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This course introduces Bayesian statistics, which is a statistical framework that can be used to analyze user studies in computer
graphics and related fields. Aimed at researchers and practitioners who encounter limitations with traditional frequentist methods,
i.e., methods using p-values, especially in cases of null effects and limited sample sizes, the course navigates the advantages of
Bayesian approaches over p-value based significance testing. The course will highlight the capacity of Bayesian methods to interpret
non-significant results meaningfully, which is useful in many areas of perceptual computer graphics. Beyond introducing Bayes
theorem, topics include hypothesis evaluation, prior specification, Bayes factors, credible intervals, and how to make the most out of
small sample sizes. The course also addresses resources for implementing Bayesian analyses and is accessible to those with a basic
understanding of probability and statistics. The course provides a novel contribution to the computer graphics community that can

advance experimental methods used to study perception and interaction within graphics.
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1 OUTLINE

Innovation in interactive 3D computer graphics often relies on user studies to bridge the gap between technical advances
and human experience. These user studies can provide quantifiable metrics to guide future design. Yet sometimes
interpreting the results of user studies is difficult (e.g., in cases of null effects). This course teaches analytic methods
based on Bayes theorem, called Bayesian statistics, that have advantages in many scenarios over more traditional
frequentist methods (i.e., using the p-value for null hypothesis testing) of analyzing results of studies that are prevalent
in computer graphics. For example, Bayesian methods can have utility when working with smaller sample sizes and
can provide interpretations of results when traditional null hypothesis significance testing is inadequate to evaluate a
research question of interest.

As mentioned, the most common way of analyzing the results of user studies and perceptual experiments in computer
graphics is with frequentist statistics, using the p-value. Per the American Statistical Association a p-value is defined
as “the probability under a specified statistical model that a statistical summary of the data (e.g., the sample mean
difference between two compared groups) would be equal to or more extreme than its observed value" [Wasserstein

and Lazar 2016, p. 131]. In less formal terms, a p-value is an index of the inconsistency of our findings with the null
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hypothesis we have constructed (e.g. no difference between groups, correlation r=0, some percentage representing
random chance) in relation to long-run frequencies. P-values have been controversial since their inception and their
use is still actively debated within the scientific community [Nuzzo 2014]. In practice, p-values below some cut-off
(often set at the arbitrary « level of .05) are often taken as statistical evidence that an observed difference or association
exists and is unlikely to have occurred by chance. However, this interpretation is technically incorrect, and highlights
the confusion around the interpretation of p-values.

Setting aside the general appropriateness or inappropriateness of p-values and null-hypothesis significance testing,
in many cases the research questions we want to ask cannot be adequately assessed within a frequentist framework. For
example, we may want to determine if people’s perception of distance and size is meaningfully different in a real-world
room compared to an immersive virtual reality rendering of that room. In many applications, a goal of virtual reality
technology is to provide an immersive experience that is as similar to the real-world as possible [Creem-Regehr et al.
2023]. In this scenario, we might hypothesize that with modern computer graphics in immersive displays there would
be no meaningful difference in people’s perception of distance or size in virtual reality compared to the real-world.
Likewise, in evaluating photorealistic virtual humans we are often faced with uncanny valley problems [Carter et al.
2013; Higgins et al. 2021]. Our goal is often to render or animate virtual humans such that they are indistinguishable from
real humans. In a frequentist framework we have no way to meaningfully evaluate these hypotheses of no difference.
These scenarios are where a Bayesian framework can have immense utility, due to a key difference in how probability
is conceptualized.

Bayesian statistics is founded on a different view of probability (subjective probability) and takes a different approach
to the analysis of experimental data [van de Schoot et al. 2021]. One approach to understanding Bayesian methods is
that they assume prior beliefs (as probabilities) on the hypotheses of an experiment, and then update those beliefs using
Bayes theorem with evidence from the data of an experiment, (e.g., a user study, to yield posterior beliefs). Frequentist
statistics, on the other hand, are based on long-run frequencies obtained through repeated sampling under near identical
conditions to quantify the probability of the data given the null hypothesis. The power of the Bayesian approach is that
we can then quantify the odds in favor of one hypothesis versus another, for example the alternative hypothesis in
favor of the null hypothesis, and can compute them. These are called Bayes factors [Kass and Raftery 1995]. Another
advantage to the Bayesian approach is the idea of credible intervals. A credible interval is a probability statement about
the probability (e.g., 90, 95, 99) of an unobserved parameter of a model (e.g., the mean of a population) falling within
some interval given the observed data. For example, a 95% credible interval provides a probability statement that given
the observed data, there is a 95% probability the unobserved parameter falls within a given credible interval. This
may seem like a confidence interval, but a confidence interval is somewhat different, and is often misinterpreted to
be like a credible interval. For these reasons, Bayesian methods are becoming are becoming increasingly popular in
the cognitive and psychological sciences. However, Bayesian statistical analyses are still uncommon in graphics and
graphics-adjacent areas. A reasonable survey found only a few papers employing it [Bodenheimer et al. 2023; Buck et al.
2022, 2020, 2018; Fernandes et al. 2015; Guefrech et al. 2021; Langbehn et al. 2016; Paris et al. 2017; Schmidt et al. 2017;
Williams and Peck 2019]. This course aims to educate the community on its strengths and possibilities, and provide

additional tools to those designing and analyzing perceptual and user studies.

2 RELEVANCE

A goal of user studies in our field is to describe how people perceive and interact with 3D computer graphics. A user

study often does this by trying to support a hypothesis regarding how an interface or manipulation will work. It is
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straightforward to find examples of studies in our literature where no statistically significant results were obtained, i.e.,
a failure to reject the null hypothesis, e.g., [Gorlewicz et al. 2020; Liu et al. 2020; Sonnenwald et al. 2003]. In a frequentist
statistical framework, we can reject the null hypothesis or fail to reject the null hypothesis, but we can never provide
evidence for the null hypothesis. Yet, oftentimes, especially in user studies, a null or no difference effect can be highly
meaningful and is something we want to be able to evaluate and make some kind of claim about. Bayesian statistics
offer a complementary perspective on interpreting such data and can provide insights that frequentist methods cannot.
For example, with certain assumptions, Bayesian statistics allow one to quantify belief in the null hypothesis and can
provide measures of the strength of the evidence supporting the hypothesis of an experiment. Such methods can lead to

important insights into perception and interaction in computer graphics that would not otherwise be available.

3 TARGET AUDIENCE

The target audience for this course includes researchers and practitioners in computer graphics and related fields
who design, run, or analyze user studies. In particular, the course will be useful to those who want to understand
modern methods of evaluating the results of user studies. This course is designed to be accessible to anyone with a

basic understanding of statistics and probability, such as a CS graduate student.

4 TOPICS

Introduction In this course we will provide a broad overview of Bayesian statistics and how/when this statistical
approach can be used to address commonly encountered issues (e.g. null effects, limited sample sizes) that arise
for those analyzing data from user studies on computer graphics.

Bayesian basics Here we will introduce Bayes theorem, which is the basis of Bayesian statistics. Bayes theorem
provides a different view of probability (as opposed to frequentist probability), which allows us to evaluate a
hypothesis given our data P(Hy|data), instead of being limited to assessing only the probability of the data given
the null hypothesis P(data|Hp).

Bayesian data analysis Bayes theorem is a powerful theorem with many applications in neat and discrete appli-
cations like those that will be detailed in the prior section. However, this theorem can also be harnessed alongside
recent computational advancements and Monte Carlo methods to tackle messier data and various statistical
analyses commonly used in the behavioral sciences. Bayesian statistics is a powerful statistical framework
that draws on a particular view of probability and inference. Frequentist statistics relies on the assumption of
repeated sampling under near-identical conditions to obtain long-run frequencies and infer point estimates about
parameters, whereas Bayesian statistics incorporates a subjective belief quantification that gets updated as data
are observed to infer about the distributions of parameters. In Bayesian statistics, we quantify our beliefs and
our certainty/uncertainty in those beliefs through priors. While incorporating subjective beliefs into statistical
analyses can feel odd, we get to decide the amount of information we encode into a prior. In fact in many cases,
we can specify a completely uninformative prior (e.g. a uniform distribution from —oco to +0), and close to
identically replicate frequentist analyses. In this section, we will discuss the role of priors and some general
guidelines about how to specify priors. We will also discuss Bayes factors and credible intervals.

When/why to use Bayesian Statistics? We will provide an overview of common data scenarios where Bayesian
data analysis has advantages. One such example is a common goal of improving the perceptual fidelity of computer
graphics, or the likelihood that people will perceive and act with computer graphics as they would with real-world

objects or environments [Pointon et al. 2018; Stefanucci et al. 2015]. Differences in perceptual fidelity have been
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a long-time topic of study for space perception in virtual and augmented reality but modern technologies and
measures have reduced some of these effects [Buck et al. 2018; Creem-Regehr et al. 2023]. This goal of equivalence
in perceptual fidelity may ultimately lead to a prediction of a null result, i.e., no difference between a real and
virtual environment condition. In this circumstance, Bayesian statistics would be a preferable method to evaluate
the strength of the evidence supporting the null hypothesis. Likewise, other conditions that may be predicted
to influence perception of graphics (e.g., rendered shadows, object characteristics) may not have the expected
effects and the strength of the effects could be more effectively evaluated with Bayesian methods [Buck et al.
2020]. In the following two sections, we present two common data scenarios (null effects and limited sample
size) to highlight the utility of a Bayesian approach.

Hypothesis evaluation Here we will highlight that a Bayesian approach gives one tools to evaluate the null
hypothesis and say something about results that would otherwise be just p >.05. We will also show how Bayes
factors can be used to evaluate the likelihood of a given hypothesis and how credible intervals can be used to
index the range of possible effect sizes.

Limited sample sizes In this section, we will provide an overview of how building in prior information can be
useful with small samples [Lee and Song 2004]. More specifically, we will highlight how with appropriate and
informed priors, a Bayesian approach can allow one to make the most out of small sample sizes that may arise
out of pilot/feasibility testing or hard to recruit populations.

Resources Finally, we will provide some recommendations for software that can be used to implement Bayesian
analyses (e.g., brms and STAN for R users; PyMC for Python users), as well as resources for those who want to

learn more about Bayesian analyses (e.g., Doing Bayesian Data Analysis [Kruschke 2014]).

5 SYLLABUS

We propose a short (1.5 hour) course according to the following schedule:

(1) Introduction - Sarah Creem-Regehr (5 minutes)

(2) Bayesian basics - Bobby Bodenheimer (15 minutes)

(3) Bayesian data analysis - Mirinda Whitaker (15 minutes)

(4) When/why to use Bayesian Statistics? - Sarah Creem-Regehr (10 minutes)
(5) Hypothesis evaluation - Mirinda Whitaker (10 minutes)

(6) Limited sample sizes - Mirinda Whitaker (10 minutes)

(7) Resources - Mirinda Whitaker (5 minutes)

(8) Conclusions/Summary - Bobby Bodenheimer (5 minutes)

(9) Q&A - All (15 minutes)

6 RELATED COURSES

To our knowledge, no similar course has been offered at SSIGGRAPH. Bayesian decision theory has been covered in
prior Siggraph courses, e.g., the 2004 Siggraph course by Aaron Hertzmann [Hertzmann 2004] or the discussion of it in
the more recent 2018 Siggraph course “Applications of Vision Science to Virtual and Augmented Reality” by Patney and
colleagues [Patney et al. 2018]. Bayesian decision theory uses Bayes theorem to determine what an optimal decision
would be based on the available evidence and is distinct from the use of Bayesian statistics as we have described it here.
Likewise, courses that have dealt with user studies such as the 2008 course by Ferwerda on psychophysics [Ferwerda
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2008] or the 2009 course by Sundstedt and colleagues [Sundstedt et al. 2009] have not focused on the analysis of

experimental data.
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