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We establish that solitary stationary waves in three dimension-

al viscous incompressible fluids are a general phenomenon 
and that every such solution is a vanishing wave-speed 
limit along a one parameter family of traveling waves. The 
setting of our result is a horizontally-infinite fluid of finite 
depth with a flat, rigid bottom and a free boundary top. A 
constant gravitational field acts normal to bottom, and the 
free boundary experiences surface tension. In addition to these 
gravity-capillary effects, we allow for applied stress tensors to 
act on the free surface region and applied forces to act in the 
bulk. These are posited to be in either stationary or traveling 
form.

In the absence of any applied stress or force, the system reverts 
to a quiescent equilibrium; in contrast, when such sources 
of stress or force are present, stationary or traveling waves 
are generated. We develop a small data well-posedness theory 
for this problem by proving that there exists a neighborhood 
of the origin in stress, force, and wave speed data-space in 
which we obtain the existence and uniqueness of stationary 
and traveling wave solutions that depend continuously on the 
stress-force data, wave speed, and other physical parameters. 
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To the best of our knowledge, this is the first proof of well-

posedness of the solitary stationary wave problem and the 
first continuous embedding of the stationary wave problem 
into the traveling wave problem. Our techniques are based on 
vector-valued harmonic analysis, a novel method of indirect 
symbol calculus, and the implicit function theorem.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

1.1. The free boundary Navier-Stokes system

Our goal in this paper is to study stationary and slowly traveling solutions to the free 

boundary incompressible Navier-Stokes equations in three dimensions. These equations 

govern the dynamics of a ûnite-depth layer of viscous, incompressible üuid lying between 

a ûxed, rigid, üat bottom and an unknown (free) top that evolves with the üuid. In 

order to properly phrase the equations, we ûrst establish some notation for describing 

the unknown üuid domain.

The üuids we study will always be assumed to occupy three-dimensional sets of the 

form

Ω[η] = {(x, y) ∈ R
2 × R : 0 < y < b + η(x)}, (1.1)

where b ∈ R
+ is a ûxed parameter giving the equilibrium depth of the üuid, and η : R

2 →

(−b, ∞) is the unknown free surface function. We will always have that η is continuous 

so that the üuid domain Ω[η] is open and connected. The upper free boundary and the 

ûxed lower boundary will be denoted by

Σ[η] = {(x, y) ∈ R
2 × R : y = b + η(x)} and Σ0 = R

2 × {0}. (1.2)

Throughout the paper we will also denote the equilibrium sets with the short-hand

Ω = Ω[0] = R
2 × (0, b) and Σ = Σ[0] = R

2 × {b}. (1.3)

The motion of the üuid domain is encoded through the use of a time-dependent free 

surface function ζ (t, ·) : R
2 → R satisfying ζ (t, ·)+b > 0, which then generates the mov-

ing üuid domain Ω[ζ (t, ·)] ⊂ R
3 and the free upper boundary Σ[ζ (t, ·)] as above. The 

üuid is described by its velocity vector ûeld w (t, ·) : Ω[ζ (t, ·)] → R
n and its scalar pres-

sure r (t, ·) : Ω[ζ (t, ·)] → R. The viscous stress tensor within the üuid is the symmetric 

tensor

Sμ(r, w) = rI3×3 − μDw, (1.4)
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where Dw = ∇w + ∇wt is the symmetrized gradient, and μ ∈ R
+ is the üuid viscos-

ity.

In this paper we will assume that there are two sources of bulk force that act on 

the üuid through vector ûelds deûned on Ω[ζ (t, ·)] for all t, as well as three sources of 

stress that act on the üuid through vector ûelds deûned on Σ[ζ (t, ·)]. The ûrst bulk 

force is a uniform gravitational ûeld −ρge3, where ρ ∈ R
+ is the constant üuid den-

sity, g ∈ R
+ is the gravitational constant, and e3 = (0, 0, 1) ∈ R

3. The second is a 

spatially-varying generic bulk force F (t, ·) : Ω[ζ (t, ·)] → R
3. The ûrst of the stresses 

is due to a constant external pressure Pext ∈ R, which then acts via the vector ûeld 

Pextν·(t,·), where ν·(t,·) is the unit normal to the free surface at time t. The second is 

generated by a generic spatially-varying stress tensor T (t, ·) : Σ[ζ (t, ·)] → R
3×3, which 

then deûnes the stress vector T (t, ·) ν·(t,·). We note that in continuum mechanics it 

is usually the case that T (t, ·) is symmetric, but this condition plays no role in our 

analysis, so we have allowed for the most general case. The third, and ûnal, source 

of stress is due to surface tension and is given by the vector ûeld κH (ζ (t, ·)))ν·(t,·), 

where κ ∈ R
+ is the coefficient of surface tension and the mean curvature operator 

is

H (ζ) = ∇‖ · ((1 +
∣∣∇‖ζ

∣∣2)−1/2∇‖ζ). (1.5)

Here we have written ∇‖ = (∂1, ∂2) to refer to the 8tangential gradient.9

The free boundary incompressible Navier-Stokes equations then dictate how ζ, w, and 

r evolve in time as the result of applied stresses and forces:

⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

ρ(∂tw + w · ∇w) + ∇ · Sμ(r, w) = −ρge3 + F in Ω[ζ(t, ·)],

∇ · w = 0 in Ω[ζ(t, ·)]

−Sμ(r, w)ν· + (Pext − κH (ζ))ν· = T ν· on Σ[ζ(t, ·)],

∂tζ + w · (∇‖ζ, −1) = 0 on Σ[ζ(t, ·)],

w = 0 on Σ0.

(1.6)

The ûrst equation in (1.6) is the momentum equation, and it requires a Newtonian 

balance of forces in the üuid bulk. Next is the incompressibility constraint, which 

asserts conservation of mass. After this is the dynamic boundary condition, which en-

forces a balance of stresses acting on the free surface. The penultimate equation is the 

kinematic boundary condition, which determines how the free surface evolves accord-

ing to the üuid velocity. The ûnal equation in (1.6) is simply the no-slip boundary 

condition for the velocity on the rigid bottom. For the sake of simplicity, we will 

henceforth assume that ρ = 1. This is no loss of generality, as we will continue to 

track the generic constants (g, μ, κ) ∈ (R+)3 as well as generic sources of force and 

stress.
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1.2. Equilibria, stationary and traveling reformulations, and the role of stresses and 

forces

The free boundary incompressible Navier-Stokes equations admit a üat, stationary 

solution in the absence of external stress or forces, i.e. F = 0 and T = 0; namely, üuid 

domain Ω = Ω[0] and

(req, weq, ζeq) = (Pext + g(b − idR3 · e3), 0, 0). (1.7)

In this paper, we work perturbatively around this equilibrium to study stationary and 

slowly traveling solutions. To describe these, we let γ ∈ R denote a ûxed speed and make 

the ansatz that F and T are time-independent in the frame moving at velocity γe1. In 

turn, we assume that ζ(t, ·) = η(· −γte1), w(t, ·) = v(· −γte1), r(t, ·) = Pext +g(b − idR3 ·

e3) + q(· − γte1) + gη(· − γte1), for new unknowns η : R
2 → (−b, ∞), v : Ω[η] → R

3, and 

q : Ω[η] → R. Rewriting the system (1.6) under this ansatz yields:

⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

(v − γe1) · ∇v + ∇ · Sμ(q + gη, v) = F in Ω[η],

∇ · v = 0 in Ω[η],

−Sμ(q, v)N¸ − κH (η)N¸ = T N¸ on Σ[η],

γ∂1η + v · N¸ = 0 on Σ[η],

v = 0 on Σ0,

(1.8)

where N¸ = (−∇‖η, 1). We emphasize three key features of this reformulation. First, 

the external pressure, Pext, only appears in the hydrostatic background that has been 

subtracted off and will play no further role in the analysis of (1.8). Second, the constant 

gravitational force ûeld has been shifted into the term gη in the ûrst equation. Third, 

while the set Ω[η] is determined by η, only derivatives of η appear in the equations 

themselves.

The problem (1.8) lies at the conüuence of two distinct lines of inquiry in the 

mathematical üuid mechanics literature. The ûrst line of inquiry treats the dynamic 

problem (1.6) as an initial value problem. In this context, the stationary problem (γ = 0

in (1.8)) arises naturally as a special type of global-in-time solution with stationary 

sources of force and stress. One then expects solutions to the stationary problem to play 

an essential role in the study of long-time asymptotics or attractors for the dynamic 

problem (see, for instance, Robinson [78]). The second line of inquiry, which dates back 

essentially to the beginning of mathematical üuid mechanics, concerns the search for 

traveling wave solutions moving with speed γ �= 0. In this context, a huge literature 

exists for the corresponding inviscid problem, but progress on the viscous problem was 

initiated much more recently in the work of Leoni and Tice [58], and further developed by 

Stevenson and Tice [93,92], Koganemaru and Tice [55], and Nguyen and Tice [63]. The 

analysis in [55,58,63,93,92] crucially relies on the condition γ �= 0 to provide an estimate 
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for the free surface function in a scale of anisotropic Sobolev spaces. When γ = 0, this 

estimate degenerates, and [58] fails to construct solutions within their functional frame-

work. Thus, a natural question is whether there exists an alternate functional framework 

in which solutions can be constructed for all γ in a neighborhood of 0.

Our main goal in the paper can now be roughly summarized as follows. For every 

(g, μ, κ) ∈ (R+)3 and γ in an open set containing 0 we wish to identify an open set of 

force and stress data that give rise to locally unique nontrivial solutions. Moreover, we 

aim to prove well-posedness in the sense of continuity of the solution triple with respect 

to the force-stress data as well as the various physical parameters and wave speed.

The stated goal suggests that the force and stress should play an essential role in 

the construction of solutions. This is indeed the case, as we now aim to justify. An 

elementary formal calculation yields the following balance between dissipation and power 

for solutions to (1.8):

∫

Ω[¸]

μ

2
|Dv|2 =

∫

Ω[¸]

F · v +

∫

Σ[¸]

T ν¸ · v. (1.9)

The physical interpretation of this identity is that if a stationary or traveling wave 

solution exists, then the power supplied by the forces and stress (the right side of (1.9)) 

must be in exact balance with the energy dissipation rate due to viscosity (the left side 

of (1.9)). Identity (1.9) tells us even more if we take F = 0 and T = 0, in which case the 

L2-norm of Dv vanishes in Ω[η]. By a version of the Korn inequality, this implies that 

v = 0, and in turn, this implies that q = 0 and η is constant. Thus, we only expect to 

be able to generate non-trivial stationary or traveling wave solutions (in a Sobolev-type 

framework in which (1.9) is valid) via the application of nontrivial F or T .

1.3. Previous work

We now turn our attention to a brief survey of the mathematical literature associated 

to (1.6) and (1.8). This is vast, so we will restrict our focus to those results most closely 

related to ours.

For a thorough review of the fully dynamic problem (1.6) in various geometries we refer 

to the surveys of Zadrzyńska [99] and Shibata and Shimizu [80]. Beale [16] established 

local well-posedness with surface tension neglected. With surface tension accounted for, 

Beale [17] established the existence of global solutions and derived their decay properties 

with Nishida [18]. Solutions with surface tension were also constructed in other settings 

by Allain [12], Tani [95], Bae [14], and Shibata and Shimizu [81]. Solutions without 

surface tension were also constructed in various settings by Abels [6], Guo and Tice 

[44,45], and Wu [98]. Related analysis of linearized and resolvent problems can be found 

in the work of Abe and Shibata [1,2], Abels [4,5,7], Abels and Wiegner [8], and Abe and 

Yamazaki [3].
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The inviscid analog of the traveling wave problem, (1.8) with γ �= 0, which is also 

known as the traveling water wave problem, has been the subject of intense work for 

more than a century. The survey articles of Toland [97], Groves [43], Strauss [94], and 

Haziot, Hur, Strauss, Toland, Wahlén, Walsh, and Wheeler [48] contain a thorough 

review. Focusing entirely on the case of solitary (i.e. non-periodic) waves, in analogy 

with what is studied in this paper, the only positive existence results on the stationary 

(γ = 0) inviscid problem we are aware of are the recent constructions by Ehrnström, 

Walsh, and Zeng [35] and by Matthies, Sewell, and Wheeler [60].

In contrast, progress on the viscous traveling wave problem has only recently com-

menced. Leoni and Tice [58] developed a well-posedness theory for small forcing and 

stress data, provided γ �= 0. This was generalized to multi-layer, inclined, and periodic 

conûgurations by Stevenson and Tice [93] and Koganemaru and Tice [55]. The corre-

sponding well-posedness theory for the compressible analog of (1.8) was developed by 

Stevenson and Tice [92]. Traveling waves for the Muskat problem were constructed with 

similar techniques by Nguyen and Tice [63]. There are also experimental studies of vis-

cous traveling waves; for details, we refer to the work of Akylas, Cho, Diorio, and Duncan 

[29,34], Masnadi and Duncan [59], and Park and Cho [65,66].

We now turn our attention to the viscous, stationary (γ = 0) literature. To the best 

of our knowledge, the precise conûguration we study in (1.8) - including bulk force, a 

surface stress, and a non-compact free surface - has not yet appeared in the literature for 

either the three-dimensional or two-dimensional problem. However, numerous models of 

similar physical scenarios have been considered.

The non-compactness of the free boundary presents a fundamental difficulty in study-

ing (1.8), as it creates a low-mode degeneracy that simply is not present in, say, 

the spatially periodic variant or related problems with compact free boundaries. As 

such, we only brieüy review the stationary literature for compact free boundaries. Ben-

jamin [22] studied periodic disturbances to steady üow along an inclined plane in two 

dimensions. Periodic solutions in two dimensions were also studied by Puhnačev [76]. 

Solonnikov [85,86], Jean [54], and Ja Jin [53] studied various compact free surface prob-

lems with sources and sinks or inüow and outüow conditions in a bounded container 

with an applied force. In three dimensions, Bemelmans [19–21] studied various sta-

tionary droplet problems, considering both the cases with and without surface tension. 

Abergel [9] gave a geometric approach for studying various conûgurations in both two 

and three dimensions, which was expanded on in Abergel and Rouy [10]. We refer also 

to Solonnikov and Denisova [89] for more references regarding the bounded free surface 

stationary literature.

Next, we discuss the literature involving unbounded domains and non-compact free 

surfaces. Much of the attention of the existing work is devoted to steady üows driven 

by gravity down inclined planes with possibly non-uniform structure. In two dimensions, 

this conûguration was considered by Socolescu [82], Nazarov and Pileckas [62], Pelickas 

and Socolowsky [67,68], Socolowsky [84], and Pileckas and Solonnikov [69]. In three 
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dimensions Gellrich [37] studied stationary üows with large viscosity and small localized 

bulk force.

The remaining non-compact literature in two dimensions is primarily devoted to more 

complicated geometries. For instance, Pileckas [70–73] considered boundary inüows, mov-

ing lower boundaries, gliding plates, and üow down a plane making a corner, while 

Socolowsky [83] described üuid üowing out of a pipe, driven by gravity. In three dimen-

sions the situation is similar: Pileckas [74] studied liquid coming out of a narrow channel 

onto an incline plane, and Solonnikov [87,88] studied the üow generated by the slow 

rotation of an immersed rod and üow out of a circular tube.

To conclude, we again emphasize that, to the best of our knowledge, there are no 

results in the literature that study either: (1) the well-posedness in all parameter regimes 

of the three dimensional, non-compact stationary wave problem with applied bulk force 

and surface stress, i.e. system (1.8) with γ = 0; or (2) the continuous connection between 

the recent developments in the viscous free boundary traveling wave literature and the 

stationary wave problem. We address both of these in this paper.

1.4. Flattened reformulation

It will be convenient to reformulate the system (1.8) in the stationary domain 

Ω = R
2 × (0, b). To this end, we construct a üattening map (also called a Hanzawa 

transformation in the free boundary literature) from η by way of F¸ : Ω → Ω[η] deûned 

via

F¸(x, y) = (x, y + Eη(x, y)), (1.10)

where E is the extension operator considered in Proposition 5.17. Note that in Proposi-

tion 7.1 we show that the above üattening map is well-deûned and enjoys a collection of 

useful properties on the class of free surface functions considered in this paper.

Given η in an appropriate function space (which will be speciûed later), and hence 

F¸, we deûne two related quantities: the Jacobian J¸ : Ω → R
+ and (when J¸ is nowhere 

vanishing) the geometry matrix A¸ : Ω → R
3×3, deûned respectively via

J¸ = det(∇F¸) = 1 + ∂3Eη = ∂3(F¸ · e3) and A¸ = (∇F¸)−t. (1.11)

Provided that J¸ > 0 and J¸, 1/J¸ ∈ L∞(Ω), we then have that F¸(Ω) = Ω[η] and 

F¸ is a homeomorphism from Ω to Ω[η] such that its restriction to Ω deûnes a smooth 

diffeomorphism to Ω[η], F¸(Σ) = Σ[η], and F¸ is the identity on Σ0. It will also be useful 

to introduce the map

M¸ = J¸At
¸ =

(
(1 + ∂3Eη)I2×2 02×1

−E(∇‖η) 1

)
: Ω → R

3×3 (1.12)

when reformulating (1.8).
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We then introduce the new unknowns p = q◦F¸ : Ω → R and u = M¸(v◦F¸) : Ω → R
3. 

The problem (1.8) then transforms to the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

M−t
¸ ((u − γM¸e1) · ∇(M−1

¸ u)) + ∇(p + gη)

−μM−t
¸ (∇ · ((DAη

(M−1
¸ u))M t

¸)) = J¸M−t
¸ F ◦ F¸ in Ω,

∇ · u = 0 in Ω,

−(pI − μDAη
(M−1

¸ u))M t
¸e3 − κH (η)M t

¸e3 = T ◦ F¸M t
¸e3 on Σ,

u · e3 + γ∂1η = 0 on Σ,

u = 0 on Σ0.

(1.13)

Here we have used the notation DMw = ∇wMt + M∇wt, for M = A¸ and w = M−1
¸ u.

1.5. Statement of main result and discussion

In order to state and discuss our principal results, we must ûrst introduce the function 

spaces we will employ in our analysis. We will do so rapidly here, emphasizing that these 

spaces are more thoroughly developed in Sections 1.6 and 5.

Given an open set � ⊆ R
d, k ∈ N, and a normed vector space V , we will write Ck(�; V )

for the k-times continuously differentiable maps from � to V . The notation Ck
0 (�; V )

denotes the (possible) subspace of functions f ∈ Ck(�; V ) for which sup|α|�k |∂αf(xn)| →

0 along any sequence {xn}n∈N ⊂ � for which |xn| → ∞ as n → ∞.

Fix 1 < r < 2. For I denoting either the set (0, b) or else R and U = R
2 × I, 

we deûne Lr,2(U) = Lr(R2; L2(I)) to be the mixed-type Lebesgue space. For s ∈ N

we deûne the mixed-type Sobolev spaces Hs
r,2(U) modeled on Lr,2(U) in the natural 

way (see Deûnition 5.1). For t ∈ [0, ∞), we let Ht,r(R2) = {f ∈ Lr(R2) : 〈D〉tf ∈

Lr(R2)} denote the standard Bessel potential Sobolev space (see, e.g., Section 1.3.1 in 

Grafakos [42] or Section 6.2 in Berg and Löfström [23]) and let H̃1+t,r(R2) denote the 

space of L2r/(2−r)(R2) functions whose distributional derivatives belong to Ht,r(R2) (see 

Deûnition 5.14).

For s ∈ N, 1 < r < 2 we set Xs,r = H1+s
r,2 (Ω) × H2+s

r,2 (Ω; R
3) × H̃5/2+s,r(Σ) and 

Ws,r = H1+s
r,2 (R3; R3×3) × Hs

r,2(R3; R3). With the notation established, we come to our 

main theorem, which packages together several results in a fairly concise form but may be 

brieüy summarized as follows: solitary stationary solutions to the free boundary incom-

pressible Navier-Stokes equations are generic and depend continuously on the physical 

parameters and the data; moreover, every such solution lies along a one parameter fam-

ily of slowly traveling waves. After the theorem statement we will further unpack and 

discuss its various statements.

Theorem 1 (Proved in Section 7: see Theorem 7.13, Proposition 7.1, and Corollary 7.14). 

Let 1 < r < 2 and N � s > 3/r + 1. Then there exist open sets Ws ⊂ R × (R+)3 × Ws,r

and {Vs(g, μ, κ)}(g,μ,κ)∈(R+)3 ⊂ Xs,r, satisfying
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{0} × (R+)3 × {0} ⊂ Ws and 0 ∈
⋂

(g,μ,κ)∈(R+)3

Vs(g, μ, κ), (1.14)

and a continuous map

Ws � (γ, g, μ, κ, T , F) 
→ (p, u, η) ∈ Vs(g, μ, κ) ⊂ Xs,r (1.15)

such that the following hold.

(1) Classical regularity and flattening map diffeomorphism: Let k = s − 2 − �3/r� ∈ N. 

Then Xs,r ↪→ C2+k
0 (Ω) × C3+k

0 (Ω; R3) × C4+k
0 (Σ). Moreover, for every (p, u, η) ∈⋃

(g,μ,κ)∈(R+)3 Vs(g, μ, κ), the associated flattening map F¸ defined in (1.10) is a 

smooth diffeomorphism from Ω to Ω[η] that extends to a C4+k diffeomorphism from 

Ω to Ω[η].

(2) Solution operator: The map (1.15) is a solution operator to the flattened sys-

tem (1.13) in the sense that for each (γ, g, μ, κ, T , F) ∈ Ws the corresponding 

pressure, velocity, and free surface (p, u, η) ∈ Vs(g, μ, κ) is the unique triple in 

Vs(g, μ, κ) classically solving (1.13) with stress-force data (T , F), wave speed γ, and 

physical parameters (g, μ, κ). Moreover, the free surface η obeys an extra ‘degenerat-

ing anisotropic estimate’ in the sense that the composition map

Ws � (γ, g, μ, κ, T , F) 
→ (p, u, η) 
→ γR1η ∈ Lr(Σ) (1.16)

is well-defined and continuous. Here R1 refers to the Riesz transform in the e1-

direction.

(3) Eulerian transfer: Each solution to the flattened system (1.13) produced by (1.15)

gives rise to a classical solution to the stationary-traveling Eulerian formulation 

of the problem given by system (1.8) by undoing the change of unknowns that led 

from (1.8) to (1.13).

We now pause to unpack the content of this theorem with a few comments. The the-

orem guarantees that for every choice of positive physical parameters g, μ, and κ there 

exists a non-empty open neighborhood of the origin in wave-speed, stress, and force data 

(γ, T , F)-space for which we can uniquely solve (1.13), and the solution depends contin-

uous on the data and wave speed, as well as the physical parameters. One should think 

of this as being analogous to a small-data global existence theory for the corresponding 

dynamic problem, which is all one should expect due to potential singularity formation 

in the boundary geometry [28,31].

It is worth highlighting both the superüuous and concrete boundaries of our main 

theorem. We choose to work in three spatial dimensions for the following two reasons. 

First, our methods here simply do not work for the two-dimensional variant of (1.13). 

This is due to the fact that in two spatial dimensions the interface is one dimensional, 

and hence the container space for the free surface function is degenerate for all choices 
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for tangential integrability parameters 1 < r. The choice r = 1 would be an adequate 

replacement, but the harmonic analysis methods employed here are unavailable in that 

setting. The second reason we chose to study the three dimensional problem is physical 

relevance. The entirety of the theorem can be generalized to handle dimension four 

and higher, but in this case it would actually be possible to construct solutions in a 

simpler functional framework utilizing only L2-based spaces. Another hard boundary in 

our theorem is seen in the signs of the physical parameters. We crucially use the strict 

positivity of the coefficient of gravity g, the viscosity μ, and the surface tension coefficient 

κ and are simply unable to relax any of these parameters to zero. On the other hand, 

we believe that the lower regularity threshold of N � s > 3/r + 1 in Theorem 1 is a 

soft boundary. We chose this numerology in an effort to minimize the complexity of the 

nonlinear analysis, but it could potentially be improved upon with sufficient additional 

work.

The ûnal remark is on the qualitative nature of the waves produced by Theorem 1. 

Thanks to the embedding guaranteed by the ûrst item of this theorem, we see that the 

free surface perturbation η decays to zero at inûnity. This means that the waves we 

construct are solitary waves, to borrow a phrase from the traveling wave literature. Due 

to the level of generality of our main result, there is not much more we can say about 

the qualitative nature of our solutions; however, our well-posedness result opens to the 

door to more detailed qualitative studies given a ûxed wave speed and applied stress and 

force data.

We now state a couple consequences of the main theorem that formalize the above 

discussion. The ûrst clariûes what we know for a ûxed choice of physical parameters 

(g, μ, κ) ∈ (R+)3.

Corollary 2 (Proved in the third item of Corollary 7.14). Let r and s be as in Theorem 1. 

Then for each (g, μ, κ) ∈ (R+)3 there exists an open set (0, 0, 0) ∈ Ws(g, μ, κ) ⊂ R ×Ws,r

with the property that for every triple of wave-speed, stress, and force data (γ, T , F) ∈

Ws(g, μ, κ) there exists a unique (p, u, η) ∈ Vs(g, μ, κ) such that system (1.13) is satisfied 

classically.

The second corollary elucidates how we formulate well-posedness of the stationary 

wave problem.

Corollary 3 (Proved in the fourth item of Corollary 7.14). Let r and s as in Theorem 1. 

Then there exists an open set

(R+)3 × {0} ⊂ Zs ⊂ (R+)3 × Ws,r (1.17)

and a continuous mapping

Zs � (g, μ, κ, T , F) 
→ (p, u, η) ∈ Vs(g, μ, κ) ⊂ Xs,r (1.18)
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with the property that for each (g, μ, κ, T , F) ∈ Zs there exists a unique (p, u, η) ∈

Vs(g, μ, κ) such that the stationary free boundary incompressible Navier-Stokes equations, 

system (1.13) with γ = 0, is satisfied classically.

We now aim to summarize the principal difficulties in proving Theorem 1 and our 

strategies for overcoming them. This discussion also serves as an outline of the paper.

As is the case for the traveling wave problems studied in [55,58,63,93,92], the station-

ary boundary value problem (1.13) lies in an unbounded domain of inûnite measure and 

possesses a non-compact free boundary. The equations are quasilinear and do not enjoy 

a variational formulation. Consequently, compactness, Fredholm, and variational tech-

niques are unavailable. This suggests that the production of solutions ought to proceed 

via a perturbative argument, such as the implicit function theorem, which has proved 

successful in the aforementioned work on traveling waves. As such, we begin our dis-

cussion by stating the linearization of (1.13) at zero-wave speed around the equilibrium 

solution:

⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

∇(p + gη) − μ�u = f in Ω,

∇ · u = 0 in Ω,

−(pI − μDu)e3 − κ�‖ηe3 = k on Σ,

u · e3 = 0 on Σ,

u = 0 on Σ0.

(1.19)

The most natural linear theory for system (1.19) lies within L2-based Sobolev 

spaces. In Section 2 we prove that for every choice of s ∈ N, f ∈ Hs(Ω; R3), and 

k ∈ H1/2+s(Σ; R3), there exists a solution p ∈ H1+s(Ω), u ∈ H2+s(Ω; R3), and 

η ∈ H̃5/2+s(Σ) (meaning ∇η ∈ H3/2+s(Σ; R2)) that is unique up to modiûcations of 

η by constants. Moreover, we have an estimate of the solution (p, u, η) in terms of the 

data (f, k).

While this basic L2-based linear theory is encouraging, it is ill-suited for the actual 

task at hand. The problem is two-fold. First, there is no canonical choice of η, as it is 

only determined up to a constant, and this is highly problematic in using η to generate 

the set Ω[η] in which the nonlinear problem (1.8) is posed. Second, and more severe, 

is that the inclusion ∇η ∈ H3/2+s(Σ; R2) can never provide an estimate of η ∈ L∞(Σ)

for any choice of s ∈ N. This is due to the nature of the critical Sobolev embedding in 

two dimensions, since ∇η ∈ L2(Σ; R2) only guarantees that η ∈ BMO(Σ). The potential 

unboundedness of η is an even more severe obstruction in building Ω[η]. It is worth 

noting that for the traveling problem with γ �= 0, the papers [55,58,63,93,92] exploit an 

essential auxiliary estimate of γR1η ∈ L2(Σ), where R1 is the Riesz transform in the 

e1 direction, in order to guarantee η belongs to a special anisotropic Sobolev space that 

embeds into C0
0 (Σ; R); this then overcomes the criticality problem and allows for the 

construction of solutions in the anisotropic space. We see from (1.16) that we obtain 
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an analogous estimate here when γ �= 0, but when γ = 0 there is simply no auxiliary 

estimate available, and so the anisotropic space is of no use.

Our path forward begins with the following observation. If we could develop a theory 

for (1.19) that ensured the inclusion ∇η ∈ W �−1,r(Σ; R2) for some 1 � r < 2 and 

N � 
 > 2/r, then the subcritical Sobolev embedding would provide a canonical way 

to modify η by a constant to guarantee the inclusion η ∈ L2r/(2−r)(Σ). Due to the 

embedding (L2r/(2−r) ∩ Ẇ �,r)(Σ) ↪→ C0
0 (Σ), free surface functions in this space are not 

only admissible for the nonlinear problem, but also enjoy a wealth of nonlinear properties 

that permit the transition from (1.19) to the full nonlinear problem (1.8).

We thus arrive at the principal task of developing a linear well-posedness theory 

for (1.19) that yields Lr-estimates (for r < 2) on the gradient of the free surface and 

its derivatives. One possible strategy for this would be to pose the problem in purely 

Lr-based Sobolev spaces. There are existing techniques in the literature (for instance, 

[1–5,7,8]) that provide an Lr-based well-posedness theory for the Stokes problems with 

various boundary conditions. Modifying these to incorporate a coupling to a free surface 

function η appears to present a number of serious challenges. Rather than start with this 

Lr-Stokes theory and attempt to build in a coupling to the free surface function, we have 

instead identiûed an alternate approach that is more deeply connected to the symmetries 

of the equilibrium domain and the natural L2-energy structure of the problem. This 

technique allows for the simultaneous construction of the solution triple (p, u, η), has 

clear connections to the relatively simple L2-existence theory, and has the potential for 

generalization to other problems with similar symmetries.

Our approach aims only to develop the Lr-theory in the horizontal variables, while 

maintaining an L2-theory in the vertical variable. More concretely, we utilize mixed-type 

Sobolev spaces modeled on the mixed-type Lebesgue spaces Lr,2(Ω) = Lr(R2; L2(0, b))

for the bulk unknowns p and u and the bulk data, and we use Bessel potential Sobolev 

spaces Hs,r(R2) for the (gradient of the) boundary unknown η and the boundary data.

At ûrst glance it might seem that the mixed nature of these spaces will make them 

cumbersome to work with, but in fact they are a natural and streamlined choice of a 

functional framework to satisfy our stated goals, as we now aim to justify. First, we 

observe that the domain Ω is invariant under translations in the two horizontal variables 

and that the solution operator to system (1.19), denoted

T : L2(Ω; R
3) × H1/2(Σ; R

3) → H1(Ω) × H2(Ω; R
3) × (H̃5/2(Σ)/R), (1.20)

with (p, u, η) = T (f, k) solving the PDE, commutes with all horizontal translations. By 

making the identiûcation Σ � R
2 and employing the factorization (see Lemma 5.2)

Hs(Ω; R
�) = Hs(R2; L2((0, b); R

�)) ∩ L2(R2; Hs((0, b); R
�)) for s, 
 ∈ N, (1.21)

we see that T is a translation-commuting linear operator acting between certain inûnite-

dimensional Hilbert-valued Sobolev spaces. Building on some well-established tools in 
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harmonic analysis (see Section 3.1), we deduce from this that T is diagonalized by the 

Fourier transform in the two horizontal variables. More precisely, this grants us the 

existence of an operator-valued symbol

m : R
2 → L(L2((0, b); C

3) × C
3; H1((0, b); C) × H2((0, b); C

3) × C) (1.22)

such that T = m(D) and the operator norm of T is equivalent to a certain weighted 

L∞-type norm on the symbol m. Harmonic analysis provides numerous frameworks for 

extending Fourier multiplication operators, such as m(D), from L2-based spaces to Lr-

based spaces for 1 < r < ∞. A celebrated tool in this area is the Mikhlin-Hörmander 

multiplier theorem; brieüy, this result says that if the derivatives of the symbol obey cer-

tain estimates, then the corresponding multiplication operator can be uniquely extended 

from L2-based spaces to Lr-based spaces for every 1 < r < ∞. In our context, with the 

symbol m and the map T , there is an appropriate vector-valued version of this result to 

which we appeal and subsequently generalize (see Theorems 3.8 and 3.14). Taking for 

granted, for the moment, that m satisûes the necessary symbol estimates, we then learn 

that

T : Lr(R2; L2((0, b); R
3))

× H1/2,r(Σ; R
3) → (H1,r(R2; L2((0, b); R)) ∩ Lr(R2; H1((0, b); R)))

× (H2,r(R2; L2((0, b); R
3)) ∩ Lr(R2; H2((0, b); R

3))) × (H̃5/2,r(Σ; R)/R), (1.23)

is a bounded linear extension of (1.20) for any 1 < r < ∞. The mixed-type Sobolev 

spaces now simply show up by undoing the factorization (1.21), i.e.

Hs,r(R2; L2((0, b); R
�)) ∩ Lr(R2; Hs((0, b); R

�)) = Hs
r,2(Ω; R

�) for s, 
 ∈ N, r ∈ (1, ∞),

(1.24)

which means that (1.23) rewrites as

T : H0
r,2(Ω; R

3) × H1/2,r(Σ; R
3) → H1

r,2(Ω) × H2
r,2(Ω; R

3) × (H̃5/2,r(Σ)/R). (1.25)

In a similar manner, the mixed-spaces admit a simple Hilbert-valued Littlewood-Paley 

theory that allows for a rapid development of their properties.

Further evidence of the utility of the mixed-type Sobolev spaces and the tangential-Lr

framework is seen in the fact that it allows us to verify that the vector-valued symbol 

m satisûes the necessary Mikhlin-Hörmander hypotheses in a surprisingly effective and 

efficient manner. Our proof requires no more than the vector-valued harmonic analysis 

toolbox of Section 3, paired with the identiûcation of a certain recursive structure present 

in the L2 theory for (1.19). In fact, this technique does not rely on any explicit formula 

for m, nor any speciûc üuid-dynamical structure of the equations themselves, and so 

we expect it can serve as a general method for other problems posed in domains with 

a partial translation symmetry. The main idea of our technique is that derivatives of 
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the symbol are obtained from its difference quotients, which can be computed explicitly 

in terms of compositions of the solution operator T with modulation operators (see 

Proposition 4.5). The solution operator T interacts with modulation in a very simple 

manner due to the product rule, and this allows us to deduce differentiability properties 

of the symbol m by recursively employing T itself and the correspondence between its 

operator norm and L∞-type norms of m. This not only yields the estimates needed to 

invoke Mikhlin-Hörmander, but also yields analyticity of m away from the origin (see 

Theorem 4.13).

Section 5 records a number of properties, linear and nonlinear, about the mixed-type 

Sobolev spaces and the subcritical gradient spaces. We combine these with the L2-linear 

theory and the above vector-valued harmonic analysis ideas in Section 6, which culmi-

nates in the linear well-posedness result of Theorem 6.6. In Section 7 we then formulate 

the nonlinear system (1.13) as a nonlinear mapping between appropriate mixed-type 

spaces and then produce solutions via the implicit function theorem. The proofs of The-

orem 1 and Corollaries 2 and 3 are recorded in Section 7.2.

The above discussion has focused entirely on the stationary (γ = 0) problem, so we 

conclude with a couple comments about the slowly traveling problem (γ � 0). Previous 

work on the traveling problem [55,58,63,93,92] considered linearized operators with gen-

eral γ ∈ R \ {0}, but here we only study the case γ = 0. This explains how our result 

only ends up handing slowly traveling waves: the solutions with γ �= 0 are obtained per-

turbatively from the γ = 0 analysis. Based on the L2 theory, one would expect the free 

surface function to belong to the obvious Lr-analog of the anisotropic L2-based Sobolev 

spaces mentioned above, and this is indeed the case. To handle the mismatch between 

these anisotropic spaces with γ �= 0 and the isotropic space with γ = 0, we employ 

a special γ-dependent Fourier multiplier (see Deûnition 7.6) that reparameterizes the 

anisotropic function spaces in terms of the stationary isotropic function space. Inverting 

this operator (see Proposition 7.7) then shows the anisotropic inclusion that is recorded 

in (1.16).

We emphasize that our work establishes continuity of the solution map into the ûxed 

isotropic space used for the stationary problem, even though the free surface function 

belongs to a strict subspace (determined by the anisotropic estimate (1.16)) when γ �= 0. 

The limit γ → 0 can then be understood as a singular limit, in the sense that this 

extra anisotropic estimate degenerates when γ = 0, resulting in a change in the topology 

of the container space. Another impact of this singular limit is that the anisotropic 

parameterization operators we use are at best continuous with respect to γ and not 

differentiable at γ = 0.

1.6. Notation

The set {0, 1, 2, . . .} is denoted by N; N
+ = N \ {0}. The positive real numbers 

are R
+ = (0, ∞). F denotes either R or C. The notation ³ � ´ means that there 

exists C ∈ R
+, depending only on the parameters that are clear from context, for 
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which ³ � C´. To highlight the dependence of C on one or more particular parameters 

a, . . . , b, we will occasionally write ³ �a,...,b ´. We also express that two quantities ³, ´

are equivalent, written ³ � ´ if both ³ � ´ and ´ � ³. We shall also employ the bracket 

notation

〈x〉 =
√

1 + |x1|2 + · · · + |x�|2 for x ∈ C
�. (1.26)

If {Xi}
�
i=1 are normed spaces and X is their product, endowed with any choice of product 

norm ‖·‖X , then we shall write

‖x1, . . . , x�‖X = ‖(x1, . . . , x�)‖X for (x1, . . . , x�) ∈ X. (1.27)

We identify the dual of a complex Banach space X, denoted X∗, as the set of antilinear 

and continuous functionals, so that the dual pairing is sesquilinear (i.e. linear in the right 

argument) and, in the case that X is Hilbert, the Riesz map is linear.

If H is a separable Hilbert space, we will denote the Fourier and inverse Fourier trans-

forms (normalized to be unitary on L2) in the space of H-valued tempered distributions 

over Rd, S ∗(Rd; H), via F and F −1, respectively. For functions deûned in the equi-

librium domain Ω, we view them as vector-valued tempered distributions on R2 in the 

natural way; for example, L2(Ω; C) = L2(R2; L2((0, b); C)) ↪→ S ∗(R2; L2((0, b); C)). It 

is in these sense that we are to interpret the Fourier transform acting on functions deûned 

on Ω. We frequently make the natural identiûcation Σ � R
2 when performing Fourier 

analysis for functions deûned on Σ.

We write ∇ = (∂1, . . . , ∂d) to denote the gradient on R
d for d ∈ N

+. We refer to 

dimensions 2 and 3 simultaneously, in which case the R2-gradient is denoted by ∇‖ =

(∂1, ∂2), while the R3 gradient obeys the aforementioned notation. In R2 we denote the 

rotated-gradient operator as ∇⊥
‖ = (−∂2, ∂1). We also let D = ∇/2πi or D = ∇‖/2πi, 

depending on context. The divergence and tangential divergence operators are written 

∇ · f =
∑3

j=1 ∂j(f · ej) and (∇‖, 0) · f =
∑2

j=1 ∂j(f · ej), for appropriate R
3-valued 

functions f .

If H and K are Hilbert spaces and m : R
d → L(H; K) is a sufficiently nice symbol, 

we will write m(D) for the linear operator, acting on certain subspaces of tempered 

distributions, deûned via F −1[mF [·]]. In other words, m(D) is the Fourier multiplication 

operator corresponding to the symbol m. If ζ ∈ R
d, we also let m(D+ζ) = (m(· +ζ))(D). 

The vector of Riesz transforms is R = (R1, . . . , Rd), where Ri = |D|−1∂i/2π, i ∈

{1, . . . , d}.

We now turn our attention to the notation for various types of standard Sobolev spaces 

employed in this paper. First, we address certain negative homogeneous type Spaces. For 

1 < p < 2 we deûne the space

Ḣ−1,p(R2; F) = {f ∈ H−1,p(R2; F) : |D|−1f ∈ Lp(R2; F)}, (1.28)

which is equipped with the norm [f ]Ḣ−1,p = ‖|D|−1f‖Lp . We also deûne
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Ḣ−1(R2; F) = {f ∈ H−1(R2; F) : | · |−1
F [f ] ∈ L2(R2; C)} (1.29)

and endow it the norm [f ]Ḣ−1 = ‖| · |−1F [f ]‖L2 . We will sometimes write Ḣ−1,2 = Ḣ−1. 

We then denote

Ĥs(Ω; F) =
{

g ∈ Hs(Ω; F) :

b∫

0

g(·, y) dy ∈ Ḣ−1(R2; F)
}

(1.30)

which has the norm ‖g‖Ĥs =
(
‖g‖2

Hs +
[∫ b

0
g(·, y) dy

]2

Ḣ−1

)1/2
.

For R � s � 1 we also deûne the gradient spaces:

H̃s,p(R2; F) =

{
{f ∈ L1

loc(R2; F) : ∇f ∈ Hs−1,p(R2; F
2)} if p � 2,

{f ∈ L2p/(2−p)(R2; F) : ∇f ∈ Hs−1,p(R2; F
2)} if 1 < p < 2.

(1.31)

The norm (seminorm if p � 2) is given by ‖f‖
H̃s,p = ‖∇f‖Hs−1,p . When p = 2, we shall 

again write H̃s(R2; F) in place of H̃s,2(R2; F). The spaces H̃s,p(R2; F) are complete for 

p < 2 (see Section 5.3 for this and other properties), while the quotient H̃s,p(R2; F)/F

is complete for p � 2.

Now we consider the classical Bessel-potential Sobolev spaces. Given H a separable 

Hilbert space and R � s � 0 we write

Hs,p(R2; H) = {f ∈ Lp(R2; H) : 〈D〉sf ∈ Lp(R2; H)} (1.32)

and equip this space with the standard norm ‖f‖Hs,pH = ‖〈D〉sf‖LpH. When p = 2, we 

simply write Hs(R2; H) in place of Hs,2(R2; H). Since we are considering the Hilbert-

valued case, the theory follows from straightforward adaptations of the scalar theory; for 

more information on the general Banach-valued cases, we refer the reader to Amann [13]

or Section 5.6 in Hytönen, Neerven, Veraar, and Weis [51].

The trace operators on to the hypersurfaces Σ and Σ0, acting on functions deûned 

on Ω, are denoted by TrΣ and TrΣ0
, respectively. We will utilize the following closed 

subspace of H1(Ω; F3):

0H1(Ω; F
3) = {u ∈ H1(Ω; F

3) : TrΣ0
u = 0}. (1.33)

For functions like η : Σ → F we can view them as deûned on Ω in the natural way, e.g. 

η(x, y) = η(x) for (x, y) ∈ Ω. In particular, the expression of ∇η in the bulk equations 

of say (1.13) refers to the R3-vector (∂1η, ∂2η, 0).

2. Basic linear theory

In this section we are concerned with the well-posedness of the following linear system 

of equations in the framework of L2-based Sobolev spaces:
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⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

∇(p + gη) − μ∇ · Du = f in Ω,

∇ · u = g in Ω,

−(pI − μDu)e3 − κ�‖ηe3 = k on Σ,

u · e3 = h on Σ,

u = 0 on Σ0.

(2.1)

Here the (complex) data are f : Ω → C
3, k : Σ → C

3, h : Σ → C, and g : Ω → C

while the (complex) unknowns are u : Ω → C
3, p : Ω → C, and η : Σ → C. 

One of the minor technical issues with this system of equations is that the lowest 

order term appearing for η is its gradient thus there is a kernel for the differential 

operator consisting of p = 0, u = 0, and η = constant ∈ C. We get around this 

issue in the following two ways. First, in Sections 2.1 and 2.2, we work in a semi-

normed space functional framework, rather than a normed one. More precisely, we utilize 

the H̃s(R2) spaces as in (1.31) as the containers for the linearized free surface vari-

able.

As it turns out, working in seminormed spaces is not ideally suited for the next stage 

of our linear analysis, Section 4, in which we perform operator-valued symbol calculus 

on a solution operator to the linear problem. Thus, our second way of dealing with the 

kernel of (2.1) is that in the latter half of Section 2.2, we use an equivalent reformulation 

of (2.1) for data and solutions both belonging to normed spaces. The reformulation is 

given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

g(χ, 0) + ∇p − μ∇ · Du = f in Ω,

∇ · u = g in Ω,

−(pI − μDu)e3 − κ∇‖ · χe3 = k on Σ,

∇⊥
‖ · χ = ω on Σ,

u · e3 = h on Σ,

u = 0 on Σ0.

(2.2)

Here the data f , k, h are the same as before, and ω : Σ → C is a new datum. The 

solution is (p, u, χ), with p and u as before and χ : Σ → C
2.

2.1. Weak solutions

The strategy for the theory of weak solutions is to prove a priori estimates and then 

handle existence via a sequence of approximate problems. The initial bounds allow us 

to deduce that this approximating sequence is Cauchy and has a limit that solves the 

equations.

The following deûnition sets the notation for the weak solution theory.
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Definition 2.1 (Weak formulation operators). We define the linear map

I : L2(Ω; C) × 0H1(Ω; C
3) × H̃3/2(Σ; C) → (0H1(Ω; C

3))∗, (2.3)

through the action

〈I (p, u, η), v〉(0H1)∗,0H1 =

∫

Ω

μ

2
Du : Dv − p∇ · v + g∇η · v − κ〈�‖η, TrΣv · e3〉H−1/2,H1/2 .

(2.4)

Recall that our notational convention is that the (·)∗ of a Banach space is its anti-dual 

and the bracket pairing is antilinear in the right argument.

We also define the following closed subspaces of H1(Ω; C3):

�H
1(Ω; C

3) = {u ∈ 0H1(Ω; C
3) : ∇ · u = 0, TrΣu · e3 = 0}, (2.5)

and for ε ∈ (0, 1)

�H
1
ε (Ω; C

3) = {u ∈ �H
1(Ω; C

3) : supp F [u] ⊆ R
2 \ B(0, ε)}. (2.6)

Note that in the above we are interpreting suppF [u] ⊆ R
2 as the support of the vector-

valued tempered distribution F [u] ∈ S ∗(R2; L2((0, b); C3)).

We quote the following construction of a solution operator to the divergence equation 

with Dirichlet boundary conditions. Recall that a linear map T on a vector space of 

functions deûned on Ω is said to be translation commuting, or tangential translation 

commuting, if (TX)(· + h) = T (X(· + h)) for all functions X and all h ∈ R
3 with 

h · e3 = 0.

Lemma 2.2 (Solution operators to divergence equations). The following hold.

(1) There exists a bounded, linear, and translation commuting map B such that for 
 ∈ N

we have

B : Ĥ�(Ω; C) → H1
0 (Ω; C

3) ∩ H1+�(Ω; C
3) (2.7)

and for all f ∈ Ĥ0(Ω; C) we have

∇ · Bf = f and Tr∂ΩBf = 0. (2.8)

(2) There exists a bounded, linear, and translation commuting map B such that for 
 ∈ N

we have

B : H�(Ω; C) → 0H1(Ω; C
3) ∩ H1+�(Ω; C

3) (2.9)

and for all f ∈ H0(Ω; C) we have ∇ · Bf = f .
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(3) There exists a bounded, linear, and translation commuting map B0 such that for 


 ∈ N we have

B0 : H1/2+�(Σ; C) ∩ Ḣ−1(Σ; C) → 0H1(Ω; C
3) (2.10)

and for all ϕ ∈ H1/2(Σ; C) ∩ Ḣ−1(Σ; C) we have

∇ · B0ϕ = 0 and TrΣB0ϕ = ϕe3. (2.11)

Proof. The R-valued variants of these operators are constructed in Proposition C.2 and 

Corollaries C.3 and C.4 in Stevenson and Tice [92]. Inspection of the proof shows that 

the solution operators are indeed translation commuting. The C-valued assertions above 

follow from separate considerations of real and imaginary parts. �

We now prove a priori estimates for system (2.1) in the reduced case that g = 0 and 

h = 0.

Proposition 2.3 (A priori estimates for weak solutions). Suppose that

(p, u, η) ∈ L2(Ω; C) × �H
1(Ω; C

3) × H̃3/2(Σ; C) and F ∈ (0H1(Ω; C
3))∗ (2.12)

satisfy the equation

I (p, u, η) = F, (2.13)

or in other words, we have a weak solution to (2.1). Then we have the a priori estimate

‖p, u, η‖
L2×H1×H̃3/2 � ‖F‖(0H1)∗ , (2.14)

with an implicit constant depending on g, κ, and μ.

Proof. Fix λ ∈ (0, 1), and let ηλ = F −1[1R2\B(0,λ)F [η]] ∈ H3/2(Σ; C). Then (p, u, ηλ)

solves the equation

I (p, u, ηλ) = F − I (0, 0, η − ηλ). (2.15)

Testing this with u and integrating by parts, we acquire the identity

〈F − I (0, 0, η − ηλ), u〉(0H1)∗,0H1 =

∫

Ω

μ

2
|Du|2 − p∇ · u + g∇ηλ · u =

∫

Ω

μ

2
|Du|2. (2.16)

Thus, by applying Korn9s inequality (see, for instance, Proposition A.3 in Stevenson and 

Tice [92]) and sending λ → 0, we obtain the estimate
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‖u‖H1 � ‖F‖(0H1)∗ . (2.17)

We now derive an estimate on η. With ηλ as before, we deûne vλ ∈ 0H1(Ω; C3)

via vλ = −B0(〈∇‖〉−1�‖ηλ), with B0 from Lemma 2.2. The lemma provides the bound 

‖vλ‖H1 � ‖η‖
H̃3/2 . With the understanding that duality pairings are antilinear in the 

right argument, we then test (2.15) with vλ and integrate by parts to learn that

〈F − I (0, 0, η − ηλ), vλ〉(0H1)∗,0H1

=

∫

Ω

μ

2
Du : Dvλ + g∇ηλ · vλ + κ〈�‖ηλ, 〈∇‖〉−1�‖ηλ〉H−1/2,H1/2

=

∫

Ω

μ

2
Du : Dvλ + 〈(g − κ�‖)ηλ, −〈∇‖〉−1�‖ηλ〉H−1/2,H1/2 , (2.18)

from which we deduce the estimate

‖ηλ‖2
H̃3/2 � ‖η‖

H̃3/2(‖u‖H1 + ‖F − I (0, 0, η − ηλ)‖)(0H1)∗ . (2.19)

By sending λ → 0 and combining with the already established estimate on u, we then 

derive the bound ‖η‖
H̃3/2 � ‖F‖(0H1)∗ .

Finally, we derive an estimate on p. For this, we test (2.13) with Bp ∈ 0H1(Ω; C3), 

where B is again from Lemma 2.2, to see that

〈F, v〉(0H1)∗,0H1 =

∫

Ω

μ

2
Du : Dv + g∇η · v − |p|2 , (2.20)

which then implies the estimate

‖p‖L2 � ‖u, η, F‖
H1×H̃3/2×(0H1)∗

� ‖F‖(0H1)∗ . (2.21)

Synthesizing the above estimates then completes the proof. �

Our next result examines the existence of weak solutions.

Proposition 2.4 (Existence and uniqueness of weak solutions). For any F ∈ (0H1(Ω;

C
3))∗ there exists a (p, u, η) ∈ L2(Ω; C) × �H

1(Ω; C3) × H̃3/2(Σ; C) satisfying (2.13). 

The triple (p, u, η) is unique modulo changes of η by constant functions.

Proof. Uniqueness, modulo constants in the linearized free surface variable, is a conse-

quence of estimate (2.14) from Proposition 2.3. To prove existence let ε ∈ (0, 1) and 

consider the sesquilinear form B : �H
1
ε (Ω; C

3) × �H
1
ε (Ω; C

3) → C given by
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B(u, v) =

∫

Ω

μ

2
Du : Dv. (2.22)

B is bounded and also coercive thanks to the Korn inequality (see, e.g., Proposition 

A.3 in [92]). Thus, the Lax-Milgram lemma shows that for every F ∈ (0H1(Ω; C3))∗

(which deûnes an element of (�H
1
ε (Ω; C3))∗ via restriction), there exists a unique uε ∈

�H
1
ε (Ω; C

3) such that B(uε, v) = 〈F, v〉 for all v ∈ �H
1
ε (Ω; C

3).

Next, we introduce the Hilbert spaces

L2
ε(Ω; C) = {g ∈ L2(Ω; C) : supp F [g] ⊆ R

2 \ B(0, ε)},

0H1
ε (Ω; C

3) = {v ∈ H1
0 (Ω; C

3) : supp F [v] ⊆ R
2 \ B(0, ε)},

Hs
ε (Σ; C) = {h ∈ Hs(Σ; C) : supp F [h] ⊆ R

2 \ B(0, ε)} for s ∈ R,

(2.23)

which are all endowed with the inner-product from their deûning container spaces. 

Clearly, we have the embeddings L2
ε(Ω; C) ↪→ Ĥ0(Ω; C), and Hs

ε (Σ; C) ↪→ Ḣ−1(Σ; C) for 

any s � −1. Hence, Lemma 2.2 allows us to consider the bounded antilinear functional

L2
ε(Ω; C)×H1/2

ε (Σ; C) � (g, h) 
→ Gε(g, h) = B(uε, Bg+B0h)−〈F, Bg+B0h〉 ∈ C (2.24)

and apply the Riesz-representation theorem to acquire (qε, ζε) ∈ L2
ε(Ω; C) × H

1/2
ε (Σ; C)

such that

Gε(g, h) = (qε, g)L2 + (〈D〉1/2ζε, 〈D〉1/2h)L2(Σ) for all (g, h) ∈ L2
ε(Ω; C) × H1/2

ε (Σ; C).

(2.25)

For any v ∈ 0H1
ε (Ω; C3) we can use Lemma 2.2 to decompose v = Pv + Qv via

Pv = v − B(∇ · v) − B0(TrΣv · e3) and Qv = B(∇ · v) + B0(TrΣv · e3), (2.26)

for bounded, linear, and translation commuting maps

P : 0H1
ε (Ω; C

3) → �H
1
ε (Ω; C

3) and Q : 0H1
ε (Ω; C

3) → 0H1
ε (Ω; C

3). (2.27)

Now, by the construction of uε we know that for any v ∈ 0H1
ε (Ω; C3) we have the 

identity B(uε, Pv) − 〈F, Pv〉 = 0, and hence, by the deûnition of Gε and identity (2.25), 

we have

B(uε, v) − 〈F, v〉 = B(uε, Qv) − 〈F, Qv〉 = Gε(∇ · v, TrΣv · e3)

=

∫

Ω

qε∇ · v + (〈D〉1/2ζε, 〈D〉1/2TrΣv · e3)L2(Σ). (2.28)

We then set
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ηε = 〈D〉(−g + κ�‖)−1ζε ∈ H3/2(Σ; C), (2.29)

pε = qε − gηε ∈ L2
ε(Ω; C), and Fε = 1R2\B(0,ε)(D)F ∈ (0H1(Ω; C3))∗ to learn from this 

identity and Deûnition 2.1 that

I (pε, uε, ηε) = Fε. (2.30)

Pick a sequence {εn}n∈N ⊂ (0, 1) such that εn → 0 as n → ∞. We claim that 

{(pεn
, uεn

, ηεn
)}n∈N ⊆ L2(Ω; C) × �H

1(Ω; C3) × H̃3/2(Σ; C) is Cauchy. To this end, we 

ûrst note that (2.30) shows that

I (pεn
− pεm

, uεn
− uεm

, ηεn
− ηεm

) = (1R2\B(0,εn) − 1R2\B(0,εm))(D)F. (2.31)

Then the a priori estimates for weak solutions in Proposition 2.3 grant the estimate

‖pε1
− pε0

, uε1
− uε0

, ηε1
− ηε0

‖
L2×H1×H̃3/2 � ‖(1R2\B(0,εn) − 1R2\B(0,εm))(D)F‖(0H1)∗

� ‖(1R2\B(0,εn) − 1R2\B(0,εm))(D)(−�)−1F‖
0H1 , (2.32)

where (−�)−1 is the (translation commuting) inverse to the Σ0-Dirichlet Σ-Neumann 

Laplacian in Ω. The claim is then proved by noting that

lim sup
n,m→∞

‖(1R2\B(0,εn) − 1R2\B(0,εm))(D)(−�)−1F‖
0H1 = 0, (2.33)

which follows from Lemma 5.2, Plancherel9s theorem, and the monotone convergence 

theorem. The claim is proved.

With the claim in hand, we send n → ∞ to obtain (p, u, η) belonging to the same 

space as the sequence. Testing against v ∈ 0H1(Ω; C3) in identity (2.30), and sending 

n → ∞, we then conclude that the limit (p, u, η) satisûes (2.13). �

2.2. Strong solutions

The purpose of this subsection is to obtain estimates in strong norms of solutions to 

the equations (2.1) and (2.2). We begin with the former.

Theorem 2.5 (Analysis of strong solutions, I). Let s ∈ N. For every

(g, f, k, h) ∈ H1+s(Ω; C) × Hs(Ω; C
3) × H1/2+s(Σ; C

3) × H3/2+s(Σ; C) (2.34)

satisfying

h −

b∫

0

g(·, y) dy ∈ Ḣ−1(Σ; C) (2.35)
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there exists a unique (again, with the understanding that η is only unique modulo constant 

functions)

(p, u, η) ∈ H1+s(Ω; C) × H2+s(Ω; C
3) × H̃5/2+s(Σ; C) (2.36)

such that system (2.1) is solved with data (2.34) and solution (2.36); moreover, we have 

the estimate

‖p, u, η‖
H1+s×H2+s×H̃5/2+s � ‖g, f, k, h‖H1+s×Hs×H1/2+s×H3/2+s +

[
h −

b∫

0

g(·, y) dy
]

Ḣ−1
.

(2.37)

Proof. We begin by introducing a useful linear operator. Let

B̃ : {(g, h) ∈ H1+s(Ω; C) × H3/2+s(Ω; C) : (2.35) is satisûed} → 0H2+s(Ω; C
3) (2.38)

be deûned via

B̃(g, h) = Bg + B0(h − TrΣBg · e3), (2.39)

where B and B0 are from Lemma 2.2; B̃ is well-deûned thanks to the lemma and the fact 

that

h − TrΣBg · e3 =
(

h −

b∫

0

g(·, y) dy
)

+
( b∫

0

g(·, y) dy − TrΣBg · e3

)
∈ Ḣ−1(Σ; C). (2.40)

Given a data tuple (2.34), we set f̃ = f + μ∇ · DB̃(g, h) ∈ Hs(Ω; C3) and k̃ = k −

μTrΣDB̃(g, h)e3 ∈ H1/2+s(Σ; C3). Thanks to the mapping properties of B̃, the reduced 

data satisfy the estimate

‖f̃ , k̃‖Hs×H1/2+s � ‖g, f, k, h‖H1+s×Hs×H1/2+s×H3/2+s +
[
h −

b∫

0

g(·, y) dy
]

Ḣ−1
. (2.41)

We then consider the reduced problem of ûnding

(p, w, η) ∈ H1+s(Ω; C) × (�H
1(Ω; C

3) ∩ H2+s(Ω; C
3)) × H̃5/2+s(Σ; C) (2.42)

solving
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⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

∇(p + gη) − μ∇ · Dw = f̃ in Ω,

∇ · w = 0 in Ω,

−(pI − μDw)e3 − κ�‖ηe3 = k̃ on Σ,

w · e3 = 0 on Σ,

w = 0 on Σ0,

(2.43)

where the reduced data (f̃ , ̃k) are determined as above by a data tuple (2.34). We claim 

that the data (g, f, k, h) uniquely determine solutions to the reduced problem, provided 

they exist. Indeed, if (p, w, η) solve the reduced problem with data (g, f, k, h) = 0, 

then (f̃ , ̃k) = 0 and (p, w, η) satisfy I (p, w, η) = 0; then the a priori estimates of 

Proposition 2.3 imply that (p, w, η) = 0. This proves the claim.

The connection between the reduced problem and the original is as follows. Given 

(p, u, η) as in (2.36) solving (2.1), then upon setting w = u − B̃(g, h) ∈ �H
1(Ω; C3) ∩

H2+s(Ω; C3) we arrive at a solution (p, w, η) to the reduced system. Conversely, if (p, w, η)

as in (2.42) solve the reduced problem, then we obtain a solution to the original problem 

by setting u = w + B̃(g, h); moreover,

‖u‖H2+s � ‖w‖H2+s + ‖g, f, k, h‖H1+s×Hs×H1/2+s×H3/2+s +
[
h −

b∫

0

g(·, y) dy
]

Ḣ−1
.

(2.44)

We thus reduce to solving the reduced problem and deriving the high regularity bounds

‖p, w, η‖
H1+s×H2+s×H̃5/2+s � ‖f̃ , k̃‖Hs×H1/2+s . (2.45)

Now, with (f̃ , ̃k) in hand, we deûne F ∈ (0H1(Ω; C3))∗ via

〈F, v〉 =

∫

Ω

f̃ · v +

∫

Σ

k̃ · v ∈ C, (2.46)

and use Proposition 2.4 to obtain a weak solution (p, w, η) to the reduced system. To 

complete the proof, it is thus sufficient to prove that for every s ∈ N and every (f̃ , ̃k) ∈

Hs(Ω; C3) × H1/2+s(Σ; C) the associated unique weak solution (p, w, η) ∈ L2(Ω; C) ×

�H
1(Ω; C3) × H̃3/2(Σ; C) to (2.43) satisûes the higher regularity bounds (2.45).

We proceed via induction. The case s = 0 is handled ûrst. We let λ ∈ (0, 1) and apply 

|D|1Aλ
(D) to weak solution identity (here D = ∇‖/2πi and Aλ = B(0, λ−1) \ B(0, λ)) 

and obtain that

I (|D|1Aλ
(D)p, |D|1Aλ

(D)u, |D|1Aλ
(D)η) = |D|1Aλ

(D)F, (2.47)

where F is as in (2.46). Thus we may invoke the a priori estimates of Proposition 2.3 to 

bound
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‖|D|p, |D|w, |D|η‖
L2×H1×H̃3/2 � lim sup

λ→0
‖|D|1Aλ

(D)F‖(0H1)∗ � ‖f̃ , k̃‖L2×H1/2 , (2.48)

which is the desired tangential regularity. To establish normal regularity, we note that

∂3p = μ�‖w · e3 − μ(∇‖, 0) · ∂3w + f̃ · e3 (2.49)

and

μ∂2
3w = −μ�‖w + ∇(p + gη) − f̃ . (2.50)

Identity (2.49) (paired with (2.48)) establishes that ∂3p ∈ L2(Ω; C). Then we use iden-

tity (2.50) to establish that ∂2
3w ∈ L2(Ω; C3) as well. This completes the proof of the 

base case.

Now suppose that s ∈ N and assume the induction hypothesis at s. Further suppose

(f̃ , k̃) ∈ H1+s(Ω; R
3) × H3/2+s(Σ; R

3). (2.51)

By the induction hypothesis and a tangential regularity argument similar to the one used 

in the base case, we obtain the estimate

‖p, w, η‖
H1+s×H2+s×H̃5/2+s +

2∑

j=1

‖∂jp, ∂jw, ∂jη‖
H1+s×H2+s×H̃5/2+s � ‖f̃ , k̃‖H1+s×H3/2+s .

(2.52)

To complete the proof, we once more employ identities (2.49) and (2.50) to estimate ∂3p

and ∂2
3w as before, which then proves the induction hypothesis at level s + 1. �

Our ûnal result of this subsection reformulates the previous result in an equivalent 

way that avoids the use of seminormed spaces. This will be the main take away of our 

linear analysis for utilization in the next section.

Theorem 2.6 (Analysis of strong solutions, II). Let s ∈ N. For every

(g, f, k, h, ω) ∈ H1+s(Ω; C)×Hs(Ω; C
3)×H1/2+s(Σ; C

3)×H3/2+s(Σ; C)×H1/2+s(Σ; C)

(2.53)

satisfying

h −

b∫

0

g(·, y) dy ∈ Ḣ−1(Σ; C) and ω ∈ Ḣ−1(Σ; C) (2.54)

there exists a unique

(p, u, χ) ∈ H1+s(Ω; C) × H2+s(Ω; C
3) × H3/2+s(Σ; C

2) (2.55)
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such that the equations (2.2) are satisfied. Moreover, we have the estimate

‖p, u, χ‖H1+s×H2+s×H3/2+s � ‖g, f, k, h, ω‖H1+s×Hs×H1/2+s×H3/2+s×H1/2+s

+
[
h −

b∫

0

g(·, y) dy, ω
]

Ḣ−1×Ḣ−1
(2.56)

Proof. For any χ ∈ H3/2+s(Σ; C2) we have that

χ = �−1
‖ ∇‖∇‖ · χ + �−1

‖ ∇⊥
‖ ∇⊥

‖ · χ. (2.57)

Hence, given a solution to (2.2), we can set η = �−1
‖ ∇‖ · χ ∈ H̃5/2+s(Σ; C) and observe 

that

⎧
⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪¬

∇(p + gη) − μ∇ · Du = f − g(�−1
‖ ∇⊥

‖ ω, 0) in Ω,

∇ · u = g in Ω,

−(pI − μDu)e3 − κ�‖ηe3 = k on Σ,

u · e3 = h on Σ,

u = 0 on Σ0.

(2.58)

On the other hand, given a data tuple (g, f, k, h, ω), we may use Theorem 2.5 to obtain 

the existence of a solution triples (p, u, η) to (2.58), which is unique modulo constants in 

the free surface variable. The solution also obeys the estimate

‖p, u, η‖
H1+s×H2+s×H̃5/2+s � ‖g, f, k, h, ω‖H1+s×Hs×H1/2+s×H3/2+s×H1/2+s

+
[
h −

b∫

0

g(·, y) dy, ω
]

Ḣ−1×Ḣ−1
. (2.59)

We then obtain the unique solution to (2.2) upon setting χ = ∇‖η + �−1
‖ ∇⊥

‖ ω. The 

bound (2.56) follows easily from (2.59). �

3. Vector-valued harmonic analysis

This section is a necessary step back from the main PDE line of the story into abstract, 

vector-valued harmonic analysis. Our goal moving forward is to take the solution operator 

to the reformulated linear system (2.2) granted by Theorem 2.6 and prove that we can 

extend it from its domain of L2-based Sobolev spaces to some kind of Lr-based Sobolev 

spaces for an integrability parameter 1 < r < 2. The reason for doing so is potentially 

opaque at this point, but it is exactly this change in integrability parameter to below the 

threshold 2 that makes it possible to come back to system (2.1) and pose it in normed 



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 27

spaces, rather than seminormed ones in such a way that the linkage with the nonlinear 

theory of Section 7 becomes possible.

Implementing the above program requires both old and new ideas in vector-valued 

harmonic analysis. It is thus the goal of this section of the document to record variants 

of classical results in harmonic analysis adapted to the vector-valued setting relevant 

for this paper and to showcase our new tools in the subject, which are Theorem 3.5, 

Corollary 3.6, and Theorem 3.14. We make an effort to include as many abbreviated 

proofs and external references as possible, striving for a concise treatment.

3.1. Translation commuting linear maps

This section is devoted to the diagonalization, via the Fourier transform, of vector-

valued translation commuting linear maps on L2-based Sobolev spaces. In the ûnite-

dimensional vector-valued case, we have the following formulation.

Theorem 3.1 (Translation commuting linear maps, finite dimensional case). Let V0, V1

be finite dimensional complex Hilbert spaces. The following are equivalent for a bounded 

linear map T : L2(Rd; V0) → L2(Rd; V1).

(1) T commutes with translations in the sense that (Tf)(· + h) = T (f(· + h)) for all 

f ∈ L2(Rd; V0) and all h ∈ R
d.

(2) There exists m ∈ L∞(Rd; L(V0, V1)) such that T = m(D) in the sense that 

F −1TF = m, where the right hand side is simply a multiplication operator.

In either case, we have that the operator norm of T coincides with the essential supremum 

of m, i.e.

‖T‖L(L2V0;L2V1) = ‖m‖L∞L(V0;V1) (3.1)

Proof. The proof with V0 = V1 = C is standard; see, for instance, Theorem 2.5.10 in 

Grafakos [41]. The general ûnite dimensional case follows easily from this using orthonor-

mal bases. �

We require an inûnite dimensional generalization of Theorem 3.1. To formulate this 

we ûrst need an appropriate notion of measurable maps taking values in a space of 

bounded linear operators. This can be found in Hille and Phillips [50] (Deûnition 3.5.4, 

the subsequent remark applied for σ-ûnite measure spaces, and Deûnition 3.5.5), and we 

record it now in the second item in the deûnition below.

Definition 3.2 (Some notions of measurability). Let X be a complete and σ-finite measure 

space.
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(1) Bochner measurability: Let Y be a Banach space. We say that a function g : X → Y

is Bochner measurable if it is the almost everywhere limit of a sequence of finitely-

valued measurable (simple) functions.

(2) Operator-valued strong measurability: Let V0, V1 be Banach spaces over F ∈ {R, C}. 

We say that a function f : X → L(V0; V1) is strongly measurable if for all v ∈ V0 we 

have that the map fv : X → V1 is Bochner measurable.

Next we record some essential properties of this notion of measurability.

Theorem 3.3 (Properties of operator-valued strongly measurable functions). Let V0 and 

V1 be separable Hilbert spaces over F ∈ {R, C} and X be a complete and σ-finite measure 

space. Let f : X → L(V0; V1). Then the following hold.

(1) f is strongly measurable in the sense of the second item of Definition 3.2 if and only 

if for all v0 ∈ V0 and v1 ∈ V1 we have that 〈fv0, v1〉 : X → F is measurable.

(2) If f is strongly measurable and g : X → V0 is Bochner measurable in the sense of 

the first item of Definition 3.2, then fg : X → V1 is also Bochner measurable.

(3) If f is strongly measurable and g : X → L(V0; V1) is such that f = g almost every-

where, then g is strongly measurable.

Proof. The ûrst item follows from Theorem 3.5.5 in [50]. To prove the second item, we 

note that Theorem 3.5.4 in [50] shows that if ψ : X → V0 is simple, then fψ : X → V1 is 

Bochner measurable. Thus, fg is the almost everywhere limit of a sequence of Bochner 

measurable functions and is then measurable, again by Theorem 3.5.4 in [50]. The third 

item follows by noting that if h ∈ V0, then f(x)h = g(x)h for almost every x ∈ X, and 

hence g(·)h is Bochner measurable. �

The notion of operator-valued strong measurability leads us to the following space of 

essentially bounded functions (see Blasco and van Neerven [24] for the generalization to 

p < ∞ and applications in the study of multiplication operators between vector-valued 

Lebesgue spaces).

Definition 3.4 (Space of essentially bounded and strongly measurable operator-valued 

functions). Let V0 and V1 be separable Hilbert spaces over F ∈ {R, C} and X be a 

complete and σ-finite a measure space. We define

L∞
∗ (X; L(V0; V1)) = {[f ] | f : X → L(V0; V1) is strongly measurable

and essentially bounded}
(3.2)

where [f ] denotes the usual equivalence class formed via almost everywhere equality. 

Note, though, that as per usual we will dispense with the equivalence class notation in 

what follows. For f ∈ L∞
∗ (X; L(V0; V1)) we write
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‖f‖L∞

∗
L(V0;V1) = ess sup

x∈X
‖f(x)‖L(V0;V1) = inf{C ∈ R

+ : ‖f‖L(V0;V1) � C a.e.}. (3.3)

We emphasize that although the notion of almost everywhere is used in the definition of 

the essential supremum, it does not actually require the map f to be measurable; conse-

quently, the essential supremum is well-defined even on the space of strongly measurable 

L(V0; V1)-valued maps.

We can now state and prove our ûrst inûnite dimensional generalization of Theo-

rem 3.1. To the best of our knowledge, the following result does not appear in the 

literature.

Theorem 3.5 (Translation commuting linear maps, infinite dimensional case I). Suppose 

that V0 and V1 are separable infinite dimensional Hilbert spaces over C and that

T : L2(Rd; V0) → L2(Rd; V1) (3.4)

is a bounded linear map. Then the following are equivalent.

(1) T commutes with translations in the sense that (Tf)(· + h) = T (f(· + h)) for all 

h ∈ R
d and f ∈ L2(Rd; V0).

(2) There exists m ∈ L∞
∗ (Rd; L(V0; V1)) such that

Tf = F
−1[mF [f ]] for every f ∈ L2(Rd; V0). (3.5)

In either case, we have the equality

‖m‖L∞

∗
L(V0,V1) = ‖T‖L(L2V0;L2V1). (3.6)

Proof. If T is given by (3.5), then it is a trivial matter to verify that it commutes with 

translations, so we only need to prove the converse and (3.6). We begin with the proof 

of the latter, assuming that T = m(D) for m ∈ L∞
∗ (Rd; L(V0; V1)).

Let f ∈ L2(Rd; V0). Since for any null set E ⊂ R
d and ξ ∈ R

d \ E we have 

‖m(ξ)F [f ](ξ)‖V1
� supRd\E‖m‖L(V0;V1)‖F [f ](ξ)‖V0

, we are free to integrate the square 

of this, take the inûmum over such E, and apply Plancherel9s theorem to deduce that 

‖Tf‖2
L2V1

= ‖mf‖2
L2V1

� ‖m‖2
L∞

∗

‖f‖2
L2V0

. Thus, ‖T‖ � ‖m‖.

For the opposite inequality, we let ϕλ = 1B(0,λ)/
√

|B(0, λ)| ∈ L2(Rd; R). Then for 

any x ∈ V0, ξ0 ∈ R
d, and λ > 0 we have that

1

|B(0, λ)|

∫

B(ξ0,λ)

‖m(ξ)x‖2
V1

dξ =

∫

Rd

‖m(ξ)x‖2
V1

|ϕλ(ξ − ξ0)|2 dξ

= ‖TF
−1(xϕλ(· − ξ0))‖2

L2V1
� ‖T‖2‖x‖2

V0
.

(3.7)
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Since m ∈ L∞
∗ (Rd; L(V0; V1)), the map ξ 
→ ‖m(ξ)x‖2

V1
is locally integrable; thus, by 

Lebesgue9s differentiation theorem, for each x ∈ V0 we obtain a full measure set Ex ⊂ R
d

such that ξ0 ∈ Ex implies that ‖m(ξ0)x‖V1
� ‖T‖‖x‖V0

. Since V0 is separable, we can 

let {xn}n∈N be a dense subset of V0 and set E =
⋂

n∈N
Exn

⊆ R
d. It follows that E has 

full measure and ξ0 ∈ E implies that ‖m(ξ0)‖L(V0,V1) � ‖T‖. Thus, ‖m‖ � ‖T‖, and the 

proof of (3.6) is complete.

We now turn to the construction of the multiplier m from the map T , assuming it 

commutes with translations. Since V0 and V1 are separable Hilbert spaces, we can ûnd 

sequences {Πi
N }∞

N=0 of orthogonal projection operators on Vi such that for i ∈ {0, 1} we 

have that dim(Πi
N Vi) = N and Πi

N Vi ⊂ Πi
N+1Vi for all N ∈ N, and limN→∞ Πi

N x = for 

all x ∈ Vi.

For N ∈ N, deûne the maps SN : L2(Rd; Π0
N V0) → L2(Rd; Π1

N V1) via SN f = Π1
N Tf . 

It is a simple matter to check that each SN commutes with translations. Since Π0
NV0 and 

Π1
N V1 are ûnite dimensional, Theorem 3.1 then provides μN ∈ L∞(Rd; L(Π0

N V0; Π1
N V1))

such that SN = μN (D) and ‖SN ‖L = ‖μN ‖L∞ . We then deûne the symbols {mN }N∈N ⊂

L∞(Rd; L(V0, V1)) via mN = μN Π0
N , which means that

mN (D) = SN Π0
N = Π1

N TΠ0
N , ‖mN ‖L∞L(V0,V1) � ‖T‖, and Π1

N mN+1Π0
N = mN .

(3.8)

Note that we are free to modify each symbol in the sequence on a set of measure zero 

and obtain the pointwise inequality ‖mN (ξ)‖L(V0,V1) � ‖T‖ for all ξ ∈ R
d.

Given ξ0 ∈ R
d, x ∈ V0, y ∈ V1, and N, M ∈ N, we have that

〈y, (mN+M (ξ0) − mN (ξ0))x〉 = 〈y, mN+M (ξ0)(1 − Π0
N )x〉 + 〈y, (1 − Π1

N )mN+M (ξ0)Π0
N x〉,

(3.9)

and hence

lim sup
N,M→∞

|〈y, (mN+M (ξ0) − mN (ξ0))x〉| � lim
N→∞

‖T‖(‖y‖V1
‖(1 − Π0

N )x‖V0

+ ‖(1 − ΠN )y‖V1
‖x‖V0

) = 0.

(3.10)

Thus, {〈y, mN (ξ0)x〉}N∈N ⊂ L(V0, V1) is Cauchy, and hence convergent. Using this and 

the established bounds on mN together with Theorem VI.1 of Reed and Simon [77], we 

acquire m(ξ0) ∈ L(V0, V1) such that ‖m(ξ0)‖ � ‖T‖ and 〈y, mN (ξ0)x〉 → 〈y, m(ξ0)x〉 as 

N → ∞ for all x ∈ V0 and y ∈ V1. It then follows from Theorem 3.3 that ξ0 
→ m(ξ0) is 

strongly measurable, since 〈y, mx〉 is the pointwise limit of measurable functions for every 

y ∈ V1 and x ∈ V0. Synthesizing this information, we ûnd that m ∈ L∞
∗ (Rd; L(V0; V1)).

To complete the proof, it only remains to check that m(D) = T . For this, we use 

Parseval9s theorem for ûxed f ∈ L2(Rd; V0) and g ∈ L2(Rd; V1) to write

〈g, Tf〉 =

∫

Ω

〈F [g](ξ), mN (ξ)F [f ](ξ)〉 dξ+〈(1−Π1
N )g, TΠ0

N f〉+〈g, T (1−Π0
N )f〉. (3.11)
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We then apply the dominated convergence theorem while sending N → ∞ to deduce 

that 〈g, Tf〉 = 〈F [g], mF [f ]〉. Hence, m(D) = T . �

The following generalization will also be of use to us. In fact, this corollary is the main 

workhorse of Section 4 in that it is the dictionary that allows us to transfer operator 

bounds derived from solving PDEs to bounds on the derivatives of the symbol of a special 

vector-valued Fourier multiplication operator.

Corollary 3.6 (Translation commuting linear maps, infinite dimensional case II). Suppose 

that W, V0, V1 are separable Hilbert spaces over C with V1 ↪→ V0, and suppose that for 

some s0, s1, s ∈ R we have a translation commuting and continuous linear map

T : Hs0(Rd; V0) ∩ Hs1(Rd; V1) → Hs(Rd; W ). (3.12)

Then, there exists a unique (up to modification on sets of measure zero) locally essentially 

bounded and strongly measurable (in the sense of the second item of Definition 3.2) 

function m : R
d → L(V1; W ) such that T = m(D); moreover, m obeys the estimate

〈ξ〉s‖m(ξ)x‖W � ‖T‖(〈ξ〉s0‖x‖V0
+ 〈ξ〉s1‖x‖V1

), ∀ x ∈ V1 (3.13)

for almost every ξ ∈ R
d. The above implicit constant only depends on d, s, s0, and s1.

Proof. For 
 ∈ N we let

A� =

{
B(0, 1) if 
 = 0,

B(0, 2�) \ B(0, 2�−1) if 
 � 1,
(3.14)

T� = T1A�
(D), and

‖y‖W (�) = 〈2�〉s‖y‖W , ‖x‖
V

(�)
1

=
√

〈2�〉2s0‖x‖2
V0

+ 〈2�〉2s1‖x‖2
V1

(3.15)

for y ∈ W and x ∈ V1. We consider W equipped with the norm ‖·‖W (�) , denoted W (�), 

and V1 equipped with the norm ‖·‖
V

(�)
1

, similarly denoted V
(�)

1 , and apply Theorem (3.5)

to T�, viewed as a map T� : L2(Rd; W
(�)
1 ) → L2(Rd; W (�)). The hypothesis (3.12) and 

the usual Fourier characterization of Hr Sobolev norms then provide the estimate

‖T�‖L(L2V
(�)

1 ;L2W (�))
� ‖T‖L(Hs0 V0∩Hs1 V1;HsW ), (3.16)

where the implicit constant depends on d, s, s0, and s1 but not on 
. Then the associated 

multiplier m� ∈ L∞
∗ (Rd; L(V

(�)
1 , W (�))) granted from Theorem 3.5 obeys the bounds

〈2�〉s‖m�(ξ)x‖W � ‖T‖(〈2�〉s0‖x‖Hs0 + 〈2�〉s1‖x‖V1
) (3.17)
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for every x ∈ V1 and almost every ξ ∈ A�. Note that m� can be modiûed on a set of 

measure zero and made to have support contained in A�. To conclude, we take m =∑∞
�=0 m�. It is then straightforward to check that m(D) = T and, by using (3.17), that 

estimate (3.13) holds. �

3.2. Classical results in vector-valued Harmonic analysis

We now turn our attention to a collection of classical results in vector-valued harmonic 

analysis. We showcase these here for two reasons. First, in the subsequent subsection we 

will develop some variants and generalizations that will play a crucial role in our study 

of the linear PDEs (2.1) and (2.2). Second, we will need them in our development of 

some Sobolev-type function spaces in Section 5.1.

We begin by recording a pair of well-known multiplier theorems. The ûrst up is the 

scalar-valued Marcinkiewicz theorem, for which a proof can be found in Corollary 6.25 

of Grafakos [41].

Theorem 3.7 (Marcinkiewicz). Let m : R
d → C be a bounded function that is d-times 

continuously differentiable away from the coordinate axes in Rd. Assume that there exists 

a constant A � 0 such that for all k ∈ {1, . . . , d}, each choice of distinct j1, . . . , jk ∈

{1, . . . , d}, and every ξ ∈ R
d such that ξr �= 0 for r /∈ {j1, . . . , jk} we have that

|(∂j1
· · · ∂jk

m)(ξ)| � A|ξj1
|−1 · · · |ξjk

|−1. (3.18)

Then the map m(D) = L2(Rd; C) → L2(Rd; C) uniquely extends to a bounded linear 

map m(D) : Lp(Rd; C) → Lp(Rd; C) for every 1 < p < ∞, and

‖m(D)‖L(Lp) � Cp,d(A + ‖m‖L∞) (3.19)

for a constant Cp,d > 0 depending only on d and p. If, in addition, we have that m(−ξ) =

m(ξ) for a.e. ξ ∈ R
d, then m is reality preserving in the sense that m(D) : Lp(Rd; R) →

Lp(Rd; R).

We next record a vector-valued version of the celebrated Mikhlin-Hörmander multi-

plier theorem, originally due to Schwartz [79]. For a proof of the following formulation 

we refer to Proposition 6.16 in Bergh and Löfström [23].

Theorem 3.8 (Mikhlin-Hörmander). Let V0 and V1 be two separable complex Hilbert 

spaces and let N � 
 > d/2. Suppose that m ∈ C�(Rd \ {0}; L(V0, V1)) satisfies

max
|α|��

sup
ξ 	=0

|ξ||α|‖∂αm(ξ)‖L(H0,H1) � C� (3.20)

for a constant C� ∈ R
+. Then the map m(D) : L2(Rd; V0) → L2(Rd; V1) uniquely extends 

to a bounded linear map m(D) : Lp(Rd; V0) → Lp(Rd; V1), and
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‖m(D)‖L(LpV0,LpV1) � C�, (3.21)

where the implicit constant depends only on d and p.

We now record an important maximal inequality due to Fefferman and Stein [36]

(see also Theorem 1 in Chapter 2 of Stein [91]). In what follows M denotes the usual 

Hardy-Littlewood maximal function.

Theorem 3.9 (Fefferman-Stein maximal inequality). Suppose that {f�}�∈Z ⊆ L1
loc(Rd). 

Then for 1 < p < ∞ we have the inequality

∥∥∥
(∑

�∈Z

|M(f�)|
2
)1/2∥∥∥

Lp
�
∥∥∥
(∑

�∈Z

|f�|
2
)1/2∥∥∥

Lp
. (3.22)

Next, we record some vector-valued adaptations of well-known estimates from 

Littlewood-Paley theory. The ûrst is based on Theorem 6.1.2 and Proposition 6.1.4 of 

Grafakos [41].

Theorem 3.10 (Annular Littlewood-Paley, I). Let V be a separable complex Hilbert space, 

and let s ∈ [0, ∞), 1 < p < ∞, and m ∈ N. Suppose that {ϕj}j∈Z ∈ C∞
c (Rd) are such 

that for all j ∈ Z we have that F [ϕj ] is supported in the annulus B(0, 2m+j) \B(0, 2−m+j)

and there exists constants {Cα}α∈Nd such that

|∂αϕj(ξ)| � Cα2−j|α| for all ξ ∈ R
d and ³ ∈ N

d. (3.23)

Then for every f ∈ Hs,p(Rd; E) we have the inequality

∥∥∥
(∑

j∈Z

〈2j〉2s‖ϕj(D)f‖2
V

)1/2∥∥∥
Lp

� ‖f‖Hs,pV , (3.24)

with implicit constants depending only on ϕ, s, p, d, m, and finitely many of the {Cα}α.

Proof. It suffices to prove that for f ∈ Lp(Rd; V ) we have the inequality

∥∥∥
(∑

j∈Z

〈2j〉2s‖ϕj(D)〈D〉−sf‖2
V

)1/2∥∥∥
Lp

� ‖f‖LpV . (3.25)

But this is a direct application of the Mikhlin-Hörmander multiplier theorem, Theo-

rem 3.8, with the smooth multiplier m : R
d → L(V ; 
2(Z; V )) given by

m(ξ)x = {〈2j〉sϕj(ξ)x/〈ξ〉s}j∈Z for ξ ∈ R
d and x ∈ V. � (3.26)

Our next two results are loosely based on Lemmas 2.1.F and 2.1.G from Taylor [96].
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Theorem 3.11 (Annular Littlewood-Paley, II). Let V be a separable complex Hilbert space, 

and fix s ∈ [0, ∞), 1 < p < ∞, and m ∈ N
+. For j ∈ Z let Aj = B(0, 2j+m) \B(0, 2j−m). 

Suppose that {fj}j∈Z ⊂ Lp(Rd; V ) satisfy supp F [fj ] ⊂ Aj for every j ∈ Z. Then

sup
F ⊂Z

F finite

∥∥∥
∑

j∈F

fj

∥∥∥
Hs,pV

�
∥∥∥
(∑

j∈Z

〈2j〉2s‖fj‖2
V

)1/2∥∥∥
Lp

, (3.27)

with the implicit constant depending only on d, s, p, and m. Moreover, if the right hand 

side is finite, then the series 
∑

j∈Z
fj converges unconditionally in Hs,p(Rd; V ).

Proof. Let 1 < q < ∞ satisfy 1/p + 1/q = 1, and let ϕ ∈ C∞
c (A−1 ∪ A0 ∪ A1) be such 

that ϕ = 1 on A0. Given g ∈ Lq(Rd; V ) and a ûnite set F ⊂ Z, we compute

∫

Rd

〈
〈D〉s

∑

j∈F

fj , g
〉

=
∑

j∈F

∫

Rd

〈
〈2j〉sfj , ϕ̃j(D)g

〉
(3.28)

where ϕ̃j(ξ) = 〈ξ〉s〈2j〉−sϕ(ξ/2j). Hence, we can apply Cauchy-Schwartz, Hölder, Theo-

rem 3.10, and duality (See, e.g., Theorem 5 of Section 4 in Chapter 12 of Dinculeanu [33]) 

to acquire the bound

∥∥∥
∑

j∈F

fj

∥∥∥
Hs,pV

= sup
‖g‖LqV �1

∣∣∣
∫

Rd

〈
〈D〉s

∑

j∈F

fj , g
〉∣∣∣ �

∥∥∥
(∑

j∈Z

〈2j〉2s‖fj‖2
V

)1/2∥∥∥
Lp

. (3.29)

Estimate (3.27) follows. A similar strategy shows that if the right hand side of (3.27)

is ûnite, and {Fn}n∈N is any increasing sequence of ûnite subsets of Z such that Z =⋃
n∈N

Fn, then {
∑

j∈Fn
fj}n∈N is Cauchy (and hence convergent) in Hs,p(Rd; V ), and 

the limit is independent of the choice of the sequence. This implies the unconditional 

convergence of the series. We omit further details for the sake of brevity. �

Finally, we record a non-annular Littlewood-Paley estimate. Note that in this result 

it is important that we are considering spaces of positive regularity.

Theorem 3.12 (Ball Littlewood-Paley). Let V be a separable complex Hilbert space, and 

fix s ∈ R
+, 1 < p < ∞, and m ∈ N

+. For j ∈ N set Bj = B(0, 2j+m). Suppose that 

{fj}j∈N ⊂ Lp(Rd; V ) satisfy supp F [fj ] ⊂ Bj for every j ∈ N. Then

sup
F ⊂N

F finite

∥∥∥
∑

j∈F

fj

∥∥∥
Hs,pV

�
∥∥∥
(∑

j∈N

4js‖fj‖2
V

)1/2∥∥∥
Lp

, (3.30)

with the implicit constant depending only on d, s, p, and m. Moreover, if the right hand 

side is finite, then the series 
∑

j∈N
fj converges unconditionally in Hs,p(Rd; V ).
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Proof. Let {ϕk}∞
k=0 be an inhomogeneous Littlewood-Paley partition of unity with ∑∞

k=0 ϕk = 1, ϕk = ϕ1(·/2k) for k � 1, supp ϕ0 ⊆ B(0, 2), supp ϕk ⊆ B(0, 2k+2) \

B(0, 2k−2). We also write ϕ̃k = 2−ks〈·〉sϕk.

Let 1 < q < ∞ satisfy 1/p + 1/q = 1, and let g ∈ Lq(Rd; V ). Then for any ûnite 

F ⊂ N we have that

∫

Rd

〈
〈D〉s

∑

j∈F

fj , g
〉

=
∑

j∈F

j+3+m∑

k=0

∫

Rd

〈〈D〉sfj , ϕk(D)g〉

=
∑

j∈F

j+3+m∑

k=0

∫

Rd

〈2jsfj , 2(k−j)sϕ̃k(D)g〉.

(3.31)

Hence, we may use Cauchy-Schwarz, Young9s convolution inequality, and Hölder9s in-

equality to bound

∣∣∣
∫

Rd

〈
〈D〉s

∑

j∈F

fj , g
〉∣∣∣ �

∫

Rd

(∑

j∈F

4js‖fj‖2
V

)1/2(∑

j∈F

( j+3+m∑

k=0

2s(k−j)‖ϕ̃k(D)g‖V

)2)1/2

�
∥∥∥
( ∞∑

j=0

4js‖fj‖2
V

)1/2∥∥∥
Lp

∥∥∥
( ∞∑

k=0

‖ϕ̃k(D)g‖2
V

)1/2∥∥∥
Lq

. (3.32)

Theorem 3.10 provides the bound

∥∥∥
( ∞∑

k=0

‖ϕ̃k(D)g‖2
V

)1/2∥∥∥
Lq

� ‖g‖LqV . (3.33)

Taking the supremum over g such that ‖g‖LqV � 1 in (3.32) then gives the desired 

estimate. The unconditional convergence of the series then follows from a variant of this 

bound as in the proof of Theorem 3.11. �

3.3. On a novel variant of the Mikhlin-Hörmander multiplier theorem

We now return to the topic of multipliers, with the aim of deriving a generalized ver-

sion of Mikhlin-Hörmander (the classical vector-valued version is Theorem 3.8). The task 

of generalizing Mikhlin-Hörmander is, of course, not new, and there are many works in 

the existing literature that do so. We pause here brieüy to review these. In unpublished 

work, Pisier showed that if a vector-valued Mikhlin-Hörmander theorem holds for an 

L(E)-valued symbol, then E is isomorphic to a Hilbert space. Note that Lancien, Lan-

cien, and Le Merdy [56] provide a proof of Pisier9s unpublished result in Remark 6.4, as 

a consequence of another result. The takeaway is that there is an obstruction to versions 

of Mikhlin-Hörmander for maps valued in L(B0; B1) if the Bi spaces are only Banach. 
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The work of Bourgain [25], Burkholder [27], McConnell [61], Zimmermann [100] found 

a workaround for scalar-valued symbol multipliers if the Banach space is an uncondi-

tional martingale difference (UMD) space and the Mikhlin-Hörmander hypotheses are 

strengthened a bit. However, it is known that UMD spaces are reüexive. The scalar UMD 

extension was later strengthened to operator-valued symbols by Amann [13], Hieber [49], 

Haller, Heck, and Noll [47], and Giardi and Weis [39]. We also refer to Chapter 4 of Prüss 

and Simonett [75] and the survey of Giardi and Weis [40] for more information.

The Banach obstruction can also be overcome by changing from Lp spaces to others. 

Amann [13] developed a version of Mikhlin-Hörmander in the context of vector-valued 

Besov spaces, which was subsequently extended by Giardi and Weis [38]. The setting of 

Triebel-Lizorkin spaces was considered by Bu and Kim [26].

For our purposes in this paper, we can restrict to multipliers that take values in 

L(V ; W ), where V and W are separable Hilbert spaces. However, we need a version of 

Mikhlin-Hörmander that allows us to replace a single Lp space with the more general 

setting of Hs0,p(Rd; V0) ∩ Hs1,p(Rd; V1), the intersection of different Bessel potential 

spaces with values in different Hilbert spaces such that V1 ↪→ V0. We will prove this new 

variant by combining three main ingredients. The ûrst is the annular Littlewood-Paley 

results of Theorems 3.10 and 3.11, while the second is the Fefferman-Stein maximal 

inequality of Theorem 3.9. The ûnal ingredient we need, which we record in the next 

result, gives pointwise bounds via maximal functions. It is a generalization of Lemma 

2.2 in Bahouri, Chemin, and Danchin [15].

Theorem 3.13 (Pointwise bounds for spectrally localized Fourier multipliers). Suppose V , 

V0, and V1 are separable complex Hilbert spaces such that V1 ↪→ V0. Let s, s0, s1 ∈ R and 

μ, 
 ∈ Z with μ � 0 and d < 
. Suppose that m ∈ C�(Rd \ {0}; L(V1, V )) satisfies

〈ξ〉s max
|α|��

|ξ||α|‖∂αm(ξ)x‖V � C�|ξ|μ(〈ξ〉s0‖x‖V0
+ 〈ξ〉s1‖x‖V1

) (3.34)

for all ξ ∈ R
d \ {0} and x ∈ V1. Let ϕ, ϕ̃ ∈ C∞

c (B(0, 16) \ B(0, 1/16)) be such that ϕ̃ = 1

on the support of ϕ. Then for f ∈ S (Rd; V1), λ ∈ R
+, and z ∈ R

d we have the pointwise 

estimate

〈λ〉s‖m(D)ϕ(D/λ)f(z)‖V � C�|λ|μ [〈λ〉s0M(‖ϕ̃(D/λ)f‖V0
)(z)

+〈λ〉s1M(‖ϕ̃(D/λ)f‖V1
)(z)] .

(3.35)

Proof. We let Kλ : R
d → L(V1; V ) be deûned via

Kλ(z) =

∫

Rd

e2πiz·ξϕ(ξ)m(λξ) dξ, (3.36)

and note that
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m(D)ϕ(D/λ)f = λdKλ(λ(·)) ∗ (ϕ̃(D/λ)f) (3.37)

for all f ∈ S (Rd; V1).

Fix x ∈ V1. Hypothesis (3.34) implies the rescaled form

‖∂β(m(λ·))(ξ)x‖V � C�|λ|μ〈λξ〉−s|ξ|μ−|β|(〈λξ〉s0‖x‖V0
+ 〈λξ〉s1‖x‖V1

) (3.38)

for every |´| � 
. This, integration by parts, and an application of the Leibniz rule then 

provide the following kernel bound for |³| � 
:

‖(2πiz)αKλ(z)x‖V =

∫

Rd

‖∂α(ϕm(λ(·)))(ξ)x‖2
V dξ

� C�〈λ〉−s|λ|μ(〈λ〉s0‖x‖V0
+ 〈λ〉s1‖x‖V1

).

(3.39)

Summing over |³| � 
, we deduce from this that

sup
z∈Rd

〈z〉�‖Kλ(z)x‖V � C�〈λ〉−s|λ|μ(〈λ〉s0‖x‖V0
+ 〈λ〉s1‖x‖V1

). (3.40)

Now we return to formula (3.37) to obtain the claimed pointwise bounds. Let f ∈

S (Rd; V1), and set g = ϕ̃(D/λ)f . Write

Aj(y, λ) =

{
B(y, 1/λ) if j = 0,

B(y, 2j/λ) \ B(y, 2j−1/λ) if j � 1.
(3.41)

Then the above estimates allow us to bound

‖(λdKλ(λ·) ∗ g)(y)‖V �

∞∑

j=0

∫

Aj(y,λ)

λd‖Kλ(λ(y − z))g(z)‖V dz

� C�

∞∑

j=0

∫

Aj(y,λ)

λd

〈λ(y − z)〉�
〈λ〉−s|λ|μ(〈λ〉s0‖g(z)‖V0

+ 〈λ〉s1‖g(z)‖V1
) dz

� C�〈λ〉−s|λ|μ
∞∑

j=0

〈2j〉d−�
( 1

|B(y, 2j/λ)|

∫

B(y,2j/λ)

(〈λ〉s0‖g(z)‖V0
+ 〈λ〉s1‖g(z)‖V1

) dz
)

� C�〈λ〉−s|λ|μ [〈λ〉s0M(‖g‖V0
)(y) + 〈λ〉s1M(‖g‖V1

)(y)] . (3.42)

This yields the desired bound upon substituting in g = ϕ̃(D/λ)f . �

We now have all the tools needed to prove our generalization of the Mikhlin-

Hörmander multiplier theorem.
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Theorem 3.14 (Mikhlin-Hörmander, novel form). Suppose V , V0, and V1 are separable 

complex Hilbert spaces such that V1 ↪→ V0. Let s, s0, s1 ∈ R and μ, 
 ∈ Z with μ � 0 and 

d < 
. Suppose that m ∈ C�(Rd \ {0}; L(V1; V )) satisfies

〈ξ〉s max
|β|��

|ξ||β|‖∂βm(ξ)x‖V � C�|ξ|μ(〈ξ〉s0‖x‖V0
+ 〈ξ〉s1‖x‖V1

) (3.43)

for all ξ ∈ R
d \ {0} and x ∈ V1. Let ³ ∈ N

d satisfy |³| = −μ. Then the bounded linear 

map

m(D)Dα : Hs0(Rd; V0) ∩ Hs1(Rd; V1) → Hs(Rd; V ), (3.44)

which is well-defined and bounded in light of the ´ = 0 estimate from (3.43), uniquely 

extends to a bounded linear map

m(D)Dα : Hs0,p(Rd; V0) ∩ Hs1,p(Rd; V1) → Hs,p(Rd; V ) (3.45)

for every 1 < p < ∞.

Proof. Let ϕ, ϕ̃, ˜̃ϕ ∈ C∞
c (Rd) be such that supp ϕ ⊂ B(0, 8) \B(0, 1/8), supp ϕ̃, supp ˜̃ϕ ⊂

B(0, 16) \ B(0, 1/16), 
∑

j∈Z
ϕ(·/2j) = 1Rd\{0}, ϕ̃ = 1 on supp ϕ, and ˜̃ϕ = 1 on supp ϕ̃.

Suppose that f ∈ S (Rd; V1). We ûrst use the Littlewood-Paley estimate of Theo-

rem 3.11 to bound

‖m(D)Dαf‖Hs,pV �
∥∥∥
(∑

j∈Z

〈2j〉2s‖m(D)Dαϕ(D/2j)f‖2
V

)1/2∥∥∥
Lp

. (3.46)

Next, for each j ∈ Z we apply Theorem 3.13 with λ = 2j to see that

〈2j〉s‖m(D)Dαϕ(D/2j)f‖V � C�2
−j|α|(〈2j〉s0M(‖Dαϕ̃(D/2j)f‖V0

)

+ 〈2j〉s1M(‖Dαϕ̃(D/2j)f‖V1
)).

(3.47)

For i ∈ {0, 1}, we may apply Theorem 3.13 again (using the trivial multiplier m = 1 and 

parameters s = s0 = s1 = 0 with Vi used for all three Hilbert spaces), to acquire the 

bound

‖Dαϕ̃(D/2j)f‖Vi
� 2j|α|M(‖ ˜̃ϕ(D/2j)f‖Vi

). (3.48)

We then combine the estimates (3.47) and (3.48):

1

C�
〈2j〉s‖m(D)Dαϕ(D/2j)f‖V � 〈2j〉s0MM(‖ ˜̃ϕ(D/2j)f‖V0

)

+ 〈2j〉s1MM(‖ ˜̃ϕ(D/2j)f‖V1
).

(3.49)
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From this, estimate (3.46), two applications of the Fefferman-Stein maximal inequality 

of Theorem 3.9, and an application of the Littlewood-Paley estimate of Theorem 3.10

we deduce that

1

C�
‖m(D)Dαf‖Hs,pV �

∥∥∥
(∑

j∈Z

〈2j〉2s0 [MM(‖ ˜̃ϕ(D/2j)f‖V0
)]2
)1/2∥∥∥

Lp

+
∥∥∥
(∑

j∈Z

〈2j〉2s1 [MM(‖ ˜̃ϕ(D/2j)f‖V1
)]2
)1/2∥∥∥

Lp

�
∥∥∥
(∑

j∈Z

〈2j〉2s0‖ ˜̃ϕ(D/2j)f‖2
V0

)1/2∥∥∥
Lp

+
∥∥∥
(∑

j∈Z

〈2j〉2s1‖ ˜̃ϕ(D/2j)f‖2
V1

)1/2∥∥∥
Lp

� ‖f‖Hs0,pV0
+ ‖f‖Hs1,pV1

. (3.50)

This estimate then allows us to extend m(D)Dα as stated. �

4. Vector-valued symbol calculus for the solution map

The goal of this section is to prove that the solution operator associated to the linear 

system (2.2) is given by an operator-valued Fourier multiplier. Once this is established, 

we then show that the symbol of the operator is a smooth function of frequency away 

from zero and satisûes bounds of the type appearing in the hypotheses of the Mikhlin-

Hörmander multiplier theorem (see Theorems 3.8 and 3.14).

4.1. Preliminaries

The following deûnition enumerates the translation commuting maps we are interested 

in extending to an Lp theory. That the following is well-deûned is a consequence of 

Theorem 2.6.

Definition 4.1 (Spaces and translation commuting maps). We set the following notation.

(1) For s ∈ N we define the spaces

Xs = H1+s(Ω; C) × H2+s(Ω; C
3) × H3/2+s(Σ; C

2), (4.1)

Ys = Hs(Ω; C
3) × H1/2+s(Σ; C

3) × H5/2+s(Σ; C
2), (4.2)

Ỹs =
{

(g, f, k, h, ω) as in (2.53) : ω, h −

b∫

0

g(·, y) dy ∈ Ḣ−1(Σ; C)
}

. (4.3)

(2) We define the bounded linear map Φ : Ỹs → Xs via Φ(g, f, k, h, ω) = (p, u, χ), where 

the latter tuple is the unique solution to (2.2) with data (g, f, k, h, ω) provided by 
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Theorem 2.6. We also define the bounded linear map Ψ : Ys → Xs via Ψ(f, k, H) =

Φ(0, f, k, ∇‖ · H, 0).

It is clear from the existence and uniqueness result of Theorem 2.6 and the fact that 

the equations (2.2) have constant coefficients that the operators Φ and Ψ of the previous 

deûnition commute with translations of the tangential variables. Thus, we expect that 

they are given by Fourier multipliers. The following deûnition gives the class of the 

vector-valued Fourier multipliers with which we are concerned. As we will show later, Ψ

has a multiplier belonging to this admissible class.

Definition 4.2 (Admissible class of vector-valued Fourier multipliers). We make the fol-

lowing definitions for s ∈ N.

(1) We say that a symbol

m : R
2 → L(Hs((0, b); C

3)×C
3×C

2; H1+s((0, b); C)×H2+s((0, b); C
3)×C

2), (4.4)

belongs to the admissible class A(s) if it is strongly measurable in the sense of the 

second item of Definition 3.2, and upon writing m in ‘matrix form’

m =

(
m11 m12 m13

m21 m22 m23

m31 m32 m33

)
, (4.5)

we have that there exists a constant C < ∞ and a full measure set E ⊆ R
2 such that 

for ξ ∈ E:

(a) m11(ξ) ∈ L(Hs((0, b); C3); H1+s((0, b); C)) obeys the bound

‖m11(ξ)φ‖H1+s + 〈ξ〉1+s‖m11(ξ)φ‖L2 � C(‖φ‖Hs + 〈ξ〉s‖φ‖L2) (4.6)

for φ ∈ Hs((0, b); C3);

(b) m12(ξ) ∈ L(C3; H1+s((0, b); C)) obeys the bound

‖m12(ξ)‖H1+s + 〈ξ〉1+s‖m12(ξ)‖L2 � C〈ξ〉1/2+s; (4.7)

(c) m13 ∈ L(C2; H1+s((0, b); C)) obeys the bound

‖m13(ξ)‖H1+s + 〈ξ〉1+s‖m13(ξ)‖L2 � C〈ξ〉5/2+s; (4.8)

(d) m21(ξ) ∈ L(Hs((0, b); C3), H2+s((0, b); C3)) obeys the bound

‖m21(ξ)φ‖H2+s + 〈ξ〉2+s‖m21(ξ)φ‖L2 � C(‖φ‖Hs + 〈ξ〉s‖φ‖L2) (4.9)

for φ ∈ Hs((0, b); C3);
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(e) m22(ξ) ∈ L(C3; H2+s((0, b); C3)) obeys the bound

‖m22(ξ)‖H2+s + 〈ξ〉2+s‖m22(ξ)‖L2 � C〈ξ〉1/2+s; (4.10)

(f) m23(ξ) ∈ L(C2; H2+s((0, b); C3)) obeys the bound

‖m23(ξ)‖H2+s + 〈ξ〉2+s‖m23(ξ)‖L2 � C〈ξ〉5/2+s; (4.11)

(g) m31(ξ) ∈ L(Hs((0, b); C3); C2) obeys the bound

〈ξ〉3/2+s|m31(ξ)φ| � C(‖φ‖Hs + 〈ξ〉s‖φ‖L2) (4.12)

for φ ∈ Hs((0, b); C3);

(h) m32(ξ) ∈ L(C3; C2) obeys the bound

〈ξ〉3/2+s|m32(ξ)| � C〈ξ〉1/2+s; (4.13)

(i) m33(ξ) ∈ L(C2; C2) obeys the bound

〈ξ〉3/2+s|m33(ξ)| � C〈ξ〉5/2+s. (4.14)

(2) If m ∈ A(s), then we write �m�s ∈ [0, ∞) to be the infimum over the constants C for 

which the bounds (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), and (4.14)

hold over a full measure set of frequencies. This makes A(s) into a Banach space.

Before continuing, we remark that the �·�s-norm on A(s) locally controls essential 

supremum norm.

Lemma 4.3 (Local essentially uniform control). Fix s ∈ N. For any R ∈ R
+ there exists 

a constant CR ∈ R
+, depending only on s and R, such that for all m ∈ A(s) we have 

the estimate

‖1B(0,R)m‖L∞

∗
L � CR�m�s, (4.15)

where here L refers to the space of linear operators on the right hand side of (4.4) and 

L∞
∗ L is the norm from Definition 3.4. Moreover, the map R 
→ CR is bounded on bounded 

sets.

Proof. An inspection of the �·�s norm in Deûnition 4.2 shows that we can replace the 

ξ-dependent bounds on the right hand sides of (4.6)–(4.14) by their value at R to de-

rive (4.15). �

The utility of Deûnition 4.2 is seen in the next result.
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Proposition 4.4 (Symbols and translation commuting maps). The following are equivalent 

for s ∈ N and a bounded linear map T : Ys → Xs:

(1) T commutes with the collection of tangential translation operators in the sense that 

for all Y ∈ Ys and all h ∈ R
3 satisfying h · e3 = 0, it holds that (TY )(· + h) =

T (Y (· + h)).

(2) There exists m ∈ A(s) such that T = m(D).

In either case, m is unique up to modification on a set of measure zero, and we have that

�m�s � ‖T‖L(Ys;Xs) (4.16)

with implicit constants depending only on s.

Proof. Thanks to the norm equivalence of Lemma 5.2 with p = 2, each of the nine 

components of the 8matrix9 of T satisûes the hypotheses of Corollary 3.6. Thus, by 

enumerating the estimates on each component, we ûnd that we are granted a multiplier 

m ∈ A(s) such that T = m(D). Estimate (3.13) implies that �m�s � ‖T‖L(Ys;Xs). The 

opposite inequality and the fact that the second item implies the ûrst are immediate 

from Plancherel9s theorem. �

Our next result relates translations of the symbol to conjugation of the operator by 

complex exponentials. This is the key that allows us to recast questions of smoothness 

for multipliers in the language of PDE on the spatial side.

Proposition 4.5 (Symbol translation). Let s ∈ N, and suppose that T : Ys → Xs is a 

tangentially translation commuting bounded linear map with associated symbol m ∈ A(s). 

Then for all Y = (f, k, H) ∈ Ys and all ζ ∈ R
2 we have the identity

m(D + ζ)Y = e−·(T (e·Y )), (4.17)

as an equality in the space Xs, where e·(ξ) = e2πiξ·· for ξ ∈ R
2, and m(D + ζ) =

(m(· + ζ))(D).

Proof. With Y and ζ as in the statement, we have that the second item of Proposition 4.4

applies and we have T (e·Y ) = m(D)(e·Y ). On the other hand, it is clear by properties 

of the Fourier transform

F [e·m(D + ζ)Y ] = F [m(D + ζ)Y ](· − ζ) = mF [Y ](· − ζ) = mF [e·Y ]. (4.18)

By taking inverse Fourier transforms, we reveal identity (4.17). �
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4.2. Derivative estimates for the symbol

The main symbols of concern in this subsection are given by the following deûnition. 

The notation here is from Deûnitions 4.1 and 4.2.

Definition 4.6 (Main symbol). Let s ∈ N. We denote by m ∈ A(s) the symbol associated 

with the translation commuting bounded linear map Ψ : Ys → Xs whose existence is 

guaranteed by Proposition 4.4.

Our aim now is to study the differentiability of m in R2\{0}. In doing so, it will be 

very convenient to introduce some minor abuse of notation in order to make various 

expressions easier to read. This abuse, the use of which we conûne to this subsection, is 

to view any vector θ ∈ C
2 as being contained in C3 via (θ, 0) ∈ C

3. For example, this 

shorthand means that for v ∈ C
3 and θ ∈ C

2,

θ · v = (θ, 0) · v =

2∑

j=1

θjvj , (4.19)

and so on. This abuse will only be used in equations that are naturally understood to 

be posed in C3.

Our next result explores the manifestations of symbol translation on the PDE side.

Proposition 4.7 (Spatial realization of symbol translation). Suppose that s ∈ N, 

(f, k, H) ∈ Ys, and ζ ∈ R
2. Then m(D + ζ)(f, k, H) = (p· , u· , χ·) ∈ Xs obeys the 

following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

gχ· + ∇p· + 2πiζp· − μ∇ · Du· − μ2πi∇(ζ · u·)

−μ4πiζ · ∇u· + μ4π2|ζ|2u· = f in Ω,

∇ · u· + 2πiζ · u· = 0 in Ω,

−(p·I − μDu·)e3 + μ2πiζ(u· · e3) − κ∇‖ · χ·e3 − κ2πiζ · χ·e3 = k on Σ,

∇⊥
‖ · χ· + 2πiζ⊥ · χ· = 0 on Σ,

u· · e3 = ∇‖ · H + 2πiζ · H on Σ,

u· = 0 on Σ0.

(4.20)

Proof. We invoke Proposition 4.5 and Deûnition 4.6 to see that (p· , u· , χ·) =

e−·Ψ(e·f, e·k, e·H), and hence (e·p· , e·u· , e·χ·) is a solution to the equations (2.2)

with data (0, e·f, e·k, ∇‖ · (e·H), 0). We can then derive equations for (p· , u· , χ·) by 

expanding with the Leibniz rule and then multiplying by e· . This results in the sys-

tem (4.20). �
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The following lemma gives a simple estimate for the solution to (4.20) and, more 

importantly, a relationship between the translated symbol and the operators Φ and Ψ

from Deûnition 4.1.

Lemma 4.8 (Estimate and identity for the translated symbol PDE). The following hold 

for s ∈ N, (f, k, H) ∈ Ys, ζ ∈ R
2, and (p· , u· , χ·) = m(D + ζ)(f, k, H).

(1) We have the estimate

‖p· , u· , χ·‖Xs
� C·‖Ψ‖L‖f, k, H‖Ys

, (4.21)

where the constant R2 � ζ 
→ C· ∈ R
+ is bounded on bounded sets.

(2) If 0 �∈ supp F (f, k, H), then

(p· , u· , χ·) = Ψ(f, k, H)

+ Φ

»
¼¼¼½

−2πiζ · u·

−2πiζp· + μ2πi∇(ζ · u·) + μ4πiζ · ∇u· − μ4π2|ζ|2u·

κ2πiζ · χ·e3 − μ2πiζ(u· · e3)
2πiζ · H

−2πiζ⊥ · χ·

¾
¿¿¿À .

(4.22)

Proof. For the ûrst item, we note that (e·p· , e·u· , e·χ·) = Ψ(e·f, e·k, e·H) and hence

‖p· , u· , χ·‖Xs
�· ‖e·p· , e·u· , e·χ·‖Xs

� ‖Ψ‖L‖e·f, e·k, e·H‖Ys
�· ‖Ψ‖L‖f, k, H‖Ys

.

(4.23)

Next, we use the system (4.20) from Proposition 4.7 along with Deûnition 4.1 to derive 

the equation (4.22). Note that the hypotheses 0 �∈ supp F (f, k, H) ensure that the 

argument of Φ in (4.22) belongs to its domain Ỹs. �

Motivated by formula (4.22), we now construct the translation commuting linear maps 

whose symbols will turn out to be the derivatives of m. In what follows S� denotes the 

symmetric group on the set {1, . . . , 
}.

Definition 4.9 (Iterative derivative construction). Let (f, k, H) ∈ Ys satisfy 0 �∈

supp F (f, k, H) and set (p, u, χ) = Ψ(f, k, H) ∈ Xs. For j ∈ N
+ we define the j-

multilinear and symmetric maps

(R2)j � (ζ1, . . . , ζj) 
→ (p(j), u(j), χ(j))[ζ1, . . . , ζj ] ∈ Xs (4.24)

via the following inductive procedure. If j = 1, we set
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(p(1), u(1), χ(1))[ζ] = Φ

»
¼¼¼½

−2πiζ · u
−2πiζp + μ2πi∇(ζ · u) + μ4πiζ · ∇u

κ2πiζ · χe3 − μ2πiζ(u · e3)
2πiζ · H

−2πiζ⊥ · χ

¾
¿¿¿À . (4.25)

If j = 2, we set

(p(2), u(2), χ(2))[ζ1, ζ2] =
∑

σ∈S2

Φ

×

»
¼¼¼¼½

−2πiζσ1 · u(1)[ζσ2]
−2πiζσ1p(1)[ζσ2] + μ2πi∇(ζσ1 · u(1)[ζσ2]) + μ4πiζσ1 · ∇u(1)[ζσ2] − μ4π2(ζσ1 · ζσ2)u

κ2πiζσ1 · χ(1)[ζσ2]e3 − μ2πiζσ1(u(1)[ζσ2] · e3)
0

−2πiζ⊥
σ1 · χ(1)[ζσ2]

¾
¿¿¿¿À

(4.26)

and if j � 3, we take

(p(j), u(j), χ(j))[ζ1, . . . , ζj ] =
1

(j − 1)!

∑

σ∈Sj

Φ

×

»
¼¼¼¼½

−2πiζσ1 · u(j−1)

−2πiζσ1p(j−1) + μ2πi∇(ζσ1 · u(j−1)) + μ4πiζσ1 · ∇u(j−1)

κ2πiζσ1 · χ(j−1)e3 − μ2πiζσ1(u(j−1) · e3)
0

−2πiζ⊥
σ1 · χ(j−1)

¾
¿¿¿¿À

[ζσ2, . . . , ζσj ]

+
1

(j − 2)!

∑

σ∈Sj

Φ

»
¼¼¼½

0
−μ4π2(ζσ1 · ζσ2)u(j−2)

0
0
0

¾
¿¿¿À [ζσ3, . . . , ζσj ]. (4.27)

Our next result studies the previous construction more carefully.

Proposition 4.10 (Properties of the derivative construction). The following hold.

(1) For every j ∈ N
+ the map

{(f, k, H) ∈ Ys : 0 �∈ supp F (f, k, H)} � (f, k, H)


→ |D|j(p(j), u(j), χ(j)) ∈ Lj(R2; Xs) (4.28)

is continuous and tangentially translation commuting, and hence extends uniquely 

to a bounded linear map defined on all of Ys.
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(2) For every j ∈ N
+ there exists a unique multilinear mapping into the space of 

symbols, (ζ1, . . . , ζj) 
→ m(j)[ζ1, . . . , ζj ], such that for all (f, k, H) ∈ Ys satisfying 

0 �∈ supp F (f, k, H) we have the identity

m(j)[ζ1, . . . , ζj ](D)(f, k) = (p(j), u(j), χ(j))[ζ1, . . . , ζj ]. (4.29)

(3) For all j ∈ N and all (ζ1, . . . , ζj) ∈ (R2)j we have that the map ξ 
→

|ξ|jm(j)[ζ1, . . . , ζj ](ξ) belongs to the space A(s) from Definition 4.2; moreover, we 

have the estimate

�| · |jm(j)[ζ1, . . . , ζj ]�s � j! · Cj

j∏

i=1

|ζi|, (4.30)

with an implicit constant independent of j.

Proof. We begin with the ûrst item in the case j = 1. The key point is that the oper-

ator norm of Φ : Ỹs → Xs depends on a few quantities belonging to Ḣ−1(Σ; C). The 

appearance of the operator |D| is thus crucial, as it permits the bounds

[
2πiζ · |D|H + 2πi

b∫

0

ζ · (|D|u)(·, y) dy
]

Ḣ−1
+[2πiζ⊥ · |D|χ]Ḣ−1 � |ζ|‖χ, u, H‖L2×L2×L2 .

(4.31)

With this observation in hand, we appeal directly to Deûnition 4.9 and the mapping 

properties of Φ established in Theorem 2.6 and Deûnition 4.1, to verify that

‖|D|(p(1), u(1), χ(1))[ζ]‖Xs
� (‖p, u, χ‖Xs

+ ‖f, k, H‖Ys
)|ζ| � ‖f, k, H‖Ys

|ζ|. (4.32)

In a similar manner to the above, we may derive the estimate

sup
|·1|,|·2|�1

‖|D|2(p(2), u(2), χ(2))[ζ1, ζ2]‖Xs
� sup

|·|�1

‖|D|(p(1), u(1), χ(1))[ζ]‖Xs
+ ‖p, u, χ‖Xs

� ‖f, k‖Ys

(4.33)

and, for j � 3,

sup
|·1|,...,|·j |�1

‖|D|j(p(j), u(j), χ(j))[ζ1, . . . , ζj ]‖Xs
�

j

2∑

σ=1

((j − 2)σ + 3 − j) sup
|·1|,...,|·j−σ|�1

‖|D|j−σ(p(j−σ), u(j−σ), χ(j−σ))[ζ1, . . . , ζj−σ]‖Xs
.

(4.34)

Upon iterating these estimates, we deduce the boundedness assertion of the ûrst item.
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As a consequence of the ûrst item and Proposition 4.4, we ûnd that for each j ∈ N
+

and (ζ1, . . . , ζj) ∈ (R2)j , the map (f, k, H) 
→ |D|j(p(j), u(j), χ(j))[ζ1, . . . , ζj ] is given by a 

symbol m̃(j)[ζ1, . . . , ζj ] ∈ A(s). By uniqueness, we must have that m̃(j) is a j-multilinear 

and symmetric function of the ζ1, . . . , ζj . We then set m(j) = | · |−jm̃(j), which implies 

that (4.29) holds, and hence the second item is satisûed.

The third item follows since | · |jm(j) = m̃(j), with the symbol on the right a j-

multilinear function of the ζ1, . . . , ζj into A(s). �

We pause to note that estimate (4.30) would tell us that m obeys estimates of Mikhlin-

Hörmander type if we knew that m were smooth away from the origin with the jth-

derivative equal to m(j). It is thus our goal now to prove that these are, in fact the 

derivatives of the symbol m. We ûrst require a deûnition and a technical lemma about 

remainders. Note that the following is well-deûned thanks to Proposition 4.10.

Definition 4.11 (Remainders). Given (f, k, H) ∈ Ys satisfying 0 �∈ supp F (f, k, H) and 

ζ ∈ R
2, we define the following elements of Xs:

R0(f, k, H)[ζ] = (m(D + ζ) − m(D))(f, k), (4.35)

and for j ∈ N
+

Rj(f, k, H)[ζ] = R0(f, k, H)[ζ] −

j∑

i=1

1

i!
m(i)[ζ⊗i](D)(f, k, H), (4.36)

where in the above we write ζ⊗i ∈ (R2)i to refer to the i-tuple of vectors with each entry 

equal to ζ.

Now we derive estimates for these remainder terms.

Lemma 4.12 (Remainder estimates). There exists a constant C � 0 such that for 

all (f, k, H) ∈ Ys satisfying 0 �∈ supp F (f, k, H) and ζ ∈ R
2 satisfying |ζ| <

min{dist(0, supp F (f, k, H)), 1}, we have the following estimates for j ∈ N:

‖|D|j+1Rj(f, k, H)[ζ]‖Xs
� Cj+1|ζ|j+1‖f, k, H‖Ys

. (4.37)

Proof. Throughout the proof, we will employ the following convenient notation: we set 

(p· , u· , χ·) = m(D + ζ)(f, k, H), and for j ∈ N we set

Rj(f, k, H)[ζ] = (Rjp[ζ], Rju[ζ], Rjχ[ζ]). (4.38)
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We ûrst establish (4.37) when j = 0. From identity (4.22), we ûnd that

R0(f, k, H)[ζ] = Φ

»
¼¼¼½

−2πiζ · u·

−2πiζp· + μ2πi∇(ζ · u·) + μ4πiζ · ∇u· − μ4π2|ζ|2u·

κ2πiζ · χ·e3 − μ2πiζ(u· · e3)
2πiζ · H

−2πiζ⊥ · χ·

¾
¿¿¿À . (4.39)

We then apply |D| to the above and take the norm in Xs. Thanks to the continuity 

properties of Φ : Ỹs → Xs (see the proof of Proposition 4.10) and Lemma 4.8, we acquire 

the bound

‖|D|R0(f, k, H)[ζ]‖Xs
� |ζ|(‖p· , u· , η·‖Xs

+ ‖f, k, H‖Ys
) � |ζ|‖f, k, H‖Ys

, (4.40)

which completes the proof in the j = 0 case.

Next up is j = 1. We subtract m(1)[ζ](D)(f, k, H) from both sides of (4.39) and 

recall (4.25). This yields the equation

R1(f, k, H)[ζ]

= Φ

»
¼¼¼½

−2πiζ · R0u[ζ]
−2πiζR0p[ζ] + μ2πi∇(ζ · R0u[ζ]) + μ4πiζ · ∇R0u[ζ] − μ4π2|ζ|2u·

κ2πiζ · R0χ[ζ]e3 − μ2πiζ(R0u[ζ] · e3)
0

−2πiζ⊥ · R0χ[ζ]

¾
¿¿¿À . (4.41)

We now apply |D|2 to (4.41) and then take the norm in Xs. The mapping properties of 

Φ, together with Lemma 4.8 and estimate (4.40), then show that

‖|D|2R1(f, k, H)[ζ]‖Xs
� |ζ|‖|D|R0(f, k, H)[ζ]‖Xs

+ |ζ|2‖|D|2u·‖Hs � |ζ|2‖f, k‖Ys
.

(4.42)

This completes the proof in the case j = 1.

Now we claim the following identity holds for all j � 2:

Rj(f, k, H)[ζ] =

Φ

»
¼¼¼½

−2πiζ · Rj−1u[ζ]
−2πiζRj−1p[ζ] + μ2πi∇(ζ · Rj−1u[ζ]) + μ4πiζ · ∇Rj−1u[ζ] − μ4π2|ζ|2Rj−2u[ζ]

κ2πiζ · Rj−1χ[ζ]e3 − μ2πiζ(Rj−1u[ζ] · e3)
0

−2πiζ⊥ · Rj−1χ[ζ]

¾
¿¿¿À .

(4.43)

We prove this via induction. For the base case j = 2, we look to Deûnition 4.9 to see 

that
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1

2
m(2)[ζ⊗2](D)(f, k, H)

=

»
¼¼¼¼½

−2πiζ · u(1)[ζ]
−2πiζp(1)[ζ] + μ2πi∇(ζ · u(1)[ζ]) + μ4πiζ · ∇u(1)[ζ] − μ4π2|ζ|2u

κ2πiζ · χ(1)[ζ]e3 − μ2πiζ(u(1)[ζ] · e3)
0

−2πiζ⊥ · χ(1)[ζ]

¾
¿¿¿¿À

. (4.44)

We subtract the above from (4.41) to see that (4.43) is true for j = 2. Proceeding 

inductively, suppose that this identity holds for some N � j � 2. We again look to 

Deûnition 4.9 to acquire the identity

1

(j + 1)!
m(j+1)[ζ⊗(j+1)](D)(f, k, H)

=
1

j!
Φ

»
¼¼¼¼½

−2πiζ · u(j)[ζ⊗j ]
−2πiζp(j)[ζ⊗j ] + μ2πi∇(ζ · u(j)[ζ⊗(j)]) + μ4πiζ · ∇u(j)[ζ⊗(j)]

κ2πiζ · χ(j)[ζ⊗(j)]e3 − μ2πiζ(u(j)[ζ⊗j ] · e3)
0

−2πiζ⊥ · χ(j)[ζ⊗j ]e3

¾
¿¿¿¿À

+
1

(j − 1)!
Φ

»
¼¼¼½

0
−μ4π2|ζ|2u(j−1)[ζ⊗(j−1)]

0
0
0

¾
¿¿¿À . (4.45)

We then simply subtract (4.45) from the induction hypothesis (4.43) to prove the stated 

identity in the j + 1 case. Thus (4.43) holds for all N � j � 2, and the claim is proved.

With the claim in hand, we apply |D|j+1 in the case N � j � 2 to identity (4.43), 

take the norm in Xs, and utilize the mapping properties of Φ to deduce the inductive 

estimate

‖|D|j+1Rj(f, k, H)[ζ]‖Xs
�

2∑

σ=1

|ζ|σ‖|D|j−σ+1Rj−σ(f, k, H)[ζ]‖Xs
. (4.46)

Iteratively applying (4.46) and employing (4.42) and (4.40), we then readily conclude 

that (4.37) holds. �

At last, we prove analyticity of m away from the origin.

Theorem 4.13 (Analyticity of the symbol). The symbol m ∈ A(s) from Definition 4.6 has 

a representative that is analytic as a mapping

m : R
2 \ {0} → L(Hs((0, b); C

3) × C
3 × C

2; H1+s((0, b); C) × H2+s((0, b); C
3) × C

2).

(4.47)
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Moreover, the derivatives of the above symbol obey the following Mikhlin-Hörmander type 

bounds: for every ³ ∈ N
d there exists Cα < ∞ such that

�| · ||α|∂αm�s � Cα. (4.48)

Proof. It suffices to prove that m is analytic as claimed and that ∇jm = m(j) for 

j ∈ N
+. Indeed, once this is established, the bound (4.48) is a consequence of the third 

item of Proposition 4.10 and Deûnition 4.6. We divide the proof into several steps.

Step 1 - Setup and basic estimates:

For the sake of brevity, deûne the Hilbert spaces V0 = Hs((0, b); C3) × C
3 × C

2 and 

V1 = H1+s((0, b); C) × H2+s((0, b); C3) × C
2. We will write L = L(V0; V1) throughout 

the proof.

Fix ε ∈ (0, 1/4) and deûne the annuli A2 = B(0, 2ε−1) \ B(0, ε/2), A1 = B(0, ε−1) \

B(0, ε) ⊂ A2, and A0 = B(0, ε−1/2) \ B(0, 2ε) ⊂ A1. Thanks to Deûnition 4.11, for 

j ∈ N and |ζ| < ε/2 the linear map

Ys � (f, k, H)
T ε

j [·]

→ Rj(f, k, H)[ζ]1A2

(D)(f, k) ∈ Xs (4.49)

is bounded, translation commuting, and satisûes T ε
j [ζ] = mε

j [ζ](D) for the symbol

mε
j [ζ](ξ) =

(
m(ξ + ζ) −

j∑

i=0

1

i!
m(i)[ζ⊗i](ξ)

)
1A2

(ξ), (4.50)

with the understanding that 1
0! m

(0)[ζ⊗0](ξ) = m(ξ). Lemma 4.12 provides the estimate

‖|D|j+1T ε
j [ζ]‖L(Ys;Xs) � Cj+1|ζ|j+1, (4.51)

and so Proposition 4.4 then yields multiplier bound

�| · |j+1mε
j [ζ]�s � Cj+1|ζ|j+1 for all |ζ| < ε/2. (4.52)

Now, since the multiplier mε
j is supported in the set A2, we are free to apply Lemma 4.3

and ûnd that there exists a constant cε, depending only ε and s, such that

ess sup
ξ∈A2

|ξ|j+1
∥∥∥m(ξ+ζ)−

j∑

i=0

1

i!
m(i)[ζ⊗i](ξ)

∥∥∥
L
� cε�|·|

j+1mε
j [ζ]�s � cεCj+1|ζ|j+1, (4.53)

where we recall that L = L(V0; V1), and we deduce from this that if |ζ| < ε/2, then

ess sup
ξ∈A2

∥∥∥m(ξ + ζ) −

j∑

i=0

1

i!
m(i)[ζ⊗i](ξ)

∥∥∥
L
� cε

(2C|ζ|

ε

)j+1

. (4.54)
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A similar application of Deûnition 4.6 and Lemma 4.3 shows that

ess sup
ξ∈A2

‖m(ξ)‖L � cε. (4.55)

Step 2 - Lipschitz continuity in A1:

We now aim to show that m : A1 → L has a Lipschitz continuous representative. To 

this end, let ϕ ∈ C∞
c (Rn) be such that ϕ � 0, 

∫
ϕ = 1, and supp(ϕ) ⊆ B(0, 1). For 

0 < δ < ε/4 and ξ ∈ A1 we deûne nε(ξ) : V0 → V1 via

nδ(ξ)v =

∫

B(0,δ)

1

δ2
ϕ(ω/δ)m(ξ − ω)v dω, (4.56)

which is well-deûned since B(0, δ) � ω 
→ m(ξ − ω)v ∈ V2 is measurable and essentially 

bounded for each v ∈ V0 and ξ ∈ A1. From this it9s easy to see that nδ(ξ) ∈ L for each 

ξ ∈ A1 and that the induced map nδ : A1 → L is continuous. In fact, the molliûed 

sequence is uniformly Lipschitz in δ. Indeed, from (4.54) with j = 0 we know that there 

exists a null set N ⊂ A2 such that if ξ ∈ A1 and ω ∈ B(0, δ) are such that ξ −ω ∈ A2\N , 

then

sup
‖v‖V0

�1

‖m(ξ − ω + η)v − m(ξ − ω)v‖V1
� sup

θ∈A2\N

‖m(θ + η) − m(θ)‖L �
2cεC

ε
|η|.

(4.57)

Consequently, for any given ξ ∈ A1 and |η| < ε/2 we have that

sup
‖v‖V0

�1

‖m(ξ − ω + η)v − m(ξ − ω)v‖V1
�

2cεC

ε
|η| for a.e. ω ∈ B(0, δ), (4.58)

and hence

‖nδ(ξ + η) − nδ(ξ)‖L �
2cεC

ε
|η|

∫

R2

1

δ2
ϕ(ω/δ) dω =

2cεC

ε
|η|. (4.59)

Since ξ ∈ A1 was arbitrary, we deduce that

sup
ξ∈A1

‖nδ(ξ + η) − nδ(ξ)‖L �
2cεC

ε
|η| (4.60)

for all |η| < ε/2. By similar considerations, we may estimate

‖nδ − m‖L∞

∗
(A1;L) �

2cεC

ε

∫

B(0,δ)

1

δ2
ϕ(ω/δ)|ω| dω �

2cεC

ε
δ. (4.61)
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Sending δ → 0 and appealing to (4.60) and (4.55), we ûnd that the restriction of m to 

A1 is almost everywhere equal to a Lipschitz continuous function from A1 to L. From 

now on, we shall use the continuous representative of m in A1.

Step 3 - Local convergence of the power series in A2:

We now claim that there exists a constant C1 � 2 and a set E ⊆ A2 with |A2 \E| = 0

such that for any ξ ∈ E the power series

R
2 ⊃ B(ξ, ε/C1) � ζ 
→

∞∑

j=0

m(j)[ζ⊗j ](ξ) ∈ L (4.62)

converges uniformly absolutely and thus deûnes an analytic L-valued function in 

B(ξ, ε/N).

To prove the claim, we ûrst appeal to the bounds (4.30) from Proposition 4.10 and 

Lemma 4.3 to ûnd a constant R > 0 such that for every j ∈ N we have the bound

1

j!
ess sup

ξ∈A2

|ξ|j‖m(j)[ζ⊗j ](ξ)‖L � cεRj |ζ|j for every |ζ| <
ε

2
. (4.63)

This estimate can be improved by virtue of multilinearity. To see how, set C1 = 2(1 +2R)

and let {ζn}n∈N ⊂ B(0, ε/C1) be dense. Then by (4.63), the fact that a countable union 

of null sets is again null, the pointwise continuity of the multilinear maps involved, and 

the fact that dist(0, A2) = ε/2, we have that

ess sup
ξ∈A2

sup
|·|<ε/C1

‖m(j)[ζ⊗j ](ξ)‖L � ess sup
ξ∈A2

sup
n∈N

2j |ξ|j

εj
‖m(j)[ζ⊗j

n ](ξ)‖L

� j! · cε

(
2R

C1

)j

� j! · cε2−j .

(4.64)

Summing over j ∈ N, we may thus bound

∞∑

j=0

1

j!
ess sup

ξ∈A2

sup
|·|<ε/C1

‖m(j)[ζ⊗j ](ξ)‖L � 2cε, (4.65)

and the claim now follows directly from this.

Step 4 - Analyticity in A0:

Finally, we aim to prove that the multiplier m in (4.47) is analytic in the annulus A0. 

The strategy is to combine estimates (4.65) and (4.54). Let C2 = max{C1, 2(1 + 2C)}, 

where C1 is from Step 3 and C > 0 is the constant in (4.54). By letting {ζn}n∈N ⊂

B(0, ε/C2) be dense, we may use (4.54) to produce a set F ⊆ A2 with the property that 

|A2 \ F| = 0 and if ξ ∈ F and j ∈ N then

sup
n∈N

∥∥∥m(ξ + ζn) −

j∑

i=0

m(i)[ζ⊗i
n ](ξ)

∥∥∥
L
� cε2−(j+1). (4.66)
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In particular, if ξ ∈ A0 ∩ E, then the continuity assertion of Step 2 allows us to bound

sup
|·|<ε/C2

∥∥∥m(ξ + ζ) −

j∑

i=0

m(i)[ζ⊗i](ξ)
∥∥∥

L
� cε2−(j+1). (4.67)

Let F be the set from Step 3 and note that A0 ∩ E ∩ F is a set of full measure in A0. 

We can then send j → ∞ in (4.67) to see that

m(ξ + ζ) =
∞∑

i=0

m(i)[ζ⊗i](ξ) for ξ ∈ A0 ∩ E ∩ F and ζ ∈ B(0, ε/C2). (4.68)

In light of the continuity of m in A1, we learn from this that the power series produced 

in Step 3 agree on the intersection of their balls of convergence. Consequently, we may 

produce a single L-valued analytic function on A0 that is equal to m a.e., and since ε > 0

was arbitrary we conclude that m has an analytic representative in R2\{0}. Finally, we 

learn from (4.68) that ∇jm = m(j) almost everywhere. �

5. On some Sobolev-type spaces

In Section 4 we constructed an operator-valued symbol m such that the corresponding 

Fourier multiplication operator m(D) is a particular solution map for the PDE (2.2). 

We know from Theorem 4.13 that m obeys certain inequalities of Mikhlin-Hörmander 

type, and so we expect to be able to employ Theorem 3.14 to obtain the boundedness of 

m(D) on certain vector-valued Sobolev spaces. The ûrst goal of this section is to deûne 

and study these mixed-type spaces for use in this manner. This is done in Section 5.1. 

In Section 5.2 we record a number of nonlinear tools that we will use in working with 

the mixed-type spaces.

The second purpose of this section, which is the content of Section 5.3, is to study what 

we call subcritical gradient spaces. These are spaces of functions whose distributional 

derivatives belong to Hs−1,p(Rd) for 1 < p < d and s ∈ N
+, and they arise naturally 

in our analysis of the free surface function in (1.13). Their properties will play a crucial 

role in our subsequent PDE analysis.

Throughout this section, we have phrased the results in a more general manner than 

what is precisely needed in Sections 6 and 7, as we believe that the analysis here may 

be of independent interest.

5.1. Mixed-type Sobolev spaces

Throughout this subsection we consider a generic open interval I ⊆ R and deûne the 

set U = R
d × I for d ∈ N

+.

Definition 5.1 (Mixed-type Sobolev spaces). Let 1 < p < ∞ and V be a finite dimensional 

normed space over F ∈ {R, C}. Let U = R
d × I for d ∈ N

+.
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(1) We define the mixed type Lebesgue space

Lp,2(U ; V ) = Lp(Rd; L2(I; V )), ‖f‖Lp,2
=
( ∫

Rd

(∫

I

‖f(x, y)‖2
V dy

)p/2

dx
)1/p

,

(5.1)

which is a Banach space when endowed with the obvious norm. Moreover, the Fubini-

Tonelli theorem shows that Lp,2(U ; V ) ↪→ L
min{2,p}
loc (U ; V ). We model Sobolev spaces 

on these mixed Lebesgue-spaces in the natural way.

(2) For s ∈ N we define

Hs
p,2(U ; V ) = {f ∈ Lp,2(U ; V ) : ∂αf ∈ Lp,2(U ; V ) for all ³ ∈ N

3 with |³| � s},

(5.2)

and endow this space with the norm

‖f‖Hs
p,2

=
( ∑

|α|�s

‖∂αf‖p
Lp,2

)1/p

. (5.3)

Minor variants of the usual Sobolev-theoretic arguments apply to show that these 

spaces are Banach and that the restrictions to U of elements of C∞
c (Rd+1; V ) form 

a dense subspace. When we write Hs
p,2(U) the understanding is that V = R.

Our ûrst lemma about these spaces provides a useful equivalent norm obtained via 

factorization.

Lemma 5.2 (Equivalent norm on the mixed type Sobolev spaces). Let s ∈ N, 1 < p < ∞, 

and V be a finite dimensional normed space over F ∈ {R, C}. Then we have that

Hs
p,2(U ; V ) = Lp(Rd; Hs(I; V )) ∩ Hs,p(Rd; L2(I; V )) (5.4)

with norm equivalence

‖f‖Hs
p,2

� ‖f‖LpHs + ‖f‖Hs,pL2 . (5.5)

Proof. Since we can always complexify a real normed space V , it suffices to prove the 

result when F = C. Assume this. The continuous embedding of the space of the left 

of (5.4) into the right is obvious; the reverse inclusion requires work. Suppose that f

belongs to the space on the right and k ∈ {1, . . . , s − 1}. Let ϕ ∈ C∞
c (Rd) be a generator 

for a homogeneous Littlewood-Paley partition of unity. We then use Gagliardo-Nirenberg 

interpolation on the space Hk(I; V ) ↪→ Hs(I; V ), together with Young9s inequality for 

products, namely a1−k/sbk/s � a + b, the triangle inequality, and Theorem 3.10 to esti-

mate
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∥∥∥
(∑

j∈Z

〈2j〉2(s−k))‖ϕ(D/2j)f‖2
Hk

)1/2∥∥∥
Lp

�
∥∥∥
(∑

j∈Z

〈2j〉2(s−k)‖ϕ(D/2j)f‖
2(1−k/s)
L2 ‖ϕ(D/2j)f‖

2s/k
Hs

)1/2∥∥∥
Lp

�
∥∥∥
(∑

j∈Z

〈2j〉2s‖ϕ(D/2j)f‖2
L2

)1/2∥∥∥
Lp

+
∥∥∥
(∑

j∈Z

‖ϕ(D/2j)f‖2
Hs

)1/2∥∥∥
Lp

� ‖f‖Hs,pL2 + ‖f‖LpHs . (5.6)

In turn, we may use Theorem 3.11 to conclude that f =
∑

j∈Z
ϕ(D/2j)f and

‖f‖Hs−k,pHk �
∥∥∥
(∑

j∈Z

〈2j〉2(s−k))‖ϕ(D/2j)f‖2
Hk

)1/2∥∥∥
Lp

� ‖f‖Hs,pL2 + ‖f‖LpHs . (5.7)

Summing over k ∈ {1, . . . , s − 1} then completes the proof of the reverse embedding 

in (5.4). �

Next we turn our attention to extension operators.

Proposition 5.3 (Extensions on mixed-type Sobolev spaces). Let s ∈ N, 1 < p < ∞, and 

V be a finite dimensional normed space over F ∈ {R, C}. There exists a bounded linear 

extension operator

EU : Hs
p,2(U ; V ) → Hs

p,2(Rd+1; V ) (5.8)

such that RUEU = id on Hs
p,2(U), where RU denotes the restriction operator.

Proof. Since V is assumed to be ûnite dimensional over F ∈ {R, C}, we may use a 

basis to reduce to the case V = F . The notion of a Stein extension operator is given 

in Section 3.1 in Chapter VI of Stein [90]. For the domain U = R
d × I, one can select 

a Stein-extension operator that is tangentially translation commuting. In fact, we only 

need the Stein-extension operator I → R and view it as acting on functions on Rd × I

via carrying along the ûrst d-variables as parameters. It is then immediate that

EU : Lp(Rd; Hs(I; F)) → Lp(Rd; Hs(R; F)) (5.9)

is a bounded linear map. From tangential translation invariance, we get

‖EU f‖Hs,pL2 = ‖EU 〈D〉sf‖LpL2 � ‖‖〈D〉sf‖L2(I)‖Lp(Rd)

= ‖f‖Hs,pL2 for f ∈ Hs,p(Rd; L2(I; F)),
(5.10)

and hence EU : Hs,p(Rd; L2(I; F)) → Hs,p(Rd; L2(R; F)) is bounded. Thus, (5.8) follows 

from Lemma 5.2. �
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Next, we discuss traces. Note that in this result the regularity loss caused by taking 

a trace is 1/2 rather than 1/p. This is due to the L2-based regularity spaces used in the 

8normal9 direction.

Proposition 5.4 (Traces of mixed-type Sobolev spaces). Let s ∈ N
+ and 1 < p < ∞, and V

be a finite dimensional normed space over F ∈ {R, C}. For b ∈ R
+ define Ω = R

d ×(0, b)

and Σ = R
d × {b}. Then there exists a bounded and linear trace map

TrΣ : Hs
p,2(Ω; V ) → Hs−1/2,p(Σ; V ). (5.11)

Proof. Using a basis of V , we reduce to proving the result with V = F . The key obser-

vation is the following interpolation inequality for functions φ ∈ Hs((0, b)):

|φ(b)| � ‖φ‖
1−1/2s
L2 ‖φ‖

1/2s
Hs , (5.12)

where the implicit constant depends on b and s. A proof may be found, for instance, in 

Lemmas 4.9 and 4.10 of Constantin and Foias [30].

Let ϕ ∈ C∞
c (Rd) generate a homogeneous Littlewood-Paley partition of unity. Then, 

given f ∈ Hs
p,2(Ω; F) we use the above interpolation inequality with Young9s inequality, 

namely a1−1/2sb1/2s � a + b, and Theorem 3.10 to bound

∥∥∥
(∑

j∈Z

〈2j〉2s−1|ϕ(D/2j)TrΣf |2
)1/2∥∥∥

Lp

�
∥∥∥
(∑

j∈Z

〈2j〉2s−1‖ϕ(D/2j)f‖
2−1/s
L2 ‖ϕ(D/2j)f‖

1/s
Hs

)1/2∥∥∥
Lp

�
∥∥∥
(∑

j∈Z

〈2j〉2s‖ϕ(D/2j)f‖2
L2

)1/2∥∥∥
Lp

+
∥∥∥
(∑

j∈Z

‖ϕ(D/2j)f‖2
Hs

)1/2∥∥∥
Lp

� ‖f‖LpHs + ‖f‖Hs,pL2 . (5.13)

This, Lemma 5.2, and Theorem 3.11 then provide the estimate

‖TrΣf‖Hs−1/2,p � ‖f‖LpHs + ‖f‖Hs,pL2 � ‖f‖Hs
p,2

, (5.14)

so the trace operator is bounded as stated. �

Now we discuss lifting maps that complement the trace map.

Proposition 5.5 (Lifting in mixed-type Sobolev spaces). Let s ∈ N
+, and 1 < p < ∞, and 

V be a finite dimensional normed space over F ∈ {R, C}. For b ∈ R
+ let Ω = R

d × (0, b)

and Σ = R
d × {b}. There exists a bounded linear extension map LΩ : Hs−1/2,p(Σ; V ) →

Hs
2,p(Ω; V ) such that TrΣLΩ = idHs−1/2,p(Σ).
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Proof. We will prove the result when V = C; the general case can be deduced from this. 

Given f ∈ S (Σ; C), we deûne LΩf : Ω → C via

F [LΩf ](ξ, y) = exp(〈ξ〉(y − b))F [f ](ξ) for ξ ∈ R
d and y ∈ (0, b). (5.15)

Now deûne m ∈ C∞(Ω; C) via m(ξ, y) = exp(〈ξ〉(y − b)). Thanks to the Leibniz rule 

and Faà di Bruno9s formula, we have that

|∂j
yDk

ξ m(ξ, y)| = |Dk
ξ (〈ξ〉j exp(〈ξ〉(y − b)))| �

k∑

i=0

〈ξ〉j−k+i|Di
ξ(exp(〈ξ〉(y − b)))|

�

k∑

i=0

〈ξ〉j−k+i
i∑

�=1

〈ξ〉−i+�|y−b|� exp(〈ξ〉(y−b)) � 〈ξ〉j−k max
1���k

|y−b|�〈ξ〉� exp(〈ξ〉(y−b)).

(5.16)

We readily deduce from this that for any ³ ∈ N
d there exists a constant Cα > 0 such 

that

sup
ξ∈Rd

〈ξ〉|α|+1/2‖∂α
ξ m(ξ, ·)‖L2 + sup

ξ∈Rd

〈ξ〉|α|+1/2−s‖∂α
ξ m(ξ, ·)‖Hs � Cα. (5.17)

Let 
 ∈ {0, s}. Employing the canonical isometric identiûcation H�((0, b); C) =

L(C; H�((0, b); C)), we deûne the vector-valued Fourier multiplier with symbol μ ∈

C∞(Rd; L(C; H�((0, b); C))) given by μ(ξ) = m(ξ, ·). In light of (5.17), we can then 

invoke Theorem 3.14 twice to deduce that

μ(D) : Hs−1/2,p(Σ; C) → Hs,p(Rd; L2((0, b); C)) ∩ Lp(Rd; Hs((0, b); C)) = Hs
2,p(Ω; C)

(5.18)

is a bounded linear map (in the last equality we have employed Lemma 5.2). To conclude, 

we simply note that for f ∈ S (Σ; C) we have that μ(D)f(x) = LΩf(x, ·) for all x ∈

R
d. �

Finally, we record a mixed-type Sobolev spaces variant of Proposition C.1 in Stevenson 

and Tice [92].

Proposition 5.6 (Divergence compatibility in mixed-type Sobolev spaces). Let 1 < p < ∞, 

b ∈ R
+, and Ω = R

d × (0, b). Then there exists a constant C such that for all u ∈

H1
p,2(Ω; Fd+1) we have the estimate

[ b∫

0

(∇ · u)(·, y) dy − TrΣu · ed+1 + TrΣ0
u · ed+1

]
Ḣ−1,p

� C‖u‖Lp,2
. (5.19)
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Proof. By density, it suffices to consider the case that 0 �∈ suppF [u]. Thanks to the 

fundamental theorem of calculus, we have

b∫

0

(∇ · u)(·, y) dy − TrΣu · ed+1 + TrΣ0
u · ed+1 = (∂1, . . . , ∂d, 0) ·

b∫

0

u(·, y) dy (5.20)

Applying |D|−1 and using the deûnition of Ḣ−1,p from (1.28) and (1.29) along with the 

boundedness of Riesz transforms yields

[ b∫

0

(∇ · u)(·, y) dy − TrΣu · ed+1 + TrΣ0
u · ed+1

]
Ḣ−1,p

�
∥∥∥

b∫

0

u(·, y) dy
∥∥∥

Lp
. (5.21)

We conclude after noting that the embedding L2((0, b)) ↪→ L1((0, b)) allows us to bound 

the right hand side of (5.21) by ‖u‖Lp,2
. �

5.2. Some nonlinear analysis in mixed-type Sobolev spaces

The goal of this subsection is to record a series of useful results related to the nonlinear 

use of mixed-type spaces. As in Section 5.1, we will let I ⊆ R be an open interval and 

set U = R
d × I.

Our ûrst result gives a product estimates for the mixed-type Sobolev spaces.

Lemma 5.7 (Product estimates in mixed type Sobolev spaces). Suppose s ∈ N
+, 1 < p <

∞, and V is a finite dimensional normed space over F ∈ {R, C}. Then we have the 

estimate

‖fg‖Hs
p,2

� ‖f‖L∞∩Lp,2
‖g‖Hs

p,2
+ ‖f‖Hs

p,2
‖g‖L∞∩Lp,2

(5.22)

for all f ∈ Hs
p,2(U ; F) ∩ L∞(U ; F) and g ∈ Hs

p,2(U ; V ) ∩ L∞(U ; V ).

Proof. It suffices to prove the result for F = C, so we will assume this in the proof. To 

check the product belongs to the correct space, we will use the norm from Lemma 5.2. 

We ûrst recall the well-known (see e.g. Theorem D.6 in [92]) high-low product estimate

‖FG‖Hs(I;V ) � ‖F‖L∞(I;F) ‖G‖Hs(I;V ) + ‖F‖Hs(I;F) ‖G‖L∞(I;V ) (5.23)

for all F ∈ Hs(I; F) ∩ L∞(I; F) and G ∈ Hs(I; V ) ∩ L∞(I; V ). Applying this almost 

everywhere in Rd and integrating, we then derive the bound

‖fg‖LpHs � ‖f‖L∞‖g‖LpHs + ‖f‖LpHs‖g‖L∞ . (5.24)
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The bounds for tangential derivatives are more involved. To handle them we let 

ϕ ∈ C∞
c (Rd) be generator for a homogeneous Littlewood-Paley partition of unity, we 

set Φ =
∑

j�0 ϕ(·/2j), and we introduce the (tangential, homogeneous) paraproduct 

decomposition

fg =
∑

j∈Z

ϕ(D/2j)f Φ(D/2j−3)g

+
∑

j∈Z

j+2∑

k=j−2

ϕ(D/2j)f ϕ(D/2k)g +
∑

k∈Z

Φ(D/2k−3)f ϕ(D/2k)g

= πhl(f, g) + πhh(f, g) + πlh(f, g). (5.25)

For the πhl term, we use the annular Littlewood-Paley estimates from Theorems 3.10

and 3.11 together with the bound

sup
j∈N

‖Φ(D/2j)g‖L∞(Ω) � ‖g‖L∞ , (5.26)

which follows from Young9s convolution inequality, in order to estimate

‖πhl(f, g)‖Hs,pL2 �
∥∥∥
(∑

j∈Z

〈2j〉2s‖ϕ(D/2j)f Φ(D/2j−3)g‖2
L2

)1/2∥∥∥
Lp

� ‖f‖Hs,pL2‖g‖L∞ .

(5.27)

By an entirely symmetric argument, we have that ‖πlh(f, g)‖Hs,pL2 � ‖f‖L∞‖g‖Hs,pL2 . 

For the remaining high-high paraproduct, we split again:

πhh(f, g) =
(∑

j∈N

j+2∑

k=j−2

+
∑

j<0

j+2∑

k=j−2

)
ϕ(D/2j)fϕ(D/2k)g = πhhh(f, g) + πhhl(f, g).

(5.28)

We now use the ball Littlewood-Paley estimate of Theorem 3.12 to handle πhhh:

‖πhhh(f, g)‖Hs,pL2 �
∑

|c|�2

∥∥∥
( ∞∑

j=0

4sj‖ϕ(D/2j)f ϕ(D/2j+c)g‖2
L2

)1/2∥∥∥
Lp

� ‖f‖Hs,pL2‖g‖L∞ ,

(5.29)

where in the ûnal inequality we have pulled g out in L∞(U ; V ) and estimated f in 

Hs,p(Rd; L2(I; F)) as above. To handle πhhl we ûrst note that it is band limited; indeed, 

it is supported in B(0, 16) by construction. Hence the LpL2 norm controls Hs,pL2:

‖πhhl(f, g)‖Hs,pL2 � ‖πhhl(f, g)‖LpL2 �
∑

|c|�2

∥∥∥
∑

j<0

ϕ(D/2j)fϕ(D/2j+c)g
∥∥∥

LpL2
. (5.30)
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For the ûnal term above, we then use Cauchy-Schwartz, Hölder, and Theorem 3.10:

∥∥∥
∑

j<0

ϕ(D/2j)fϕ(D/2j+c)g
∥∥∥

LpL2

�
∥∥∥
(∑

j<0

‖ϕ(D/2j)f‖2
H1

)1/2(∑

j<0

‖ϕ(D/2j+c)g‖2
L2

)1/2∥∥∥
Lp

�
∥∥∥
(∑

j<0

‖ϕ(D/2j)Φ(D/23)f‖2
H1

)1/2∥∥∥
L2p

∥∥∥
(∑

j<0

‖ϕ(D/2j)Φ(D/23+c)g‖2
L2

)1/2∥∥∥
L2p

� ‖Φ(D/23)f‖L2pH1‖Φ(D/23+c)g‖L2pL2 . (5.31)

Now we invoke Young9s inequality and the fact that Φ(D/23)f and Φ(D/23+c)g are given 

via (tangential) convolution with a Schwartz function to bound

‖Φ(D/23)f‖L2pH1 � ‖f‖LpH1 and ‖Φ(D/23+c)g‖L2pL2 � ‖g‖LpL2 . (5.32)

Upon synthesizing these estimates, we arrive at

‖πhhl(f, g)‖Hs,pL2 � ‖f‖LpH1‖g‖LpL2 . (5.33)

Since N � s � 1, we see that this completes the proof. �

As a consequence of the previous result and a supercritical embedding, we ûnd suffi-

cient conditions under which the mixed-type Sobolev spaces are an algebra.

Proposition 5.8 (Supercritical Sobolev embeddings in mixed-type Sobolev spaces). The 

following hold.

(1) Hs
p,2(U ; F) ↪→ Ck

0 (U ; F) for s > k + (d + 1)/ min{2, p}, k ∈ N.

(2) For s > (d + 1)/ min{2, p}, the mixed type Sobolev Hs
p,2(U ; F) space is an algebra.

Proof. For the ûrst item we note that the restriction Hs
p,2(U ; F) → W s,min{2,p}(Rd×J ; F)

is continuous, for every J ⊂ I of ûnite length and hence the claim follows from standard 

Sobolev embeddings. The second item follows from the ûrst and Lemma 5.7. �

We now rapidly record three useful consequences of the previous results.

Proposition 5.9 (Products, I). Suppose that 1 < p < ∞ and N � s > (d + 1)/ min{2, p}. 

Then the pointwise product map

Hs
p,2(U) × Hs

p,2(U) × W s,∞(U) � (f, g, h) 
→ f · (g + h) ∈ Hs
p,2(U) (5.34)

is well-defined and smooth.
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Proof. That Hs
p,2(U) × W s,∞(U) � (f, h) 
→ fh ∈ Hs

p,2(U) is well-deûned and smooth is 

clear from bilinearity and the Leibniz rule. On the other hand, that these properties as 

also true for the assignment Hs
p,2(U) ×Hs

p,2(U) � (f, g) 
→ fg ∈ Hs
p,2(U) is a consequence 

of Lemma 5.7 and Proposition 5.8. �

Proposition 5.10 (Products, II). Suppose that 1 < p < ∞ and N � s > (d +1)/ min{2, p}. 

Then the Banach sum space

(Hs
p,2 + W s,∞)(U) = {f ∈ L1

loc(U) : f = f0 + f1, f0 ∈ Hs
p,2(U), f1 ∈ W s,∞(U)},

(5.35)

equipped with the norm

‖f‖Hs
2,p+W s,∞ = inf{‖f0‖Hs

2,p
+ ‖f1‖W s,∞ : f = f0 + f1}, (5.36)

is a Banach algebra under pointwise multiplication.

Proof. That this space is Banach is straightforward to see, so we only prove that it is 

an algebra. Let f, g ∈ (Hs
p,2 + W s,∞)(U) and decompose f = f0 + f1, g = g0 + g1 with 

f0, g0 ∈ Hs
p,2(U) and f1, g1 ∈ W s,∞(U). Then we use that W s,∞(U) is an algebra along 

with Proposition 5.9 to estimate

‖fg‖Hs
p,2+W s,∞ � ‖f0g0 + f1g0 + f0g1‖Hs

p,2
+ ‖f1g1‖W s,∞

� (‖f0‖Hs
p,2

+ ‖f1‖W s,∞)(‖g0‖Hs
p,2

+ ‖g1‖W s,∞).
(5.37)

The result follows by taking the inûmum over all decompositions of f and g. �

Remark 5.11 (Products, III). For 1 < p < ∞ and N � s > (d + 1)/ min{2, p}, we have 

that the pointwise product map

Hs
p,2(U) × (Hs

p,2 + W s,∞)(U) � (f, g) 
→ fg ∈ Hs
p,2(U) (5.38)

is smooth. This follows directly from Proposition 5.9 and definitions (5.35) and (5.36).

Our next result is meant to handle the reciprocal Jacobian of the üattening map.

Corollary 5.12 (Smoothness of pointwise inversion). For 1 < p < ∞ and N � s >

(d + 1)/ min{2, p}, we have that there exists a constant ρ ∈ R
+, depending on U , s, d, 

and p, such that the map

(Hs
p,2 + W s,∞)(U) ⊃ B(0, ρ) � f 
→ (1 + f)−1 ∈ (Hs

p,2 + W s,∞)(U) (5.39)

is well-defined and smooth.
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Proof. Proposition 5.10 established that (Hs
p,2 + W s,∞)(U) is a Banach algebra. Con-

sequently, we can use the usual theory of power series on Banach algebras to pick ρ

sufficiently small such that the power series

B(0, ρ) � f 
→
∞∑

j=0

(−1)jf j (5.40)

is uniformly absolutely convergent and deûnes an analytic map. It is then elementary to 

verify that this power series is pointwise equal to f 
→ (1 + f)−1. �

Now we study the composition appearing in the interaction between the üattening 

map and the data. The following is a modiûcation of the main argument presented in 

Inci, Kappeler, and Topalov [52].

Proposition 5.13 (On composition). Assume that 2 � d ∈ N, and let 1 < p < ∞ and 

N � s > 1 + d/ min{2, p}. There exists a constant λ ∈ R
+, depending only on p, d, and 

s such that the following hold.

(1) If f ∈ B(Hs
p,2+W s,∞)(Rd)(0, λ), then the map idRd + fed is a Cm diffeomorphism of 

R
d onto itself for every N � m < s − d/ min{2, p}.

(2) If k ∈ N, then the map Λ defined by

Hs+k
p,2 (Rd) × B(Hs

p,2+W s,∞)(Rd)(0, λ) � (F, f) 
→ Λ(F, f) = F (idRd + fed) ∈ Hs
p,2(Rd)

(5.41)

is well-defined and Ck.

Proof. Thanks to Corollary 5.12, there exists a λ ∈ R
+ for which the map

B(Hs
p,2+W s,∞)(Rd)(0, λ) � f 
→ Kf = (1 + ∂df)−1 ∈ (Hs−1

p,2 + W s−1)(Rd) (5.42)

is analytic, and Kf > 0 in Rd for each f in the domain of the map. In turn, from the 

above and the fact that s − 1 > d/ min{2, p}, we ûnd that the map Ff : R
d → R

d

given by Ff = idRd + fed is a C1 diffeomorphism; indeed the condition that 1 + ∂df

is bounded and bounded away from zero guarantees that for every x ∈ R
d the map 

R � y
ψf,x

→ y + f(x, y) ∈ R is a diffeomorphism R → R. Thus F−1

f (x, y) = (x, ψ−1
f,x(y)), 

for (x, y) ∈ R
d × R.

That the maps Ff and F−1
f are class Cm for every N � m < s − d/ min{2, p} follows 

from Proposition 5.8 and the inverse function theorem. This completes the proof of the 

ûrst item.

With λ ∈ R
+ in hand, we now turn to the proof of the second item. First, we 

prove (5.41) in the case k = 0 via an induction argument. For j ∈ {0, 1, . . . , s} let 

Pj denote the proposition that
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Λ : Hj
p,2(Rd) × B(Hs

p,2+W s,∞)(Rd)(0, λ) → Hj
p,2(Rd) (5.43)

is well-deûned and continuous.

For P0, we perform a change of variables z = y + f(x, y) on each ûber to estimate

‖Λ(F, f)‖H0
p,2

=
( ∫

Rd−1

(∫

R

|F (x, y + f(x, y))|2 dy
)p/2

dx
)1/p

� ‖Kf ‖
1/2
L∞‖F‖H0

p,2
.

(5.44)

Thus well-deûnedness is established. For continuity, we estimate

‖Λ(F, f) − Λ(G, g)‖H0
p,2

� ‖Λ(F − G, f)‖H0
p,2

+ ‖Λ(G, f) − Λ(G, g)‖H0
p,2

. (5.45)

The former term is made small when (G, g) are close to (F, f) via estimate (5.44), while 

the latter term is made small by approximating G via a smooth compactly supported 

function and using that g → f in (Hs
p,2 + W s,∞)(Rd) implies that Fg → Ff uniformly. 

This gives P0.

Now suppose that j ∈ {0, . . . , s − 1} is such that P� is true for all 
 ∈ {1, . . . , j}. We 

compute

∂q(Λ(F, f)) = Λ(∂qF, f) + Λ(∂dF, f)∂qf, (5.46)

for q ∈ {1, . . . , d}. By combining Remark 5.11 and the induction hypothesis, we have 

that

Hj+1
p,2 (Rd) × B(Hs

p,2+W s,∞)(Rd)(0, λ) � (F, f) 
→ ∂q(Λ(F, f)) ∈ Hj
p,2(Rd) (5.47)

is a well-deûned and continuous map. This paired with P0 gives Pj+1. Thus the induction 

is complete, and we have proved (5.41) in the case k = 0.

We now turn to the proof of (5.41) for the remaining cases of k ∈ N
+. For this we shall 

use the converse to Taylor9s theorem: see, for instance, Theorem 2.4.15 and Supplement 

2.4B in Abraham, Marsden, and Ratiu [11]. For r ∈ {1, . . . , k}, we deûne

Λ(r) : Hs+k
p,2 (Rd) × B(Hs

p,2+W s,∞)(Rd)(0, λ) → Lr
sym(Hs

p,2(Rd)

× (Hs
p,2 + W s,∞)(Rd); Hs

p,2(Rd))
(5.48)

via the formula

Λ(r)(F, f)[(F1, f1), . . . , (Fr, fr)] = Λ(∂r
dF, f)

r∏

�=1

f� +
r∑

m=1

Λ(∂r−1
d Fm, f)

∏

� 	=m

f�. (5.49)

In the above Lr
sym refers to the space of symmetric r-multilinear maps. By using the 

already established continuity properties of Λ along with Remark 5.11, we see that Λ(r)

is continuous for r ∈ {1, . . . , k}. By similar considerations, we ûnd that the map
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Rk : U → Lk
sym(Hs

p,2(Rd) × (Hs
p,2 + W s,∞)(Rd); Hs

p,2(Rd)) (5.50)

deûned via

Rk((F, f), (G, g)) =

1∫

0

(1 − t)k−1

(k − 1)!
(Λ(k)(F + tG, f + tg) − Λ(k)(F, f)) dt (5.51)

is continuous, where

U = {((F, f), (G, g)) ∈ (Hs+k
p,2 × B(0, λ))2 : ∀ t ∈ [0, 1] (F + tG, f + tg)

∈ Hs+k
p,2 × B(0, λ)}.

(5.52)

Let ((F, f), (G, g)) ∈ U . Now, according to Taylor9s theorem with integral remainder 

(used pointwise), we have that

Λ(F, f+g)−Λ(F, f) =
k∑

r=1

1

r!
Λ(∂r

dF, f)gr+

1∫

0

(1 − t)k−1

(k − 1)!
(Λ(∂k

d F, f+tg)−Λ(∂k
d F, f))gk dt.

(5.53)

We can also apply the same result to express for h(s) = sΛ(G, f + sg)

Λ(G, f + g) = h(1) − h(0) =
k∑

r=1

1

r!
(∂rh)(0) +

1∫

0

(1 − t)k−1

(k − 1)!
((∂kh)(t) − (∂kh)(0)) dt

=

k∑

r=1

1

(r − 1)!
Λ(∂r−1

d G, f)gr−1

+

1∫

0

(1 − t)k−1

(k − 1)!
(tΛ(∂k

d G, f + tg)gk + k(Λ(∂k−1
d G, f + tg) − Λ(∂k−1

d G, f))gk−1) dt.

(5.54)

Adding (5.53) and (5.54) and using deûnitions (5.49) and (5.51) yields

Λ(F + G, f + g) − Λ(F, f) =
k∑

r=1

1

r!
Λ(r)(F, f)[(G, g)⊗r] + Rk((F, f), (G, g))[(G, g)⊗k].

(5.55)

Therefore, by the converse to Taylor9s theorem, we deduce that Λ is Ck on its domain. �

5.3. Subcritical gradient spaces

We now turn our attention to subcritical gradient spaces.
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Definition 5.14 (Subcritical gradient spaces). For 1 < p < d, R � s � 1, and F ∈ {R, C}

we define the space

H̃s,p(Rd; F) = {f ∈ Ldp/(d−p)(Rd; F) : ∇f ∈ Hs−1,p(Rd; F
d)} (5.56)

and equip it with a norm ‖f‖
H̃s,p = ‖∇f‖Hs−1,p . When F = R we will typically abbreviate 

H̃s,p(Rd) = H̃s,p(Rd; R).

Next, we verify that these spaces are complete.

Proposition 5.15 (Properties of subcritical gradient spaces). Let R � s � 1, 1 < p < d, 

and F ∈ {R, C}. Then the space H̃s,p(Rd; F) defined in (5.56) is Banach, and we have 

the bound

‖f‖Hs−1,dp/(d−p) � ‖f‖
H̃s,p for all f ∈ H̃s,p(Rd; F). (5.57)

Moreover, S (Rd; F) ⊂ H̃s,p(Rd; F) is dense.

Proof. It suffices to prove the result when F = R, so we will assume this. We ûrst consider 

the case s = 1 and note that in this case H̃1,p(Rd) = Ẇ 1,p(Rd) ∩ Ldp/(d−p)(Rd) for the 

homogeneous Sobolev space Ẇ 1,p(Rd) = {f ∈ L1
loc(Rd) : ∇f ∈ Lp(Rd; R

d)}. Next, we 

note that a density result of Hajłasz and Kałamajska [46] shows that if f ∈ Ẇ 1,p(Rd), 

then there exists a sequence {fn}n∈N ⊂ C∞
c (Rd) such that ‖∇fn − ∇f‖Lp → 0 as 

n → ∞. Additionally, Theorem 12.9 in Leoni [57], which is crucially based on this density 

assertion, provides a constant Cp > 0 such that for each f ∈ Ẇ 1,p(Rd) there exists a

unique constant cf ∈ R such that ‖f − cf ‖Ldp/(d−p) � Cp ‖∇f‖Lp . Now, if f ∈ H̃1,p(Rd)

then upon applying this bound to f and noting that f ∈ Ldp/(d−p)(Rd), we deduce that 

cf = 0. Hence, (5.57) holds when s = 1, and with this bound in hand it is a routine matter 

to verify that H̃1,p(Rd) is complete. The above density assertion shows that S (Rn; R)

is dense in H̃1,p(Rd). To complete the proof for general s ∈ N
+ we simply note that the 

map 〈D〉s−1 : H̃s,p(Rd) → H̃1,p(Rd) is an isometric isomorphism that maps S (Rn; R)

to itself. �

Next we record a frequency splitting result.

Lemma 5.16 (Frequency splitting in gradient spaces). Let R � s � 1, 1 < p < d, and 

F ∈ {R, C}. Suppose that ϕ ∈ C∞
c (Rd) is an even function that satisfies ϕ = 1 on B(0, 1)

and supp(ϕ) ⊆ B(0, 2). Then (1 −ϕ)(D) : H̃s,p(Rd; F) → Hs,p(Rd; F) is a bounded linear 

map, and ϕ(D) : H̃s,p(Rd; F) → W k,dp/(d−p)(Rd; F) is a bounded linear map for every 

k ∈ N.

Proof. The proof is straightforward and we only sketch it. The mapping properties for 

ϕ(D) follow directly from the embedding H̃s,p(Rd; F) ↪→ Ldp/(d−p)(Rd; F) and that 
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ϕ(D) is convolution with a band-limited Schwartz function. The mapping properties of 

(1 − ϕ(D)) are veriûed via the Littlewood-Paley characterizations from Theorems 3.10

and (3.11). The evenness of ϕ guarantees that real-valued maps stay real-valued when 

either ϕ(D) or (1 − ϕ)(D) is applied. �

By using the lifting map of Proposition 5.5, we can build a useful extension operator.

Proposition 5.17 (Extension operator). Let s ∈ N
+, 1 < p < d, and F ∈ {R, C}. For 

b ∈ R
+ write Ω = R

d×(0, b) and Σ = R
d×{b}. There exists a bounded linear operator E0 :

H̃3/2+s,p(Σ; F) → H2+s
p,2 (Ω; F) and a linear operator E1 : H̃3/2+s,p(Σ; F) → W k,∞(Ω; F)

that is bounded for every k ∈ N such that the linear extension operator E = E0 + E1

satisfies

TrΣ0
Eη = 0 and TrΣEη = η for all η ∈ H̃3/2+s,p(Σ; F). (5.58)

Proof. Let ϕ ∈ C∞
c (Rd) be as in Lemma 5.16. We deûne E0 via

(E0η)(x, y) = φ(b − y)(LΩ(1 − ϕ)(D)η)(x, y) for (x, y) ∈ R
d × (0, b), (5.59)

where LΩ is the lifting operator from Proposition 5.5 and φ ∈ C∞
c (R) satisûes φ(0) = 1

and supp(φ) ⊆ (−b/2, b/2). We also deûne E1 via

(E1η)(x, y) = (y/b)(ϕ(D)η)(x) for (x, y) ∈ R
d × (0, b). (5.60)

The claimed mapping properties then follow immediately from Lemma 5.16 and Propo-

sition 5.5. �

6. Linear analysis in mixed-type Sobolev spaces

In this penultimate section, we conclude our linear theory for systems (2.2) and (2.1). 

In Section 6.1, we synthesize our multiplier analysis of Section 4 with our generalization 

of the Mikhlin-Hörmander, Theorem 3.14, and produce a linear well-posedness result 

for (2.2) posed in the mixed-type Sobolev spaces of Section 5.1. In Section 6.2 we then 

return to the main linear equations, system (2.1), and port over the extended linear 

theory for (2.2). This lands us a linear well-posedness theory for (2.1) that employs 

both the mixed-type Sobolev spaces of Section 5.1 and the subcritical gradient spaces 

of Section 5.3. Armed with this result, we will then be ready to turn to the nonlinear 

analysis in Section 7.

6.1. Existence and uniqueness

We begin by setting some notation for the spaces in which we wish to extend our 

existence theory. Note that the mixed-type Sobolev spaces, which were introduced in 

Section 5.1, are used here.
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Definition 6.1 (Mixed-type function spaces, I). For s ∈ N and 1 < r < ∞, we define the 

function spaces

Xs,r = H1+s
r,2 (Ω; C) × H2+s

r,2 (Ω; C
3) × H3/2+s,r(Σ; C

2), (6.1)

Ys,r = Hs
r,2(Ω; C

3) × H1/2+s,r(Σ; C
3) × H5/2+s,r(Σ; C

2). (6.2)

We are now ready to state and prove our main existence result of this subsection. We 

remark that Ys ∩ Ys,r is dense in Ys,r. It is in this sense we use the word 8extension9 in 

what follows.

Theorem 6.2 (Extension to mixed type spaces). For s ∈ N and 1 < r < ∞ the linear 

map Ψ : Ys → Xs from Definition 4.1 has a unique bounded extension

Ψ : Ys,r → Xs,r. (6.3)

Moreover, the above extension retains the property that if (p, u, χ) = Ψ(f, k, H), then 

system (2.2) is solved by the former tuple with data (0, f, k, ∇‖ · H, 0).

Proof. Ψ is given by the Fourier multiplier m from Deûnition 4.6, and m satisûes 

Mikhlin-Hörmander bounds on its derivatives thanks to estimate (4.48) from Theo-

rem 4.13 and the deûnition of �·�s from Deûnition 4.2. We then apply our Mikhlin-

Hörmander variant, Theorem 3.14 (with μ = 0), to each of the component maps mjk for 

j, k ∈ {1, 2, 3} to deduce the existence of the stated bounded extension. It is straight-

forward to check by density that these extensions of Ψ are still solution operators 

to (2.2). �

Our linear analysis for the system (2.2) is synthesized with the following theorem.

Theorem 6.3 (Well-posedness of the linearization in mixed-type Sobolev spaces, I). Let 

s ∈ N and 1 < r � 2. For every (f, k, H) ∈ Ys,r, there exists a unique (p, u, χ) ∈ Xs,r

such that (2.2) is satisfied in the strong sense with data (0, f, k, ∇‖ · H, 0).

Proof. Existence follows from Theorem 6.2, so it remains to prove uniqueness. So suppose 

that (p, u, χ) ∈ Xs,r solve (2.2) with trivial data. Let ϕ ∈ C∞
c (R2) be such that ϕ = 1 in 

B(0, 1). Then for every N we have the inclusion ϕ(D/N)(p, u, χ) ∈ Xs thanks to Young9s 

inequality and the fact that ϕ(D/N) is a tangential convolution with a Schwartz function; 

moreover, the triple ϕ(D/N)(p, u, χ) remains a solution to (2.2) with trivial data. We 

may thus invoke Theorem 2.6 to deduce that ϕ(D/N)(p, u, χ) = 0. As this holds for 

every N ∈ N, we necessarily have that (p, u, χ) = 0. Uniqueness is proved. �

6.2. Reformulated well-posedness

We now aim to make the transition from system (2.2) back to the original lineariza-

tion (2.1). The previous subsection gave us the well-posedness of the former system in the 
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mixed-type Sobolev spaces. The goal of this subsection is to port these result to the lat-

ter, and specialize to R-valued functions. Note that the following deûnition implements 

the notions of subcritical gradient spaces, which were introduced in Section 5.3.

Definition 6.4 (Mixed-type function spaces, II). For s ∈ N and 1 < r < 2, we define the 

Banach spaces

Xs,r = H1+s
r,2 (Ω; R) × H2+s

r,2 (Ω; R
3) × H̃5/2+s,r(Σ; R), (6.4)

Ys,r = Hs
r,2(Ω; R

3) × H1/2+s,r(Σ; R
3) × (H3/2+s,r ∩ Ḣ−1,r)(Σ; R). (6.5)

Note that the space Ḣ−1,r(Σ; R) is defined in (1.28).

Provided that s ∈ N is sufficiently large relative to r ∈ (1, 2), the spaces Xs,r enjoy 

classical regularity.

Proposition 6.5. Let 1 < r < 2 and N � s > 3/r − 1. Then

Xs,r ↪→ Ck
0 (Ω) × C1+k

0 (Ω; R
3) × C2+k

0 (Σ) (6.6)

for k = s − �3/r� ∈ N.

Proof. The embedding of the ûrst two factors follows from the ûrst item of Proposi-

tion 5.8. For the third factor, the embedding follows from Lemma 5.16, the standard 

embedding of Bessel-Sobolev spaces, and the observation that �3/r� � 1 + �2/r − 1/2�

for 1 < r < 2. �

We can now state our well-posedness result.

Theorem 6.6 (Well-posedness of the linearization in mixed-type Sobolev spaces, II). For 

every s ∈ N, 1 < r < 2, and (f, k, h) ∈ Ys,r there exists a unique (p, u, η) ∈ Xs,r such 

that system (2.1) is solved with data (0, f, k, h).

Proof. We begin by proving uniqueness. Suppose that (p, u, η) ∈ Xs,r solve system (2.1)

with trivial data. Then we set χ = ∇‖η and observe that (p, u, χ) ∈ Xs,r solves (2.2)

with trivial data. Then Theorem 6.3 applies, and we learn that (p, u, χ) = 0 and hence 

η is constant. However, η ∈ L2r/(2−r)(Σ; R), so η = 0. This completes the proof of 

uniqueness.

We now prove existence. Suppose that (f, k, h) ∈ Ys,r. Using Mikhlin-Hörmander 

Theorem 3.8, we may deûne H = ∇‖�−1
‖ h ∈ H5/2+s,r(Σ; R2), which obeys the estimate 

‖H‖H5/2+s,r � ‖h‖Ḣ−1,r∩H3/2+s,r as well as the identity ∇‖ · H = h. We may then use 

Theorem 6.3 to acquire (p, u, χ) = Ψ(f, k, H) ∈ Xs,r. Next, we deûne η̃ = |∇‖|�−1
‖ ∇‖ · χ

and note that η̃ ∈ H3/2+s,r(Σ; C) thanks to another application of Mikhlin-Hörmander. 
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In turn, this allows us to employ the Hardy-Littlewood-Sobolev inequality (see, for in-

stance, Theorem 1 in Section 1.2 in Chapter V of Stein [90]) to set η = |∇‖|−1η̃ ∈

L2r/(2−r)(Σ; C). Since ∇⊥
‖ · χ = 0, we then have that ∇‖η = χ ∈ H3/2+s,r(Σ; C2), and 

so η ∈ H̃5/2+s,r(Σ; C).

At this point we have established that (p, u, η) is a solution to (2.1) with the cor-

rect regularity and integrability properties, but the construction we have used does not 

guarantee a priori that the solution is real-valued. To see that this is actually the case, 

we note that since (f, k, H) have vanishing imaginary part, we can take the imagi-

nary part of the equations and use the fact that its coefficients are all real to deduce 

that (Imp, Imu, Imχ) = Ψ(0, 0, 0). Thus, Theorem 6.39s uniqueness assertion shows that 

(Imp, Imu, Imχ) = 0, and the existence proof is complete. �

7. Nonlinear analysis

In this section we complete the proof of our main result, Theorem 1, by synthesizing 

our previous analysis and appealing to the implicit function theorem. Section 7.1 sets 

up the nonlinear framework, and then our main results are proved in Section 7.2.

7.1. Operators and mapping properties

The goal of this subsection is to deûne a nonlinear operator associated with sys-

tem (1.13) and study its mapping properties. We begin by studying the üattening map 

η 
→ F¸, which we recall is deûned in (1.10).

Proposition 7.1 (Properties of the flattening map). For 1 < r < 2 and N � 1 + s > 3/r, 

there exists � ∈ R
+ such that the following hold.

(1) For η ∈ B(0, �) ⊂ H̃3/2+s,r(Σ) the flattening map F¸ = idR3 + Eηe3 is a smooth 

diffeomorphism from Ω to Ω[η] that extends to a Cn diffeomorphism from Ω to Ω[η]

for N � n < s + 2 − 3/r.

(2) Let V be a finite dimensional real normed space. For 
, m ∈ N with m � 2 + s the 

map

H�+m
r,2 (R3; V ) × B

H̃3/2+s,r(Σ)
(0, �) � (F, η) 
→ F ◦ F¸ ∈ Hm

r,2(Ω; V ) (7.1)

is well-defined and C�.

Proof. Let EΩ denote the extension operator granted by Proposition 5.3, and consider 

the extended üattening map F¸ : R
3 → R

3 deûned by F¸ = idR3 + EΩEηe3. By the 

mapping properties of EΩ and E from Propositions 5.3 and 5.17, we ûnd that the map 

E deûned by
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H̃3/2+s,r(Σ) � η 
→ Eη = EΩEη ∈ (H2+s
r,2 + W 2+s,∞)(R3) (7.2)

is bounded and linear. As such, there exists � ∈ R
+ such that E(B(0, �)) ⊆ B(0, λ), where 

λ ∈ R
+ is the constant from Proposition 5.13. We may then invoke the conclusions of 

this proposition to deduce the mapping properties asserted in (7.1). This completes the 

proof of the second item.

To prove the ûrst item we only need to make a trio of observations. First, Proposi-

tion 5.13 shows that F¸ is a Cn diffeomorphism from R3 to itself when N � n < s +2 −3/r. 

Second, F¸ is the restriction of F¸ to Ω, and by construction F¸ maps Ω to Ω[η]. Third, 

the construction of Eη shows that its restriction to Ω itself is smooth. Together, these 

prove the ûrst item. �

Next, we analyze quantities derived from the üattening map. Recall that J¸, A¸, and 

M¸ are deûned in (1.11) and (1.12).

Proposition 7.2 (Properties of the Jacobian and geometry matrices). Let 1 < r < 2, 

N � 1 + s > 3/r, and � ∈ R
+ (depending on s and r) be as in Proposition 7.1. Then the 

following mapping properties hold.

(1) For η ∈ H̃3/2+s,r(Σ), we have that J¸ > 0 and both of the maps

H̃3/2+s,r(Σ) ⊃ B(0, �) � η 
→ J¸, 1/J¸ ∈ (H1+s
r,2 + W 1+s,∞)(Ω) (7.3)

are smooth.

(2) The maps

H̃3/2+s,r(Σ) ⊃ B(0, �) � η 
→ A¸, A−1
¸ ∈ (H1+s

r,2 + W 1+s,∞)(Ω; R
3×3) (7.4)

are smooth.

(3) The maps

H̃3/2+s,r(Σ) ⊃ B(0, �) � η 
→ M¸, M−1
¸ ∈ (H1+s

r,2 + W 1+s,∞)(Ω; R
3×3) (7.5)

are smooth.

Proof. The maps η 
→ J¸ and η 
→ M¸ are affine, and thus smooth thanks to Propo-

sition 5.17. By invoking Corollary 5.12, we have that η 
→ 1/J¸ is smooth. This fact 

combined with Proposition 5.10 implies that η 
→ A¸ = M t
¸/J¸ is smooth. For the 

smoothness of the pointwise inversion in the third item, we appeal to Proposition 5.10

again and the adjugate formula η 
→ M−1
¸ = adj(M¸)/J2

¸ . The remaining assertion, the 

smoothness of pointwise inversion in the second item is then handled via the formula 

η 
→ A−1
¸ = J¸M−t

¸ . �
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Now, working towards a synthesis, we make the following deûnitions. First we deûne 

some spaces.

Definition 7.3 (Spaces for the nonlinear analysis). We make the following definitions for 

s ∈ N, 1 < r < 2, and ρ ∈ R
+:

(1) �H2+s
r,2 (Ω; R3) = {u ∈ H2+s

r,2 (Ω; R
3) : ∇ · u = 0, TrΣ0

u = 0},

(2) �Xs,r = H1+s
r,2 (Ω) × �H2+s

r,2 (Ω; R
3) × H̃5/2+s,r(Σ),

(3) Os,r(ρ) = {(p, u, η) ∈ �Xs,r : η ∈ B(0, ρ)},

(4) Ws,r = H1+s
r,2 (R3; R3×3) × Hs

r,2(R3; R3).

Next, we deûne some maps.

Definition 7.4 (Maps for the nonlinear analysis, I). For 1 < r < 2, N � s > 3/r, and 

� ∈ R
+ as in Proposition 7.1 we make the following definitions.

(1) Ξ1 : Os,r(�) × R × R
+ × R

+ → Hs
r,2(Ω; R3) is defined via

Ξ1(p, u, η, γ, g, μ) = M−t
¸ ((u − γM¸e1) · ∇(M−1

¸ u)) + ∇(p + gη)

− μM−t
¸ (∇ · ((DAη

(M−1
¸ u))M t

¸)).
(7.6)

(2) Ξ2 : Os,r(�) × R
+ × R

+ → H1/2+s,r(Σ; R3) is defined via

Ξ2(p, u, η, μ, κ) = TrΣ[−(pI − μDAη
(M−1

¸ u))M t
¸e3 − κH (η)M t

¸e3]. (7.7)

(3) For m ∈ N and � as in Proposition 7.1, Υ1 : Hm+s
r,2 (Ω; R3) × B

H̃3/2+s,r (0, �) →

Hs
r,2(Ω; R3) is defined via

Υ1(F , η) = −J¸M−t
¸ (F ◦ F¸). (7.8)

(4) For m ∈ N and � as in Proposition 7.1, Υ2 : Hm+1+s
r,2 (Ω; R3×3) × B

H̃3/2+s,r (0, �) →

H1/2+s,r(Σ; R3) is defined via

Υ2(T , η) = −TrΣ[(T ◦ F¸)M t
¸e3]. (7.9)

Our next two results study the smoothness of the nonlinear differential operators in 

the momentum equation and dynamic boundary condition in system (1.13).

Proposition 7.5 (Mapping properties of the nonlinearities). For 1 < r < 2 and N � s >

3/r, the following mapping properties hold.

(1) Ξ1 and Ξ2, as defined in the first and second items of Definition 7.4, are smooth.
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(2) Υ1 and Υ2, as defined in the third and fourth items of Definition 7.4 are Cm.

Proof. The ûrst item follows from Propositions 7.2 and 5.9 along with Remark 5.11, 

since all of the nonlinearities in Ξ1 are various products of the derivatives of the velocity 

ûeld with the geometry matrices and parameters.

The analysis of Ξ2 follows similarly, with the exception of the mean curvature term 

H (η). For this we use that R2 � x 
→ x〈x〉−1 ∈ R
2 is everywhere analytic and vanishing 

at zero and hence the map

H3/2+s,r(Σ)2 � (∂1η, ∂2η) 
→ 〈∇‖η〉−1(∂1η, ∂2η) ∈ H3/2+s,r(Σ)2 (7.10)

is smooth since H3/2+s,r(Σ) is an algebra. In turn, we ûnd that the map η 
→ H (η) is 

also smooth. This completes the proof of the ûrst item.

The second item follow by similar considerations, supplemented with the second item 

of Proposition 7.1. �

The remainder of this subsection9s nonlinear analysis is meant to deal with the tech-

nicalities arising in the slowly traveling limit (γ → 0) in system (1.13). As the equations 

are currently formulated, there is a change of natural function spaces that occurs in this 

limit, which suggests that the stationary problem is a (low-mode) singular limit of trav-

eling problems. The effect of this is that the formulation (1.13) works ûne for γ = 0 and 

γ ∈ R \ {0} separately, but is ill-suited for capturing the slowly traveling limit γ → 0. 

To overcome this issue, we make a change of unknowns in the free surface.

Definition 7.6 (Anisotropic parameterization operators). For γ ∈ R we let Pγ be the 

Fourier multiplication operator with the following symbol

Pγ = pγ(D), pγ(ξ) =
4π2|ξ|2

4π2|ξ|2 + 2πiγξ1
. (7.11)

Note that P0 is the identity operator.

The relevant properties of the maps Pγ are enumerated in the following result. Recall 

that the spaces Ḣ−1,r(R2; R) are deûned in (1.28).

Proposition 7.7 (Properties of the anisotropic parameterization operators). The following 

hold for s ∈ N
+ and 1 < r < 2.

(1) For each γ ∈ R we have that Pγ ∈ L(H̃s,r(R2; R)). Moreover, the map R � γ 
→

Pγ ∈ L(H̃s,r(R2; R)) is bounded, and for any η ∈ H̃s,r(R2; R) the map R � γ 
→

Pγη ∈ H̃s,r(R2; R) is continuous.

(2) For each γ ∈ R we have that γ∂1Pγ ∈ L(H̃s,r(R2; R); Ḣ−1,r(R2; R)). Moreover, the 

map R � γ 
→ γ∂1Pγ ∈ L(H̃s,r(R2; R)) is bounded, and for any η ∈ H̃s,r(R2; R) the 

map R � γ 
→ γ∂1Pγη ∈ Ḣ−1,r(R2; R) is continuous.
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(3) The mappings

R × H̃s,r(R2; R) � (γ,η) 
→

⎧
⎪⎪«
⎪⎪¬

Pγη ∈ H̃s,r(R2; R),

γ∂1Pγη ∈ Ḣ−1,r(R2; R),

γR1Pγη ∈ Hs,r(R2; R)

(7.12)

are continuous, where R1 refers to the Riesz transform in the e1 direction.

Proof. The third item follows from the ûrst two, so we turn our attention to proving 

these.

We claim that the multiplier pγ(ξ) = 4π2|ξ|2

4π2|ξ|2+2πiγξ1
is of Marcinkiewicz type (see 

Theorem 3.7) and the deûning inequalities (3.18) are satisûed uniformly over γ ∈ R. To 

prove the claim, we ûrst note that

|pγ(ξ)| � 1 (7.13)

and that pγ is smooth away from the coordinate axes. Next, we compute

∂1pγ(ξ) =
2πiγ(ξ2

1 − ξ2
2)

(2π|ξ|2 + iγξ1)2
, ∂2pγ(ξ) =

4πiγξ1ξ2

(2π|ξ|2 + iγξ1)2
, (7.14)

and

∂1∂2pγ(ξ) = −
4πiγξ2(6πξ2

1 − 2πξ2
2 + iγξ1)

(2π|ξ|2 + iγξ1)3
. (7.15)

Thus, we have the following estimates from Cauchy9s inequality:

|ξ1∂1pγ(ξ)| �
|γξ1|2π|ξ|2

4π2|ξ|4 + γ2|ξ1|2
�

1

2
, |ξ2∂2pγ(ξ)| �

4π|γξ1||ξ|2

4π2|ξ|4 + γ2|ξ1|2
� 1, (7.16)

and

|ξ1ξ2∂1∂2pγ(ξ)| �
12π|γξ1||ξ|2|2π|ξ|2 + iγξ1|

(4π2|ξ|4 + γ2|ξ1|2)3/2
�

12π|γξ1||ξ|2

4π2|ξ|4 + γ2|ξ1|2
� 3. (7.17)

This completes the proof of the claim, and so we may invoke Theorem 3.7 (with the 

observation that pγ(−ξ) = pγ(ξ) for ξ ∈ R
2 \ {0}) to see that

‖Pγ‖L(Lr(R2)) � Cr(3 + 1) = 4Cr (7.18)

for a constant Cr depending only on r.

Armed with (7.18), we are now ready to prove the ûrst item. If η ∈ H̃s,r(R2; R), then 

we have
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sup
γ∈R

‖Pγη‖
H̃s,r = sup

γ∈R

‖pγ(D)〈D〉s−1∇‖η‖Lr � ‖〈D〉s−1∇‖η‖Lr � ‖η‖
H̃s,r . (7.19)

Next, we prove that γ 
→ Pγ is continuous for the strong operator topology. Fix 

η ∈ H̃s,r(R2; R2) and ε ∈ R
+. Thanks to density of Hs,r(R2; R) ↪→ H̃s,r(R2; R) (see 

Proposition 5.15), there exists ζ ∈ Hs,r(R2; R) such that ‖ζ −η‖
H̃s,r � ε. Thus, we learn 

from (7.18) that if γ, γ0 ∈ R then

‖(Pγ − Pγ0
)η‖

H̃s,r � ε + ‖(Pγ − Pγ0
)ζ‖

H̃s,r . (7.20)

We compute via the fundamental theorem of calculus that

pγ(ξ) − pγ0
(ξ) = (γ − γ0)

iξ1

2π|ξ|2
qγ,γ0

(ξ) for qγ,γ0
(ξ) =

1∫

0

(ptγ+(1−t)γ0
(ξ))2 dt. (7.21)

Estimates (7.13), (7.16), and (7.17) and the Leibniz rule show that

sup
γ,γ0

(|qγ,γ0
(ξ)| + |ξ1∂1qγ,γ0

(ξ)| + |ξ2∂2qγ,γ0
(ξ)| + |ξ1ξ2∂1∂2qγ,γ0

(ξ)|) � 1, (7.22)

and we also have that qγ,γ0
(−ξ) = qγ,γ0

(ξ), so we may once more appeal to Theorem 3.7

to learn that

sup
γ,γ0

‖qγ,γ0
(D)‖L(Lp(R2)) � 1. (7.23)

Writing R = (R1, R2) for the vector of Riesz transforms, we then have that

‖(Pγ − Pγ0
)ζ‖

H̃s,r = ‖∇(Pγ − Pγ0
)ζ‖Hs−1,r =

|γ − γ0|

2π
‖qγ,γ0

(D)RR1 〈D〉s−1
ζ‖Lr

� |γ − γ0|‖〈D〉s−1
ζ‖Lr = |γ − γ0|‖ζ‖Hs−1,r . (7.24)

By combining (7.20) and (7.24), we get

lim sup
γ0→γ

‖(Pγ − Pγ0
)η‖

H̃s,r � ε, (7.25)

so the continuity claim follows. This completes the proof of the ûrst item.

The second item is proved by similar considerations thanks to the identity

γR1Pγ = (1 − Pγ)2π|D| = (Pγ − 1)R · ∇, (7.26)

which shows that for η ∈ H̃s,r(R2; R)

sup
γ

[γ∂1Pγη]Ḣ−1,r = sup
γ

‖γR1Pγη‖Lr = sup
γ

‖(Pγ − 1)R · ∇η‖Lr � ‖η‖
H̃s,r , (7.27)
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where the last inequality follows from the (7.18) and the Lr boundedness of Riesz trans-

forms. For continuity, we again ûx η ∈ H̃s,r(R2; R), γ0, γ ∈ R and then use (7.26) to 

deduce that

[(γ∂1Pγ − γ0∂1Pγ0
)η]Ḣ−1,r � ‖(Pγ0

− Pγ)R · ∇η‖Lr � ‖(Pγ0
− Pγ)η‖

H̃s,r , (7.28)

which means that the continuity assertion of the second item follows from that of the 

ûrst. This completes the proof of the second item. �

The operators of Deûnition 7.6 permit us to make a change of unknowns in (1.13)

to overcome the aforementioned singular limit issue. We consider η = Pγη, and view 

η as our new unknown. The main theorem of this section9s nonlinear analysis, which 

implements this change of unknowns crucially, is now given as follows.

Theorem 7.8 (Mapping properties). For 1 < r < 2, N � s > 3/r, and � ∈ R
+ as in 

Proposition 7.1, there exists C ∈ R
+ such that the map Ξ : Os,r(�/C) × R × (R+)3 ×

W1+s,r → Ys,r given by

Ξ(p, u,η, γ, g, μ, κ, T , F)

= (Ξ1(p, u, Pγη, γ, g, μ)+Υ1(F , Pγη), Ξ2(p, u, Pγη, μ, κ)+Υ2(T , Pγη), TrΣu·e3+γ∂1Pγη)

(7.29)

is well-defined and continuous. Moreover, the Fréchet derivative with respect to the first 

factor, D1Ξ : Os,r(�/C) ×R ×(R+)3×W1+s,r → L(�Xs,r; Ys,r), exists and is continuous.

Proof. The uniform boundedness assertions in the ûrst item of Proposition 7.7 guarantee 

that for some C ∈ R
+ we have (p, u, Pγη) ∈ Os,r(�) for all (p, u, η) ∈ Os,r(�/C). Thus, 

by composition, linearity of Pγ , and the third item of Proposition 7.7 we may invoke is 

Proposition 7.5 to reach the desired conclusions for the ûrst and second components of 

the map Ξ. The third component of Ξ is handled via the linearity of γ∂1Pγ , together with 

the second and third items of Proposition 7.7 and the divergence compatibility estimate 

of Proposition 5.6. �

7.2. Well-posedness

We are now ready to prove our main theorem. This subsection is split into four main 

results and then a list of corollaries, which combine to prove Theorem 1. In the ûrst 

main result, we invoke the implicit function theorem at a ûxed tuple of positive physical 

parameters and obtain a solution map. In the next, we show that we can glue these 

together across all parameter values. One slight issue that remains after this is done is 

that the resulting solution map loses a derivative relative to what one would expect. 

This fact stems from the numerology of higher order smoothness of composition-type 
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nonlinearities (see e.g. Proposition 5.13). We are thus lead to the third result in this 

subsection, in which we show a posteriori that the solution map actually obeys the 

optimal derivative counting. In the fourth, and ûnal, main result of this subsection, we 

recast the previous results into a more physically relevant formulation by anisotropically 

parameterizing the free surface variable with the operators in Proposition 7.7.

We shall use the following version of the inverse function theorem, as formulated as 

in Theorem A in Crandall and Rabinowitz [32] (for a verbose proof see Theorem 2.7.2 

in Nirenberg [64], but note that there is slight misstatement of the uniqueness assertion 

in the ûrst item there that is correct in [32]).

Theorem 7.9 (Implicit function theorem). Let X, Y, Z be Banach spaces and f a contin-

uous mapping of an open set U ⊂ X × Y → Z. Assume that f has a Fréchet derivative 

with respect to the first factor, D1f : U → L(X; Z) that is continuous. Suppose that 

(x0, y0) ∈ U and f(x0, y0) = 0. If D1f(x0, y0) is an isomorphism of X onto Z, then 

there exist balls B(y0, rY ) ⊂ Y and B(x0, rX) ⊂ X such that B(x0, rX) × B(y0, rY ) ⊂ U

and a continuous unique function u : B(y0, rY ) → B(x0, rX) such that u(y0) = x0 and 

f(u(y), y) = 0 for all y ∈ B(y0, rY ). Moreover, the implicit function u is continuous.

We now apply Theorem 7.9 in our ûrst well-posedness result.

Theorem 7.10 (Well-posedness, I). Let 1 < r < 2, N � s > 3/r, and �, C ∈ R
+ be as in 

Theorem 7.8. For each v = (g, μ, κ) ∈ (R+)3 there exists ρs,v, ρ′
s,v ∈ R

+ and a unique 

mapping

ιv : B((0, v, 0), ρs,v) ⊂ R × (R+)3 × W1+s,r × Ys,r → B(0, ρ′
s,v) ⊂ Os,r(�/C) (7.30)

with the property that for all data (γ, g, μ, κ, T , F , f, k, h) ∈ B((0, v, 0), ρs,v) we have 

that (p, u, η) = ιv(γ, g, μ, κ, T , F , f, k, h) ∈ Os,r(�/C) is a solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

M−t
Pγη

((u − γMPγη
e1) · ∇(M−1

Pγη
u)) + ∇(p + gPγη)

−μM−t
Pγη

(∇ · ((DAPγη
(M−1

Pγη
u))M t

Pγη
)) = f + JPγη

M−t
Pγη

F ◦ FPγη
in Ω,

∇ · u = 0 in Ω,

−(p − μDAPγη
(M−1

Pγη
u))M t

Pγη
e3 − κH (Pγη)M t

Pγη
e3 = k + T ◦ FPγη

M t
Pγη

e3 on Σ,

u · e3 + γ∂1Pγη = h on Σ,

u = 0 on Σ0.

(7.31)

Moreover, ιv in (7.30) is continuous.

Proof. Consider the map Ξ : Os,r(�/C) × R × (R+)3 × W1+s,r × Ys,r → Ys,r deûned 

via

Ξ(p, u,η, γ, g, μ, κ, T , F , f, k, h) = Ξ(p, u,η, γ, g, μ, κ, T , F) − (f, k, h). (7.32)
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Thanks to Theorem 7.8, this map is well-deûned, continuous, and the Fréchet deriva-

tive with respect to the ûrst factor, D1Ξ : Os,r(�/C) × R × (R+)3 × W1+s,r × Ys,r →

L(�Xs,r; Ys,r), exists and is continuous. Moreover, we have that Ξ(0, v, 0) = 0. Theo-

rem 6.6 then shows that D1Ξ(0, v, 0) is an isomorphism from �Xs,r to Ys,r. We may 

then invoke the version of the implicit function theorem given in Theorem 7.9 to obtain 

parameters ρs,v, ρ′
s,v ∈ R

+ along with the map ιv. �

We can recast the previous theorem into the following more general statement via a 

gluing argument.

Theorem 7.11 (Well-posedness, II). Let 1 < r < 2, N � s > 3/r. There exists and open 

set

{0} × (R+)3 × {0} × {0} ⊂ Us ⊂ R × (R+)3 × W1+s,r × Ys,r (7.33)

and a continuous map

ι : Us →
⋃

v∈(R+)3

B(0, ρ′
s,v) ⊂ Os,r(�/C), (7.34)

where the radii ρ′
s,v > 0 are as in Theorem 7.10, with the property that for all U =

(γ, g, μ, κ, T , F , f, k, h) ∈ Us we have that ι(U) = (p, u, η) ∈ B(0, ρ′
s,(g,μ,κ)) is the unique 

solution to (7.31) with data U.

Proof. We set

Us =
⋃

v∈(R+)3

B((0, v, 0), ρs,v), (7.35)

where ρs,v are the radii granted by Theorem 7.10. We propose deûning the map (7.34)

via

ι = ιv on the set B((0, v, 0), ρs,v) whenever v ∈ (R+)3, (7.36)

where the maps ιv are the solution operators granted by Theorem 7.10. This is well-

deûned since if v, w ∈ (R+)3 are such that B((0, v, 0), ρs,v) ∩ B((0, w, 0), ρs,w) �= ∅, 

then the maps ιv and ιw agree on this intersection since, according to the aforementioned 

theorem, they are both the unique solution operators to the PDE (7.31). Once we know 

that ι is well-deûned, continuity follows from the continuity of each ιv. The remaining 

uniqueness assertions are just a restatement of those from Theorem 7.10. �

The next well-posedness result gains an extra derivative on the solution to reach the 

optimal counting.
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Theorem 7.12 (Well-posedness, III). Let 1 < r < 2, N � s > 3/r + 1. There exists an 

open set

{0} × (R+)3 × {0} ⊂ Ws ⊂ R × (R+)3 × Ws,r (7.37)

such that Ws × {0} ⊂ Us−1, where Us−1 is as in Theorem 7.11, and a continuous map

ι̃ : Ws → Xs,r ∩
⋃

v∈(R+)3

BXs−1,r
(0, ρ′

s−1,v) ⊂ Os,r(�/C) (7.38)

with the property that for all W = (γ, g, μ, κ, T , F) ∈ Ws we have that ̃ι(W) = (p, u, η) ∈

Xs,r ∩ BXs,r
(0, ρ′

s−1,(g,μ,κ)) is the unique solution to (7.31) with data (W, 0).

Proof. We set ι̃(γ, g, μ, κ, T , F) = ι(γ, g, μ, κ, T , F , 0, 0, 0), where ι is the solution oper-

ator granted by Theorem 7.11. A priori, we only know that

ι̃ :
⋃

v∈(R3)+

B((0, v, 0), ρs,v) ⊂ R × (R+)3 × Ws,r →
⋃

v∈(R+)3

BXs−1,r
(0, ρ′

s−1,v) (7.39)

is a continuous mapping.

To complete the proof, we claim that by shrinking the domain a little bit, if necessary, 

we can gain an additional derivative on the solution. To see this let 0 < σ � 1 and set

Ws(σ) =
⋃

v∈(R3)+

B((0, v, 0), σρs,v) ⊂ R × (R+)3 × Ws,r. (7.40)

Denote (p, u, η) = ι̃(γ, g, μ, κ, T , F). By the second item of Proposition 7.5, the continuity 

of the solution map in (7.39), and the continuity of composition we have that the map

Ws(σ) � (γ, g, μ, κ, T , F) 
→ (Υ1(F , Pγη),Υ2(T , Pγη), 0) ∈ Ys,r (7.41)

is continuous, vanishes whenever T and F are zero, and is independent of (g, μ, κ). Thus, 

by taking 0 < σ� � 1 sufficiently small, we guarantee that

Ws(σ�) � (γ, g, μ, κ, T , F) 
→ (γ, g, μ, κ, 0, 0,Υ1(F , Pγη),Υ2(T , Pγη), 0) ∈ Us. (7.42)

Since the map in (7.42) actually has its range in the domain of the map ι, which is given 

in (7.34), we have veriûed the following key identity:

(p, u,η) = ι(γ, g, μ, κ, 0, 0,Υ1(F , Pγη),Υ2(T , Pγη), 0). (7.43)

Then the mapping properties of ι reveal that the solution

(p, u,η) ∈ BXs,r
(0, ρ′

s,(g,μ,κ)) ∩ BXs−1,r
(0, ρ′

s−1,(g,μ,κ)) (7.44)
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varies continuously with the data (γ, g, μ, κ, T , F) ∈ Ws = Ws(σ�). This proves the 

claim. �

This section9s list of main theorems is concluded with the following.

Theorem 7.13 (Well-posedness, IV). Let 1 < r < 2, N � s > 3/r +1, and Ws be the open 

set from Theorem 7.12. There exists a map

Ws � (γ, g, μ, κ, T , F) 
→ (p, u, η) ∈ Os,r(�) (7.45)

such that the following hold.

(1) The map is a continuous solution operator to the nonlinear system (1.13).

(2) The map is locally unique in the sense that there exist open sets Ws ⊆ Ws and 

{Vs(v)}v∈(R+)3 ⊆ Os,r(�), obeying the non-degeneracy conditions of (1.14), for 

which the following two conditions hold.

(i) The image of Ws under (7.45) is contained within 
⋃

v∈(R+)3 Vs(v).

(ii) For each v ∈ (R+)3 the restriction of (7.45) to the preimage of Vs(v), thought 

of as a mapping to Vs(v), is the unique function that is a solution operator 

to (1.13).

(3) We have an extra ‘anisotropic’ estimate on the free surface in the sense that the 

composition map

Ws � (γ, g, μ, κ, T , F) 
→ (p, u, η) 
→ γR1η ∈ Lr(Σ) (7.46)

is well-defined and continuous, where R1 is the Riesz transform in the e1 direction.

Proof. We take (7.45) to be the composition (γ, g, μ, κ, T , F) 
ι̃


→ (p, u, η) 
→ (p, u, η), 

with η = Pγη. Thanks to Theorem 7.12 and Proposition 7.7, this is a continuous solution 

operator for (1.13). The ûnal item of the aforementioned proposition also guarantees that 

the mapping of (7.46) is well-deûned and continuous.

It remains to establish local uniqueness. Suppose that (p, u, η), (p′, u′, η′) ∈ Os,p(�) are 

such that there exists (γ, g, μ, κ, T , F) ∈ Ws and both (p, u, η) and (p′, u′, η′) are solutions 

to (1.13) with the same data (T , F), same wave speed γ, and same physical constants 

(g, μ, κ). Integrating the divergence free constraint over y ∈ (0, b) and appealing to the 

kinematic boundary condition and the no slip condition yields the identity

γ∂1ζ = (∇‖, 0) ·

b∫

0

w(·, y) dy for (ζ, w) ∈ {(η, u), (η′, u′)}. (7.47)
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Therefore, by (7.47) and the identity P −1
γ ∇ = ∇ + RγR1, where R = (R1, R2) is the 

vector of Riesz transforms, we have the estimate

‖P −1
γ ζ‖

H̃5/2+s,r � ‖ζ‖
H̃5/2+s,r +

∥∥∥|D|−1(∇‖, 0) ·

b∫

0

w(·, y) dy
∥∥∥

H3/2+s,r

� ‖w, ζ‖
H2+s

r,2 ×H̃5/2+s,r ,

(7.48)

where in both of the inequalities we have applied the boundedness of Riesz trans-

forms. If (p, u, η) and (p′, u′, η′) are sufficiently small, we therefore guarantee that 

(p, u, P −1
γ η), (p′, u′, P −1

γ η′) ∈ Xs,r ∩ BXs−1,r
(0, ρ′

s−1,(g,μ,κ)), but we can then invoke the 

uniqueness assertion of Theorem 7.12 to ûnd that (p, u, P −1
γ η) = (p′, u′, P −1

γ η′), which 

implies (p, u, η) = (p′, u′, η′).

Thus, we take Vs(g, μ, κ) to be an open ball about the origin of a positive radius that 

obeys the above smallness requirements. The set Ws is then deûned to be the union of 

the preimages of these balls under the map (7.45). �

We now enumerate some important consequences.

Corollary 7.14 (Some further conclusions). For 1 < r < 2 and N � s > 3/r + 1 the 

following hold.

(1) Classical solutions: Each triple (p, u, η) produced by Theorem 7.13 is a classical solu-

tion to system (1.13). More precisely, whenever (γ, g, μ, κ, T , F) ∈ Ws we have that 

the associated solution satisfies

(p, u, η) ∈ C2+k
0 (Ω) × C3+k

0 (Ω; R
3) × C4+k

0 (Σ), (7.49)

for k = s − 2 − �3/r� ∈ N.

(2) Eulerian transfer: Each solution (p, u, η) to system (1.13), produced by Theorem 7.13

gives rise to a corresponding classical solution

(q, v, η) ∈ C2+k
0 (Ω[η]) × C3+k

0 (Ω[η]) × C4+k
0 (Ω[η]), k = s − 2 − �3/r� (7.50)

to the stationary-traveling Eulerian formulation of the problem given by system (1.8)

via unflattening.

(3) Fixed physical parameters, variable wave speed: For each (g, μ, κ) ∈ (R+)3, there 

exists an open set (0, 0, 0) ∈ Ws(g, μ, κ) ⊂ R × Ws,r and a unique function

Ws(g, μ, κ) � (γ, T , F) 
→ (p, u, η) ∈ Vs(g, μ, κ) (7.51)

with the property that for all (γ, T , F) belonging to the domain, the corresponding 

(p, u, η) solves (1.13) with wave speed γ, physical parameters (g, μ, κ), and stress-force 

data (T , F). Moreover, the map (7.51) is continuous.
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(4) Well-posedness of the stationary wave problem: There exists an open set Zs ⊂

(R+)3 × Ws,r satisfying (1.17) and continuous a map

Zs � (T , F , g, μ, κ) 
→ (p, u, η) ∈
⋃

v∈(R+)3

Vs(v) (7.52)

with the property that for all (T , F , g, μ, κ) ∈ Zs, the corresponding (p, u, η) belongs 

to the set Vs(g, μ, κ) and is the unique solution to (1.13) with γ = 0 in this set with 

data in Zs.

Proof. The ûrst item follows from Proposition 6.5 and the condition s > 3/r + 1. We 

continue by proving the second item. Let (p, u, η) ∈ Os,r(�) be a solution generated by the 

data (γ, g, μ, κ, T , F) ∈ Ws. We set v : Ω[η] → R
3 and q : Ω[η] → R via v = (M−1

¸ u) ◦F−1
¸

and q = p ◦ F−1
¸ . Proposition 7.1 veriûes that the map F¸ : Ω → Ω[η] is a smooth 

diffeomorphism that is sufficiently regular up to the boundary as to preserve the notion 

of classical solution. It is then elementary to verify that (q, v, η) classically solve (1.8)

with wave speed γ, physical parameters (g, μ, κ) ∈ (R+)3, and stress-force data (T , F)

The third and fourth items are just particular 8restrictions9 of the map in (7.45) from 

Theorem 7.13, so long as we deûne

Ws(g, μ, κ) = {(γ, T , F) : (γ, g, μ, κ, T , F) ∈ Ws} (7.53)

and

Zs = {(g, μ, κ, T , F) : (0, g, μ, κ, T , F) ∈ Ws}, (7.54)

and deûne the mappings (7.51) and (7.52) via (7.45) and the 8slice9 identiûcations 

Ws(g, μ, κ), Zs ⊂ Ws. �

Declaration of competing interest

There does not exist conüict of interest in this document.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for their 

helpful suggestions.



82 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617

References

[1] T. Abe, Y. Shibata, On a resolvent estimate of the Stokes equation on an inûnite layer, J. Math. 
Soc. Jpn. 55 (2) (2003) 469–497.

[2] T. Abe, Y. Shibata, On a resolvent estimate of the Stokes equation on an inûnite layer. II. λ = 0
case, J. Math. Fluid Mech. 5 (3) (2003) 245–274.

[3] T. Abe, M. Yamazaki, On a stationary problem of the Stokes equation in an inûnite layer in 
Sobolev and Besov spaces, J. Math. Fluid Mech. 12 (1) (2010) 61–100.

[4] H. Abels, Reduced and generalized Stokes resolvent equations in asymptotically üat layers. I. 
Unique solvability, J. Math. Fluid Mech. 7 (2) (2005) 201–222.

[5] H. Abels, Reduced and generalized Stokes resolvent equations in asymptotically üat layers. II. 
H∞-calculus, J. Math. Fluid Mech. 7 (2) (2005) 223–260.

[6] H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in Lq -
Sobolev spaces, Adv. Differ. Equ. 10 (1) (2005) 45–64.

[7] H. Abels, Generalized Stokes resolvent equations in an inûnite layer with mixed boundary condi-
tions, Math. Nachr. 279 (4) (2006) 351–367.

[8] H. Abels, M. Wiegner, Resolvent estimates for the Stokes operator on an inûnite layer, Differ. 
Integral Equ. 18 (10) (2005) 1081–1110.

[9] F. Abergel, A geometric approach to the study of stationary free surface üows for viscous liquids, 
Proc. R. Soc. Edinb., Sect. A 123 (2) (1993) 209–229.

[10] F. Abergel, E. Rouy, Interfaces stationnaires pour les équations de Navier-Stokes, PhD thesis, 
INRIA, 1995.

[11] R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, second edition, 
Applied Mathematical Sciences., vol. 75, Springer-Verlag, New York, 1988.

[12] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface, Appl. Math. 
Optim. 16 (1) (1987) 37–50.

[13] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, 
Math. Nachr. 186 (1997) 5–56.

[14] H. Bae, Solvability of the free boundary value problem of the Navier-Stokes equations, Discrete 
Contin. Dyn. Syst. 29 (3) (2011) 769–801.

[15] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equa-
tions, Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical 
Sciences), vol. 343, Springer, Heidelberg, 2011.

[16] J.T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Commun. 
Pure Appl. Math. 34 (3) (1981) 359–392.

[17] J.T. Beale, Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal. 84 (4) 
(1983/84) 307–352.

[18] J.T. Beale, T. Nishida, Large-time behavior of viscous surface waves, in: Recent Topics in Nonlinear 
PDE, II, Sendai, 1984, in: North-Holland Math. Stud., vol. 128, North-Holland, Amsterdam, 1985, 
pp. 1–14.

[19] J. Bemelmans, Gleichgewichtsûguren zäher Flüssigkeiten mit Oberüächenspannung, Analysis 1 (4) 
(1981) 241–282.

[20] J. Bemelmans, Liquid drops in a viscous üuid under the inüuence of gravity and surface tension, 
Manuscr. Math. 36 (1) (1981/82) 105–123.

[21] J. Bemelmans, On a free boundary problem for the stationary Navier-Stokes equations, Ann. Inst. 
Henri Poincaré, Anal. Non Linéaire 4 (6) (1987) 517–547.

[22] T.B. Benjamin, Wave formation in laminar üow down an inclined plane, J. Fluid Mech. 2 (1957) 
554–574.

[23] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen 
Wissenschaften, vol. 223, Springer-Verlag, Berlin-New York, 1976.

[24] O. Blasco, J. van Neerven, Spaces of operator-valued functions measurable with respect to the 
strong operator topology, in: Vector Measures, Integration and Related Topics, in: Oper. Theory 
Adv. Appl., vol. 201, Birkhäuser Verlag, Basel, 2010, pp. 65–78.

[25] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are uncon-
ditional, Ark. Mat. 21 (2) (1983) 163–168.

[26] S. Bu, J.-M. Kim, Operator-valued Fourier multiplier theorems on Triebel spaces, Acta Math. Sci. 
Ser. B Engl. Ed. 25 (4) (2005) 599–609.

[27] D.L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference 
sequences are unconditional, Ann. Probab. 9 (6) (1981) 997–1011.



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 83

[28] A. Castro, D. Córdoba, C. Fefferman, F. Gancedo, J. Gómez-Serrano, Finite time singularities for 
the free boundary incompressible Euler equations, Ann. Math. (2) 178 (3) (2013) 1061–1134.

[29] Y. Cho, J.D. Diorio, T.R. Akylas, J.H. Duncan, Resonantly forced gravity–capillary lumps on deep 
water. Part 2. Theoretical model, J. Math. Fluid Mech. 672 (2011) 288–306.

[30] P. Constantin, C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of 
Chicago Press, Chicago, IL, 1988.

[31] D. Coutand, S. Shkoller, On the splash singularity for the free-surface of a Navier-Stokes üuid, 
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36 (2) (2019) 475–503.

[32] M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971) 
321–340.

[33] N. Dinculeanu, Vector Measures, Pergamon Press, Oxford-New York-Toronto, Ont., 1967, VEB 
Deutscher Verlag der Wissenschaften, Berlin.

[34] J.D. Diorio, Y. Cho, J.H. Duncan, T.R. Akylas, Resonantly forced gravity–capillary lumps on deep 
water. Part 1. Experiments, J. Math. Fluid Mech. 672 (2011) 268–287.

[35] M. Ehrnström, S. Walsh, C. Zeng, Smooth stationary water waves with exponentially localized 
vorticity, J. Eur. Math. Soc. 25 (3) (2023) 1045–1090.

[36] C. Fefferman, E.M. Stein, Some maximal inequalities, Am. J. Math. 93 (1971) 107–115.
[37] R.S. Gellrich, Free boundary value problems for the stationary Navier-Stokes equations in domains 

with noncompact boundaries, Z. Anal. Anwend. 12 (3) (1993) 425–455.
[38] M. Girardi, L. Weis, Operator-valued Fourier multiplier theorems on Besov spaces, Math. Nachr. 

251 (2003) 34–51.
[39] M. Girardi, L. Weis, Operator-valued Fourier multiplier theorems on Lp(X) and geometry of 

Banach spaces, J. Funct. Anal. 204 (2) (2003) 320–354.
[40] M. Girardi, L. Weis, Vector-valued extensions of some classical theorems in harmonic analysis, 

in: Analysis and Applications—ISAAC 2001, Berlin, in: Int. Soc. Anal. Appl. Comput., vol. 10, 
Kluwer Acad. Publ., Dordrecht, 2003, pp. 171–185.

[41] L. Grafakos, Classical Fourier Analysis, third edition, Graduate Texts in Mathematics, vol. 249, 
Springer, New York, 2014.

[42] L. Grafakos, Modern Fourier Analysis, third edition, Graduate Texts in Mathematics, vol. 250, 
Springer, New York, 2014.

[43] M.D. Groves, Steady water waves, J. Nonlinear Math. Phys. 11 (4) (2004) 435–460.
[44] Y. Guo, I. Tice, Decay of viscous surface waves without surface tension in horizontally inûnite 

domains, Anal. PDE 6 (6) (2013) 1429–1533.
[45] Y. Guo, I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, 

Anal. PDE 6 (2) (2013) 287–369.
[46] P. Hajłasz, A. Kałamajska, Polynomial asymptotics and approximation of Sobolev functions, Stud. 

Math. 113 (1) (1995) 55–64.
[47] R. Haller, H. Heck, A. Noll, Mikhlin’s theorem for operator-valued Fourier multipliers in n variables, 

Math. Nachr. 244 (2002) 110–130.
[48] S.V. Haziot, V.M. Hur, W.A. Strauss, J.F. Toland, E. Wahlén, S. Walsh, M.H. Wheeler, Traveling 

water waves—the ebb and üow of two centuries, Q. Appl. Math. 80 (2) (2022) 317–401.
[49] M. Hieber, Operator valued Fourier multipliers, in: Topics in Nonlinear Analysis, in: Progr. Non-

linear Differential Equations Appl., vol. 35, Birkhäuser, Basel, 1999, pp. 363–380.
[50] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society 

Colloquium Publications, vol. XXXI, American Mathematical Society, Providence, R.I., 1974, third 
printing of the revised edition of 1957.

[51] T. Hytönen, J. van Neerven, M. Veraar, L. Weis, Analysis in Banach spaces. Vol. I. Martingales and 
Littlewood-Paley theory, in: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (Results 
in Mathematics and Related Areas. 3rd Series), in: A Series of Modern Surveys in Mathematics, 
vol. 63, Springer, Cham, 2016.

[52] H. Inci, T. Kappeler, P. Topalov, On the regularity of the composition of diffeomorphisms, Mem. 
Am. Math. Soc. 226 (1062) (2013), vi+60.

[53] B. Ja Jin, Free boundary problem of steady incompressible üow with contact angle π

2
, J. Differ. 

Equ. 217 (1) (2005) 1–25.
[54] M. Jean, Free surface of the steady üow of a Newtonian üuid in a ûnite channel, Arch. Ration. 

Mech. Anal. 74 (3) (1980) 197–217.
[55] J. Koganemaru, I. Tice, Traveling wave solutions to the inclined or periodic free boundary incom-

pressible Navier-Stokes equations, J. Funct. Anal. 285 (7) (2024) 110057.



84 N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617

[56] F. Lancien, G. Lancien, C. Le Merdy, A joint functional calculus for sectorial operators with 
commuting resolvents, Proc. Lond. Math. Soc. (3) 77 (2) (1998) 387–414.

[57] G. Leoni, A First Course in Sobolev Spaces, second edition, Graduate Studies in Mathematics, 
vol. 181, American Mathematical Society, Providence, RI, 2017.

[58] G. Leoni, I. Tice, Traveling wave solutions to the free boundary incompressible Navier-Stokes 
equations, Commun. Pure Appl. Math. (2022).

[59] N. Masnadi, J.H. Duncan, The generation of gravity–capillary solitary waves by a pressure source 
moving at a trans-critical speed, J. Fluid Mech. 810 (2017) 448–474.

[60] K. Matthies, J. Sewell, M.H. Wheeler, Solitary solutions to the steady Euler equations with piece-
wise constant vorticity in a channel, J. Differ. Equ. 400 (2024) 376–422.

[61] T.R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Am. 
Math. Soc. 285 (2) (1984) 739–757.

[62] S. Nazarov, K. Pileckas, On noncompact free boundary problems for the plane stationary Navier-
Stokes equations, J. Reine Angew. Math. 438 (1993) 103–141.

[63] H.Q. Nguyen, I. Tice, Traveling wave solutions to the one-phase Muskat problem: existence and 
stability, Arch. Ration. Mech. Anal. 248 (1) (2024) 5, 58.

[64] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes in Mathematics, 
vol. 6, New York University, Courant Institute of Mathematical Sciences, New York, 2001, Amer-
ican Mathematical Society, Providence, RI, Chapter 6 by E. Zehnder, Notes by R. A. Artino, 
revised reprint of the 1974 original.

[65] B. Park, Y. Cho, Experimental observation of gravity–capillary solitary waves generated by a 
moving air suction, J. Math. Fluid Mech. 808 (2016) 168–188.

[66] B. Park, Y. Cho, Two-dimensional gravity–capillary solitary waves on deep water: generation and 
transverse instability, J. Math. Fluid Mech. 834 (2018) 92–124.

[67] K. Pileckas, J. Socolowsky, Analysis of two linearized problems modeling viscous two-layer üows, 
Math. Nachr. 245 (2002) 129–166.

[68] K. Pileckas, J. Socolowsky, Viscous two-üuid üows in perturbed unbounded domains, Math. Nachr. 
278 (5) (2005) 589–623.

[69] K. Pileckas, V.A. Solonnikov, Viscous incompressible free-surface üow down an inclined perturbed 
plane, Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 60 (1) (2014) 225–244.

[70] K.I. Pileckas, On plane motion of a viscous incompressible capillary liquid with a noncompact free 
boundary, in: 1989. XVIIIth Symposium on Advanced Problems and Methods in Fluid Mechanics, 
vol. 41, 1990, pp. 329–342.

[71] K. Piletskas, Gliding of a üat plate of inûnite span over the surface of a heavy viscous incompressible 
üuid of ûnite depth, Differ. Urav. Primen. 34 (1983) 60–74.

[72] K. Piletskas, A remark on the paper: <Gliding of a üat plate of inûnite span over the surface of a 
heavy viscous incompressible üuid of ûnite depth=, Differ. Urav. Primen. (36) (1984) 55–60, 139.

[73] K.I. Piletskas, Solvability of a problem on the planar motion of a viscous incompressible üuid with 
a free noncompact boundary, Zap. Nauč. Semin. LOMI 110 (174–179) (1981) 245, Boundary value 
problems of mathematical physics and related questions in the theory of functions, 13.

[74] K.I. Piletskas, On the problem of the üow of a heavy viscous incompressible üuid with a free 
noncompact boundary, Litov. Mat. Sb. 28 (2) (1988) 315–333.

[75] J. Prüss, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Mono-
graphs in Mathematics, vol. 105, Birkhäuser/Springer, Cham, 2016.

[76] V.V. Puhnačev, The plane stationary problem with a free boundary for the Navier-Stokes equa-
tions, J. Appl. Mech. Tech. Phys. 13 (3) (1972) 340–349.

[77] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic 
Press, New York-London, 1972.

[78] J.C. Robinson, An introduction to dissipative parabolic PDEs and the theory of global attrac-
tors, in: Inûnite-Dimensional Dynamical Systems, in: Cambridge Texts in Applied Mathematics, 
Cambridge University Press, Cambridge, 2001.

[79] J. Schwartz, A remark on inequalities of Calderon-Zygmund type for vector-valued functions, 
Commun. Pure Appl. Math. 14 (1961) 785–799.

[80] Y. Shibata, S. Shimizu, Free boundary problems for a viscous incompressible üuid, in: Kyoto 
Conference on the Navier-Stokes Equations and Their Applications, in: RIMS Kôkyûroku Bessatsu, 
vol. B1, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, pp. 356–358.

[81] Y. Shibata, S. Shimizu, Report on a local in time solvability of free surface problems for the 
Navier-Stokes equations with surface tension, Appl. Anal. 90 (1) (2011) 201–214.



N. Stevenson, I. Tice / Journal of Functional Analysis 287 (2024) 110617 85

[82] D. Socolescu, Existenz- und Eindeutigkeitsbeweis für ein freies Randwertproblem für die sta-
tionären Navier-Stokesschen Bewegungsgleichungen, Arch. Ration. Mech. Anal. 73 (3) (1980) 
191–242.

[83] J. Socolowsky, The solvability of a free boundary problem for the stationary Navier-Stokes equa-
tions with a dynamic contact line, Nonlinear Anal. 21 (10) (1993) 763–784.

[84] J. Socolowsky, On a two-üuid inclined ûlm üow with evaporation, Math. Model. Anal. 18 (1) (2013) 
22–31.

[85] V.A. Solonnikov, Solvability of the problem of the plane motion of a heavy viscous incompressible 
capillary üuid that partially ûlls a certain vessel, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1) (1979) 
203–236, p. 239.

[86] V.A. Solonnikov, Solvability of a three-dimensional boundary value problem with a free surface for 
the stationary Navier-Stokes system, in: Partial Differential Equations, Warsaw, 1978, in: Banach 
Center Publ., vol. 10, PWN, Warsaw, 1983, pp. 361–403.

[87] V.A. Solonnikov, Solvability of two stationary free boundary problems for the Navier-Stokes equa-
tions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (2) (1998) 283–342.

[88] V.A. Solonnikov, Stationary free boundary problems for the Navier-Stokes equations, in: Advanced 
Topics in Theoretical Fluid Mechanics, Paseky nad Jizerou, 1997, in: Pitman Res. Notes Math. 
Ser., vol. 392, Longman, Harlow, 1998, pp. 147–212.

[89] V.A. Solonnikov, I.V. Denisova, Classical well-posedness of free boundary problems in viscous 
incompressible üuid mechanics, in: Handbook of Mathematical Analysis in Mechanics of Viscous 
Fluids, Springer, Cham, 2018, pp. 1135–1220.

[90] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathemat-
ical Series, vol. 30, Princeton University Press, Princeton, N.J., 1970.

[91] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 
Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, with the 
assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[92] N. Stevenson, I. Tice, Well-posedness of the traveling wave problem for the free boundary com-
pressible Navier-Stokes equations, Preprint, arXiv :2301 .00773, 2023.

[93] N. Stevenson, I. Tice, Traveling wave solutions to the multilayer free boundary incompressible 
Navier-Stokes equations, SIAM J. Math. Anal. 53 (6) (2021) 6370–6423.

[94] W.A. Strauss, Steady water waves, Bull. Am. Math. Soc. (N.S.) 47 (4) (2010) 671–694.
[95] A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompress-

ible üuid with a free surface, Arch. Ration. Mech. Anal. 133 (4) (1996) 299–331.
[96] M.E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, vol. 100, 

Birkhäuser Boston, Inc., Boston, MA, 1991.
[97] J.F. Toland, Stokes waves, Topol. Methods Nonlinear Anal. 7 (1) (1996) 1–48.
[98] L. Wu, Well-posedness and decay of the viscous surface wave, SIAM J. Math. Anal. 46 (3) (2014) 

2084–2135.
[99] E. Zadrzyńska, Free boundary problems for nonstationary Navier-Stokes equations, Diss. Math. 

(Rozprawy Mat.) 424 (2004) 135.
[100] F. Zimmermann, On vector-valued Fourier multiplier theorems, Stud. Math. 93 (3) (1989) 201–222.


	Well-posedness of the stationary and slowly traveling wave problems for the free boundary incompressible Navier-Stokes equa...
	1 Introduction
	1.1 The free boundary Navier-Stokes system
	1.2 Equilibria, stationary and traveling reformulations, and the role of stresses and forces
	1.3 Previous work
	1.4 Flattened reformulation
	1.5 Statement of main result and discussion
	1.6 Notation

	2 Basic linear theory
	2.1 Weak solutions
	2.2 Strong solutions

	3 Vector-valued harmonic analysis
	3.1 Translation commuting linear maps
	3.2 Classical results in vector-valued Harmonic analysis
	3.3 On a novel variant of the Mikhlin-Hörmander multiplier theorem

	4 Vector-valued symbol calculus for the solution map
	4.1 Preliminaries
	4.2 Derivative estimates for the symbol

	5 On some Sobolev-type spaces
	5.1 Mixed-type Sobolev spaces
	5.2 Some nonlinear analysis in mixed-type Sobolev spaces
	5.3 Subcritical gradient spaces

	6 Linear analysis in mixed-type Sobolev spaces
	6.1 Existence and uniqueness
	6.2 Reformulated well-posedness

	7 Nonlinear analysis
	7.1 Operators and mapping properties
	7.2 Well-posedness

	Declaration of competing interest
	Data availability
	Acknowledgments
	References


