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A constraint on the dissipative tidal 
deformability of neutron stars

Justin L. Ripley      , Abhishek Hegade K R      , Rohit S. Chandramouli     & 
Nicolás Yunes    

The gravitational waves emitted by neutron star binaries probe the 
physics of matter at supranuclear densities. During the late inspiral, tidal 
deformations raised on each star by the gravitational field of its companion 
depend crucially on the star’s internal properties. The misalignment of 
a star’s tidal bulge with its companion’s gravitational field encodes the 
strength of internal dissipative processes, which imprint onto the phase of 
the gravitational waves emitted. Here, we analyse gravitational wave data 
from the GW170817 (binary neutron star) event detected by LIGO and Virgo 
and find a constraint on the dissipative tidal deformability of a neutron star. 
From this constraint, assuming a temperature profile for each star in the 
binary, we obtain an order of magnitude bound on the averaged bulk (ζ) 
and shear (η) viscosity of each star during the inspiral: ζ ≲ 1031 g cm−1 s−1 and 
η ≲ 1028 g cm−1 s−1. We forecast that these bounds could be improved by two 
orders of magnitude with third-generation detectors, like Cosmic Explorer, 
using inspiral data. These constraints already inform nuclear physics models 
and motivate further theoretical work to better understand the interplay 
between viscosity and temperature in the late inspiral of neutron stars.

Neutron stars are the densest material objects in the Universe. Their 
interiors reach densities many times that of atomic nuclei at tempera-
tures well below those probed by heavy-ion collisions. Determining the 
physical properties of neutron star matter, therefore, has remained 
an outstanding problem in astrophysics, gravitational physics and 
nuclear physics for almost a century1. Gravitational waves (GWs) from 
neutron star binaries encode the tidal deformations that neutron stars 
experience during their late inspiral before merger. These tidal defor-
mations are in turn affected by the material properties of the stars. The 
prompt, conservative, relativistic, tidal response is described by the 
tidal deformability Λ (refs. 2–4), which encodes aspects of the equi-
librium properties of neutron star matter through the neutron star 
equation of state (EOS)1. The GWs from the binary neutron star event 
GW170817 have been used to constrain the tidal deformability of these 
two neutron stars and, thus, their EOS5,6.

The tidal response of a star can be visualized as a ‘tidal bulge’ that 
is sourced but not aligned with the time-varying, externally imposed, 
gravitational field of its companion (Fig. 1). Nonequilibrium dissipative 

effects within the star force the bulge to trail the orbit, inducing a tidal 
lag angle between the direction of the bulge and the orbital separation. 
The extent to which the tidal multipolar moments are misaligned with 
the external gravitational multipolar moments is, to a first approxima-
tion, described by the tidal lag time τd. The tidal lag time is a universal 
feature for self-gravitating astrophysical objects, from planets7 to black 
holes8,9, and it has been observed in many planetary systems7,10. This 
tidal misalignment torques the two stars and heats them up through 
tidal, viscous heating (for example, refs. 11,12).

Since the 1990s, it had been thought that the magnitude of these 
effects on the dynamics of neutron star binaries is too small to measure 
with GWs. Indeed, unphysically large values of viscosity are required 
to tidally lock the spins of the two stars to their orbit before merger13. 
Recent work in nuclear physics, however, suggests that weak-force 
processes can induce an effective bulk viscosity14–16, which, although 
not large enough to tidally lock the spins of the two stars, may still have 
a measurable effect in the GWs emitted during the late inspiral17. This 
has motivated different numerical groups to model out-of-equilibrium 
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suggested that the total extent of dissipative processes within neutron 
stars could be meaningfully constrained through an analysis of current 
GW data. Here, we carry out precisely such an analysis and constrain 
the dissipative tidal deformability of neutron stars using data from the 
GW170817 event detected by LIGO and Virgo5.

GW model with dissipative tidal effects
We used the IMRPhenomPv2_NRTidal waveform model28 for the detec-
tor response to the impinging GWs emitted in the inspiral of the binary 
neutron star system, which we enhanced to include tidal dissipation. 
Without tidal dissipation, the IMRPhenomPv2_NRTidal model depends 
on 17 parameters θa. These parameters, in addition to the non-tidal 
ones (such as the chirp mass ℳ ≡ m3/5

A m3/5
B /M1/5  and the symmetric 

mass ratio ηsym ≡ mAmB/M2, with M ≡ mA + mB the total mass and mA/B the 
component masses), includes the tidal deformabilities of the stars ΛA/B. 
In the frequency domain, we represent the model through the Fourier 
transform of the GW strain ̃h (f;θθθ) = A (f;θθθ) eiΨ(f;θθθ), where A(f; θ) is the 
Fourier GW amplitude and Ψ(f; θ) is the Fourier GW phase.

We enhanced the IMRPhenomPv2_NRTidal model by adding the 
leading PN contribution of the dissipative tidal deformability to the 
IMRPhenomPv2_NRTidal Fourier phase17:

Ψ𝒪f;θθθ) = ΨPv2NRT𝒪f;θθθa) −
225

4,096
1

ηsym
̃Ξu3 log 𝒪u) , (1)

where u ≡ (GπMf/c3)1/3  is effectively the orbital velocity. As the 
leading-order PN term in ΨPv2NRT is proportional to u−5, we see that the 
dissipative tidal contribution is of 𝒪𝒪𝒪u8) relative to the leading order, 
which is of 𝒪𝒪𝒪u2)  larger than the 𝒪𝒪 (u10)  relative conservative tidal 
contribution in ΨPv2NRT. The quantity Ξ̃  is the binary dissipative ‘chirp’ 
tidal deformability, which is a weighted sum of the dissipative tidal 
deformabilities of each star, ΞA,B:

̃Ξ ≡ 8 (2η2
sym − 4ηsym + 1)Ξs − 8√1 − 4ηsym (1 − 2ηsym)Ξa, (2)

where Ξs ≡ 𝒪ΞA + ΞB) /2  and Ξa ≡ 𝒪ΞA − ΞB) /2 . Therefore, the enhanced 
IMRPhenomPv2_NRTidal model contains 18 parameters: θθθ = θθθa ∪ { ̃Ξ}.

Constraint on dissipative tidal deformability 
from GW170817
As we discuss in more detail in Methods, we use a Bayesian parameter 
estimation to compute the posterior probability distribution for all the 
parameters of our enhanced IMRPhenomPv2_NRTidal GW model, given 
the publicly available 4 kHz GW170817 GW strain data29. Although we 
performed several checks of our analysis, here we describe only two 
separate analyses (we describe our other checks in Methods). In one 
run, we sampled the stars’ individual conservative tidal deformabilities 
ΛA,B, and in the other, we sampled the symmetric tidal deformability 
Λs = (ΛA + ΛB)/2, from which we found Λa = (ΛA − ΛB)/2 through the binary 
Love relations30 (we marginalize over the uncertainty in those relations 
following ref. 31).

We present the binned, marginalized, posterior distribution on ̃Ξ 
from those two analyses in Fig. 2. We see that the data are informative, 
yielding a posterior that is noticeably different from the prior and 
peaking at zero with ̃Ξ < 1, 200 at 90% confidence. The posterior is 
additionally independent of whether or not we use the marginalized 
binary Love relations.

The marginalized posterior distributions for almost all other 
parameters are statistically consistent with those obtained by the 
LIGO–Virgo collaboration when one does not include dissipative tidal 
effects. The one exception is the posterior for Λ̃ (or equivalently for Λs 
or ΛA,B), which is pushed to lower values due to correlations between 
the conservative and dissipative tidal deformabilities, as shown in Fig. 3. 
This implies that if the dissipative tidal deformability is present in the 

effects during the late inspiral, merger and post-merger phases. Some 
groups have found bulk viscous effects to be enhanced during the 
late inspiral15,18. Moreover, other groups working with moment-based 
treatments of neutrino transport have not found evidence for the large 
out-of-thermodynamic-equilibrium effects necessary for producing 
an effective bulk viscosity during the late inspiral19. Nevertheless, 
these moment-based treatments of neutrino transport have revealed 
evidence of bulk viscous effects within a small window after the merger 
and before the matter returns to equilibrium20. Given these differences 
in the literature, it is crucial to utilize the available GW data to provide 
insights into out-of-equilibrium effects present during the late inspiral 
and merger phase.

Recently, the signature of the tidal lag in the GWs emitted by binary 
neutron star inspirals was reanalysed in ref. 17. Those authors found 
that this tidal lag was parametrically enhanced relative to that of con-
servative tidal effects. Conservative tidal effects first enter the GW 
phase proportional to ten powers of the orbital velocity relative to the 
leading-order term in a small-velocity, post-Newtonian (PN) expansion, 
which in the late inspiral is v ≈ (0.25–0.4)c. Moreover, conservative 
effects are inversely proportional to five powers of the stellar compact-
ness, that is, the dimensionless ratio of its mass to its radius, which for 
neutron stars is C ≈ 0.1–0.3 (refs. 2,21). In contrast, dissipative tidal 
effects first enter the GW phase proportional to eight powers of the 
orbital velocity and inversely proportional to six powers of the stellar 
compactness17. Therefore, this parametric enhancement boosts the 
effect of dissipative tidal effects, making them potentially measurable 
with current ground-based GW detectors for physically plausible levels 
of dissipation within the stars.

The contribution of the tidal lag to the GW phase is captured by 
the dissipative counterpart to the conservative tidal deformability 
Λ: the dissipative tidal deformability Ξ, which can be mapped to the 
effective bulk and shear viscosities of the star17,22. Large values of bulk 
viscous dissipation could be sourced through Urca processes14–16,23 or 
more exotic nuclear processes due to the presence of hyperons deep 
in the interior of a neutron star24–27. This effective viscosity depends 
on the particular nuclear and fluid models used, on the EOS of the star 
and on its temperature. Therefore, a measurement or constraint on Ξ 
cannot be translated to an independent measurement or constraint 
of any single one of these ingredients, without an assumption about 
the values of any two of the other quantities. Nonetheless, taking the 
expected values for these quantities, a preliminary forecast in ref. 17 
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Fig. 1 | Illustration of the tidal responses of two stars in a quasi-circular binary 
(not to scale). Dissipative, out-of-equilibrium effects force the tidal bulge of each 
star to be misaligned with the gravitational field sourced by its companion.
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signal and that one neglects to incorporate its effects in the waveform 
model, then the estimate of the conservative tidal deformability will 
be biased to higher values than those contained in the signal.

Implications for nuclear physics
Any dissipative process within a neutron star adds cumulatively to the 
dissipative tidal deformability. As a consequence of this, an upper 
bound on ̃Ξ constrains the strength of any given dissipative process. 
Given a fluid model for the star, we can relate the dissipative tidal 
deformability to the tidal lag inside star A through17

ΞA =
2
3k2,A (

1
CA6

) (
cτd,A
RA

) , (3)

where k2,A is the conservative tidal Love number of the star, mA and RA 
are the stellar mass and radius, CA ≡ GmA/(RAc

2) is its compactness and 
τd,A is its tidal lag time. We relate the tidal lag time to the viscosity 
through τd,A = p2,A〈δ〉RAc

2/(GmA〈e〉) (refs. 9,17), where 〈δ〉 = 〈η〉 (the shear 
viscosity) or 〈ζ〉 (the bulk viscosity) depending on which source of dis-
sipation is dominant. p2,A is a dimensionless constant that is computed 
for a given viscosity profile δ(e), and 〈e〉 is the average energy density. 
Using that the conservative tidal deformability ΛA ≡ 𝒪2k2,A/3)/C5

A   
(ref. 21), we then obtain

ΞA =
c3

G
p2,AΛA

CA

⟨δ⟩
⟨e⟩mA

,

≈ 26.1 × ( p2,A
0.01

) ( ΛA

300
) ( 0.188

CA
) ( ⟨δ⟩

1030 g cm−1 s−1 )

( 1.38M⊙
mA

) ( 9×1034 ergcm−3

⟨e⟩
) .

(4)

When bulk viscosity drives the process of dissipation, then p2,A ≈ 0.01, 
but it can be as high as p2,A ≈ 5 when shear viscosity dominates22. This 
is because gravitational fields cause a larger relative shearing motion 
than compression of the star22.

We can map the constraint we obtained on the dissipative tidal 
deformability to the microphysics of dissipative processes inside a 
neutron star if we make the following assumptions. We assume that 
both stars in the binary had the same EOS and the same mass (which is 
consistent with the posterior for the GW170817 event). If so, they must 

also have the same compactness CA = CB. Furthermore, we assume that 
the stars have the same temperature profile and EOS, so that 
ΛA = ΛB = ̃Λ and ΞA = ΞB = Ξ̃. Inverting equation (4), we obtain

⟨δ⟩A ≈ 4.6 × 1031 g
cms

(
̃Ξ

1,200
) ( ⟨e⟩

9×1034 ergcm−3 )

( 300
ΛA

) ( 0.01
p2,A

) ( CA

0.188
) ( mA

1.38M⊙
) .

(5)

If shear viscosity was the dominant contribution to the dissipation,  
we would then obtain 〈η〉 ≈ 9.15 × 1028 g cm−1 s−1 with a normalization 
factor of (5/p2,A) instead of (0.01/p2,A). Given our measured bound of  
̃Ξ ≲ 1, 200, we can place an upper bound on the averaged bulk and shear 

viscosity during the evolution of the GW170817 event. We, respectively, 
obtain 〈ζ〉A ≲ 4.57 × 1031 g cm−1 s−1 and 〈η〉A ≲ 9.15 × 1028 g cm−1 s−1.

We now put this constraint into context by comparing it to cur-
rent theoretical estimates of the viscosity of neutron stars. Viscosity 
generated by microscopic processes in neutron stars depends sen-
sitively on the local stellar temperature profile T. Shear viscosity in 
neutron star cores scales as T−2 due to electron–muon scattering32 and 
is expected to be less than 〈η〉 ≲ 1022 g cm−1 s−1. Shear viscous contribu-
tions due to the interface of a star’s crust with its interior have been 
speculated to be as large as 〈η〉 ≈ 1029 g cm−1 s−1 (ref. 33). Bulk viscous 
contributions due to the presence of hyperons scale as T−2 and may 
be the dominant source of dissipation in neutron stars at very low 
(approximately kilo-electronvolt) temperatures, with the bulk viscos-
ity predicted to exceed 〈ζ〉 ≈ 1030 g cm−1 s−1 in some models24–27. As the 
binary enters the late inspiral, heating from tidal friction due to Urca 
reactions may increase the temperature of the two stars to tens of 
kilo-electronvolts12. Hyperonic bulk viscous contributions may heat 
the stars to higher temperatures26. Numerical relativity simulations 
of neutron star mergers suggest that tidal heating could increase the 
stellar temperature to a few mega-electronvolts during the last few 
orbits34. Bulk viscous contributions from direct and modified Urca 
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distribution of Λs to slightly lower values when including ̃Ξ in the analysis, 
compared to when we exclude the ̃Ξ correction (as is done in the LIGO–Virgo 
analysis of GW170817; ref. 6).
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processes are expected to dominate at high temperatures, as those 
reactions scale as T4 and T6, respectively23. Note that beyond a resonant 
peak, these reactions become weaker at higher temperatures. Current 
estimates place this peak at T ≈ 5 MeV (ref. 35), higher than the tempera-
tures expected to be reached by the stars during the inspiral. Typical 
predictions for the bulk viscosity for Urca-process-driven viscosity 
range from 〈ζ〉 ≈ 1026 g cm−1 s−1 when T ≈ 0.1 MeV to 〈ζ〉 ≈ 1031 g cm−1 s−1 
when T ≈ 1 MeV, depending on the EOS15,16.

In Methods, we estimate the number of GW cycles that ̃Ξ intro-
duces in different regimes of the inspiral. We estimate that ̃Ξ ≈ 1, 200 
introduces ~1.86 GW cycles over the last ~27 orbits (corresponding 
roughly to orbital separations from ~83 km to contact), and a total of 
~2.5 GW cycles over the entire inspiral. These results suggest that 
accounting for finite temperature and out-of-equilibrium effects dur-
ing the last stage of the inspiral will be critical for mapping a constraint 
or detection of ̃Ξ to the underlying nuclear physics.

Future detectability of dissipative tides
We simulated synthetic GW detections for three different networks: 
ground-based detectors in the O4 and O5 era (the current LIGO obser-
vation run set-up and the following upgrade with the addition of the 
LIGO-India detector)36, and the Cosmic Explorer (CE) era (one CE instru-
ment at the current Hanford detector site)37. Each simulation consisted 
of 128 s of synthetic data, all starting at 40 Hz. The component masses 
and the symmetric conservative tidal deformabilities in each simula-
tion were kept fixed at mA,B = 1.38 M⊙ and Λs = 584, respectively, whereas 
the injected chirp dissipative tidal deformabilities were chosen to  
be ̃Ξ = {20,400,800, 1200}. The choices for mA,B and Λs are consistent  
with the marginalized posterior distribution of these parameters in 
the GW170817 event, and the choice for ̃Ξ is consistent with the con-
straint we obtained at 90% confidence. As the luminosity distance was 
kept fixed, the signal-to-noise ratio (SNR) increased in the O4, O5 and 
CE simulations to ~60, ~100 and ~1,100, respectively.

We analysed these injections using Bayesian parameter estimation 
with our enhanced IMRPhenomPv2_NRTidal waveform model, following 
almost the same data analysis procedure as for the GW170817 event. The 
only difference is that we sampled only on {ℳ,q,Λs, ̃Ξ}, and thus, we fixed 
all other parameters in the posterior to their injected values. We found 
empirically that this did not qualitatively affect our conclusions. We 
emphasize that we used the same uniform prior for ̃Ξ that we used in our 
analysis of GW170817. That is, we did not use our marginalized posterior 
for ̃ΞA from GW170817 as our prior for ̃Ξ in our injection runs.

Figure 4 shows the marginalized posterior distribution for ̃Ξ for 
each injection. Notice that ̃Ξ is biased towards zero, which we attribute 
to correlations between ̃Ξ and the tidal deformability parameters ΛA/B 
(see Methods for more details). The one exception to this bias is the 
̃Ξinj = 20 injection for the O4 network. We attribute this increase to 

the fact that the spread in the posterior is very large for that network 
and that the injected value is close to zero (the lower bound of our 
prior). As expected, given the values of the SNR for the three detector 
networks, from Fig. 4 we see that the O5 network gives a modest 
improvement to the measurement of ̃Ξ. For the O4 network, we see 
that the posterior is mostly supported away from zero only for the 
largest injected value of ̃Ξ = 1, 200 , which lies at the 90% credible 
interval for our current measurement from GW170817 data. Table 1 
shows the maximum of the posterior distribution (maximum a priori 
estimate (MAP)) for the marginalized distributions for ̃Ξrec along with 
the 90% symmetric credible interval about the MAP. With increasingly 
sensitive detectors (or, alternatively, with increasingly high SNR), the 
measurement of ̃Ξ simultaneously becomes less biased and more 
precise. This is consistent with our interpretation of the bias of ̃Ξ as 
arising from the correlation between ̃Ξ and ΛA,B. With increasing SNR, 
these parameters simultaneously become less biased and can be 
measured more precisely.

Conclusions and outlook
Our analysis opens the door to a plethora of future work that will be 
required to extract precise inferences about out-of-equilibrium micro-
physics. First, one must find a way to break the degeneracy between 
the individual dissipative tidal deformabilities ΞA,B, which enter the GW 
phase through a linear combination encapsulated in ̃Ξ. For the con-
servative tidal deformability ̃Λ, this can be done with the binary Love 
relations30,38 or by measuring the higher-order PN terms in the phase39. 
One should, thus, investigate the existence of similar, approximately 
universal relations for the dissipative tidal deformabilities and calcu-
late the higher-order PN dissipative terms. Second, the effective bulk 
and shear viscosities of neutron stars are predicted to depend some-
what on the stars’ EOS (for example, refs. 16,23–25,32,40). Mapping 
inferences on ΞA,B to microphysics will, thus, require that one margin-
alize over all EOSs consistent with the data, including those with sharp 
features in the speed of sound (for example, refs. 41,42). Third, it will 
be critical to investigate systematic biases in parameter estimation 
that arise when dissipative tidal effects are not included and statistical 
biases in the measurement of Ξ̃  that arise due to the late inspiral being 
buried under detector noise. Finally, the bulk and shear viscosities of 
neutron stars also depend sensitively on their local temperature. Con-
necting the individual tidal deformabilities ΞA,B to nuclear physics, 
therefore, requires knowledge of the temperature profiles within each 
star, which generally increase with time (and, thus, with GW frequency) 
in the late inspiral due to tidal friction11,12. This opens the possibility of 
learning not just about viscosity per se but also about the local tem-
perature evolution and new aspects of the EOSs of neutron stars.
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Table 1 | MAP with the symmetric 90% credible interval 
about the MAP for each detector network and injected value 
of ̃Ξ (corresponding to the marginalized posteriors in Fig. 4)

̃Ξ ̃Ξ ̃Ξinj ̃Ξ ̃Ξ ̃Ξ(
((O4)))
MAP ̃Ξ ̃Ξ ̃Ξ(

((O5)))
MAP ̃Ξ ̃Ξ ̃Ξ(

((CE)))
MAP

20 89+522−88 16+301−16 11+57−11

400 197+615−197 270+301
−270 380+116

−123

800 528+560−528 584+451−541 771+132−132

1,200 803+704−704 974+584−584 1,175+136−145

The credible intervals are not symmetric about the MAP when one limit of the interval reaches a 
boundary of the posterior. We can translate a measurement on ̃Ξ to a measurement of the star’s 
averaged viscosity using equation (5). These averaged viscosities are quoted in the abstract.
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Methods
Data analysis methodology
We used Bayesian parameter estimation to compute the posterior 
probability distribution for all the parameters of our enhanced IMR-
PhenomPv2_NRTidal GW model, given 128 s of the publicly available 
4 kHz GW170817 (glitch-cleaned) GW strain data29. We sampled over 
all 18 parameters of the model, and we marginalized over the reference 
phase. As usual in a GW data analysis, we assumed the noise to be Gauss-
ian and stationary. The log-likelihood of the strain data ̃s𝒪 f ) given a GW 
template ̃h𝒪 f;θθθ) with model parameters θ is then43

lnℒ𝒪 ̃s|θθθ) = − 1
2 (

̃r𝒪θθθ)| ̃r𝒪θθθ)) = −2∫
∞

0
df | ̃r𝒪f;θθθ)|

2

Sn𝒪f )
, (6)

where ̃r𝒪 f;θθθ) ≡ ̃h ( f;θθθ) − ̃s ( f ) is the residual signal and Sn ( f ) is the noise 
power spectral density of the GW detector.

We used the Bilby GW library44, modified to incorporate the dis-
sipative tidal effects of equation (1), and sampled the likelihood with 
a nested sampling algorithm as implemented in DYNESTY (ref. 45). 
Within the Bilby interface to that code, we set nlive = 1,500, nact = 10, 
dlogz = 0.01, sample = ‘rwalk’ and bound = ‘live’. As a consistency check 
on the c onvergence of our sampler to the true posterior distribution, 
we considered runs where nlive = 1,000, nact = 5 and dlogz = 0.1 and 
found that the posterior distribution did not noticeably change.

We chose the following priors for all our parameter estimatio n 
analyses. We set the chirp mass ℳ  to lie within the range [1.184M⊙,  
1.25M⊙], with a distribution that is equivalent to two uniform distribu-
tions over the component masses MA,B. The mass ratio q lay within the 
range [0.5, 1] and was also sampled uniformly in the two component 
masses. As the IMRPhenomPv2_NRTidal model does not include spin 
corrections to the conservative tidal effects, we used the ‘low-spin’ 
prior defined in ref. 6. That is, we used uniform priors for the neutron 
star spins aA and aB over the range [0, 0.05]. Note that our dissipative 
tidal term contains no spin corrections either. When we sampled on 
the tidal deformabilities separately, we used a uniform prior over the 
interval [0, 3,000] for both deformabilities. When we sampled on the 
symmetric tidal deformability, we used a triangular prior with mean 
1,500 and range [0, 3,000]. For the dissipative tidal deformability ̃Ξ, we 
chose a uniform prior in [0, 8,000]. Our lower prior on ̃Ξ was set to zero 
because we excluded the possibility of anti-dissipative processes within 
each star (ΞA < 0). The upper end of the prior on ̃Ξ was set by a heuristic 
constraint on the timescale for causal momentum transport across the 
star: dissipative and viscous effects should not transport momentum 
faster than light speed13,17. The rest of our waveform parameter priors 
followed those of ref. 6.

Validating our model and statistical analysis
To check our data analysis methodology, we sampled both indepen-
dently in ΛA,B and by sampling the symmetric tidal deformability 
Λs = (ΛA + ΛB)/2, from which we found Λa = (ΛA − ΛB)/2 through the binary 
Love relations30. In the latter case, we marginalized over the uncertainty 
in the binary Love relations, following ref. 31. To quantify possible 
systematic sources of error from using a particular base waveform 
model, we considered two additional analyses for which we added the 
correction equation (1) to two different waveform models, IMRPhe-
nomPv2_NRTidal (ref. 46) and IMRPhenomD_NRTidal (ref. 47). We 
found that the differences in the predictions for ̃Ξ for all three of these 
models (IMRPhnomPv2_NRTidal with and without the binary Love 
relations and IMRPhenomD_NRTidal with the binary Love relations) 
was too small to affect our analysis of GW170817 strain data.

We performed an additional check on our methods by performing 
the same parameter estimation procedure without ̃Ξ (that is by just 
using IMRPhenomPv2_NRTidal), which confirmed that our results were 
statistically consistent with the LIGO–Virgo analysis6 of GW170817. Note 
that when we included ̃Ξ in our analysis, the marginalized posterior on 

Λs was pushed to slightly lower values compared to when ̃Ξ was excluded. 
We quantified the bias in the measurement of Λs by computing the dif-
ference between the maximum likelihood values of Λs obtained with 
and without ̃Ξ. We found that ΔΛML

s = |ΛML,with ̃Ξ
s − ΛML,without ̃Ξ

s | ≈ 46.78 .  
The half-widths of the 90% credible interval of the marginalized distri-
bution of Λs in each case were δwith Ξ̃

Λs
≈ 291.49  and δwithout ̃Ξ

Λs
≈ 381.00 .  

To conclude, the bias in the maximum likelihood of Λs is contained within 
both estimates of the statistical error.

We see from the bottom left panel of Fig. 3 that the correlation 
between Λs and ̃Ξ is the reason for the shift of the marginalized posterior 
on Λs. That is, our agnostic analysis performed by including both con-
servative and dissipative tides resulted in slightly tighter constraints 
on the maximum value of the conservative tides ΛA and ΛB than was 
obtained by the LIGO–Virgo analysis.

Finally, we performed another consistency check of our result for 
the posterior probability distribution for ̃Ξ, shown in Fig. 2, by consider-
ing different prior distributions for ̃Ξ. We used a uniform prior in ΞA/B 
to obtain the prior on ̃Ξ. We also sampled using a log-uniform prior on 
̃Ξ. In both these cases, we found that when we divided the posterior 

probability distribution, multiplied by our flat prior for ̃Ξ and renormal-
ized, we obtained a distribution statistically consistent with that shown 
in Fig. 2.

Estimating the impact of the tidal terms
To estimate the frequency and radius at which tidal effects start to 
appreciably affect the phase of emitted GWs and as another check on 
the robustness of our analysis, here we compare the leading-order 
phase contributions of the adiabatic and dissipative tides to the leading 
phase of a Newtonian binary of point particles. In particular, we com-
puted the fraction p of the tidal phase with respect to the Newtonian 
phase for both the conservative and dissipative tidal effects. We took 
the fiducial value of p = 0.025. The leading-order phase contribution 
for ̃Ξ is given in equation (1). Recall that the leading-order phasing 
contribution of ̃Λ is21

ΔΨΛ = − 117
256

̃Λ
ηsym

u5, (7)

whereas the leading-order phase contribution for a Newtonian binary 
of point particles is (for a review, see, for example, ref. 43)

Ψpp =
3

128
1

ηsym
u−5. (8)

Setting ΔΨΛ/Ψpp = p and solving for the GW frequency f (or the orbital 
radius r, using the relation u2 = GM/(rc2)), we obtained

f ≈ 467Hz( m
2.8M⊙

)
−1
( p
0.025 )

3/10
(

̃Λ
575 )

−3/10

,

r ≈ 55 km ( m
2.8M⊙

) ( p
0.025 )

−1/5
(

̃Λ
575 )

1/5

.

(9)

For the dissipative tidal effect, setting ||ΔΨ ̃Ξ/Ψpp|| = p , we solved the 
resulting transcendental equation numerically for f (or r),

− 75
32

̃Ξu8 logu = p. (10)

Setting p = 0.025, ̃Ξ = 1, 200 (based on the constraint from GW170817) 
and m = 2.8 M⊙, we found f ≈ 253 Hz and r ≈ 84 km ≈ 8RA. In other words, 
dissipative tidal effects typically become important at an earlier stage 
of the inspiral than conservative tidal effects. Note that for a fixed frac-
tion p, a larger (smaller) ̃Ξ will contribute more at a lower (higher) fre-
quency. That is, the tidal effects grow stronger as the two stars in the 
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binary move faster. When we set ̃Ξ = 1, 200 , from f ≈ 253 Hz until 
f ≈ 1,569 Hz (corresponding to the last stable orbit for an m = 2.8M⊙ 
mass binary), ΔΨ ̃Ξ accumulated 1.86 GW cycles (equation (1)). For refer-
ence, over the entire inspiral (from 10 to 1,569 Hz), ΔΨ ̃Ξ contributed  
2.5 GW cycles whereas Ψpp contributed ~6,060 GW cycles. In conclusion, 
most of the contribution from ̃Ξ was accumulated during the late stage 
of binary inspiral.

Data availability
All relevant data that supports the findings of this study, including the 
scripts we used to produce the figures in the article, are available via 
Zenodo at https://doi.org/10.5281/zenodo.11626502 (ref. 48).

Code availability
The code we used to perform our analysis is available via Zenodo at 
https://doi.org/10.5281/zenodo.11589416 (ref. 49).
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