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Abstract. Directed Acyclic Graphs (DAGs) are foundational in ma-
chine learning, causal inference, and probabilistic modeling. Recovering
the underlying DAG structure from observational data is crucial in these
areas. The DAG learning can be approached as a constrained optimiza-
tion problem with a continuous acyclicity constraint, often solved iter-
atively through sub-problem optimization. A recent breakthrough has
shown that the set of DAGs can be represented as the weighted gra-
dients of graph potential functions. Hence, one may search for a DAG
in the equivalent space, whereby the acyclicity constraint is guaranteed
to be satisfied. However, the original work, DAG-NoCurl, is limited to
(generalized) linear structural equation models (SEMs) where explicit
weighted adjacency matrices are defined. Herein, we theoretically derive
a nonlinear projection formulation and propose an efficient two-step non-
linear DAG learning method, which we coined DAG-NCMLP. The pro-
posed approach first obtains a non-acyclic graph and then projects it to
the equivalent space of DAGs to obtain the acyclic graph. Experimental
studies on benchmark datasets demonstrate that our proposed method
provides similar accuracy, if not better, compared to state-of-the-art non-
parametric DAG learning methods with hard-constrained optimization,
while substantially reducing the computational time.

Keywords: Causal Discovery · Structure Learning · Directed Acyclic
Graphs.

1 Introduction

Directed Acyclic Graphs (DAGs) are foundational in numerous fields, including
machine learning [19, 28], causal inference [20], and probabilistic modeling. Their
acyclic nature provides a clear directionality, making them ideal for represent-
ing causal relationships among variables within a system. Learning the DAG
structure from observational data is crucial for uncovering causal mechanisms,
making predictions, and understanding complex systems. However, the DAG
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learning problem is NP-hard, and the DAG space grows super-exponentially
with the number of variables [1]. Zheng et al. (2018) [37] proposes a continuous
DAG constraint, transforming the combinatorial optimization problem of DAG
learning into a constrained continuous optimization problem. This formulation
opens the door to employing various continuous optimization techniques from
deep learning [12, 13, 15, 16, 32].

While achieving state-of-the-art accuracy on synthetic and real data, meth-
ods developed using the continuous optimization framework with the continuous
DAG constraint face challenges in scaling to large datasets with thousands of
variables due to their time-consuming nature. One of the primary reasons for
this inefficiency is the use of the augmented Lagrangian method to enforce the
continuous DAG constraint, as proposed by Zheng et al. (2018) [37]. This pro-
cedure transforms the constrained optimization problem into a sequence of soft-
constrained optimization sub-problems, which are solved iteratively. To address
this efficiency issue, Yu et al. (2021) [34] propose a novel approach that learns
the DAG without any explicit acyclicity constraint. Their method projects the
DAGs into an equivalent set and optimizes the solution for the DAG param-
eters within this admissible set. Consequently, the DAG learning problem can
be formulated as a continuous optimization problem without an explicit acyclic-
ity constraint, avoiding the need to directly solve the constrained optimization
problem using the time-consuming augmented Lagrangian method.

While Yu et al. (2021) [34] demonstrates significant efficiency improvements,
it is built upon the linear Structure Equation Model (SEM), where parameters
are represented as a weighted adjacency matrix. This formulation cannot be di-
rectly applied to nonlinear SEMs with the non-parametric formulation, which
uses a gradient-based adjacency matrix representation. Consequently, its perfor-
mance in terms of accuracy may suffer when applied to complex nonlinear SEMs.
To address this limitation, we propose applying the concept of DAG projection
to nonlinear SEMs. Specifically, we theoretically establish that an equivalent
set of gradient-based adjacency matrices exists and introduce a novel two-step
approach to optimizing the solution within this equivalent set search space. Em-
pirical studies demonstrate that our proposed approach achieves a significant
efficiency gain over other state-of-the-art nonparametric DAG learning models.

Main Contributions. This paper presents three contributions. 1) We theoretically
derive a non-parametric projection formulation for gradient-based adjacency
matrices, thereby extending the projection framework’s applicability beyond
weighted adjacency matrix representation. 2) Building on this non-parametric
projection formulation, we introduce a two-step DAG learning approach, re-
ferred to as DAG-NCMLP. 3) We empirically demonstrate the effectiveness of
our proposed project-based nonparametric DAG learning algorithm on bench-
mark synthetic and real datasets. Our method significantly enhances computa-
tional efficiency while maintaining comparable accuracy to state-of-the-art DAG
learning methods.
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2 Related Work

The gold standard for establishing causality between variables in an intelligent
system is intervention through controlled experiments. However, conducting such
experiments is often impractical due to cost or feasibility constraints. As a result,
recent studies have focused on recovering causal relationships solely from obser-
vational data. Causal discovery involves identifying causal relationships among
a set of random variables in the form of DAGs using observational data.

The traditional causal discovery algorithms can be broadly categorized into
two groups: constraint-based methods and score-based methods. Constraint-
based methods estimate the DAG by conducting independent tests between
variables. Popular algorithms in this category include PC [27], FCI [28, 36], and
IC [21]. On the other hand, score-based methods involve pre-defining a score
function and searching the DAG space for a DAG with the optimal score. The
differences among score-based methods lie in their search procedures, which can
include hill-climbing [9, 30], forward-backward search [1], dynamic programming
[26], A∗ [35], and integer programming [2, 11]. Other widely used DAG learning
methods include topological order-based search [4, 6, 25, 29] and sampling [3, 5,
7, 8, 14, 18, 31].

Structure equation model-based methods encode statistical and causal de-
pendencies through SEMs. Zheng et al. (2018) [37] introduced a continuous
DAG constraint and the NOTEARS algorithm, which reformulates the origi-
nal combinatorial DAG learning problem as a constrained continuous optimiza-
tion. This conversion enables the use of continuous optimization techniques, as
demonstrated in subsequent works such as [12], [15], and [32]. Since then, several
studies have extended the continuous DAG-constrained optimization formulation
from linear models to nonlinear and nonparametric models [6, 13, 32, 38]. To ad-
dress the efficiency issues in these methods arising from the time-consuming
augmented Lagrangian method used to enforce acyclicity, Ng et al. (2020) [16]
and Yu et al. (2021) [34] have investigated learning frameworks that do not re-
quire an iterative process. Ng et al. (2020) [16] proposes training the framework
with a soft acyclicity constraint, while Yu et al. (2021) [34] suggests projecting
the DAG into an equivalent set that guarantees acyclicity. However, both works
focus on the linear SEM setting. To the authors’ best knowledge, this paper is
the first attempt at developing an efficient continuous optimization approach
without the iterative process for the nonlinear SEM setting.

3 DAG Projection under Nonparameteric SEM

In this section, we provide the theoretical results of the DAG projection frame-
work under the nonlinear SEM. These theoretical results will serve as the fun-
damental for developing the proposed algorithm in Section 4. With basic and
necessary concepts introduced in Section 3.1, our theoretical contribution will
be entailed in Section 3.2.
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3.1 Preliminary

Nonlinear SEM. Let X denotes a set of d numbers of random variables, X =
(X1, · · · , Xd) ∈ Rd. The causal relations between a variable Xj ∈ X and its
parents can be modeled via SEM:

Xj = fj(Xπj ) + Ej , j = 1, 2, · · · , d (1)

where fj(·) is the nonlinear structural causal function. Xπj
are the parent vari-

ables of Xj . Ej is the exogenous noise variable corresponding to variable Xj .
Together they account for the effects from all the unobserved latent variables
and are assumed to be mutually independent [22].

DAG Learning under Nonlinear SEM. To learn a DAG G from a given joint
distribution, X is modeled via SEMs defined by a set of continuous parameters
A = (A1, A2, · · · , Ad) that encode all the causal relations, as outlined in Eq. (2),

Xj = fj(X;Aj) + Ej , j = 1, 2, · · · , d (2)

where Aj are the parameters in the nonlinear SEM for selecting parent vari-
ables Xπj

for variable Xj . Similar to prior works [38, 13], we employ neural
networks, in particular MLPs, to parameterize the nonlinear causal functions
f = (f1, f2, · · · , fd). For fj , we have

fj(X;Aj) = A
(H)
j σ

(
· · ·σ

(
A

(2)
j σ(A

(1)
j X)

)
· · ·

)
(3)

where Ah
j represents the parameters for hth layer in the MLP for Xj . We denote

Aj := (A
(1)
j , A

(2)
j , · · · , A(h)

j , · · · , A(H)
j ). Since A in the nonlinear SEM is not a

weighted adjacency matrix with d by d dimensions, the DAG learning formula-
tion that satisfies Eq. (2) and Eq. (3) is also known as nonparametric SEM
according to [38]. We denote the A in the nonlinear SEM as the gradient-based
adjacency matrices. We encode the causal dependencies in the first layers of
MLPs, i.e., A

(1)
1 , A

(1)
2 , · · · , A(1)

d . We can obtain a weighted adjacency matrix

W (A) ∈ Rd×d using the first layer weights, i.e., W (A)[k, j] =
√∑

b(A
(1)
j [b, k])2.

If there exists a causal link from variable Xk to Xj , then W (A)[k, j] > 0. Oth-
erwise, we have W (A)[k, j] = 0 and equivalently A

(1)
j [b, k] = 0 for all b.

Given n observations of X, denoted as input data matrix Xd×n, the DAG
learning problem can be formulated as follow

A∗ = argmin
A

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i);Aj)

)
subject to h(W (A)) = 0

(4)

where X(i) ∈ Rd is the ith observation of variables X. Xj(i) is the ith observation
of variable Xj . h(W (A)) = tr(eW (A)◦W (A))− d = 0 is the continuous acyclicity
constraint following [38]. L(·) is the least squared loss.
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The SEM we employ in Eq. (2) has following assumptions: firstly, f =
(f1, f2, · · · , fd) represents a set of nonlinear causal functions; and secondly,
E1, E2, · · · , Ed are independent noise variables. According to [23], given a distri-
bution over random variables p(X), a unique causal graph G can be identified.

We then briefly introduce notation for graph calculus in the following section.

Graph Calculus: Let Ĝ = (V,E) be a complete undirected graph where
V := {1, · · · , d} is the set of vertices and E is the set of undirected edges. On
each vertice, there is a real-valued function f : V → R, which is also known as
the potential function. We denote the space of all potential functions as L2(V ).
We also define real-valued functions on edges E = {(i, j), i, j ∈ V } with the
requirement that these functions are alternating, i.e., E[i, j] = −E[j, i]. We
denote the space of all alternating edge functions as L2

∧(E). Here we note that
p ∈ L2(V ) corresponds to a real vector p = [p(1), · · · , p(d)] ∈ Rd, and any
Y ∈ L2

∧(E) corresponds to a skew-symmetric real matrix Y ∈ Rd×d with [Y ]ij =

Y [i, j] and Y = −Y T . We will use the same letter to denote a vector/matrix
and the corresponding function on vertices/edges. We introduce graph calculus
operators gradient, divergence, and the graph laplacian in Definition 1.

Definition 1. The gradient (grad : L2(V ) → L2
∧(E)) is an operator defined on

any function p on vertices:

(grad p)[i, j] = p(j)− p(i), ∀(i, j) ∈ E

The divergence (div : L2
∧(E) → L2(V )) is defined on any alternating function Y

on edges:

(div Y )(i) =
d∑

j=1

Y [i, j], ∀i ∈ V.

The graph Laplacian (△0 : L2(V ) → L2(V )) is an operator on any function p
on vertices:

(△0p)(i) = −(div grad p)(i) = dp(i)−
d∑

j=1

p(j), ∀i ∈ V.

Given a function Y ∈ L2
∧(E), with ReLU denoting the rectified linear unit

function, we can find a weighted adjacency matrix ReLU(Y ) ∈ Rd×d as:

ReLU(Y )[i, j] =

{
Y [i, j], if Y [i, j] > 0,

0, else,

We define a weighted directed graph GReLU(Y ) from ReLU(Y ) in Definition 2:

Definition 2. Consider a complete undirected graph Ĝ(V,E) and Y ∈ L2
∧(E), a

directed graph GReLU(Y )(V,EReLU(Y )) is defined such that there is a directed edge
from vertex i to vertex j in GReLU(Y ) if and only if Y [i, j] > 0, i.e., the set of
directed edges EReLU(Y ) = {(i, j)|Y [i, j] > 0}. ReLU(Y ) is a weighted adjacency
matrix of GReLU(Y ).
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Building on Definition 1 and Definition 2, [34] offers an equivalent representa-
tion of a DAG under linear SEM, whereby a DAG G with d nodes is characterized
by a weighted adjacency matrix W ∈ Rd×d. This formulation is supported by
Theorem 1 as presented in [33, 34].

Theorem 1. [33] For any weight matrix S ∈ Rd×d and potential function p ∈
L2(V ), S ◦ ReLU(grad(p)) is the weighted adjacency matrix of a DAG. On the
other hand, let W ∈ Rd×d be the weighted adjacency matrix of any DAG with
d nodes, then there exists a weight matrix S ∈ Rd×d and a function p ∈ L2(V )
such that W = S ◦ ReLU(grad(p)). Hence, {GS◦ReLU(grad(p))} is equivalent to
the DAG space.

3.2 An Equivalent Model for DAG

Theorem 1 can only be applied to linear SEMs because it requires the usage of
the square-weighted adjacency matrices. Our key theoretical contribution is
to derive the equivalent theorem in Theorem 2 for nonlinear (nonpara-
metric) SEMs to remove this limitation and handle the gradient-based
adjacency matrix representation in Eq. (3).

Theorem 2. The acyclicity holds for the neural network formulation in Eq. (3)
if and only if there exists a function p ∈ L2(V ) and weight matrices Sj ∈ Rm1×d,
j = 1, · · · , d, such that

A
(1)
j [b, k] = Sj [b, k] ReLU(grad(p))[k, j]. (5)

Here m1 is the number of hidden units in the first layer of MLP.

Proof. As shown in [38], W (A)[k, j] =
√∑

b(A
(1)
j [b, k])2 encodes the dependency

structure amongst the Xj and the neural network formulation in Eq. (3) satisfies
the acyclicity constraint if and only if W (A) is acyclic. Assuming A

(1)
j satisfies

Eq. (5) for all j, we note that

W (A)[k, j] =

√∑
b

(Sj [b, k])2 ReLU(p(j)− p(k)) = S̃ ◦ ReLU(grad(p)),

where S̃[k, j] =
√∑

b(Sj [b, k])2 and S̃ ∈ Rd×d. Theorem 1 then immediately in-
dicates that W (A) is acyclic. On the other hand, if W (A) satisfies the acyclicity
constraint, Theorem 1 guarantees that one can find S̃ ∈ Rd×d and p ∈ L2(V )
satisfying

W (A)[k, j] =S̃[k, j] ReLU(p(j)− p(k)).

Notice that when ReLU(p(j)−p(k)) = 0, we have W (A)[k, j] =
√∑

b(A
(1)
j [b, k])2 =

0 and hence A
(1)
j [b, k] = 0 for all b ∈ {1, · · · ,m1}. Therefore Eq. (5) can be

satisfied by setting

Sj [b, k] =

{
0, if p(j) ≤ p(k)

A
(1)
j [b,k]

p(j)−p(k) , if p(j) > p(k).
(6)
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The dependency structure W (A) obtained by performing projection is a non-
maximum acyclic graph that minimizes ∥W (A)− S̃∥2.

Let C(M) denote the connectivity matrix [17] of a directed graph M such
that [C(M)]ij = 1 only if a directed path exists from vertex i to vertex j.
Theorem 3 provides an efficient approach to calculate p and Sj from A:

Theorem 3. Let A be a set of parameters in Eq. (3) which satisfying the
acyclicity constraint, then

p = −△†
0 div

(
1

2
(C(W (A))− C(W (A))T )

)
, (7)

preserves the topological order in W (A) such that p(j) > p(i) if there is a di-
rected path from vertex i to j. Here † denotes the Moore-Penrose pseudo-inverse.
Moreover, with Sj defined in Eq. (6) we have

A
(1)
j [b, k] = Sj [b, k] ReLU(grad(p))[k, j]

We refer interested readers to Appendix A for a detailed proof.
Theorem 2 and Theorem 3 allow us to find the equivalent search space

for the gradient-based adjacency matrix representations in Eq. (3). We intro-
duce a two-step DAG learning algorithm that optimizes parameters within the
equivalent search space, thereby circumventing the need for enforcing the com-
putationally intensive acyclicity constraint.

4 Proposed Algorithm: DAG-NCMLP

Guided by theoretical insights from Theorem 2 and Theorem 3, we propose
a nonparametric project-based DAG learning algorithm, named DAG-NCMLP,
which employs MLP as the gradient-based weighted adjacency matrix repre-
sentation. To avoid the strict enforcement of the DAG constraint, we propose
learning the neural network parameters, S and the potential function p, instead
of directly optimizing a gradient-based weighted adjacency matrix representa-
tion A that must satisfy the DAG constraint. Given the increasing complexity
of optimizing both S and p, we employ a two-step procedure. In Step 1, we
derive an initial solution Â without strictly adhering to the DAG constraint.
This step aims to obtain a good initial solution from which a stable, informative
estimate of the potential function, ppre, can be extracted. In Step 2, we focus on
optimizing S and p, guided by ppre, to ultimately learn the optimal DAG. The
algorithm is outlined in Algorithm 1. We will detail each step as follows.

Step 1. This step aims to yield an estimation of A that produces a stable and
preferably informative potential function p. To obtain such an initial estimate,
we propose to solve a penalized formulation of the original constrained opti-
mization problem as shown in Eq. (10), by employing the standard augmented
Lagrangian method and gradually increase the penalization parameter ρ. In-
stead of continuing the iterative procedure till convergence as in the original



8 N. Yin et al.

augmented Lagrangian, here we only solve the sub-optimizations for a few iter-
ations. As a result, the solution is not guaranteed to fully satisfy the acyclicity
constraint. To be more specific, we denote the objective function in Eq. (10) as
Lρ(A, α). Initially, we update the penalization parameter ρ by gradually increas-
ing its value while holding (α,A) constant. Then, we update α using Eq. (8) for
K = 5 iterations. For each pair of given ρ and α, we solve the sub-optimization
problem in Eq. (9) for T = 10d iterations4. Further details of the choices of K
and T can be found in Section 5.

αk+1 = αk + ρk+1h(W (Ak)). (8)

Ak+1 = argmin
A

Lρk+1
(Ak, αk+1) (9)

DAG-NCMLP utilizes a distinct Step 1 procedure compared to [34]. In [34], the
optimization is solved with fixed values of α and ρ, akin to the augmented La-
grangian method with only one step of optimization. This approach is sufficient
to yield a stable potential vector p under linear SEM with simple linear relation-
ships between variables. However, for nonlinear models, solutions obtained with
fixed coefficients are often inadmissible for estimating the potential function.

Step 2. This step aims to optimize the parameters S and p within the equivalent
DAG space, using the potential function ppre derived from the initial solution
Â. After Step 1, the resulting W (Â) is typically non-acyclic since the DAG
constraint is not satisfied. To obtain a DAG solution, we first approximate the
potential function ppre using Eq. (7) from Theorem 3. Next, we derive an initial
graph solution W (Apre) in Eq. (12) by optimizing over A with ppre fixed. Finally,
we obtain the optimal DAG solution W (A∗) in Eq. (13) by jointly optimizing
over A and p. Both in Step 1 and Step 2, we apply the standard thresholding
procedure [37] to W (Â) and W (A∗), respectively. The outcome of Step 1 directly
impacts Step 2. A more accurate estimation of W pre in Step 1 results in a
better approximation of the potential function ppre. This, in turn, encodes more
accurate partial ordering information, aiding the algorithm in converging to an
accurate estimation of A∗ in Step 2c. Here we note that whether W pre satisfies
the acyclic constraint does not affect the algorithm’s ability to obtain an effective
ppre, since ppre can preserve the partial ordering information of a non-acyclic
W pre. Our proposed method involves optimizing over both A and p, with each
affecting the estimation of the other during the optimization process. Step 2b
simplifies the optimization process by fixing p to ppre, allowing A to achieve a
good initial estimation. The accuracy of A∗ obtained by DAG-NCMLP is greatly
compromised if Step 2b is omitted. We also point out that the objective functions
in Eq. (12) and Eq. (13) are non-convex. Consequently, only stationary solutions
can be guaranteed, a characteristic shared with all continuous optimization-
based DAG algorithms.

4 "Solving the sub-optimization problem for T = 10d iterations" means the optimizer
stops when it performs T = 10d gradient descent steps.
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Algorithm 1 DAG-NCMLP Algorithm
Step 1: Within fixed numbers of iterations, solve for initialization Â.

Â = argmin
A

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i), Aj)

)
+ λ||A(1)

j ||1,1

+ αh(W (A)) +
ρ

2
∥h(W (A)∥2.

(10)

Threshold W (Â) to obtain W pre.
Step 2: Obtain an acyclic graph solution W (A∗)

2a) Obtain initial guess of potential vector ppre:

ppre = −△†
0 div

(
1

2
(C(W pre)− C(W pre)T )

)
, (11)

which preserves the variable ordering of W pre.
2b) Solve for the initial guess of DAG W (Apre) with fixed potential vector ppre

and initialization Â:

Apre = argmin
{A,S}

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i), Aj)

)
+ λ||A(1)

j ||1,1 (12)

where A
(1)
j [b, k] = Sj [b, k]ReLU(ppre(j)− ppre(k)).

2c) Solve for W (A∗), p∗ with initialization Apre :

A∗, p∗ = argmin
{A,S,p}

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i), Aj)

)
+ λ||A(1)

j ||1,1 (13)

where A
(1)
j [b, k] = Sj [b, k]ReLU(p∗(j) − p∗(k)). Threshold W (A∗) to obtain W est

as output.

5 Experiments

We perform empirical evaluations on both synthetic and real data to demonstrate
the effectiveness of our proposed DAG-NCMLP algorithm in improving efficiency
while maintaining comparable accuracy.

Synthetic Datasets. We evaluate DAG-NCMLP on synthetic nonlinear datasets,
generated using the same method as in prior work [38]. The ground truth DAGs
are generated from Erdo-Renyi (ER) and Scale-Free (SF) graph models, with an
expected edge degree set to 2 and 4. The synthetic data are generated from three-
layer MLPs, which are universal nonlinear estimators, following the approach in
[38]. To demonstrate the robustness of our proposed method across different
data models, we also generate data using the Gaussian Process (GP) SEM. We
create 10 graphs for each graph setting (ER2-MLP, ER4-MLP, SF2-MLP, SF4-
MLP, ER2-GP, ER4-GP, SF2-GP, and SF4-GP), and test with varying numbers
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of variables d = 10, 20, 40, 50, 100. For each setting, we simulate 10 trials with
n = 1000 i.i.d. data observations.

Real Dataset. We further assess the performance of DAG-NCMLP using real-
world flow cytometry data from Sachs et al. (2005) [24] for modeling protein
signaling pathways. The dataset comprises continuous measurements of 11 phos-
phoproteins in individual T-cells. We specifically selected 853 observations corre-
sponding to the first experimental condition outlined in Sachs et al. (2005) [24]
as our dataset D. For our reference graph (ground truth), we utilize the pro-
vided DAG, which consists of 11 nodes and 17 edges. It is important to note
that this consensus graph may not provide a comprehensive or entirely accurate
representation of the system under study.

Evaluation Metrics. We employ the Structural Hamming Distance (SHD) and
runtime to evaluate the accuracy and efficiency of the estimated DAGs respec-
tively. We report the average SHD with its standard deviation across 10 trials,
and the average time (in seconds) with its standard deviation in Table 1, 2,
and 3. The SHD metric we use doesn’t consider Markov Equivalence since the
non-linear SEM in our formulation is fully identifiable.

Baselines. We mainly compare our method with following SEM-based baselines:
GraN-DAG [13], DAG-GNN [32], GS-GES[10] and NOTEARS-MLP [38]. We use
the default parameters for these baselines. For the baseline NOTEARS-MLP,
we use the hyper-parameters that are reported in Zheng et al. (2020) [38]. The
experiments for all the baselines and the proposed method, DAG-NCMLP are
computed on a computing node with twenty 3.1 GHz CPU cores5.To provide
a more comprehensive comparison, we also compared causal discovery methods
from different categories, including MMHC [30] and DAG-NoCurl [34] and show
the empirical results in Appendix B.

The choice of K and T . The hyperparameters K and T control the accuracy of
the potential function ppre, and consequently, the accuracy of the final output
DAG. Ideally, we want to select relatively small values for K and T to enhance the
algorithm’s efficiency by reducing the number of optimization steps. However, K
and T should also be large enough to allow ppre to capture as much information
as possible. A reasonable approach to selecting the hyper-parameters K,T is
through empirical evaluation. The K,T are empirically selected on ER2 datasets
when values of p do not change substantially (note that we do not use accuracy
or SHD as the selection criterion). We observe that the algorithm performance
is not sensitive to the values of K,T , Hence we fix the values of K = 5 and
T = 10d.
5 Due to the complexity of the neural networks used in methods like DAG-GNN and

GraN-DAG, these models are typically run on a GPU to reduce runtime. However,
to ensure a fair comparison of efficiency, we run experiments for these two baselines
on a CPU, as with the other baselines. GPU acceleration is a standard technique
and not a unique contribution of these two baselines; it can be applied to all the
algorithms, including our DAG-NCMLP.
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5.1 Empirical Results on Synthetic Data

Table 1. Comparison of Different Algorithms on Nonlinear Multi-Layer Perceptron
Synthetic datasets: results (mean ± standard error over 10 trails) on SHD and Run
time(in seconds), where bold number s highlight the best method for each case.

ER2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 15.0 ± 6.0 13.3 ± 5.5 10.5 ± 3.9 5.7 ± 3.2 5.5 ± 2.5
20 22.7 ± 1.8 25.7 ± 3.6 19.4 ± 5.6 13.0 ± 3.8 13.5 ± 4.0
40 57.5 ± 8.6 56.1 ± 6.7 40.5 ± 9.5 27.7 ± 5.1 27.8 ± 5.8
50 68.9 ± 13.3 65.8 ± 7.8 50.6 ± 8.4 36.0 ± 9.7 36.9 ± 10.3
100 > 60h 144.8 ± 7.1 > 60h 77.3 ± 4.0 80.5 ± 6.0

SF2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 9.0 ± 4.5 9.5 ± 3.4 8.5 ± 3.2 1.9 ± 1.2 2.2 ± 1.1
20 19.7 ± 2.1 22.9 ± 3.4 22.7 ± 4.4 8.0 ± 3.2 7.8 ± 2.9
40 48.6 ± 4.6 52.4 ± 3.1 51.3 ± 7.0 18.9 ± 6.5 18.5 ± 6.2
50 52.3 ± 11.9 58.6 ± 6.5 65.1 ± 5.6 24.5 ± 6.2 25.5 ± 5.5
100 > 60h 149.2 ± 7.6 149.5 ± 7.2 81.4 ± 9.9 79.0 ± 7.1

ER4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 22.4 ± 4.8 27.1 ± 3.4 24.10 ± 7.1 8.0 ± 1.9 9.9 ± 2.4
20 71.2 ± 16.2 65.5 ± 8.1 50.2 ± 9.7 29.1 ± 4.7 32.7 ± 7.1
40 96.7 ± 18.4 130.4 ± 10.2 87.7 ± 12.8 47.7 ± 9.3 55.0 ± 25.9
50 121.0 ± 16.9 161.1 ± 10.8 115.70 ± 21.8 68.7 ± 14.0 70.9 ± 15.3
100 > 60h 332.2 ± 12.6 > 60h 134.5 ± 13.4 144.1 ± 38.0

SF4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 14.0 ± 1.5 18.1 ± 3.3 18.3 ± 5.6 3.5 ± 2.3 4.8 ± 2.9
20 29.7 ± 2.1 48.2 ± 5.5 44.3 ± 3.9 12.4 ± 4.2 12.4 ± 4.1
40 78.6 ± 4.2 119.9 ± 6.8 111.0 ± 7.2 47.2 ± 5.5 48.7 ± 6.5
50 132.3 ± 11.0 158.6 ± 6.5 148.3 ± 7.6 62.1 ± 21.2 77.7 ± 17.4
100 > 60h 323.1 ± 9.6 > 60h 211.1 ± 11.8 202.0 ± 10.8

ER2: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 2.6e3 ± 5.2e3 6.6e2 ± 2.3e2 3.1e2 ± 5.3e1 3.1e2 ± 1.1e2 1.2e2 ± 6.0e1
20 2.5e3 ± 5.8e2 1.5e3 ± 2.3e2 1.5e3 ± 1.2e2 7.6e2 ± 1.4e2 3.9e2 ± 8.6e1
40 8.6e3 ± 1.8e3 8.0e3 ± 1.9e2 6.8e3 ± 1.4e3 1.6e3 ± 2.2e2 1.1e3 ± 2.1e2
50 1.4e4 ± 1.5e3 1.2e4 ± 1.1e2 1.0e4 ± 9.4e2 8.5e3 ± 2.3e3 1.6e3 ± 3.9e2
100 > 60h 2.0e4 ± 6.4e2 > 60h limit to 60h 6.5e3 ± 1.3e3

SF2: Run Time
d GraN-DA DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 1.2e3 ± 1.3e2 1.1e3 ± 1.7e2 2.6e2 ± 2.7e1 2.4e2 ± 8.2e1 7.5e1 ± 3.5e1
20 4.6e3 ± 1.7e3 1.2e3 ± 2.2e2 1.1e3 ± 1.4e2 1.8e3 ± 3.9e2 3.4e2 ± 5.9e1
40 1.5e4 ± 1.3e4 3.2e3 ± 2.8e2 4.4e3 ± 3.9e2 2.8e3 ± 6.6e3 1.1e3 ± 1.3e2
50 2.2e4 ± 5.2e2 2.1e4 ± 1.5e2 7.0e3 ± 5.0e2 4.5e3 ± 1.2e3 1.8e3 ± 5.3e2
100 > 60h > 60h > 60h limit to 60h 9.3e3 ± 2.7e3

ER4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 1.2e3 ± 2.3e2 8.6e2 ± 8.2e1 6.7e2 ± 3.6e2 1.2e3 ± 4.4e2 1.5e2 ± 9.2e1
20 7.1e3 ± 8.2e2 9.6e2 ± 7.5e1 5.5e3 ± 9.9e3 2.7e3 ± 6.8e2 6.4e2 ± 2.7e2
40 7.6e3 ± 1.0e3 7.2e3 ± 9.7e2 9.6e3 ± 2.1e3 7.4e3 ± 1.6e3 1.5e3 ± 2.5e2
50 1.9e4 ± 7.8e2 2.1e4 ± 2.1e2 1.9e4 ± 2.1e2 1.0e4 ± 2.1e3 2.3e3 ± 4.6e2
100 > 60h > 60h > 60h limit to 60h 7.4e3 ± 2.2e3

SF4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 1.2e3 ± 1.8e2 8.4e2 ± 1.1e2 3.2e2 ± 3.2e1 8.4e2 ± 3.7e2 1.2e2 ± 4e1
20 1.3e3 ± 2.7e2 8.2e2 ± 1.5e2 1.3e3 ± 1.8e2 1.5e3 ± 4.4e2 3.6e2 ± 9.9e1
40 9.8e3 ± 1.5e2 7.8e3 ± 1.9e2 5.4e3 ± 5.8e2 8.4e3 ± 3.7e2 1.3e3 ± 3.2e2
50 2.2e4 ± 6.8e3 1.6e4 ± 2.0e3 9.1e3 ± 1.9e3 6.8e3 ± 3.3e3 2.7e3 ± 6.7e2
100 > 60h > 60h > 60h limit to 60h 7.1e3 ± 8.6e2

In Tables 1 and 2, the top four sub-tables present the accuracy results in
terms of the SHD. The bottom four sub-tables display the computational effi-
ciency measured in CPU runtime in seconds. Given the complexity of the data,
we imposed a 60-hour time limit for each method and then evaluated the inter-
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Table 2. Comparison of Different Algorithms on Nonlinear Gaussian Process Syn-
thetic datasets: results (mean ± standard error over 10 trails) on SHD and Run time(in
seconds), where bold number s highlight the best method for each case.

ER2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 12.3 ± 1.5 17.3 ± 0.9 9.6 ± 2.4 7.2 ± 2.1 7.5 ± 2.2
20 34.3 ± 8.8 36.0 ± 1.7 19.3 ± 6.5 30.0 ± 0.7 30.5 ± 10.8
40 48.4 ± 4.4 73.2 ± 2.1 33.7 ± 10.0 43.2 ± 7.2 42.7 ± 7.9
50 71.2 ± 12.4 93.1 ± 3.1 47.8 ± 8.2 62.1 ± 9.6 62.2 ± 8.9
100 > 60h 185.6 ± 3.7 94.5 ± 7.3 125.7 ± 2.5 128.3 ± 3.3

SF2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 16.4 ± 2.0 15.4 ± 0.9 11.4 ± 3.7 7.5 ± 1.9 7.7 ± 2.3
20 33.1 ± 5.4 34.8 ± 1.2 31.2 ± 3.9 28.6 ± 2.7 29.1 ± 4.4
40 62.3 ± 6.5 72.4 ± 1.6 64.8 ± 6.7 58.6 ± 5.0 58.7 ± 4.5
50 94.8 ± 10.8 91.7 ± 2.3 82.1 ± 8.2 77.0 ± 4.4 79.0 ± 5.0
100 > 60h 185.8 ± 1.4 > 60h 171.2 ± 2.1 173.0 ± 3.3

ER4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 20.8 ± 3.8 38.3 ± 1.1 32.3 ± 2.6 19.3 ± 3.4 21.1 ± 2.7
20 68.1 ± 9.7 78.7 ± 1.0 60.5 ± 3.6 56.4 ± 4.2 56.3 ± 4.3
40 154.9 ± 7.0 140.8 ± 4.7 119.0 ± 7.2 138.1 ± 6.0 138.2 ± 9.0
50 186.6 ± 16.2 195.7 ± 1.7 154.9 ± 5.6 188.3 ± 12.7 189.5 ± 15.4
100 > 60h 391.0 ± 2.7 309.0 ± 9.9 350.7 ± 2.1 354.3 ± 4.2

SF4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 27.1 ± 4.4 28.8 ± 1.0 24.3 ± 2.7 15.1 ± 3.1 16.1 ± 3.9
20 63.1 ± 1.9 68.2 ± 1.2 61.0 ± 4.0 60.7 ± 2.3 60.5 ± 2.4
40 139.9 ± 6.1 145.8 ± 1.7 133.4 ± 2.8 129.4 ± 4.0 131.1 ± 4.3
50 184.6 ± 4.2 185.1 ± 1.4 169.8 ± 6.5 171.8 ± 4.5 170.4 ± 4.4
100 > 60h 379.2 ± 3.2 > 60h 351.7 ± 4.1 356.0 ± 5.0

ER2: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 5.3e2 ± 7.5e1 5.3e2 ± 3.7e1 1.8e2 ± 1.8e1 1.7e2 ± 7.8e1 6.5e1 ± 1.6e1
20 7.6e2 ± 7.7e1 5.5e2 ± 4.7e1 8.0e2 ± 9.0e1 1.1e3 ± 2.7e2 7.8e1 ± 1.9e1
40 2.1e3 ± 1.4e2 6.6e2 ± 3.2e1 4.1e3 ± 3.6e2 2.7e3 ± 7.5e2 5.4e2 ± 4.9e1
50 2.4e3 ± 2.1e2 7.6e2 ± 4.6e1 5.5e3 ± 5.2e2 4.1e3 ± 8.8e2 7.0e2 ± 4.4e1
100 > 60h 3.6e3 ± 4.1e2 2.1e4 ± 1.1e3 limit to 60h 1.2e3 ± 3.1e1

SF2: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 4.2e2 ± 3.4 4.3e2 ± 4.0e1 1.3e2 ± 1.4e1 1.6e2 ± 4.7e1 2.1e1 ± 4.5
20 9.1e2 ± 1.4e2 5.3e2 ± 2.3e1 4.9e2 ± 6.3e1 5.4e2 ± 1.7e2 8.6e1 ± 1.4e1
40 2.0e3 ± 1.7e2 6.8e2 ± 5.5e1 2.3e3 ± 2.5e2 1.5e3 ± 4.2e2 5.5e2 ± 6.2e1
50 2.8e3 ± 5.2e2 8.3e2 ± 8.8e1 7.0e3 ± 5.0e2 2.8e3 ± 7.0e2 6.6e2 ± 3.2e1
100 > 60h 2.3e3 ± 1.8e2 > 60h limit to 60h 1.2e3 ± 3.0e1

ER4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 3.4e2 ± 4.4e1 5.0e2 ± 2.1e1 2.5e2 ± 4.0e1 1.5e2 ± 2.5e1 6.6e1 ± 1.1e1
20 6.8e2 ± 9.8e1 5.5e2 ± 3.5e1 9.6e2 ± 8.5e1 5.8e2 ± 1.4e2 2.1e2 ± 2.3e1
40 1.8e3 ± 1.2e2 6.9e2 ± 9.7e1 4.0e3 ± 1.7e2 2.5e3 ± 5.5e2 6.3e2 ± 1.4e2
50 2.3e3 ± 1.7e2 1.2e3 ± 3.0e2 6.3e3 ± 3.6e2 3.6e3 ± 6.2e2 1.1e3 ± 2.3e2
100 > 60h 4.2e3 ± 3.1e2 > 60h 6 6.5e3 ± 2.3e2 3.3e3 ± 2.0e2

SF4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 3.4e2 ± 3.5e1 5.0e2 ± 3.4e1 1.3e2 ± 1.2e1 2.3e2 ± 4.8e1 4.9e1 ± 9.5
20 7.0e2 ± 1.1e2 5.7e2 ± 4.2e1 5.2e2 ± 7.3e1 2.7e2 ± 9.6e1 1.9e2 ± 3.3e1
40 1.8e3 ± 1.7e2 6.9e2 ± 3.3e1 2.9e3 ± 2.4e2 1.4e3 ± 2.7e2 6.5e2 ± 4.3e1
50 2.6e3 ± 4.3e2 9.6e2 ± 2.0e2 4.7e3 ± 3.5e2 2.1e3 ± 3.7e2 8.6e2 ± 4.6e1
100 > 60h 1.8e3 ± 4.2e2 > 60h 3.9e3 ± 1.4e2 1.3e3 ± 5.7e2

mediate or final learned DAGs. The data is generated under a non-linear SEM
assumption, rendering linear SEM-based methods ineffective in capturing the
complex non-linear relationships present in the data. Consequently, we compare
our DAG-NCMLP only with baselines developed under non-linear SEMs.

Table 1 demonstrates that NOTEARS-MLP consistently outperforms other
advanced methods across most settings, aligning with previous observations. Our
proposed DAG-NCMLP method shows significant accuracy improvements com-
pared to the baselines (GraN-DAG, GS-GES, and DAG-GNN) across all graph
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settings. While DAG-NCMLP’s accuracy is comparable to NOTEARS-MLP, it
surpasses NOTEARS-MLP in accuracy in 6 out of 20 graph settings and falls
slightly behind within an acceptable range of differences in the remaining set-
tings. In terms of efficiency, DAG-NCMLP requires significantly less computa-
tional time compared to the baselines, particularly NOTEARS-MLP. It typically
completes computations in approximately half to 10% of the time required by
NOTEARS-MLP.

Despite the universal nonlinear estimation capability of the 3-layer MLP
model used to generate the synthetic data in Table 1, we aim to demonstrate the
effectiveness of our proposed methods across different nonlinear SEM assump-
tions. Therefore, we present empirical evaluation results on Gaussian Process
data in Table 2. Table 1 showcases DAG-NCMLP outperforming GraN-DAG
and DAG-GNN, achieving results comparable to NOTEARS-MLP. However, in
contrast to the results in Table 1, GS-GES outperforms NOTEARS-MLP in 8
out of 20 graph settings, achieving the highest accuracy. The differences between
the accuracy of NOTEARS-MLP and DAG-NCMLP are minimal, with SHDs of
DAG-NCMLP typically within a 2.6% variation of those of NOTEARS-MLP, ex-
cept in extreme cases. In terms of efficiency, DAG-NCMLP is significantly more
computationally efficient, requiring only 15.97% to 70.37% of the time required
by NOTEARS-MLP, with greater gains for larger d. This observation in Table 2
aligns with the findings in Table 1, demonstrating that DAG-NCMLP substan-
tially improves efficiency while maintaining comparable accuracy compared to
NOTEARS-MLP. Additionally, DAG-NCMLP outperforms other state-of-the-
art nonlinear SEM-based methods in terms of accuracy. Comparing the runtime
of DAG-NCMLP in both tables, it is faster on GP data in Table 2 than on MLP
data in Table 1. This difference is due to the simpler data generation process for
GP data, which uses fewer parameters. As a result, DAG-NCMLP finds it easier
to model the data distribution of GP data compared to MLP data.

Empirical results in Appendix B indicate that although some popular causal
discovery methods have good efficiency, however, they suffer from poor accuracy
issues. Our proposed DAG-NCMLP achieves good accuracy as the nonlinear
SEM-based baselines while significantly improving the efficiency.

5.2 Empirical Results on Real Data

Table 3 presents the results of applying the DAG-NCMLP and 4 other base-
line methods on the real dataset. The table reports the accuracy of the SHD,
the number and the ratio of correctly estimated edges, and the computational
efficiency in terms of the runtime in seconds. Table 3 shows that NOTEARS-
MLP achieves an SHD of 15 in 4.4e2 seconds, while DAG-NCMLP achieves an
SHD of 15 in 1.5e2 seconds. Two methods correctly estimate the same number
of edges. Hence, on the real dataset, DAG-NCMLP can achieve a comparable
accuracy with substantially reduced efficiency compared to NOTEARS-MLP.
This is consistent with our observation on synthetic datasets.
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Table 3. Comparison of different algorithms on Real Data: results on SHD, number
of edges, and runtime.

Dataset SHD # Correct Edges Ratio of Correct Edges Runtime
GraN-DAG 13 6/17 0.353 6.1e2
DAG-GNN 19 8/17 0.471 5.3e2
GS-GES 17 6/17 0.353 5.0e2

NOTEARS-MLP 15 7/17 0.412 4.4e2
DAG-NCMLP 15 7/17 0.412 1.5e2

6 Conclusion

In this paper, we introduce an efficient DAG learning algorithm that utilizes a
projection formulation on nonlinear SEMs, enabling better capture of complex
nonlinear relationships between variables. We theoretically derive nonlinear pro-
jection formulations for gradient-based adjacency matrix representations. Lever-
aging these formulations, we propose a novel nonlinear DAG learning algorithm,
DAG-NCMLP, designed to efficiently solve the unconstrained optimization prob-
lem inherent in the formulation and learn the DAG structure. Our empirical
results demonstrate that DAG-NCMLP significantly enhances computational ef-
ficiency, particularly in scenarios with a large number of variables. Importantly,
DAG-NCMLP achieves comparable accuracy to state-of-the-art nonparametric
or nonlinear DAG learning methods. We believe that DAG-NCMLP presents a
promising framework for DAG learning.
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