality). Suppose that {fi}eez C Li.(R9).

loc

Then for 1 < p < oo we have the inequality

[ macsor) ™, < ()™
LeZ

LeZ

. (3.22)

Next, we record some vector-valued adaptations of well-known estimates from
Littlewood-Paley theory. The first is based on Theorem 6.1.2 and Proposition 6.1.4 of
Grafakos [41].

Theorem 3.10 (Annular Littlewood-Paley, I). Let V' be a separable complex Hilbert space,
and let s € [0,00), 1 < p < 00, and m € N. Suppose that {¢;};cz € C°(R?) are such
that for all j € Z we have that F |, is supported in the annulus B(0, 2™ )\ B(0,2-m+7)
and there exists constants {Cy}pena such that

10%;(€)] < Ca2791%l for all ¢ € R and a € N<. (3.23)

Then for every f € H*>P(R% E) we have the inequality
er 2\ /2
| (@ le: 1) | S 17laesy, (3.24)
jez
with implicit constants depending only on ¢, s, p, d, m, and finitely many of the {Cy } 4.
Proof. It suffices to prove that for f € LP(R%; V) we have the inequality
1/2

| (@ lIes o))y =s1) |

JEZL

S (325)

But this is a direct application of the Mikhlin-Hérmander multiplier theorem, Theo-
rem 3.8, with the smooth multiplier m : R — £(V;¢2(Z;V)) given by

m(&)x = {<2j>5¢j(§)x/<§>s}jez foréc ecR¥andzeV. O (3.26)

Our next two results are loosely based on Lemmas 2.1.F and 2.1.G from Taylor [96].
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Theorem 3.11 (Annular Littlewood-Paley, II). Let V' be a separable complex Hilbert space,
and fiz s € [0,00), 1 < p < 0o, andm € N*. For j € Z let A; = B(0,277™)\ B(0,2/—™).
Suppose that {f;}jez C LP(R% V) satisfy supp F|[f;] C A; for every j € Z. Then

[ So,.,, < [ (S )], 27

Lp
F ﬁnzte

with the implicit constant depending only on d, s, p, and m. Moreover, if the right hand
side is finite, then the series Y,z f; converges unconditionally in H*P(R4 V).

Proof. Let 1 < g < oo satisfy 1/p+1/¢ =1, and let ¢ € C(A_1 U Ag U A;) be such
that ¢ = 1 on Ag. Given g € LY(R%; V) and a finite set F' C Z, we compute

J{0r S 50) =% [ (@550 (3.25)

Rd JjEF ]EF]Rd

where @;(€) = (£)%(27) ~*¢(&/27). Hence, we can apply Cauchy-Schwartz, Hélder, Theo-
rem 3.10, and duality (See, e.g., Theorem 5 of Section 4 in Chapter 12 of Dinculeanu [33])
to acquire the bound

IS 8 = 0 [ (27 S 0)| (1), @20
jeEF JeEF JEZ

lgllLav <1 R

Estimate (3.27) follows. A similar strategy shows that if the right hand side of (3.27)
is finite, and {F,, },en is any increasing sequence of finite subsets of Z such that Z =
Unen Fns then {3°.cp fitnen is Cauchy (and hence convergent) in H*P(R% V), and
the limit is independent of the choice of the sequence. This implies the unconditional
convergence of the series. We omit further details for the sake of brevity. O

Finally, we record a non-annular Littlewood-Paley estimate. Note that in this result
it is important that we are considering spaces of positive regularity.

Theorem 3.12 (Ball Littlewood-Paley). Let V' be a separable complex Hilbert space, and
fitr s e RT, 1 < p< oo, and m € NT. For j € N set B; = B(0,277™). Suppose that
{fi}jen C LP(R% V) satisfy supp Z|f;] C B; for every j € N. Then

. 1/2
w |25, < (S 1si) ), (330
FCN e Hs»prV p— Ly
F finite J

with the implicit constant depending only on d, s, p, and m. Moreover, if the right hand
side is finite, then the series ), f; converges unconditionally in H*P(RE V).
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Proof. Let {y1}72, be an inhomogeneous Littlewood-Paley partition of unity with
Dok = 1 or = ¢a(-/2%) for k > 1, supppo C B(0,2), supppr S B(0,254?) \
B(0,25-2). We also write ¢ = 27%5(-)5py.

Let 1 < q < oo satisfy 1/p+ 1/q¢ = 1, and let g € L9(R%; V). Then for any finite
F C N we have that

Jj+3+m

/<<D>52fjvg> > Z/ )*fi,06(D)g)

R4 JeF JEF k=0 pa

s (3.31)

=> > / (25 f;,2077°G1.(D)g).

JEF k=0 R

Hence, we may use Cauchy-Schwarz, Young’s convolution inequality, and Hoélder’s in-
equality to bound

Jj+3+m

‘/<(D>82fj,g>‘ </(Z4js||fj||€)l/2(2( g 2S<’H)IIFP’k(D)gIIV)Z)l/2

jEF ]Rd jEF jeF
— B 2 1/2 > - 9 1/2
<|[(Zousi) ) [(Sieaai) |- @2
j=0 k=0

Theorem 3.10 provides the bound

H(ank o) [ ol (33)

Taking the supremum over g such that ||g||rey < 1 in (3.32) then gives the desired
estimate. The unconditional convergence of the series then follows from a variant of this
bound as in the proof of Theorem 3.11. O

3.3. On a novel variant of the Mikhlin-Hormander multiplier theorem

We now return to the topic of multipliers, with the aim of deriving a generalized ver-
sion of Mikhlin-Hérmander (the classical vector-valued version is Theorem 3.8). The task
of generalizing Mikhlin-Hérmander is, of course, not new, and there are many works in
the existing literature that do so. We pause here briefly to review these. In unpublished
work, Pisier showed that if a vector-valued Mikhlin-Hérmander theorem holds for an
L(E)-valued symbol, then E is isomorphic to a Hilbert space. Note that Lancien, Lan-
cien, and Le Merdy [56] provide a proof of Pisier’s unpublished result in Remark 6.4, as
a consequence of another result. The takeaway is that there is an obstruction to versions
of Mikhlin-Hérmander for maps valued in £(By; By) if the B; spaces are only Banach.
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The work of Bourgain [25], Burkholder [27], McConnell [61], Zimmermann [100] found
a workaround for scalar-valued symbol multipliers if the Banach space is an uncondi-
tional martingale difference (UMD) space and the Mikhlin-Hérmander hypotheses are
strengthened a bit. However, it is known that UMD spaces are reflexive. The scalar UMD
extension was later strengthened to operator-valued symbols by Amann [13], Hieber [49],
Haller, Heck, and Noll [47], and Giardi and Weis [39]. We also refer to Chapter 4 of Priiss
and Simonett [75] and the survey of Giardi and Weis [40] for more information.

The Banach obstruction can also be overcome by changing from L? spaces to others.
Amann [13] developed a version of Mikhlin-Hérmander in the context of vector-valued
Besov spaces, which was subsequently extended by Giardi and Weis [38]. The setting of
Triebel-Lizorkin spaces was considered by Bu and Kim [26].

For our purposes in this paper, we can restrict to multipliers that take values in
L(V; W), where V and W are separable Hilbert spaces. However, we need a version of
Mikhlin-Hérmander that allows us to replace a single LP space with the more general
setting of H®0P(R% Vy) N H**P(R%; V), the intersection of different Bessel potential
spaces with values in different Hilbert spaces such that V; < V. We will prove this new
variant by combining three main ingredients. The first is the annular Littlewood-Paley
results of Theorems 3.10 and 3.11, while the second is the Fefferman-Stein maximal
inequality of Theorem 3.9. The final ingredient we need, which we record in the next
result, gives pointwise bounds via maximal functions. It is a generalization of Lemma
2.2 in Bahouri, Chemin, and Danchin [15].

Theorem 3.13 (Pointwise bounds for spectrally localized Fourier multipliers). Suppose V,
Vo, and Vi are separable complex Hilbert spaces such that Vi — V4. Let s, 30,51 € R and
w, € Z with u <0 and d < £. Suppose that m € C*(R%\ {0}; L(V1,V)) satisfies

(€)* max €] 1[0 m(&)z v < Celél (€)™ lzllve + (€ lz]lva) (3.34)

o<l

for all ¢ € R4\ {0} and = € Vi. Let ¢, € C(B(0,16) \ B(0,1/16)) be such that ¢ = 1
on the support of ¢. Then for f € (R4 Vy), A € RY, and 2 € R? we have the pointwise
estimate

A Im(D)e(D/N) f(2)llv S Cel Al [(A)* M(I6(D/X) fllve ) (2)

" (3.35)
MDA Fllva) (2)] -
Proof. We let K : R — L£(V1;V) be defined via
Kae) = [ @ Sp(mre) de, (3.36)

R4

and note that
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m(D)p(D/A)f = MEA(A()) * (B(D/N)f) (3.37)

for all f € Z(R% V7).
Fix « € V;. Hypothesis (3.34) implies the rescaled form

107 (mADE)zllv < Cel AN €1 (&)l lvs, + (AE)* lzlva) (3.38)

for every |5| < ¢. This, integration by parts, and an application of the Leibniz rule then
provide the following kernel bound for |a| < ¢:

[(2miz)* K (2)z|v = /Ilaa(tpm(k()))(f)xl\% d¢
RY (3.39)

S GNP Nzl + (0 l2llva)-
Summing over |a| < ¢, we deduce from this that

seuﬂgd<z>z||K>\(Z)$HV S Ce) AN Nzl + N [ llvs ) (3.40)

Now we return to formula (3.37) to obtain the claimed pointwise bounds. Let f €
(R4 V1), and set g = @(D/N)f. Write

Aj (yv /\) =

{B(y, 1/)) if j =0, (3.41)

B(y, 2 /0 \ By, 2 1/\) ifj> 1.
Then the above estimates allow us to bound

oo

0O =)Wl <Y [ XK - gy dz
T=04,(y.2)

© d

SC Z %W’SIAI“(W*’ lg(2)Mlve + (N lg(2)llv,) dz
- Ay = 2))
T=EA5 ()

[ @ lg@i + 0 le@lv) dz)

B(y,29/X)

o 1
S CeN TN D@ (e
2 (B
S CoN) A [ MUlgllve ) () + (N Mlgllv ) ()] - (3.42)
This yields the desired bound upon substituting in g = @(D/A)f. O

We now have all the tools needed to prove our generalization of the Mikhlin-
Ho6rmander multiplier theorem.
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Theorem 3.14 (Mikhlin-Hormander, novel form). Suppose V', Vi, and Vi are separable
complex Hilbert spaces such that Vi — Vj. Let s, sg,s1 € R and pu, ¢ € Z with p <0 and
d < £. Suppose that m € C*(R?\ {0}; L(V1;V)) satisfies

(€)" max €107 m(€)ally < Celél™((€)*°llzllv, +(€)*" lzlva) (3.43)

for all ¢ € R4\ {0} and x € V;. Let a € N? satisfy |a| = —u. Then the bounded linear
map

m(D)D* : H*(R% Vy) N H* (R4 V) — H*(RL V), (3.44)

which is well-defined and bounded in light of the 8 = 0 estimate from (3.43), uniquely
extends to a bounded linear map

m(D)D® : H**P(R%; Vo) N HS*P(R%V,) — HP(RE V) (3.45)
for every 1 < p < 0.
Proof. Let ¢,3,5 € C>(R?) be such that supp ¢ C B(0,8)\ B(0, 1/8), supp ¢, supp @ C
B(0,16) \ B(0,1/16), ZjeZ ¢(-/27) = Tra\{o}, ¢ = 1 on supp p, and ¢ = 1 on supp 4.

Suppose that f € 7 (R%; V). We first use the Littlewood-Paley estimate of Theo-
rem 3.11 to bound

. , 1/2
Im(D)D" fllasov || (D@ Im(D)D*e(D/2)f1:) | (3.46)
jez
Next, for each j € Z we apply Theorem 3.13 with A = 27 to see that
(2)*[lm(D)D*p(D/2) fllv S Co27 71 ((27)*° M(| D*@(D/27) fIvi,) (3.47)

+ (@) M(IDB(D/2) f)-

For ¢ € {0, 1}, we may apply Theorem 3.13 again (using the trivial multiplier m = 1 and
parameters s = sg = s17 = 0 with V; used for all three Hilbert spaces), to acquire the
bound

IDG(D/27) fllv: S 21 IM(|2(D/27) fIvs)- (3.48)

We then combine the estimates (3.47) and (3.48):

(20 m(D)D (D /20) | 5 (29) MMUIB(D/2) vs)
¢ (3.49)

+ (@) MM(IB(D/27) flIvs).-
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From this, estimate (3.46), two applications of the Fefferman-Stein maximal inequality
of Theorem 3.9, and an application of the Littlewood-Paley estimate of Theorem 3.10
we deduce that

DD Fleoy 5 | (S Mm(IED/2) )|
(@ pmmadose) )|
JEZL
< (jEZZ<2j>QS°||$<D/2j>f||:’Vo)WHM + (§<2j>281||$<D/2j>f|%1)1/2\\”

S W llzsorve + [ fllzsrevy- (3.50)

This estimate then allows us to extend m(D)D® as stated. O
4. Vector-valued symbol calculus for the solution map

The goal of this section is to prove that the solution operator associated to the linear
system (2.2) is given by an operator-valued Fourier multiplier. Once this is established,
we then show that the symbol of the operator is a smooth function of frequency away
from zero and satisfies bounds of the type appearing in the hypotheses of the Mikhlin-
Hormander multiplier theorem (see Theorems 3.8 and 3.14).

4.1. Preliminaries

The following definition enumerates the translation commuting maps we are interested
in extending to an LP theory. That the following is well-defined is a consequence of
Theorem 2.6.
Definition 4.1 (Spaces and translation commuting maps). We set the following notation.

(1) For s € N we define the spaces

Xy = H'T5(Q;C) x H*"5(Q;
Y, = H*(Q; C3) x HY/*+5(%;

3) x H3/?+3(%; C?), (4.1)

C)
C3) x H?+3(x;C?), (4.2)

Y, = {(g,f,k,h,w) as in (2.53) : w,

>

b
—/g(-,y) dyGH’l(Z;C)} (4.3)
0

(2) We define the bounded linear map ® : Y, — X, via O(g, f, k, h,w) = (p,u, x), where
the latter tuple is the unique solution to (2.2) with data (g, f,k, h,w) provided by
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Theorem 2.6. We also define the bounded linear map ¥ : Ys — X, via U(f, k, H) =
(0, f, k, V” - H,0).

It is clear from the existence and uniqueness result of Theorem 2.6 and the fact that
the equations (2.2) have constant coefficients that the operators ® and ¥ of the previous
definition commute with translations of the tangential variables. Thus, we expect that
they are given by Fourier multipliers. The following definition gives the class of the
vector-valued Fourier multipliers with which we are concerned. As we will show later, ¥
has a multiplier belonging to this admissible class.

Definition 4.2 (Admissible class of vector-valued Fourier multipliers). We make the fol-
lowing definitions for s € N.

(1) We say that a symbol
m: R? = L(H*((0,b); C3)xC3*x C?; H'™$((0,b); C) x H***((0,b); C*)xC?), (4.4)

belongs to the admissible class A(s) if it is strongly measurable in the sense of the
second item of Definition 3.2, and upon writing m in ‘matriz form’

mi1 M1z M3
m=| Mm21 M22 M23 |, (4-5)
m31 M32 1MM33

we have that there exists a constant C < oo and a full measure set E C R? such that
foré e E:

(a) mi1(€) € L(H®((0,b); C3); H1T5((0,b); C)) obeys the bound

Ima1(©)@ll e« + (€)' Imar(§)ellce < CIdllm= + (€)° [l L2) (4.6)

for ¢ € H*((0,b); C3);
(b) my2(€) € L(C3; H*((0,b); C)) obeys the bound

lmaz(E) [ mries + ()1 lmi2 ()2 < CE)VF; (4.7)
(c) mys € L(CZ H™5((0,b); C)) obeys the bound
lmas (€)l| i+« + (€)' lmua (&)l 2 < C(E)Y2+; (4.8)
(d) may(€) € LIH=((0,b); C3), H2+5((0,b); C3)) obeys the bound
Ima1 (€)¢ ]l mrave + ()2 Imar (€)dllz2 < Collm + (€)1 dllz2)  (4.9)

for ¢ € H*((0,b); C3);
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(e) maz(€) € L(T3; H*5((0,b); C?)) obeys the bound

Imaz (&) m2+s + (€)*F*Imaz (€)= < C(E)Y?H; (4.10)
(f) ma3(&) € L(C?; H*5((0,b); C3)) obeys the bound

Imas (€)1 rra+s + (€)% Imas (&) 2 < (€)Y (4.11)

(g) ms1(€) € L(H*((0,b); C3); C?) obeys the bound

(€2 Ima1 ()| < Cldll s +(€)° 18] =) (4.12)
for ¢ € H*((0,b); C3);
(h) maa(€) € L(C3;C2) obeys the bound
(€)Y Imaa(6)] < C(€)1*F; (4.13)
(i) m33(€) € L(C?;C2) obeys the bound
(€)%2 2 mgs (€)] < C(&)°/*F. (4.14)

(2) If m € A(s), then we write [m], € [0,00) to be the infimum over the constants C' for
which the bounds (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), and (4.14)
hold over a full measure set of frequencies. This makes A4(s) into a Banach space.

Before continuing, we remark that the [-]s-norm on 2((s) locally controls essential
supremum norm.

Lemma 4.3 (Local essentially uniform control). Fiz s € N. For any R € RT there exists
a constant Cr € R, depending only on s and R, such that for all m € A(s) we have
the estimate

10,7y MllLec < CrIM]s, (4.15)

where here L refers to the space of linear operators on the right hand side of (4.4) and
L2° L is the norm from Definition 3.4. Moreover, the map R — Cg is bounded on bounded
sets.

Proof. An inspection of the [-], norm in Definition 4.2 shows that we can replace the
&-dependent bounds on the right hand sides of (4.6)—(4.14) by their value at R to de-
rive (4.15). O

The utility of Definition 4.2 is seen in the next result.
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Proposition 4.4 (Symbols and translation commuting maps). The following are equivalent
for s € N and a bounded linear map T : Yy — X

(1) T commutes with the collection of tangential translation operators in the sense that
for all Y € Y, and all h € R? satisfying h - e3 = 0, it holds that (TY)(- + h) =
T(Y(-+h)).

(2) There exists m € A(s) such that T = m(D).

In either case, m is unique up to modification on a set of measure zero, and we have that

[mls < 1Tl cv.ix.) (4.16)
with implicit constants depending only on s.

Proof. Thanks to the norm equivalence of Lemma 5.2 with p = 2, each of the nine
components of the ‘matrix’ of T satisfies the hypotheses of Corollary 3.6. Thus, by
enumerating the estimates on each component, we find that we are granted a multiplier
m € A(s) such that ' = m(D). Estimate (3.13) implies that [m]s < ||T]z(v.x,)- The
opposite inequality and the fact that the second item implies the first are immediate
from Plancherel’s theorem. 0O

Our next result relates translations of the symbol to conjugation of the operator by

complex exponentials. This is the key that allows us to recast questions of smoothness
for multipliers in the language of PDE on the spatial side.

Proposition 4.5 (Symbol translation). Let s € N, and suppose that T : Y, — X, is a

tangentially translation commuting bounded linear map with associated symbol m € 2A(s).
Then for allY = (f,k, H) € Y, and all { € R? we have the identity

m(D + Q)Y = e_((T(ecY)). (4.17)

as an equality in the space X5, where ec(§) = €™ for ¢ € R?, and m(D + () =

(m(- +¢)(D).
Proof. With Y and ( as in the statement, we have that the second item of Proposition 4.4

applies and we have T'(e;Y) = m(D)(ecY"). On the other hand, it is clear by properties
of the Fourier transform

Fleem(D + QY] = Zlm(D + OY](- — Q) = mZY|(- =) = mPlecY].  (4.18)

By taking inverse Fourier transforms, we reveal identity (4.17). O
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4.2. Derivative estimates for the symbol

The main symbols of concern in this subsection are given by the following definition.
The notation here is from Definitions 4.1 and 4.2.

Definition 4.6 (Main symbol). Let s € N. We denote by m € A(s) the symbol associated
with the translation commuting bounded linear map ¥ : Yy — X, whose existence is
guaranteed by Proposition /./.

Our aim now is to study the differentiability of m in R?\{0}. In doing so, it will be
very convenient to introduce some minor abuse of notation in order to make various
expressions easier to read. This abuse, the use of which we confine to this subsection, is
to view any vector § € C? as being contained in C? via (6,0) € C3. For example, this
shorthand means that for v € C3 and § € C?,

2
0-v= (9,0)-v=29jvj, (4.19)

J=1

and so on. This abuse will only be used in equations that are naturally understood to
be posed in C3.
Our next result explores the manifestations of symbol translation on the PDE side.

Proposition 4.7 (Spatial realization of symbol translation). Suppose that s € N,

(f,k,H) € Y5, and ¢ € R%. Then m(D + ¢)(f,k,H) = (pc,uc,xc) € X5 obeys the
following equations

gx¢ + Ve + 2mi¢pe — pV - Due — p2miV(C - ue)

—pdmi¢ - Vue + pdr?|¢Pue = f in €,

Ve +2mi¢ - ue =0 in €,

—(pcI — pDue)es + p2mi¢(uc - es) — KV - xce3 — k2miC - xces =k on X, (4.20)
Vﬁ-)@—&-ZWiCL-XC:O on %,

u¢c-e3 =V - H+2mi¢-H on X,

uc =0 on .

Proof. We invoke Proposition 4.5 and Definition 4.6 to see that (pc,uc,x¢) =
e_cVU(ecf,eck,ecH), and hence (ecpc,ecuc,ecx¢) is a solution to the equations (2.2)
with data (0,e¢f,eck, V| - (ecH),0). We can then derive equations for (p¢,uc, x¢) by
expanding with the Leibniz rule and then multiplying by e.. This results in the sys-
tem (4.20). O
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The following lemma gives a simple estimate for the solution to (4.20) and, more
importantly, a relationship between the translated symbol and the operators ® and ¥
from Definition 4.1.

Lemma 4.8 (Estimate and identity for the translated symbol PDE). The following hold
fO’]" s € N: (fakaH) € YS; < S RQ’ and (pCquaXC) = m(D +C)(f7k,H)

(1) We have the estimate

X, S Cc|| ¥l f &, H

||pC7uC7 XC| Yo (421)
where the constant R? > ( Cc € RT is bounded on bounded sets.
(2) If 0 & supp .7 (f, k, H), then

(pCvuOXC) = \Il(f7kuH)
—27TiC s U¢
—27iCpe + p27miV (¢ - ug) + pAriC - Vue — pdm?|([Puc (4.22)
+ o K2mi( - xces — p2mid(uc - e3) )
2mi¢ - H
—2mi¢t - x¢

Proof. For the first item, we note that (ecpc, ecuc,ecxc) = ¥(ecf,eck,ecH) and hence

x. < [Yliclecs eck.ecHlly, Sc 1¥lcllf, &, Hly, -

(4.23)
Next, we use the system (4.20) from Proposition 4.7 along with Definition 4.1 to derive
the equation (4.22). Note that the hypotheses 0 ¢ supp.Z(f,k, H) ensure that the
argument of ® in (4.22) belongs to its domain Y,. O

Ipc,ue, xellx, ¢ llecpe, ecue, ecxc|

Motivated by formula (4.22), we now construct the translation commuting linear maps
whose symbols will turn out to be the derivatives of m. In what follows Sy denotes the
symmetric group on the set {1,...,¢}.

Definition 4.9 (Tterative derivative construction). Let (f,k,H) € Y, satisfy 0 &

supp Z(f,k, H) and set (p,u,x) = V(f,k,H) € Xs. For j € NT we define the j-
multilinear and symmetric maps

(R2)j > (Clv SRR CJ) = (p(j)’u(j)’x(j))[cla ce CJ] € X, (424)

via the following inductive procedure. If j = 1, we set
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—27iC - u
—27i¢p + p27iV (¢ - u) + pdni¢ - Vu
(M, ™M x[¢] = @ K2miC - xes — p2miC(u - e3) . (4.25)
2mi¢ - H
—27i¢t - x

If j =2, we set

(p(2)a Cl7 (2 Z o

gES,

—2miCy1 - uV (o]
—27iC1pM [Coa] + 127V (o1 - D [(ra]) + pdTiCo1 - VuD (o] — pdn?(Co1 - Coo)u
X KQT(iCo‘l . X(l) Ka‘?]el} 70,u27ri<-01(u(1)[<02] . 63)

_QWiCULI : X(l)[Ca2]

(4.26)
and if j = 3, we take
(P(j)au(j)ax(j))[ﬁa--~,C] ' Z
o€S;
—27iCyq - =Y
727Ti<01p(j71) + ,quTiV(Cal . u(j71)) 4 H47TiCal VD
x R2miCo1 - XU Ves — p2miGor (=1 - e3) [Co2, - -+ o]
0
—2mi¢y; - xU Y
0
— AT (Cor - Co2)ul =2
G=2) Z 0 [Cosy- -y Coj). (4.27)
€S 0
0

Our next result studies the previous construction more carefully.
Proposition 4.10 (Properties of the derivative construction). The following hold.
(1) For every j € Nt the map
{(f,k,H) €Y, : 0&suppF(f,k,H)} > (f k H)
= [DP (P, u), x9) € £7(R*;X,)  (4.28)

is continuous and tangentially translation commuting, and hence extends uniquely
to a bounded linear map defined on all of Y.
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(2) For every j € NT there exists a unique multilinear mapping into the space of
symbols, (C1,...,¢) = mWICy, ..., ¢, such that for all (f,k,H) € Y, satisfying
0 & supp F (f, k, H) we have the identity

mD[¢, .., GUD)(f. k) = (p9, w9 xD) (¢, ..., ¢ (4.29)

(3) For all j € N and all ((1,...,¢;) € (R?*) we have that the map & +
1€ mD (¢, ..., ¢](€) belongs to the space A(s) from Definition /.2; moreover, we
have the estimate

[ PmP[¢, ., ¢l St CJHIQ (4.30)

i=1

with an implicit constant independent of j.

Proof. We begin with the first item in the case j = 1. The key point is that the oper-
ator norm of ® : Y, — X, depends on a few quantities belonging to H*I(E; C). The
appearance of the operator |D| is thus crucial, as it permits the bounds

[2mic- DI + 2mi [ ¢ (Dlu)Csy) dy],,+ (27t DI S Il Hl oo

(4.31)
With this observation in hand, we appeal directly to Definition 4.9 and the mapping
properties of ® established in Theorem 2.6 and Definition 4.1, to verify that

DI, w™ X Alx, S (psw xllx, + I1F & Hllw)IS S Ik Hllw I¢ (4.32)

In a similar manner to the above, we may derive the estimate

sup |[D*(p@,u®, x)[¢1, GllIx, £ sup [|[D[(p™), u™M, xM)[¢]

[¢1l1¢21<1 I¢I<1
S
(4.33)
and, for j > 3,
sup  [IDP (0, P X [G, - Gl S
Icllv""‘<j|<1
i (G=20+3-4) sup  [IDP (@Y, w0 XU ¢, G o]k
o=1 [SIPNITEAIN
(4.34)

Upon iterating these estimates, we deduce the boundedness assertion of the first item.
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As a consequence of the first item and Proposition 4.4, we find that for each j € N+
and ({1, ..., ¢;) € (R?)7, the map (f, &k, H) — |DJ (p19), u), x9)[¢y, ..., ¢;] is given by a
symbol mW[(;, .. ., ¢;] € 2A(s). By uniqueness, we must have that m®) is a j-multilinear
and symmetric function of the (i,...,{;. We then set mU) = |.|77m), which implies
that (4.29) holds, and hence the second item is satisfied.

The third item follows since | - Pm{) = m0) with the symbol on the right a j-
multilinear function of the (i,...,¢; into A(s). O

We pause to note that estimate (4.30) would tell us that m obeys estimates of Mikhlin-
Hormander type if we knew that m were smooth away from the origin with the ;-
derivative equal to m(). It is thus our goal now to prove that these are, in fact the
derivatives of the symbol m. We first require a definition and a technical lemma about

remainders. Note that the following is well-defined thanks to Proposition 4.10.

Definition 4.11 (Remainders). Given (f,k, H) € Ys satisfying 0 & supp F(f,k, H) and
¢ € R?, we define the following elements of X,:

Ro(f, b, H)[C] = (m(D + ¢) — m(D))(f. k), (4.35)
and for j € Nt
Ry(f, b, H)[C] = Ro(f, b, H)] Z AmOCEID)(f R H),  (436)

where in the above we write (¥ € (R2)? to refer to the i-tuple of vectors with each entry
equal to C.

Now we derive estimates for these remainder terms.
Lemma 4.12 (Remainder estimates). There exists a constant C > 0 such that for

all (f,k,H) € Y, satisfying 0 ¢ supp.Z(f, k,H) and ¢ € R? satisfying ||
min{dist(0, supp Z# (f, k, H)), 1}, we have the following estimates for j € N:

DR, (f, b, MGk, < CTFHCP IS by Hly, (4.37)

Proof. Throughout the proof, we will employ the following convenient notation: we set
(pcsuc, x¢) =m(D +C)(f, k,H), and for j € N we set

R;(f,k, H)[C] = (R;p[C], Rjulc], R;x[¢])- (4.38)
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We first establish (4.37) when j = 0. From identity (4.22), we find that

—271'14- s U
—2miCpe + p2miV (¢ - u¢) + pdmic - Vue — pdn?(¢)?uc
Ro(f, k,H)[C] =2 K2miC - xces — p2mi(uc - e3) . (4.39)
2mi¢ - H
—2mi¢t - x¢

We then apply |D| to the above and take the norm in X,. Thanks to the continuity
properties of ® : Y, — X, (see the proof of Proposition 4.10) and Lemma 4.8, we acquire
the bound

I1DIRo(f, &, H)IC]|

x, + I/, %, H

v.) SICIIf5k, H

x. S [CIUlpes ue, nel v.,  (4.40)

which completes the proof in the 7 = 0 case.
Next up is j = 1. We subtract mM[¢](D)(f, k, H) from both sides of (4.39) and
recall (4.25). This yields the equation

Rl(fa ka)[C]
—2mi( - Roul(]
—2ri¢Rap[C] + p27iV(C - Rould]) + pdmiC - VRoulC] — pdn2|C Pug
=0 k2mi¢ - Rox[C]es —OHQWiC(ROU[C] -e3) . (4.41)

—2mi¢" - Rox[C]

We now apply |D|? to (4.41) and then take the norm in X,. The mapping properties of
®, together with Lemma 4.8 and estimate (4.40), then show that

IIDI*Ry(f, k, H)[C]]

x. S [CIIDIRo(f, k. H)ICx. + [CPIIDPucllzs < 1¢I5 &l

Y. -
(4.42)
This completes the proof in the case j = 1.
Now we claim the following identity holds for all j > 2:
R;(f.k,H)[C] =
72’/TIC . Rj_lu[d
—2miCR;j-1p[C] + p2miV(C - Rj-1u[C]) + pdmiC - VR;_1u[(] — pdn?|C[*R;-2u[(]
P k2miC - Rj—1x[Cles — p2miC(Rj—1ulc] - e3)
0
—2mi¢t - Rj_1x[(]
(4.43)

We prove this via induction. For the base case 7 = 2, we look to Definition 4.9 to see
that
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L m@[CE2)(D)(f, k, H)

2
—2mi¢ - uM[(]
—2mi¢pM [¢] + p2miV (¢ - uM[C]) + pdmi - VuD[(] — pdn®|¢[Pu
= w2miC - x(M[Cles — p2mi¢(uM[C] - e3) . (4.44)
0

—2mi¢t - xW[(]

We subtract the above from (4.41) to see that (4.43) is true for j = 2. Proceeding
inductively, suppose that this identity holds for some N > 5 > 2. We again look to
Definition 4.9 to acquire the identity

YD)k )
—27i¢ - ul) [¢®9)
1 —27i¢pW)[¢®7] + p27iV (¢ - uD)[¢®D)]) + pdri¢ - V) [¢®W)]
= ﬁq) /2mi¢ - XD [¢®)]es BMQWiC(u(j)[C@] -e3)
—2mi¢t - YD [¢®T]es
0
N 2L SRl S
4.45
G 8 (4.45)
0

We then simply subtract (4.45) from the induction hypothesis (4.43) to prove the stated
identity in the j 4+ 1 case. Thus (4.43) holds for all N 5 j > 2, and the claim is proved.

With the claim in hand, we apply |D]?*! in the case N > j > 2 to identity (4.43),
take the norm in X, and utilize the mapping properties of ® to deduce the inductive
estimate

2
x. S ) ICI7NDP = R o (f, k, H)IC]]

o=1

DI R (f, k, H)[C]]

X, (4.46)

Tteratively applying (4.46) and employing (4.42) and (4.40), we then readily conclude
that (4.37) holds. O

At last, we prove analyticity of m away from the origin.

Theorem 4.13 (Analyticity of the symbol). The symbol m € 2U(s) from Definition 4.6 has
a representative that is analytic as a mapping

m : R?\ {0} = L(H*((0,b); C3) x C3 x C%; H'™*((0,b); C) x H*T((0,b); C?) x C?).
(4.47)
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Moreover, the derivatives of the above symbol obey the following Mikhlin-Hdérmander type
bounds: for every a € N? there exists Co, < 00 such that

[l - 1*16%m], < Ca. (4.48)

Proof. It suffices to prove that m is analytic as claimed and that V/m = m0) for
j € NT. Indeed, once this is established, the bound (4.48) is a consequence of the third
item of Proposition 4.10 and Definition 4.6. We divide the proof into several steps.

Step 1 - Setup and basic estimates:

For the sake of brevity, define the Hilbert spaces Vo = H*((0,b); C3) x C3? x C? and
Vi = HY5((0,b);C) x H*3((0,b); C3) x C2. We will write £ = L(Vp; V1) throughout
the proof.

Fix ¢ € (0,1/4) and define the annuli Ay = B(0,2e71)\ B(0,¢/2), A; = B(0,e7 1)\
B(0,e) C Ay, and Ay = B(0,e71/2)\ B(0,2¢) C A;. Thanks to Definition 4.11, for
j € N and [¢] < &/2 the linear map

S (fok H) O R (b H)[CLay (D) (f.K) € X, (4.49)

is bounded, translation commuting, and satisfies 77 [¢] = mj[(](D) for the symbol

J

ms[C](€) = (m(&+ )~ D GmIC](©) 1, 8), (4.50)
=0

[t

with the understanding that &m(@[¢®%](¢) = m(¢). Lemma 4.12 provides the estimate
DI TS (Gl cev,x.) < CTFHCPHY, (4.51)

and so Proposition 4.4 then yields multiplier bound
[ P mS[¢]]s < GO for all [¢] < /2. (4.52)

Now, since the multiplier mj is supported in the set As, we are free to apply Lemma 4.3
and find that there exists a constant c., depending only € and s, such that

J
. 1 ) . )
esssup €7 [m(e+) =3 GmONO), < el P+ mslelle < 207G, (4.53)
2 i=0

where we recall that £ = £(Vy; V1), and we deduce from this that if |{] < £/2, then

MQ

1 2 Jj+1
ess sup Hm(§ +() — 7m(l) [¢®Y(¢ H < Ce( C|<|) . (4.54)
E€EA, o 2! L 9
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A similar application of Definition 4.6 and Lemma 4.3 shows that

esssup [m(§)]|, < ce. (4.55)
€A,

Step 2 - Lipschitz continuity in Aj:

We now aim to show that m : A; — £ has a Lipschitz continuous representative. To
this end, let ¢ € C°(R™) be such that ¢ > 0, [¢ = 1, and supp(¢) € B(0,1). For
0<d<e/4and £ € Ay we define n.(§) : Vp — V4 via

ns©v= [ gelo/omis - wo do, (4.56)

B(0,8)

which is well-defined since B(0,9) 3 w +— m(§ — w)v € V3 is measurable and essentially
bounded for each v € V and £ € A;. From this it’s easy to see that ns(¢) € £ for each
£ € Ay and that the induced map ngs : A1 — L is continuous. In fact, the mollified
sequence is uniformly Lipschitz in ¢. Indeed, from (4.54) with j = 0 we know that there
exists a null set N C Ay such that if £ € A; and w € B(0, §) are such that £ —w € A5\ N,
then

2¢.C

nl.

(4.57)

sup [m(§ —w +n)v —m( —wjully, < sup [m(0+n) —m(@)], <

llvlly, <1 0€A\N

Consequently, for any given £ € A; and |n| < €/2 we have that

2¢.C
sup  [m(§ —w+n)v —m(§ —w)vly, < C; |n| for a.e. w € B(0,0), (4.58)
lolly, <1
and hence
2¢.C 1 2c.C
Ins(€-+m) - ns(©)lle < ol [ Gelw/s) do =l (@59)
R2
Since & € A; was arbitrary, we deduce that
2¢.C
sup [|Ins(§ +n) —ns(&)]c < ——1nl (4.60)
£€A,
for all |n| < /2. By similar considerations, we may estimate
2c.C 1 2c.C
s~ milomgaiey < 250 [ Selw/ll do < 50 (461)

B(0,6)
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Sending § — 0 and appealing to (4.60) and (4.55), we find that the restriction of m to
A, is almost everywhere equal to a Lipschitz continuous function from A; to £. From
now on, we shall use the continuous representative of m in A;.

Step 8 - Local convergence of the power series in Asg:

We now claim that there exists a constant C; > 2 and a set € C Ay with |43\ & =0
such that for any £ € & the power series

R2 D B(£,/C1) 3 ¢ — i m[¢®T](¢) € L (4.62)

Jj=0

converges uniformly absolutely and thus defines an analytic L-valued function in
B(&,2/N).

To prove the claim, we first appeal to the bounds (4.30) from Proposition 4.10 and
Lemma 4.3 to find a constant R > 0 such that for every 57 € N we have the bound

1 . A , o
—esssup ¢ [mD[CP9] ()] 2 < c.RIICP for every (] < = (4.63)
It gea, 2
This estimate can be improved by virtue of multilinearity. To see how, set C7 = 2(1+2R)
and let {(, }nen C B(0,e/C1) be dense. Then by (4.63), the fact that a countable union
of null sets is again null, the pointwise continuity of the multilinear maps involved, and

the fact that dist(0, A2) = €/2, we have that

) . 27|€£19 . )
esssup_sup [mOC](E)c < esssup sup 21 [m O C2(€) |
£€hy [¢|<e/Ch ¢€A; neN €
. (4.64)
<iql.c @ J<'l .27
X .] € Cl ~X j € .
Summing over j € N, we may thus bound
0o 1 ' .
Z —jesssup  sup [m@[¢®9]()] 2 < 2, (4.65)
=0 J' €eAs [K<e/Cy

and the claim now follows directly from this.

Step 4 - Analyticity in Ag:

Finally, we aim to prove that the multiplier m in (4.47) is analytic in the annulus Ayg.
The strategy is to combine estimates (4.65) and (4.54). Let Cy = max{C1,2(1 + 2C)},
where Cy is from Step 3 and C' > 0 is the constant in (4.54). By letting {(y}nen C
B(0,e/C5) be dense, we may use (4.54) to produce a set § C Ao with the property that
[A2\§| =0 and if £ € F and j € N then

J
sup [|m(€ + G) = > mOFE)| <270, (4.66)
neN i—0 L
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In particular, if £ € Ap N &, then the continuity assertion of Step 2 allows us to bound

sup
[¢l<e/Ca

m(£ +¢) — Zng@Z H <27, (4.67)

Let § be the set from Step 3 and note that Ag N €N F is a set of full measure in Ay.
We can then send j — oo in (4.67) to see that

m(é+¢) = Zm [C®1(€) for £ € ApN€ENF and ¢ € B(0,e/Cy). (4.68)

In light of the continuity of m in Ay, we learn from this that the power series produced
in Step 3 agree on the intersection of their balls of convergence. Consequently, we may
produce a single £-valued analytic function on Ay that is equal to m a.e., and since ¢ > 0
was arbitrary we conclude that m has an analytic representative in R?\{0}. Finally, we
learn from (4.68) that Vim = m0) almost everywhere. 0O

5. On some Sobolev-type spaces

In Section 4 we constructed an operator-valued symbol m such that the corresponding
Fourier multiplication operator m(D) is a particular solution map for the PDE (2.2).
We know from Theorem 4.13 that m obeys certain inequalities of Mikhlin-Hérmander
type, and so we expect to be able to employ Theorem 3.14 to obtain the boundedness of
m(D) on certain vector-valued Sobolev spaces. The first goal of this section is to define
and study these mixed-type spaces for use in this manner. This is done in Section 5.1.
In Section 5.2 we record a number of nonlinear tools that we will use in working with
the mixed-type spaces.

The second purpose of this section, which is the content of Section 5.3, is to study what
we call subcritical gradient spaces. These are spaces of functions whose distributional
derivatives belong to H*~1P(R%) for 1 < p < d and s € NT, and they arise naturally
in our analysis of the free surface function in (1.13). Their properties will play a crucial
role in our subsequent PDE analysis.

Throughout this section, we have phrased the results in a more general manner than
what is precisely needed in Sections 6 and 7, as we believe that the analysis here may
be of independent interest.

5.1. Mixed-type Sobolev spaces

Throughout this subsection we consider a generic open interval I C R and define the
set U=R?x I fordec NT.

Definition 5.1 (Mized-type Sobolev spaces). Let 1 < p < oo and V be a finite dimensional
normed space over F € {R,C}. Let U =R x I ford € N+.
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(1) We define the mized type Lebesgue space

2 1
Lpa@sV) = @GV, Sl = ([ (Il a)™ a)™,
Re I
(5.1)
which is a Banach space when endowed with the obvious norm. Moreover, the Fubini-
Tonelli theorem shows that L, o(U; V) — Lmin{Q’p}(U; V). We model Sobolev spaces

loc
on these mized Lebesgue-spaces in the natural way.

(2) For s € N we define

H:o(U; V) ={f € Lp2(U;V) : 9*f € Lp2(U; V) for all a € N* with |a| < s},
(5.2)
and endow this space with the norm

/
1, = (S lesi,,) " (53)

| <s

Minor variants of the usual Sobolev-theoretic arguments apply to show that these
spaces are Banach and that the restrictions to U of elements of C2°(R4L: V) form

a dense subspace. When we write Hj 5(U) the understanding is that V = R.

Our first lemma about these spaces provides a useful equivalent norm obtained via
factorization.

Lemma 5.2 (Equivalent norm on the mized type Sobolev spaces). Let s € N, 1 < p < oo,
and V be a finite dimensional normed space over F € {R,C}. Then we have that

H;,(U;V) = LP(R%G H (I V) N HP(RY L (1; V) (5.4)
with norm equivalence

||fHH;2 =W llors + 1l gramre - (5.5)

Proof. Since we can always complexify a real normed space V, it suffices to prove the
result when F = C. Assume this. The continuous embedding of the space of the left
of (5.4) into the right is obvious; the reverse inclusion requires work. Suppose that f
belongs to the space on the right and k € {1,...,s — 1}. Let p € C>°(R%) be a generator
for a homogeneous Littlewood-Paley partition of unity. We then use Gagliardo-Nirenberg
interpolation on the space H*(I; V) — H*(I;V), together with Young’s inequality for
products, namely a' ~*/°b%/5 < a + b, the triangle inequality, and Theorem 3.10 to esti-

mate



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 55

|(Z e o) |

JEZ
5 H( <2J> (s k)||<10(D/2J)f||2[(21 k/S)H‘F(L /2])f||2HSs/k>1 ‘

JEZ

<|(Ze@yiewmiz) |+ [(Siewr2)si.)

JEZ JEZ

Lp

1/2
..

S W llaerr + 1 flzome. (5.6)

In turn, we may use Theorem 3.11 to conclude that f = ZjEZ o(D/27)f and

. , /
e < | (@2 o021 B) | S W lne + 17 ore. (5.7

JEL
Summing over k € {1,...,s — 1} then completes the proof of the reverse embedding
in (5.4). DO

Next we turn our attention to extension operators.

Proposition 5.3 (Extensions on mized-type Sobolev spaces). Let s € N, 1 < p < 0o, and
V' be a finite dimensional normed space over F € {R,C}. There exists a bounded linear
extension operator

Cy HS (U V) = HS o(RTT V) (5.8)
such that Ry €y = id on H »(U), where Ry denotes the restriction operator.

Proof. Since V is assumed to be finite dimensional over F € {R,C}, we may use a
basis to reduce to the case V = F. The notion of a Stein extension operator is given
in Section 3.1 in Chapter VI of Stein [90]. For the domain U = R¢ x I, one can select
a Stein-extension operator that is tangentially translation commuting. In fact, we only
need the Stein-extension operator I — R and view it as acting on functions on R? x T
via carrying along the first d-variables as parameters. It is then immediate that

¢y : LP(RY H(I;F)) — LP(RY; H*(R; F)) (5.9)
is a bounded linear map. From tangential translation invariance, we get

I€u fllzsrre = |€u(D)° fllrrrz S IIKD)® fllz2 ()l e ray

5.10
= |fllmewr2 for f € H*P(R% L (I;F)), (>10)

and hence € : H*P(R%; L3(I;F)) — H*P(R%; L2(R;F)) is bounded. Thus, (5.8) follows
from Lemma 5.2. O



56 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617

Next, we discuss traces. Note that in this result the regularity loss caused by taking
a trace is 1/2 rather than 1/p. This is due to the L?-based regularity spaces used in the
‘normal’ direction.

Proposition 5.4 (Traces of mized-type Sobolev spaces). Let s € NT and 1 < p < oo, and V
be a finite dimensional normed space over F € {R,C}. Forb € Rt define Q = R4 x (0,b)
and X = R4 x {b}. Then there exists a bounded and linear trace map

Trs : HS (V) — HV22(5 V). (5.11)

Proof. Using a basis of V', we reduce to proving the result with V' = F. The key obser-
vation is the following interpolation inequality for functions ¢ € H*((0,b)):

6(0)] < llgll=""* ol 12", (5.12)

where the implicit constant depends on b and s. A proof may be found, for instance, in
Lemmas 4.9 and 4.10 of Constantin and Foias [30].

Let ¢ € C®(R?) generate a homogeneous Littlewood-Paley partition of unity. Then,
given f € Hp o (©; F) we use the above interpolation inequality with Young’s inequality,
namely a'~1/2p1/25 < g + b, and Theorem 3.10 to bound

|(Z @ o2 mss) |

JEZ

Ly
5| (§<2j>23‘1||¢(D/2j)f|iz”sl@(D/2j)f||if/-f)1/2H

<|(Zeniewmnng)”| +| (je%||w<D/2f>f||%,s)”2\

JEZ

Lpr

Lr
S llzems + 1 fllgowr2.  (5.13)

This, Lemma 5.2, and Theorem 3.11 then provide the estimate

ITrs fllga-1r2e S fllzems + [ fllaercz SN gy, (5.14)
so the trace operator is bounded as stated. O
Now we discuss lifting maps that complement the trace map.

Proposition 5.5 (Lifting in mized-type Sobolev spaces). Let s € N1 and 1 < p < oo, and
V be a finite dimensional normed space over F € {R,C}. Forb € Rt let Q = R x (0,b)
and ¥ = R? x {b}. There exists a bounded linear extension map Lg : H¥~Y/2P(3; V) —
HS (V) such that TreLg = idge-1/2.(x)-
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Proof. We will prove the result when V' = C; the general case can be deduced from this.
Given f € #(%;C), we define Lo f : Q@ — C via

FLafl(€.y) = exp({€)(y — b)) Z[f1(€) for € € R? and y € (0,b). (5.15)

Now define m € C*(Q; C) via m(§,y) = exp({{)(y — b)). Thanks to the Leibniz rule
and Faa di Bruno’s formula, we have that

k
185 Dgm(&, )| = |Dg((€)7 exp((€) IS D€ DE(exp((€)(y — b))

=0
7

k
ST )T bl exp((€) (y—b)) S {€)7F max |y—bl*(€)" exp((€)(y—b))-

1<e<k
=0 l=1

(5.16)

We readily deduce from this that for any o € N¢ there exists a constant C,, > 0 such
that

sup ()2 19¢m (€, )|z + sup ()12 |ogm(E, ) e < Ca (5.17)
£€R £eRd

Let ¢ € {0,s}. Employing the canonical isometric identification H*((0,b);C) =
L(C; H((0,b); C)), we define the vector-valued Fourier multiplier with symbol p €
C>=(R%; L(C; H*((0,b);C))) given by u(¢) = m(&,-). In light of (5.17), we can then
invoke Theorem 3.14 twice to deduce that

u(D) : H=1/20(55,C) — H*P(R% L2((0,b);C)) 1 LP(R% H*((0,5); C©)) = H3,, (% C)
(5.18)
is a bounded linear map (in the last equality we have employed Lemma 5.2). To conclude,
we simply note that for f € #(3;C) we have that u(D)f(xz) = Lof(z,-) for all z €
RY. O

Finally, we record a mixed-type Sobolev spaces variant of Proposition C.1 in Stevenson
and Tice [92].

Proposition 5.6 (Divergence compatibility in mized-type Sobolev spaces). Let 1 < p < oo,

b e RY, and Q = RY x (0,b). Then there exists a constant C such that for all u €
H} 5 (S FOHY) we have the estimate

b
[/(V . u)(7y) dy - Trgu *€d+1 + TI‘EOU *€d+1 -1 < CHuHLp,z' (519)
0



58 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617

Proof. By density, it suffices to consider the case that 0 ¢ supp.#[u]. Thanks to the
fundamental theorem of calculus, we have

b b
/ y)dy — Trsu - egy1 + Tre u - egy1 = (01, ..., 04,0) - /u(,y) dy  (5.20)
0 0

Applying |D|~! and using the definition of H~1? from (1.28) and (1.29) along with the
boundedness of Riesz transforms yields

b b
/ (V-u)(,y) dy — Trzu - eg41 + Trsyu - €d+1 o 5 H /u dyHL . (5.21)
—1, ¥4
0 0

We conclude after noting that the embedding L?((0,b)) < L*((0,b)) allows us to bound
the right hand side of (5.21) by |lu|z,.. O

5.2. Some nonlinear analysis in mized-type Sobolev spaces

The goal of this subsection is to record a series of useful results related to the nonlinear
use of mixed-type spaces. As in Section 5.1, we will let I C R be an open interval and
set U =R? x I.

Our first result gives a product estimates for the mixed-type Sobolev spaces.

Lemma 5.7 (Product estimates in mized type Sobolev spaces). Suppose s € NT 1 <p <

00, and V is a finite dimensional normed space over F € {R,C}. Then we have the
estimate

(5.22)

1 fallas, S Nflleenr, 2 llglles, + 1] ms, b2

for all f € H,(U;F) N L=(U;F) and g € H:5(U; V) N L®(U; V).

Proof. It suffices to prove the result for F = C, so we will assume this in the proof. To
check the product belongs to the correct space, we will use the norm from Lemma 5.2.
We first recall the well-known (see e.g. Theorem D.6 in [92]) high-low product estimate

||FG||HS(I;V) S HF||L°°(I;F) ||G||H5(I;V) + HF”HS(I]F) HG”LOO(I;V) (523)

for all FF € H*(I;F) N L>®([;F) and G € H*(I;V) N L>(I; V). Applying this almost
everywhere in R? and integrating, we then derive the bound

(5.24)

Ifgllzerrs SN fllzeellgllom



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 59

The bounds for tangential derivatives are more involved. To handle them we let
© € C=(RY) be generator for a homogeneous Littlewood-Paley partition of unity, we
set © = 3. ©(-/27), and we introduce the (tangential, homogeneous) paraproduct
decomposition

fg=> ¢(D/2)f ®(D/2"%)g

JEZ
j+2
+> )" @(D/2)f o(D/2)g+ Y ®(D/2"F)f (D /2%)g
JEZ k=j—2 kEZ

= m(f,9) + mn(f, 9) + mn(f,9)-  (5.25)

For the 7y, term, we use the annular Littlewood-Paley estimates from Theorems 3.10
and 3.11 together with the bound

sup||®(D/2) gl L=(0) < lgllz=, (5.26)
JEN

which follows from Young’s convolution inequality, in order to estimate

1/2
Imalf. Doz < || (@ le@/2)f 2072 gl%) | < 1 fllremselale.
jEL
(5.27)
By an entirely symmetric argument, we have that |m(f, 9)||lgsrrz S| fllze<llgllmsrre-
For the remaining high-high paraproduct, we split again:

Jj+2 Jj+2

Tun(f 9) (Z SIS ) (D/2) fo(D/2)g = munn(f, ) + muni (S, 9)-

jeEN k=j—2 j<0k=j—-2
(5.28)
We now use the ball Littlewood-Paley estimate of Theorem 3.12 to handle mhyy:

00 ‘ . ) 1/2
I 7nnn (f, )| gorre S C{:z H(gzx Ne(D/27)f o(D/27* )g\lia) \ i (5.20)

S e v c2llgllzee

where in the final inequality we have pulled g out in L>®°(U;V) and estimated f in
H*P(R%; L2(I;F)) as above. To handle 7,1, we first note that it is band limited; indeed,
it is supported in B(0,16) by construction. Hence the LPL? norm controls H*P?L?:

Imuna(F.9) e S Imwa(F9)lree < D || D0 e(D/2) (D2 00g| - (5:30)

le]<2 §<0
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For the final term above, we then use Cauchy-Schwartz, Hélder, and Theorem 3.10:

LPL2

<|(Shewmnsiz) " (Siewrz )|

Jj<0 j<0
H(Zuw/w i) (an/w (/2)gl3:) |

SN@(D/2%) fllLown |®(D /27 €)gll 20 2. (5.31)

| w2y re(D/2+ )|

Lr

L2p

Now we invoke Young’s inequality and the fact that ®(D/23)f and ®(D/237)g are given
via (tangential) convolution with a Schwartz function to bound

19(D/2°) fllzzormr S || fllzems and [|8(D/2% ) gll vz S llgllzore- (5.32)
Upon synthesizing these estimates, we arrive at
o (fs O esvrz S N flleemtllgllorre. (5.33)
Since N 5 s > 1, we see that this completes the proof. O

As a consequence of the previous result and a supercritical embedding, we find suffi-
cient conditions under which the mixed-type Sobolev spaces are an algebra.

Proposition 5.8 (Supercritical Sobolev embeddings in mized-type Sobolev spaces). The
following hold.

(1) Hy5(U; IF)<—>C'0(U]F)fors>k—|—(d—|—l)/m1n{2p} k € N.
(2) For s> (d+ 1)/ min{2,p}, the mized type Sobolev H, ,(U;F) space is an algebra.

Proof. For the first item we note that the restriction H, ,(U; F) — Wemin{2p}H (R x J; F)
is continuous, for every J C I of finite length and hence the claim follows from standard
Sobolev embeddings. The second item follows from the first and Lemma 5.7. O

We now rapidly record three useful consequences of the previous results.

Proposition 5.9 (Products, I). Suppose that 1 < p < oo and N 3 s > (d + 1)/ min{2, p}.
Then the pointwise product map

Hy o (U) X Hp o(U) x W>*(U) 3 (f,9,h) = [ - (9 +h) € Hp »(U) (5.34)

is well-defined and smooth.
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Proof. That Hy,(U) x W*>(U) > (f,h) = fh € H, ,(U) is well-defined and smooth is
clear from bilinearity and the Leibniz rule. On the other hand, that these properties as
also true for the assignment H, ,(U) x H, 5(U) 3 (f,g) = fg € H, ,(U) is a consequence
of Lemma 5.7 and Proposition 5.8. O

Proposition 5.10 (Products, II). Suppose that1 < p < oo and N 3 s > (d+1)/ min{2, p}.
Then the Banach sum space

(Hpo +WoX)U) ={f € Lioe(U) : f=fo+ f1, fo € Hyo(U), fr e W**(U)},
(5.35)
equipped with the norm

1fllmg, eweee = f{lollas, + I falwes = F=fot fi), (5.36)
is a Banach algebra under pointwise multiplication.
Proof. That this space is Banach is straightforward to see, so we only prove that it is
an algebra. Let f,g € (Hy, + W*°)(U) and decompose f = fo + fi, g = go + g1 with

fos90 € Hy 5(U) and f1,g1 € W*>°(U). Then we use that W*°°(U) is an algebra along
with Proposition 5.9 to estimate

1 f9lls g4 weee < [ fogo + frgo + fogillmg, + | frgrllwe= (5.37)
<

(I foll g , + 1f2llwe)(lgoll sz , + llgallwee).

The result follows by taking the infimum over all decompositions of f and g. O

Remark 5.11 (Products, III). For 1 < p < o0 and N 3 s > (d + 1)/ min{2, p}, we have
that the pointwise product map

Hpo(U) x (Hp o + W=)(U) 3 (f,9) = fg € Hy»,(U) (5.38)
is smooth. This follows directly from Proposition 5.9 and definitions (5.35) and (5.36).
Our next result is meant to handle the reciprocal Jacobian of the flattening map.
Corollary 5.12 (Smoothness of pointwise inversion). For 1 < p < oo and N > s >

(d+ 1)/ min{2, p}, we have that there exists a constant p € RY, depending on U, s, d,
and p, such that the map

(HS o+ Wo=)U) D B(0,p) 3 f = (L+ f)~' € (HS, + W®)(U) (5.39)

s well-defined and smooth.
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Proof. Proposition 5.10 established that (H,, + W*>)(U) is a Banach algebra. Con-
sequently, we can use the usual theory of power series on Banach algebras to pick p
sufficiently small such that the power series

B(0,p) 3 f > (=1)/f (5.40)
j=0

is uniformly absolutely convergent and defines an analytic map. It is then elementary to
verify that this power series is pointwise equal to f+ (1+ f)~'. O

Now we study the composition appearing in the interaction between the flattening
map and the data. The following is a modification of the main argument presented in
Inci, Kappeler, and Topalov [52].

Proposition 5.13 (On composition). Assume that 2 < d € N, and let 1 < p < oo and
N > s> 1+d/min{2,p}. There erists a constant A € R, depending only on p, d, and
s such that the following hold.

(1) If f € B(H;.2+Ws,oo)(Rd)(0, A), then the map idgra + feq is a C™ diffeomorphism of
R? onto itself for every N > m < s — d/ min{2,p}.
(2) If k € N, then the map A defined by

HybP(RY) X B, vweey®e) (0,4) 3 (F, f) = A(F, f) = F(idga + fea) € H; 5(R?)
(5.41)
is well-defined and C*.

Proof. Thanks to Corollary 5.12, there exists a A € R™ for which the map
B y+weey®e) (0,0) 3 f = Ky = (1+9af) ™! € (Hy' + W) (RY) (5.42)

is analytic, and Ky > 0 in R9 for each f in the domain of the map. In turn, from the
above and the fact that s — 1 > d/min{2,p}, we find that the map §; : R? — RY
given by §; = idge + feq is a C' diffeomorphism; indeed the condition that 1 + 9,f
is bounded and bounded away from zero guarantees that for every x € R the map
R>y Y y+ f(z,y) € R is a diffeomorphism R — R. Thus Sfl(x,y) = (x,w;i,(y)),
for (z,y) € R? x R.

That the maps §; and 3]71 are class C™ for every N 3 m < s — d/ min{2, p} follows
from Proposition 5.8 and the inverse function theorem. This completes the proof of the
first item.

With A € Rt in hand, we now turn to the proof of the second item. First, we
prove (5.41) in the case k = 0 via an induction argument. For j € {0,1,...,s} let
IP; denote the proposition that
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A H) H(RY) X By 4w y®e) (0, X) = Hj 5(RY) (5.43)

is well-defined and continuous.
For Py, we perform a change of variables z =y + f(x,y) on each fiber to estimate

9 p/2 1/p 1/2
IAE g, = ([ ([ 1P+ s a)™ @) <1820 g,
Ri-1 R
(5.44)

Thus well-definedness is established. For continuity, we estimate

IACE, £) = MG, 9)lluo, < IAF = G, Pl + IAG, ) = MG g) o, (5.45)

The former term is made small when (G, g) are close to (F, f) via estimate (5.44), while
the latter term is made small by approximating G via a smooth compactly supported
function and using that g — f in (Hp, + W#°)(R?) implies that §, — §; uniformly.
This gives Py.

Now suppose that j € {0,...,s — 1} is such that Py is true for all £ € {1,...,5}. We
compute

Oy(A(F, [)) = Mg E, ) + MOaF, )04 f, (5.46)

for ¢ € {1,...,d}. By combining Remark 5.11 and the induction hypothesis, we have
that

HJLHRY) X By ooy (0,A) 3 (F, f) = 94(A(F, f)) € H) 5(RY) (547

is a well-defined and continuous map. This paired with Py gives P;;1. Thus the induction
is complete, and we have proved (5.41) in the case k = 0.

We now turn to the proof of (5.41) for the remaining cases of k € N*. For this we shall
use the converse to Taylor’s theorem: see, for instance, Theorem 2.4.15 and Supplement
2.4B in Abraham, Marsden, and Ratiu [11]. For r € {1,...,k}, we define

A HEM(RY) x Bas 4wy ®e) (0, A) = Ll (H; 5 (RY) (5.48)
X (Hp o+ W) (RY); H ,(R?))

via the formula

ADE, DI(Fr, 1), (Fey )] = MO, £ [ fe+ D2 MO Fo, ) ] for (5:49)
=1 m=1

= L#m

In the above L{  refers to the space of symmetric r-multilinear maps. By using the

already established continuity properties of A along with Remark 5.11, we see that A(")
is continuous for r € {1,...,k}. By similar considerations, we find that the map
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Ri:U — LF

sym(

o (RY) X (Hy o + W) (RY); Hy 5(R?)) (5.50)

defined via

Ri((F, f),(G,g)) = —(AB(F 414G, f+tg) — AB(F, f))dt  (551)

O\H
—
—

is continuous, where

U={((Ff),(G,g) € (HE x B(0,\)* : Vte[0,1] (F+1tG, f +tg)

ok (5.52)
€ H35* x B(0, V).

Let ((F,f),(G,g)) € U. Now, according to Taylor’s theorem with integral remainder
(used pointwise), we have that

1

k
A(F, f9)-A(F, f) = 3" S AGLF, f)g'+ / A(OLF, f+tg)~AOF, [))g" dt.
r=1
’ (5.53)

We can also apply the same result to express for h(s) = sA(G, f + sg)

A(G £+ ) = h(1) ~h(0) = 3 (@ R)(0) + / ER) (1) — (8" 1)(0)) dt

oo
=> A0y G g

o (r—1)
1
+/ tA (O5G, f +tg)g" + k(ADETG, f +tg) — AOE1G, £))g" 1) dt.
0
(5.54)
Adding (5.53) and (5.54) and using definitions (5.49) and (5.51) yields
k
AMF+G f+9) —AMFf)=) — A<T><F NG, 9%+ Ri((F, 1), (G, 9)[(G, )],
r= 1
(5.55)

Therefore, by the converse to Taylor’s theorem, we deduce that A is C* on its domain. O
5.8. Subcritical gradient spaces

We now turn our attention to subcritical gradient spaces.
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Definition 5.14 (Subcritical gradient spaces). For 1 <p<d,R>s>1, and F € {R,C}
we define the space

H*P(R%GF) = {f € L®/@P(REF) . Vfe HWP(REFY)) (5.56)

and equip it with a norm || fllz.., = IV fllgs-1.0. WhenF = R we will typically abbreviate
Ho#(RY) = H5?(R%R).

Next, we verify that these spaces are complete.

Proposition 5.15 (Properties of subcritical gradient spaces). Let R 3 s > 1, 1 < p < d,
and F € {R,C}. Then the space H*P(R% ) defined in (5.56) is Banach, and we have
the bound

1F g s.tvscay S 1 Fll g7 for all f € H*P(RETF). (5.57)
Moreover, . (R4 F) C ﬁs’p(Rd;]F) 1s dense.

Proof. It suffices to prove the result when F = R, so we will assume this. We first consider
the case s = 1 and note that in this case H?(R?) = W1e(R%) n LI»/(4=p) (R for the
homogeneous Sobolev space W'P(R%) = {f € LL (R%) : Vf e LP(R% R%)}. Next, we
note that a density result of Hajlasz and Kalamajska [46] shows that if f € W'P(R9),
then there exists a sequence {f,}nen C C°(R?) such that |Vf, —Vf|,;, — 0 as
n — oo. Additionally, Theorem 12.9 in Leoni [57], which is crucially based on this density
assertion, provides a constant C}, > 0 such that for each f € W'P(R9) there exists a
unique constant ¢y € R such that || f — cfl;ap/@-pn < Cpl|Vf . Now, if f € HY7(RY)
then upon applying this bound to f and noting that f € L%®/(d=p) (R%), we deduce that
cf = 0. Hence, (5.57) holds when s = 1, and with this bound in hand it is a routine matter
to verify that H'?(R?) is complete. The above density assertion shows that .#(R™;R)
is dense in HLP (R?). To complete the proof for general s € N* we simply note that the
map (D)*~! : H5P(RY) — HP(R?) is an isometric isomorphism that maps .%(R™;R)
to itself. O

Next we record a frequency splitting result.

Lemma 5.16 (Frequency splitting in gradient spaces). Let R 5 s > 1, 1 < p < d, and
F € {R,C}. Suppose that p € C>(R?) is an even function that satisfies p = 1 on B(0,1)
and supp(¢) C B(0,2). Then (1—¢)(D) : H5?(R%F) — H*P(R%F) is a bounded linear
map, and (D) : H*P(R%F) — WkAp/(@=p)(REF) s a bounded linear map for every
keN.

Proof. The proof is straightforward and we only sketch it. The mapping properties for
@(D) follow directly from the embedding H*P(R%F) < L9%/(@=P)(R%F) and that
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(D) is convolution with a band-limited Schwartz function. The mapping properties of
(1 — (D)) are verified via the Littlewood-Paley characterizations from Theorems 3.10
and (3.11). The evenness of ¢ guarantees that real-valued maps stay real-valued when
either ¢(D) or (1 — ¢)(D) is applied. O

By using the lifting map of Proposition 5.5, we can build a useful extension operator.

Proposition 5.17 (Eztension operator). Let s € NT, 1 < p < d, and F € {R,C}. For
be Rt write Q = R¥x(0,b) and X = RI¥x{b}. There exists a bounded linear operator & :
H3/2 (3 F) — HgES(Q;F) and a linear operator £ : H3/2+sP($;F) — Wk (Q;F)
that is bounded for every k € N such that the linear extension operator € = & + &
satisfies

Try,En =0 and TrsEn =n for alln € f[3/2+s’p(§];lﬁ’). (5.58)
Proof. Let ¢ € C°(R?) be as in Lemma 5.16. We define & via

(Eon)(@,y) = 6(b — y)(La(L — )(D)n)(x,y) for (z,y) € R x (0,b), (5.59)

where L, is the lifting operator from Proposition 5.5 and ¢ € C°(R) satisfies ¢(0) = 1
and supp(¢) C (—b/2,b/2). We also define &; via

(En)(2,y) = (y/b)(p(D)n)(x) for (z,y) € R? x (0,b). (5.60)

The claimed mapping properties then follow immediately from Lemma 5.16 and Propo-
sition 5.5. O

6. Linear analysis in mixed-type Sobolev spaces

In this penultimate section, we conclude our linear theory for systems (2.2) and (2.1).
In Section 6.1, we synthesize our multiplier analysis of Section 4 with our generalization
of the Mikhlin-Hérmander, Theorem 3.14, and produce a linear well-posedness result
for (2.2) posed in the mixed-type Sobolev spaces of Section 5.1. In Section 6.2 we then
return to the main linear equations, system (2.1), and port over the extended linear
theory for (2.2). This lands us a linear well-posedness theory for (2.1) that employs
both the mixed-type Sobolev spaces of Section 5.1 and the subcritical gradient spaces
of Section 5.3. Armed with this result, we will then be ready to turn to the nonlinear
analysis in Section 7.

6.1. Existence and uniqueness
We begin by setting some notation for the spaces in which we wish to extend our

existence theory. Note that the mixed-type Sobolev spaces, which were introduced in
Section 5.1, are used here.
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Definition 6.1 (Mized-type function spaces, I). For s € N and 1 < r < oo, we define the
function spaces

Xsn‘ = HSES(Q,(C) X Hz—gs(Q’Cg) X H3/2+S’T(E;C2),
Yor = HP (4 C%) x HY2H7 (85;C%) x HY/2H7(8,C2).

—~ =
o o
o~

We are now ready to state and prove our main existence result of this subsection. We
remark that Y, MY, is dense in Y, ,.. It is in this sense we use the word ‘extension’ in
what follows.

Theorem 6.2 (Extension to mized type spaces). For s € N and 1 < r < oo the linear
map V : Yy = X; from Definition 4.1 has a unique bounded extension

VY, — X, (6.3)

Moreover, the above extension retains the property that if (p,u,x) = U(f, k,H), then
system (2.2) is solved by the former tuple with data (0, f,k, V) - H,0).

Proof. ¥ is given by the Fourier multiplier m from Definition 4.6, and m satisfies
Mikhlin-Hérmander bounds on its derivatives thanks to estimate (4.48) from Theo-
rem 4.13 and the definition of [-]s from Definition 4.2. We then apply our Mikhlin-
Hérmander variant, Theorem 3.14 (with p = 0), to each of the component maps mj, for
J,k € {1,2,3} to deduce the existence of the stated bounded extension. It is straight-
forward to check by density that these extensions of ¥ are still solution operators
to (2.2). O

Our linear analysis for the system (2.2) is synthesized with the following theorem.

Theorem 6.3 (Well-posedness of the linearization in mized-type Sobolev spaces, I). Let
se N and 1 < r < 2. For every (f,k,H) € Ys,, there exists a unique (p,u,x) € X,
such that (2.2) is satisfied in the strong sense with data (0, f,k,V - H,0).

Proof. Existence follows from Theorem 6.2, so it remains to prove uniqueness. So suppose
that (p,u,x) € X, solve (2.2) with trivial data. Let ¢ € C°(R?) be such that ¢ =1 in
B(0,1). Then for every N we have the inclusion ¢(D/N)(p, u, x) € X, thanks to Young’s
inequality and the fact that ¢(D/N) is a tangential convolution with a Schwartz function;
moreover, the triple o(D/N)(p,u, x) remains a solution to (2.2) with trivial data. We
may thus invoke Theorem 2.6 to deduce that ¢(D/N)(p,u,x) = 0. As this holds for
every N € N, we necessarily have that (p, u, x) = 0. Uniqueness is proved. O

6.2. Reformulated well-posedness

We now aim to make the transition from system (2.2) back to the original lineariza-
tion (2.1). The previous subsection gave us the well-posedness of the former system in the
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mixed-type Sobolev spaces. The goal of this subsection is to port these result to the lat-
ter, and specialize to R-valued functions. Note that the following definition implements
the notions of subcritical gradient spaces, which were introduced in Section 5.3.

Definition 6.4 (Mized-type function spaces, II). For s € N and 1 < r < 2, we define the
Banach spaces

Xor = H3 (0 R) x H25* (4 R?) x HY*F57 (% R), (6.4)
Y, = HE(R3) x HY2Fom (SR x (H3#F5" 0 H~17)(5;R). (6.5)

Note that the space H=1"(X;R) is defined in (1.28).

Provided that s € N is sufficiently large relative to r € (1,2), the spaces X, enjoy
classical regularity.

Proposition 6.5. Let 1 <r <2 and N 3 s > 3/r — 1. Then
X, CF(Q) x CiTF(Q;R3) x C2TF(D) (6.6)
for k=s—1[3/r| € N.

Proof. The embedding of the first two factors follows from the first item of Proposi-
tion 5.8. For the third factor, the embedding follows from Lemma 5.16, the standard
embedding of Bessel-Sobolev spaces, and the observation that [3/r] > 1+ [2/r — 1/2]
forl<r<2 O

We can now state our well-posedness result.

Theorem 6.6 (Well-posedness of the linearization in mized-type Sobolev spaces, II). For
every s € N, 1 <r <2, and (f,k,h) € Y, there exists a unique (p,u,n) € X, such
that system (2.1) is solved with data (0, f, k, h).

Proof. We begin by proving uniqueness. Suppose that (p, u,n) € X, solve system (2.1)
with trivial data. Then we set x = V|7 and observe that (p,u,x) € X, solves (2.2)
with trivial data. Then Theorem 6.3 applies, and we learn that (p,u,x) = 0 and hence
1 is constant. However, n € L2T/(2*T)(E;]R), so n = 0. This completes the proof of
uniqueness.

We now prove existence. Suppose that (f,k,h) € Y,. Using Mikhlin-Hérmander
Theorem 3.8, we may define H = V”A[lh € H°/?+s7(5;R?), which obeys the estimate
|H| gs/2+er S Bl gr-1rnps/2ts as well as the identity V- H = h. We may then use
Theorem 6.3 to acquire (p,u, x) = V(f, k, H) € X, ,. Next, we define 7 = |V |ATV” X
and note that 7j € H3/2+%7(2; C) thanks to another application of Mikhlin-Hérmander.
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In turn, this allows us to employ the Hardy-Littlewood-Sobolev inequality (see, for in-
stance, Theorem 1 in Section 1.2 in Chapter V of Stein [90]) to set n = |V[7'7 €
L?7/2=7)(%; C). Since Vﬁ -x = 0, we then have that Vn = x € H*/2+7(2;C?), and
son € H5/>tsm (3 C).

At this point we have established that (p,u,n) is a solution to (2.1) with the cor-
rect regularity and integrability properties, but the construction we have used does not
guarantee a priori that the solution is real-valued. To see that this is actually the case,
we note that since (f,k,H) have vanishing imaginary part, we can take the imagi-
nary part of the equations and use the fact that its coefficients are all real to deduce
that (Imp, Imu, Imy) = ¥(0,0,0). Thus, Theorem 6.3’s uniqueness assertion shows that
(Imp, Imu, Imx) = 0, and the existence proof is complete. O

7. Nonlinear analysis

In this section we complete the proof of our main result, Theorem 1, by synthesizing
our previous analysis and appealing to the implicit function theorem. Section 7.1 sets
up the nonlinear framework, and then our main results are proved in Section 7.2.

7.1. Operators and mapping properties

The goal of this subsection is to define a nonlinear operator associated with sys-
tem (1.13) and study its mapping properties. We begin by studying the flattening map
1 — §y, which we recall is defined in (1.10).

Proposition 7.1 (Properties of the flattening map). For 1 <r <2 and N> 1+ s> 3/r,
there exists o € RT such that the following hold.

(1) For n € B(0,9) C H3/*"*7 (%) the flattening map Sn = idgrs + Enes is a smooth
diffeomorphism from Q to Q[n] that extends to a C™ diffeomorphism from Q to W
forNsn<s+2-3/r.

(2) Let V' be a finite dimensional real normed space. For {,m € N with m < 2+ s the
map

Hy 5™ (R V) X By (s (0,0) 3 (Fyn) = F 0§,y € HIB(QV) (7.1)

is well-defined and C*.
Proof. Let &g denote the extension operator granted by Proposition 5.3, and consider
the extended flattening map §,7 : R3 — R? defined by §n = idgs + €qEnes. By the

mapping properties of g and £ from Propositions 5.3 and 5.17, we find that the map
FE defined by
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HYPH7(8) 50— By = €afn € (H25" + W2 )(R?) (7.2)

is bounded and linear. As such, there exists p € R such that E(B(0, 9)) C B(0, \), where
A € RT is the constant from Proposition 5.13. We may then invoke the conclusions of
this proposition to deduce the mapping properties asserted in (7.1). This completes the
proof of the second item.

To prove the first item we only need to make a trio of observations. First, Proposi-
tion 5.13 shows that §, is a C" diffeomorphism from R? to itself when N 3 n < s+2—3/r.
Second, §, is the restriction of §,, to , and by construction §y maps Q to W Third,
the construction of £n shows that its restriction to  itself is smooth. Together, these
prove the first item. O

Next, we analyze quantities derived from the flattening map. Recall that J;, A,, and
M,, are defined in (1.11) and (1.12).

Proposition 7.2 (Properties of the Jacobian and geometry matrices). Let 1 < r < 2,
N> 1+s>3/r, and o € RT (depending on s and r) be as in Proposition 7.1. Then the
following mapping properties hold.

(1) Forn e H¥2+57 (%), we have that Jn > 0 and both of the maps
H32457(8) 5 B(0,0) 3 0+ Jy, 1/, € (HEE + WH)(Q) (7.3)

are smooth.
(2) The maps

fIS/Q-&-s,r(E) S B(O,Q) S AW’A;1 c (H;LES —+ W1+s,oo)(Q;R3><3) (74)

are smooth.
(8) The maps

HY2T57(8) 5 B(0,0) 3 1+ My, Myt € (Hp3® + WHSX)(@RY?) - (7.5)
are smooth.

Proof. The maps n — J, and n — M, are affine, and thus smooth thanks to Propo-
sition 5.17. By invoking Corollary 5.12, we have that n — 1/J, is smooth. This fact
combined with Proposition 5.10 implies that n — A, = M,t,/Jn is smooth. For the
smoothness of the pointwise inversion in the third item, we appeal to Proposition 5.10
again and the adjugate formula 7 — Mn*1 = adj(Mn)/Jg. The remaining assertion, the
smoothness of pointwise inversion in the second item is then handled via the formula
ne At =J,M " O
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Now, working towards a synthesis, we make the following definitions. First we define
some spaces.

Definition 7.3 (Spaces for the nonlinear analysis). We make the following definitions for
seEN,1<r<2, andpcR*:

(1) H23* (4 R%) = {u € HZE*(4R?) : V-u=0, Trg,u=0},
(2) oXor = HT(Q) x HIE (5 R3) x HY/2H57(3),

(3) Osr(p) ={(p,u,n) € Xsr : n€B(0,p)},

(4) W, = H 3 (R R¥>3) x HS (R R3).

Next, we define some maps.

Definition 7.4 (Maps for the nonlinear analysis, I). For 1 < r < 2, N 3 s > 3/r, and
0 € R* as in Proposition 7.1 we make the following definitions.

(1) Z1: Osr(0) X R x RT X RY — HE,(Q;R?) is defined via

E1(p,u,m, 7,8, 1) = My " ((u — yMyer) - V(M ') + V(p + gn)

B B (7.6)
— uM (V- (Do, (M ) M),
(2) Eg: Osr(0) x RT x RT — HY2+s7 (5 R3) is defined via
52(1)) U,y 175 s K/) = TTE[_(pI - M]D)_A,,] (Mr]_lu>)M7tye3 - K/%(n)M'rt]e?)] (77)

(8) For m € N and g as in Proposition 7.1, T1 : H;?;S(Q;R?’) X Bisjaye,(0,0) —
H; o (Q;R3) is defined via

Ti(F,n) = —JnMn_t(]-'o Sn)- (7.8)

(4) Form € N and g as in Proposition 7.1, Yo : H:?;HS(Q;R?’X?’) X Bs a4, (0,0) —
HY/?+s7(5:R3) is defined via

Yo(T,n) = —Trs[(T o §y) Myes- (7.9)

Our next two results study the smoothness of the nonlinear differential operators in
the momentum equation and dynamic boundary condition in system (1.13).

Proposition 7.5 (Mapping properties of the nonlinearities). For 1 <r <2 and N 5 s >
3/r, the following mapping properties hold.

(1) 21 and Za, as defined in the first and second items of Definition 7./, are smooth.
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(2) Y1 and Y, as defined in the third and fourth items of Definition 7.4 are C™.

Proof. The first item follows from Propositions 7.2 and 5.9 along with Remark 5.11,
since all of the nonlinearities in Z; are various products of the derivatives of the velocity
field with the geometry matrices and parameters.

The analysis of =9 follows similarly, with the exception of the mean curvature term
(). For this we use that R? > x + x(x)~! € R? is everywhere analytic and vanishing
at zero and hence the map

H32H57(2)2 5 (91m, 0on) — (Vym) =1 (0in, Bam) € H3/2sr(x)? (7.10)

is smooth since H3/2t57(%) is an algebra. In turn, we find that the map 7+ J#(n) is
also smooth. This completes the proof of the first item.

The second item follow by similar considerations, supplemented with the second item
of Proposition 7.1. O

The remainder of this subsection’s nonlinear analysis is meant to deal with the tech-
nicalities arising in the slowly traveling limit (v — 0) in system (1.13). As the equations
are currently formulated, there is a change of natural function spaces that occurs in this
limit, which suggests that the stationary problem is a (low-mode) singular limit of trav-
eling problems. The effect of this is that the formulation (1.13) works fine for v = 0 and
v € R\ {0} separately, but is ill-suited for capturing the slowly traveling limit v — 0.
To overcome this issue, we make a change of unknowns in the free surface.

Definition 7.6 (Anisotropic parameterization operators). For v € R we let P, be the
Fourier multiplication operator with the following symbol

An?|¢J?

Py, =py(D), py()= M

(7.11)

Note that Py is the identity operator.

The relevant properties of the maps P, are enumerated in the following result. Recall
that the spaces H~1"(R?;R) are defined in (1.28).

Proposition 7.7 (Properties of the anisotropic parameterization operators). The following
hold for s e Nt and 1 <r < 2.

(1) For each v € R we have that P, € L(H*"(R%;R)). Moreover, the map R 3 v
P, € ES?IS’T(RQ;]R)) is bounded, and for any n € H*"(R%;R) the map R 3 v
Pyn € H*"(R%R) is continuous.

(2) For each v € R we have that yO1 Py € L(H*"(R%;R); H-17(R%; R)). Moreover, the
map R > v~ vo1 Py € L(H*"(R%R)) is bounded, and for any n € H*"(R2;R) the
map R > v — ~v01 Pyn € H='"(R%R) is continuous.
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(3) The mappings

Py e H*"(R%R),
R x H*"(R*R) 3 (7,m) = { 401 Pyn € H7(R%R), (7.12)
YR1Pm € H¥"(R?%; R)

are continuous, where Ry refers to the Riesz transform in the ey direction.

Proof. The third item follows from the first two, so we turn our attention to proving
these.

We claim that the multiplier p,(€) = grerigmre
Theorem 3.7) and the defining inequalities (3.18) are satisfied uniformly over v € R. To

is of Marcinkiewicz type (see
prove the claim, we first note that

Py (9 <1 (7.13)
and that p, is smooth away from the coordinate axes. Next, we compute

2miy (€2 — £2) 4mi€1€o

o = "> 2L 5 =———" 7.14
P8 = G+ hey? PP T e+ e (1)
and
Amin€a (67€7 — 2mE35 +iv61)
010 =— 7.15
1 2p’)’(£) (27T|§|2+1’}/§1)3 ( )
Thus, we have the following estimates from Cauchy’s inequality:
& [2m € 1 dr & ][€]?
0 <—F7"F—>——=< -, 0 <—FF——>—5 <1, 7.16
‘51 1p’Y(§)| 47T2|§|4+’Y2|§1|2 2 |£2 2p"/(£)| 47T2|§|4+72|§1|2 ( )
and
12 22m|¢)? + i 12 2
|§1§23132pfy(§)| < 7T|7£1||§| | 7T|€| 17£1| < 7T|7§1||£| < 3. (717)

(m2[e[t + 7216 [2)32 T Amfg]t + 2l

This completes the proof of the claim, and so we may invoke Theorem 3.7 (with the
observation that p,(—¢) = p, (&) for £ € R?\ {0}) to see that

1Pyl 2 ey < Cr(3+1) = 4C, (7.18)

for a constant C. depending only on r.
Armed with (7.18), we are now ready to prove the first item. If n € H*"(R?;R), then
we have
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sup|| Pl ... = sup|lpy (D)D) ' Vinllzr S IO 'Vimler S Inllge.  (7.19)
yeR veR

Next, we prove that v ~ P, is continuous for the strong operator topology. Fix
n € H*"(R2;R?) and ¢ € RT. Thanks to density of H%"(R2;R) < H*"(R2;R) (see
Proposition 5.15), there exists ¢ € H*"(R?;R) such that ||(—nl|5... < &. Thus, we learn
from (7.18) that if 7,79 € R then

1Py = Pyo e S € + 1Py = Pyo )l e (7.20)

We compute via the fundamental theorem of calculus that

1
Py (&) =Py (&) = (v — 70)27i€|.—2-|2q’%70 (€) for @y, (§ / Piy+(1- t)’Yo ))2 dt. (7.21)
0

Estimates (7.13), (7.16), and (7.17) and the Leibniz rule show that

’b;l%yp (lCI’YKYo )]+ ‘glalqy,vo (f)l + |§282q'y,"/o (5)‘ + |£1€28162Ch,"10 (£)|) S, (7-22)

and we also have that gy ~,(—§) = Qy,, (§), so we may once more appeal to Theorem 3.7
to learn that

sup ”q%% (D)||£(LP(R2)) <1 (7.23)
>0

Writing R = (R1, R2) for the vector of Riesz transforms, we then have that

v =l .
1By = Pro)Cllgor = IV (By = Pro )l o1 = = C ety 70 (DYRRy (DY~ |+
<y =%ll{DY " ¢l = by = vl -1 (7.24)

By combining (7.20) and (7.24), we get

limsup||(Py — Pyymllz.. Se, (7.25)
Yo—Y

so the continuity claim follows. This completes the proof of the first item.
The second item is proved by similar considerations thanks to the identity

YRi1Py =(1—Py)2n|D| = (P, —1)R -V, (7.26)
which shows that for 1 € H*"(R2;R)

sup[y01 Pn]g-1.» = sup||[YR1 Pyl = sup||(Py, — DR - V|l < |Inllgers  (7.27)
Yy Y Y
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where the last inequality follows from the (7.18) and the L™ boundedness of Riesz trans-
forms. For continuity, we again fix n € H*"(R?%;R), 79,7 € R and then use (7.26) to
deduce that

[(781137 - 'YOalP'yo)n]Hflm S ||(P'YD - P’y)R ’ VT]HLT S H(P'yo - P’Y)T]Hﬁa‘,'r’) (7.28)

which means that the continuity assertion of the second item follows from that of the
first. This completes the proof of the second item. O

The operators of Definition 7.6 permit us to make a change of unknowns in (1.13)
to overcome the aforementioned singular limit issue. We consider n = P,1, and view
1 as our new unknown. The main theorem of this section’s nonlinear analysis, which
implements this change of unknowns crucially, is now given as follows.

Theorem 7.8 (Mapping properties). For 1 < r < 2, N 3 s > 3/r, and ¢ € R as in
Proposition 7.1, there exists C € RT such that the map = : Og,.(0/C) x R x (RT)3 x
Wl—l—s,r - Ys,r given by

Z(p,u,n, 7y, 8,1, K5, T, F)

= (El(pv u, mea Y 9 /J’)+T1(f7 P’Yn)7 EQ(p7 u, P"/n’ Ky H)+T2(T’ P"/”)) Trzu'e?,""Yalen)
(7.29)

1s well-defined and continuous. Moreover, the Fréchet derivative with respect to the first
factor, D1Z : Oy (0/C)XRXx (RY)3Xx Wi, — L(6Xs; Ysr), exists and is continuous.

Proof. The uniform boundedness assertions in the first item of Proposition 7.7 guarantee
that for some C € R we have (p,u, Pyn) € O, ,(p) for all (p,u,n) € Oy ,(0/C). Thus,
by composition, linearity of P,, and the third item of Proposition 7.7 we may invoke is
Proposition 7.5 to reach the desired conclusions for the first and second components of
the map =. The third component of = is handled via the linearity of 70 Py, together with
the second and third items of Proposition 7.7 and the divergence compatibility estimate
of Proposition 5.6. O

7.2. Well-posedness

We are now ready to prove our main theorem. This subsection is split into four main
results and then a list of corollaries, which combine to prove Theorem 1. In the first
main result, we invoke the implicit function theorem at a fixed tuple of positive physical
parameters and obtain a solution map. In the next, we show that we can glue these
together across all parameter values. One slight issue that remains after this is done is
that the resulting solution map loses a derivative relative to what one would expect.
This fact stems from the numerology of higher order smoothness of composition-type
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nonlinearities (see e.g. Proposition 5.13). We are thus lead to the third result in this
subsection, in which we show a posteriori that the solution map actually obeys the
optimal derivative counting. In the fourth, and final, main result of this subsection, we
recast the previous results into a more physically relevant formulation by anisotropically
parameterizing the free surface variable with the operators in Proposition 7.7.

We shall use the following version of the inverse function theorem, as formulated as
in Theorem A in Crandall and Rabinowitz [32] (for a verbose proof see Theorem 2.7.2
in Nirenberg [64], but note that there is slight misstatement of the uniqueness assertion
in the first item there that is correct in [32]).

Theorem 7.9 (Implicit function theorem). Let X, Y, Z be Banach spaces and f a contin-
wous mapping of an open set U C X x Y — Z. Assume that f has a Fréchet derivative
with respect to the first factor, D1f : U — L(X;Z) that is continuous. Suppose that
(z0,y0) € U and f(xzo,y0) = 0. If D1 f(x0,y0) is an isomorphism of X onto Z, then
there exist balls B(yo,ry) C Y and B(zg,rx) C X such that B(zo,rx) x B(yo,ry) C U
and a continuous unique function u : B(yo,ry) — B(xo,7x) such that u(yo) = x¢ and
f(u(y),y) =0 for all y € B(yo,ry). Moreover, the implicit function u is continuous.

We now apply Theorem 7.9 in our first well-posedness result.

Theorem 7.10 (Well-posedness, I). Let 1 <r <2, N 3 s > 3/r, and o,C € R be as in
Theorem 7.8. For each v = (g, i, k) € (RT)? there exists ps v, Psy € RT and a unique
mapping

v : B((0,v,0), p5v) CR x (R*)? x Wiy, x Y, — B(0,p, ) C Os,(0/C) (7.30)

with the property that for all data (v,9,p, 5, T,F, f,k,h) € B((0,v,0),ps~v) we have
that (p7 uan) = LV(W?QMLL’K%T’ ‘F7 ka:a h) € OS,T(Q/C) is a solution to

Mp', ((u—~yMpner) - V(Mp' u) + V(p+ gP,m)

MG (V- (D, (M )M, ) = f + T M5 F o e in €,
V-u=0 in €,
—(p— DA, (Mzgvln“))Mlt%ne?) — kA (Pn)Mp ez =k +T oFpnMp je5 on X,
u-es+y01Pm=nh on X,
u=20 on Y.

(7.31)

Moreover, 1, in (7.30) is continuous.

Proof. Consider the map = : Os.r(0/C) x R x (RT)} x Wiig, x Y, — Y, defined

via

E(])’ u)“)’%guu'a K“? T7 ‘F7 f’ k) h) = E(p7 uana’%gv/j/? K’ T7 ‘F) - (f’ k? h)' (7'32)
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Thanks to Theorem 7.8, this map is well-defined, continuous, and the Fréchet deriva-
tive with respect to the first factor, D= : Os.r(0/C) x R x (RT)3 x Witsr XY, —
L(sXs;Ys,), exists and is continuous. Moreover, we have that =(0,v,0) = 0. Theo-
rem 6.6 then shows that D;=(0,v,0) is an isomorphism from X;, to Y, ,. We may
then invoke the version of the implicit function theorem given in Theorem 7.9 to obtain

parameters pg v, p's,v € RT along with the map t,. O

We can recast the previous theorem into the following more general statement via a
gluing argument.

Theorem 7.11 (Well-posedness, II). Let 1 < r <2, N 5 s > 3/r. There exists and open
set

{0} x (RT)? x {0} x {0} C % CR x (RT)* x Wy g, x Y, (7.33)
and a continuous map

% — | B(0,p),,) C Os(0/C), (7.34)
ve(R+)3

where the radii p’s,V > 0 are as in Theorem 7.10, with the property that for all U =
(v, 9,1, 5, T, F, f, k,h) € Us we have that (U) = (p,u,n) € B(0, pls,(g,p.,ka)) is the unique
solution to (7.31) with data U.

Proof. We set

62/5 == U B((03V70)7 ps,v)7 (735)

ve(R+)3

where p; v are the radii granted by Theorem 7.10. We propose defining the map (7.34)
via

t=1, on theset B((0,v,0),ps) whenever v € (RT)3, (7.36)

where the maps t, are the solution operators granted by Theorem 7.10. This is well-
defined since if v,w € (RT)? are such that B((0,v,0),psv) N B((0,w,0), ps w) # &,
then the maps t,, and Ly, agree on this intersection since, according to the aforementioned
theorem, they are both the unique solution operators to the PDE (7.31). Once we know
that t is well-defined, continuity follows from the continuity of each t,. The remaining
uniqueness assertions are just a restatement of those from Theorem 7.10. O

The next well-posedness result gains an extra derivative on the solution to reach the
optimal counting.
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Theorem 7.12 (Well-posedness, III). Let 1 < r < 2, N > s > 3/r + 1. There exists an
open set

{0} x (RT)® x {0} C #, C R x (RT)? x W, (7.37)
such that #5 x {0} C Us—1, where Us—1 is as in Theorem 7.11, and a continuous map

T =X | Bxoy, (0,05 1,) € Osr(0/C) (7.38)
ve(R+)3

with the property that for all W = (v, g, u, &, T, F) € W5 we have that (W) = (p,u,n) €

Xsr N Bx, (0,0, (gu)) 8 the unique solution to (7.31) with data (W,0).

Proof. We set (v, g, 1,5, T,F) = Uv,8, 4k, T,F,0,0,0), where v is the solution oper-
ator granted by Theorem 7.11. A priori, we only know that

T J B(0,v,0),p.v) CRx (RT)Px W, — | J Bx..,,00, 1, (739
ve(R3)+ ve(R+)3

is a continuous mapping.
To complete the proof, we claim that by shrinking the domain a little bit, if necessary,
we can gain an additional derivative on the solution. To see this let 0 < o < 1 and set

#io)= |J B((0,v,0),0psv) CRx (RT)? x W,,. (7.40)
ve(R3)+

Denote (p,u,n) =U~, g, 1, &, T, F). By the second item of Proposition 7.5, the continuity
of the solution map in (7.39), and the continuity of composition we have that the map

Ws(g) = (’Y?gv:uv R, Tv f) = (Yl(fv Pwn)7Y2(Ta P’yn)70) € Ys,r (741)

is continuous, vanishes whenever 7 and F are zero, and is independent of (g, y, ). Thus,
by taking 0 < g, < 1 sufficiently small, we guarantee that

Wi(ox) 2 (v, 0,168, T, F) = (7,8, 16, £,0,0, V1 (F, Pyn), Yo (T, Pm),0) € %. (7.42)

Since the map in (7.42) actually has its range in the domain of the map t, which is given
in (7.34), we have verified the following key identity:

(p7 U»n) = L(’% g, 4, R, 0; 07 Yl(f7 P’YT])’ ‘TQ(T’ P’Yn>7 0) (743)

Then the mapping properties of t reveal that the solution

(p7 U,T]) € Bxs,r (O’ p;7(g,p7ﬁ)) n Bxs—l,r(oﬂ p/s—l,(g7;4,n)) (744)
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varies continuously with the data (vy,g,u,%,T,F) € #s = #:(o,). This proves the
claim. O

This section’s list of main theorems is concluded with the following.

Theorem 7.13 (Well-posedness, IV). Let 1 <r <2, N 3 s> 3/r+1, and #; be the open
set from Theorem 7.12. There exists a map

Vs (V0,15 T, F) = (p,u,m) € Os,r(0) (7.45)
such that the following hold.

(1) The map is a continuous solution operator to the nonlinear system (1.13).

(2) The map is locally unique in the sense that there exist open sets Wy C #; and
{Ve(V)}vewtys € Osr(0), obeying the non-degeneracy conditions of (1.14), for
which the following two conditions hold.

(i) The image of W, under (7.45) is contained within ¢ g+s Vs(v).

(i) For each v € (RT)3 the restriction of (7.45) to the preimage of Vi(v), thought
of as a mapping to Vs(v), is the unique function that is a solution operator
o (1.13).

(8) We have an extra ‘anisotropic’ estimate on the free surface in the sense that the
composition map

Vs> (7,8, 1,6, T, F) = (pu,n) = yRan € L' (%) (7.46)
1s well-defined and continuous, where R, is the Riesz transform in the ey direction.

Proof. We take (7.45) to be the composition (v, g, u, k,T,F) A (p,u,m) — (p,u,n),
with n = P,n. Thanks to Theorem 7.12 and Proposition 7.7, this is a continuous solution
operator for (1.13). The final item of the aforementioned proposition also guarantees that
the mapping of (7.46) is well-defined and continuous.
It remains to establish local uniqueness. Suppose that (p, u,n), (o', v, n") € Os (o) are
such that there exists (v, g, u, 5, T, F) € #5 and both (p, u,n) and (p’, ', n’) are solutions
o (1.13) with the same data (7, F), same wave speed v, and same physical constants
(g, i1, k). Integrating the divergence free constraint over y € (0,b) and appealing to the
kinematic boundary condition and the no slip condition yields the identity

b
2OLC = (V},0) / w(-,y) dy for (¢, w) € {(n,u), ()} (7.47)
0
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Therefore, by (7.47) and the identity P;'V = V + RyRy, where R = (R1, R2) is the
vector of Riesz transforms, we have the estimate

b
“1o~ < — -1 . .
1Py Clizs e S Wellgzosase + |1DI7(9,0) / wey)ay| 7as)

,S Hw, C”H?"; w H5/2+s,m)

where in both of the inequalities we have applied the boundedness of Riesz trans-
forms. If (p,u,n) and (p',u’,n’) are sufficiently small, we therefore guarantee that
(p,u, Py 1), (0, o/, Py ') € X N Bx,_, (0, P4—1,(gm))> DUt we can then invoke the
uniqueness assertion of Theorem 7.12 to find that (p,u, P;'n) = (p/,u/, Py '), which
implies (p,u,n) = (p',u', 7).

Thus, we take Vi(g, i1, k) to be an open ball about the origin of a positive radius that
obeys the above smallness requirements. The set W, is then defined to be the union of
the preimages of these balls under the map (7.45). O

We now enumerate some important consequences.

Corollary 7.14 (Some further conclusions). For 1 < r < 2 and N 3 s > 3/r + 1 the
following hold.

(1) Classical solutions: Each triple (p,u,n) produced by Theorem 7.13 is a classical solu-
tion to system (1.13). More precisely, whenever (v,g,u,k, T,F) € #5 we have that
the associated solution satisfies

(p,u,m) € CFHH(Q) x CIHH (O R?) x CgHH (%), (7.49)

fork=s—2—|3/r] € N.
(2) Eulerian transfer: Each solution (p,u,n) to system (1.13), produced by Theorem 7.13
gives rise to a corresponding classical solution

(g,v,m) € CTH(Qn]) x GG (Qn)) x G (@Qn)),  k=s—2-[3/r] (7.50)

to the stationary-traveling Eulerian formulation of the problem given by system (1.8)
via unflattening.

(3) Fixed physical parameters, variable wave speed: For each (g, u,x) € (R1)3, there
exists an open set (0,0,0) € Wy(g, 1, k) C R x Wy, and a unique function

Wa(g, 1, 5) 2 (v, T, F) = (p,u,n) € Vi(g, i, k) (7.51)

with the property that for all (v, T,F) belonging to the domain, the corresponding
(p,u,m) solves (1.13) with wave speed 7y, physical parameters (g, p, k), and stress-force
data (T, F). Moreover, the map (7.51) is continuous.
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(4) Well-posedness of the stationary wave problem: There exists an open set Z, C
(RF)3 x W, satisfying (1.17) and continuous a map

Zo3 (T, Fro k) = (pum) € | Vav) (7.52)
ve(R+)3

with the property that for all (T,F,g,p, k) € Zs, the corresponding (p,u,n) belongs
to the set Vi(g, p, k) and is the unique solution to (1.13) with v = 0 in this set with
data in Z,.

Proof. The first item follows from Proposition 6.5 and the condition s > 3/r + 1. We
continue by proving the second item. Let (p, u,n) € O, (o) be a solution generated by the
data (v,9,p, 5, T, F) € #:. Weset v : Q[n] — R and ¢ : Q[n] = R via v = (M, 'u)oF,
and ¢ = po 3;1. Proposition 7.1 verifies that the map §, : @ — Q[n] is a smooth
diffeomorphism that is sufficiently regular up to the boundary as to preserve the notion
of classical solution. It is then elementary to verify that (q,v,n) classically solve (1.8)
with wave speed +, physical parameters (g, 1, x) € (RT)3, and stress-force data (T, F)

The third and fourth items are just particular ‘restrictions’ of the map in (7.45) from
Theorem 7.13, so long as we define

Walg, k) ={(v, T, F) + (v,0, 1,5, T, F) € W} (7.53)
and
Zs ={(g, 1,5, T, F) + (0,8,10,5,T,F) € W}, (7.54)

and define the mappings (7.51) and (7.52) via (7.45) and the ‘slice’ identifications
Ws(g, 1y 8), Zs CWs. O
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