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Nontrivial features in the speed of sound inside neutron stars
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Measurements of neutron star masses, radii, and tidal deformability have direct connections to nuclear
physics via the equation of state (EoS), which for the cold, catalyzed matter in neutron star cores is
commonly represented as the pressure as a function of energy density. Microscopic models with exotic
degrees of freedom display nontrivial structure in the speed of sound (cy) in the form of first-order phase
transitions and bumps, oscillations, and plateaus in the case of crossovers and higher-order phase transitions.
We present a procedure based on Gaussian processes to generate an ensemble of EoS that include nontrivial
features. Using a Bayesian analysis incorporating measurements from x-ray sources, gravitational wave
observations, and perturbative QCD results, we show that these features are compatible with current
constraints. We investigate the possibility of a global maximum in ¢, that occurs within the densities realized
in neutron stars—implying a softening of the EoS and possibly an exotic phase in the core of massive stars—

and find that such a global maximum is consistent with, but not required by, current constraints.
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I. INTRODUCTION

One of the main goals of modern nuclear physics is to
determine the phase structure of QCD. The cold, catalyzed
nuclear matter in neutron stars probes the zero-temperature,
isospin asymmetric regime of QCD at baryon number
densities (np) ranging from subnuclear to several times
nuclear saturation density (ng, = 0.16 fm~>) in the core [1].
In this regime, first-principle QCD calculations are not yet
feasible because of the fermion sign problem [2,3], and
effective models and parametrizations of the equation of
state (EoS) are used instead.

A variety of models have been developed to compare
against astronomical observations, all of which have differ-
ent regimes of validity, advantages, and disadvantages. One
such model arises from chiral effective field theory (yEFT),
which breaks down at densities around 2ng,; [4,5]. In this
effective theory, one prescribes a general Lagrangian that
respects the symmetries of low-energy QCD (with nucleons
and pions as degrees of freedom). This Lagrangian is then
expanded order by order in two- and multinucleon inter-
actions. The low-density crust (ng < 0.5n,) and the high-
density inner core (ng = 1.1 — 1.5n4) [6,7] of neutron
stars, however, require additional modeling and assump-
tions beyond yEFT about the underlying degrees of free-
dom and relevant interactions.

Another class of models relies on mean-field approx-
imations of an effective Lagrangian with nucleon, electron,
and muon degrees of freedom. These models lead to a
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squared speed of sound c? =dp/de (where p is the
pressure and ¢ is the energy density) that increases mono-
tonically with the density (see, e.g., Refs. [8-10]). Such
behavior leads to acausal sound speeds in nonrelativistic
models at densities only a few times that of nuclear
saturation and therefore cannot be the correct description
of nuclear matter at those densities. Relativistic hadronic
frameworks also break down at high densities (np 2 6n,),
when nucleons start to overlap [11].

Yet another set of results is available from perturbative
QCD (pQCD) calculations, in which the QCD field
equations are solved perturbatively in a small-coupling
expansion. These calculations have found that at very high
densities (np = 40ny,,) ¢> — 1/3 (in units where the
speed of light ¢ = 1) from below and high-density quark
matter is approximately mass-scale-invariant, or “con-
formal” [12-14]. Astronomical observations, however,
strongly suggest that ¢2 > 1/3 in the core of neutron
stars [15], at densities in the range of 2 < ng/ny < 6. This
result indicates that ¢ must display nonmonotonic behav-
ior with increasing density,1 which has motivated searches
for evidence that deconfinement into approximately

'While exact conformal symmetry implies ¢2 = 1/3, and,
thus, that other EoS-related quantities must take on specific
values, the reverse is not a sufficient condition to establish
conformal symmetry. Indeed, it is possible for ¢2 to pass through
1/3 a number of times before eventually approaching it from
below at high densities.
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conformal quark matter occurs within densities realized in
neutron stars [16—-19].

The onset of conformal quark matter is, however, not the
only question relevant to constraining the cold nuclear EoS.
Models that include heavy resonances and exotic hadronic
phases and/or strange and quark degrees of freedom predict,
respectively, higher-order phase transitions and crossovers
and/or first-order phase transitions [1,20—40]. An Nth-order
phase transition occurs when the Nth susceptibility of the
pressure (i.e., the Nth partial derivative of the pressure with
respect to the chemical potential) presents nonanalytic
behavior (such as a discontinuous jump or a divergence).
A crossover occurs when there is no phase separation, and
the change in degrees of freedom happens gradually over
some range in density (i.e., all derivatives of the pressure are
continuous). These different types of phase transitions and
crossovers do not necessarily predict an approach of ¢? to
1/3 within neutron star densities (though it may happen at
much higher ng, well beyond the densities at which the star
would collapse to a black hole).

Different physical processes (i.e., phase transitions of
different order or crossovers) lead to unique and nontrivial
structure in c% as a function of ny (see Ref. [41] for details
and extensive examples from microphysical models).
Generally, a first-order phase transition is associated with
the onset of new degrees of freedom. In neutron stars, a
first-order transition could separate a hadronic phase from a
quark phase, for example. When a first-order phase
transition takes place, the presence of latent heat leads to
a range in the energy density ¢ where the pressure p is
constant, which appears as a plateau in c?(&) over which
c2 = 0 for a system in equilibrium. On the other hand, a
crossover (or phase transitions of higher order) is typically
associated with the emergence of a new state, new degrees
of freedom/particles, or new interactions, that occur gradu-
ally across a range of ng. These new particles or inter-
actions lead to a bump in ¢2, which may be wide (like a
positive plateau) or narrow (like a positive spike), depend-
ing on whether the crossover occurs over a wide or narrow
region in baryon density (see examples of quarkyonic
matter [24,42-44] or percolation approaches [45]).
Second-order phase transitions are associated with critical
points or, at vanishing temperatures, quantum critical
points. In this case, ¢? displays a negative spike approach-
ing zero (for an example at finite temperatures, see Fig. 2
from Ref. [46]). Higher-order phase transitions are also
possible and may occur due to exotic baryon states or new
types of interactions that could lead to a kink in ¢2 [47]. An
EoS can display one or a combination of such features
depending on the assumptions made about the relevant
degrees of freedom and interactions.

Recently, astronomical observations across the electro-
magnetic and gravitational-wave spectra have placed
constraints on the macroscopic properties of neutron stars,
such as the mass (M), radius (R), and tidal deformability

(A). These measurements have also made it possible to
indirectly infer the allowed EoS via model-to-data
Bayesian comparisons, since the EoS determines M, R,
and A as a function of central number density ng®.
Analyses typically include binary tidal deformability (A)
posteriors from the LIGO gravitational wave observations
of events GW170817 [48-50] and GW 190425 [51], the
existence of heavy pulsars [52-54] and NASA’s Neutron
Star Interior Composition Explorer (NICER) joint M — R
posteriors from PSR J0030-0451 [55] and PSR J0740 +
6620 [56] (see, respectively, Refs. [57,58] for independent
analyses of these two pulsars from a separate group within
the NICER Collaboration).

Other constraints are also available from the measured
properties of nuclei at ng,. These properties include the
symmetry energy (S = Eqyyv — Epnm), defined as the
difference in the binding energy per nucleon between
symmetric nuclear matter (SNM) and pure neutron matter
(PNM) as a function of density, and the slope parameter
(L), which determines how the symmetry energy changes
with density [59-65].

From the theory perspective, it recently became possible
to consistently extrapolate pQCD results to densities as
low as ~2.5n, [66,67]. These constraints are based on the
mechanical stability and causality of the EoS (0 < ¢ < 1)
and the consistency of the underlying thermodynamic
potential that connects the low-density regime of the
EoS to the high-density regime (240n,) constrained by
pQCD. These constraints offer information at each ng
about the region in p — ¢ that can be connected to the high-
density perturbative results via a stable and causal EoS and
a consistent thermodynamic potential. For a given EoS,
it is possible to check its compatibility with stability,
causality, and consistency constraints at any density
between ~2.5-40n,,. We will refer to these constraints
collectively as the pQCD constraints from here on.

The lack of first-principle approaches for the p-equili-
brated, zero-temperature nuclear EoS between ~1.1ng, up
to ng™ realized in neutron stars means that astronomical
observations are the only direct probe of the EoS in this
regime. Thus, model-to-data Bayesian comparisons of
generic functional forms of the EoS are the state of the
art for obtaining posterior distributions for the EoS.
Nonetheless, microscopic models are vital in providing
guidance for the behavior of functional forms of the EoS,
especially so that specific features associated with the onset
of new degrees of freedom and interactions can be correctly
identified.

The posterior distribution that is extracted from a
Bayesian analysis is sensitive to how data and theoretical
input are incorporated [68] as well as prior-imposed
assumptions about the EoS (e.g., correlations across
density scales) [69—72]. Parametric descriptions, such as
spectral expansions [73,74] or piecewise polytropes, pro-
vide a framework to represent the EoS without relying on
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microphysics models. Spectral representations of the
EoS assume the adiabatic index I'(p) as a function of
pressure can be expanded in terms of a set of spectral basis
functions and coefficients, which uniquely determine the
EoS [73-75]. Piecewise polytropes divide the EoS into a
number of segments and represent the pressure for each
segment as a polytrope, p = kp', where k and I are the fix-
ed polytropic constant and the adiabatic index, respectively
[76]. Parametric representations have been widely used,
since they do not rely on as many assumptions as physics-
based models (see, e.g., Refs. [16-18,50,55,56,76-82],
though this list is far from comprehensive). However, the
question of whether these parametrizations are flexible
enough to capture all relevant physics has recently been
raised in the literature [69,72,83]. Specifically, it has been
shown that parametrized EoS can introduce undesired
correlations across density scales [69,72] and are unable
to capture behavior consistent with state-of-the-art nuclear
physics models with exotic degrees of freedom [83].

Physics-agnostic frameworks based on Gaussian proc-
esses (GPs) offer more flexibility in the modeling of the EoS
at the cost of increased functional complexity [15,84-87].
Generally, a GP models the speed of sound as a continuous
function over a specified domain. The properties of the
probability density for the speed of sound at each point of
the domain are determined by a mean vector and covari-
ance matrix. The covariance matrix is calculated using a
specific kernel function that requires hyperparameters that
can be fixed or sampled from a hyperprior. The hyperprior
may be model agnostic or conditioned to more closely
reproduce a set nuclear physics models [87]. In principle, a
GP can be tailored to resemble any continuous function
across some domain. So far, GPs have been implemented
with a fixed set of hyperparameters for an individual
EoS [15,16,56,58,67,84—87], though priors may contain
samples drawn from mixture of multiple stationary ker-
nels, probing a wide range of potential correlation proper-
ties [15,87]. In contrast with the assumption of uniform
correlations across density scales, many state-of-the-art
nuclear physics models with exotic degrees of freedom
display multiscale correlations across various densities
[83]. Furthermore, the features that emerge in the speed of
sound as a result are known to be important for under-
standing heavy, ultraheavy (neutron stars with masses
above 2.5M ), and twin stars [41,83,88].

With that motivation, we introduce modified GPs (mGPs)
as a framework for modeling EoS with nontrivial features
that possess long-, medium-, and short-range correlations
across densities. First, we produce a family of EoS from a
benchmark model of GP EoS that contain only long- and
fixed-range correlations in c2. We then generate a family of
EoS from mGPs, which introduce multiscale correlations in
the form of nontrivial features in c2. With these two families
of EoS, we carry out Bayesian parameter estimation
analysis against observational and experimental data and

input from pQCD. The results of this analysis allow us to
compare the marginalized posteriors of the mass and radius
curve and the speed of sound and number density curve
when we use the benchmark GP model and the modified GP
to represent the EoS. We find that neither EoS family is
favored over the other by current data. We do find, none-
theless, that the marginalized posterior for the speed of
sound at densities ~1.5-2n, is not identical for EoS from
GPs compared to mGPs, although the data are not inform-
ative enough yet to discriminate between these posteriors.

The remainder of this manuscript presents the details of
the analysis summarized above. In Sec. II, we discuss GPs
as a model-agnostic framework for generating the EoS and
how we introduce multiscale correlations to the EoS with
mGPs. Section III outlines how we generate EoS priors
from the GP and mGP frameworks. Statistical methods are
discussed in detail in Sec. IV, followed by results in Sec. V
and conclusions and discussion in Sec. VI. Throughout this
manuscript, we use ¢ = 1 and the Einstein summation
convention when necessary. Thermodynamic quantities are
in centimeter-gram-second (cgs) units (unless otherwise
stated), with the exception of c2, which we always normal-
ize by .

II. GENERATING THE EQUATION OF STATE

Both the benchmark EoS model that is a standard GP
and the modified GP EoS are built from model-agnostic
GPs, which approximate functional forms of ¢? as a
function of the pressure over a fixed domain (for a more
comprehensive overview of Gaussian processes, we rec-
ommend Refs. [84,89].) We now discuss the details and
motivation for the construction of both models.

A GP provides the joint probability density for a
continuous function f(x) over a domain of interest, which
we represent here by a sample of discrete values labeled x;.
This probability density is assumed to be a multivariate
Gaussian distribution (no summation over i implied),

f(xi) = Nb"i(xi)’zij(xi)]’ (1)

where A/ (-, -) is the normal distribution function at x;, with
a mean y; that varies with x; and a covariance matrix %;;,
which gives the correlation between the values of f at x;
and x;, where i can equal j.

In the context of extracting the properties of neutron stars
from data using an ensemble of synthetic EoS, GPs have
been used to approximate the EoS from samples of func-
tional forms of ¢2 [15,84,86,87,90-92]. Because the range
of Gaussian distributions is infinite, while ¢2 is bounded by
stability and causality (0 < ¢? < 1), it is common to use the
GP to approximate an auxiliary variable that compactifies
the range of a Gaussian distribution (infinite in both the
positive and negative directions) to the range of ¢2. Let us
call this variable ¢ [73,84] and define it via

123009-3



MROCZEK, MILLER, NORONHA-HOSTLER, and YUNES

PHYS. REV. D 110, 123009 (2024)

¢ =1In(de/dp—1) =In(1/c? - 1), (2)

where p is the pressure and ¢ is the energy density. This
auxiliary variable has the desired range for a GP, but when
mapped to ¢2 using the definition above, ¢ — +oo corre-
sponds to ¢2 — 0, while ¢p - —oo corresponds to ¢2 — 1.
It is common in the literature to model ¢ as a function of
log;o p in cgs units [15,56,84,86,87,91,92]. More explic-
itly, Eq. (1) becomes

#(logiopi) :NL‘li(IOglopi)inj]- (3)

Other units and thermodynamic variables can be used
instead (e.g., Ref. [90] uses baryon density in units of
Ng,), but we will use the parametrization presented above.

A more computationally practical implementation of a
GP is to decompose it into a mean and a scatter via

¢(logyg p;) = pi(logig p;) + Liju;. (4)

where L;; is the Cholesky decomposition of the covariance
matrix plus a white-noise kernel contribution, i.e., L ,»kLZj =
%, + 6an8(x; — x;), with u; = N(0, 1) and o, a constant
white-noise variance. The white-noise kernel (the second
term on the right-hand side of the Cholesky decomposition)
is added for numerical stability, since the determinant of ;;
can be nearly singular. The effect of the white-noise kernel
is to slightly smear the GP by adding noise to the diagonal
elements of %;;. A small o, is sufficient to dramatically
increase the stability of the calculation without changing
the overall properties of the final sample. We use
6%, = 0.0003, but any other value of the same order of
magnitude would produce similar results.

Given the joint probability density for ¢, we can
construct a GP realization, or “sample,” by selecting a
range of pressures and then drawing the associated ¢ values
using Eq. (4) [64]. We then invert Eq. (2) to find ¢Z as a
function of p. The definition of the speed of sound can then
be used to specify a differential equation for the EoS,

c2(p) = dp/de, which can be solved in first quadrature as

K ®)

and then inverted to find p(e). We then obtain the baryon
density using the first law of thermodynamics, which, at
zero temperature and assuming charge neutrality, can be
written as

dl’lB ng

de e+ ple) (6)

Once these equations are solved, we have the set
{¢(p), c2(np), p(e)}, which defines an EoS sample from

a GP. In practice, we build our EoS numerically by
sampling on a finite set of pressures and baryon densities
with a sufficiently fine discretization. As pointed out in
Ref. [41], a simple check that the EoS is being recovered
correctly is to calculate ¢? from p and the reconstructed &
and check that it matches the ¢? from the GP. The EoS
samples generated through the GPs will only be used above
0.5n, [80], which we denote as the core-crust transition.
Below this density, we model the crust through the QHC19
EoS [39,93].

A. Benchmark Gaussian processes

Now that we have explained the idea behind constructing
an EoS sample from a GP, we need to specify the input for
the joint probability density function in Eq. (3). The two
main ingredients that define a GP are the means {u;},
which will determine the average trend for the function that
is being sampled, and the covariance matrix X;;, which
specifies the joint variability between two points x; and x;.

Let us first discuss how we model the means. Our
goal at this stage is to create a benchmark model ¢2(p)
without any sharp, nontrivial features. To do so, we adopt
the approach taken in Miller et al. [56], which looked at a
collection of 12 cold neutron star EoS from the CompOSE
database [94,95] on the log;yp —¢ plane, and find
that these EoS follow a linear trend over the domain
32.7 < log,op;(ergem™3) < 37. This trend was empiri-
cally approximated as

ﬂi(loglopi) =55- m(logmpi - 32-7)’ (7)

where m is the slope of the linear regression. Reference [56]
fixes m = 2 based on the spread of EoS from CompOSE.
Other choices for the means are also possible [87]. Out of
the total 12 EoS that this model is based on, seven were
purely proton, neutron, and electron matter (npe) models
[8,9,96—104]; one model included npe matter, heavy bar-
yonic resonances, and a crossover transition to quarks
(QHC18 [1,93,105]); and four models included npe matter
plus strange baryons [8,102—104,106—110]. These models
largely approach the causal limit at high densities, which
biases the behavior of the EoS in that regime. Notably,
models that predict a softer EoS at large densities, such as
quarkyonic models [24,42-45], are missing from the
collection of EoS that was used to determine Eq. (7).

To test the assumption of Miller er al. [56], we use the
relation in Eq. (7) with m =2 to create a set of EoS
samples. As shown in the top left panel of Fig. 1 (solid, thin,
gray lines), these EoS samples cluster around a mean (solid,
thick, black line). The top right panel of this figure shows
that speed of sound functional forms constructed using
m = 2 largely approach unity with increasing density. This
behavior is highlighted in the bottom panel, which shows ¢2
as a function of pressure. Note that different EoS have
different ranges in baryon density for the same range of
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FIG. 1.

The auxiliary variable ¢ = In((de/dP) — 1) as a function of log;, P in cgs units (left) and the speed of sound as a function of

baryon number density in units of ng, (right) for different parametrizations of the EoS from CMF, which include nucleons (np), D, H,
quarks (q), and leptons [109-115], the QHC19 EoS (np + q + leptons) [39], and the relativistic density-functional (RDF) approach
introduced in Ref. [116] (np 4 q + leptons). In light gray, we show a sample of 160 total functional forms for ¢ from the benchmark
GPs using the ansatz in Eq. (7) and a squared-exponential kernel with / = ¢ = 1. The functional forms from the hard and soft GP are
shown in dot-dashed and solid lines, respectively. The benchmark GPs capture a wide range of behavior, but the a priori requirement
that functional forms display only long-range correlations across densities exponentially suppresses sharp and nontrivial features in ¢2,
which are observed in state-of-the-art nuclear physics simulations.

pressure, so the range of pressures in the top left panel does
not correspond to the range of baryon densities in the top
right panel. We now contrast this set of EoS samples with a
new set, constructed from GPs with a softer mean. More
specifically, we set m = 1.6 in Eq. (7), resulting in the
functional forms shown in the top left panel of Fig. 1 (dot-
dashed, thin, gray lines). As expected by construction, the
mean of these samples has a softer slope (dot-dashed, thick,
black line). The effect of this softer mean is to reduce the
speed of sound to values largely below ~0.4 in the neutron
star range of baryon densities, as shown in the top right
panel of Fig. 1. For baryon densities larger than what we
expect in neutron stars, the distribution of speeds of sound
has a mean of 1/3 (i.e., the conformal limit), and a scatter
that leads to c2’s as large as 0.8 and as small as 0.1, as shown
in the bottom panel. From here on, we refer to the set of EoS

samples resulting from GPs with m =2 and m = 1.6 as
“hard GP” and “soft GP” respectively. Figure 1 also
presents specific realizations of nuclear physics simulations
of the EoS, but we defer a discussion of those to Sec. II B.
Why consider a soft GP when astronomical observations
seem to indicate that the conformal limit is broken at ngz ~
2ngy [7,15,56,117]?7 Our motivation is to show the effect of
softer means in the speed of sound, while at the same time
generating a new benchmark model that can be modified
through sharp features in a narrow baryon density range to
make them consistent with astronomical observations. We
will discuss such modifications in the next subsection.
Before proceeding, let us discuss two other important
modifications from the approach in Miller et al. [56]. The
highest value sampled in log;, p is 37, instead of 36 in
Ref. [56], and we use a significantly finer grid—Miller
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et al. samples 50 points, whereas we sample 100. These
modifications are necessary because our procedure allows
for softer EoS, which result in higher neutron star central
pressures. Expanding the sampled domain ensures that the
entire stable branch is captured, rather than cutting it off at
an arbitrary, smaller value. Also, since in the next sub-
section we will introduce sharp features in ¢ that lead to
rapid changes in the EoS, a finer grid is needed to keep
numerical errors under control when recovering the EoS
samples from a GP.

Let us now discuss the second ingredient that defines a
GP: the covariance matrix. We assume that X;; is a matrix
whose elements are determined through a kernel function
of the pair {x;,x;}, where x; is the point at which the
normal distribution is being sampled (i.e., in our case, x is
the log;, of the pressure in cgs units) and x; is any other
point, i.e., X;; = K(x;, x;). We further assume a squared-
exponential kernel,

ek

Kse(xi’xj) = o’ exXp |:_ 2£2

which depends only on the distance between x; and x; and
on two hyperparameters, £ and o. Specifically, £ deter-
mines the correlation length scale (e.g., when £ — 0 all
points are independent of each other), and o represents the
strength of the overall correlation (e.g., when ¢ — 0 all
points go to the mean). The benchmark models should be
smooth, meaning that £ should be compatible with longer
correlations across domain points. In addition, because of
the exponential map between ¢ and c2, a ¢ that is too large
would lead to ¢2 %0 or ¢2 ~ 1 more often. Nonetheless, ¢
should not be too small, so there is enough variability in the
EoS samples from any given GP. In accordance with Miller
et al. [56], we set [ = o0 = 1 for both the hard and soft GP
benchmark models.

Let us now consider the effect of our choice of # and o on
our EoS samples. Figure 1 shows that, in the hard GP case,
o = 1 still allows for enough deviation from the mean to
create variability in the EoS samples, without oversampling
c2 =~ 1 or c2 0. In the case of the soft GP, a 6 = 1 leads to
oversampling ¢2 ~ 0, since the mean is already at very low
values of cZ. However, for both GPs, # =1 heavily
suppresses large deviations in ¢2 from one value of pressure
to pressures in a close neighborhood, resulting in EoS
without sharp, nontrivial features. Our assumptions in the
benchmark models do not force ¢? to increase monoton-
ically; nevertheless, because £ = 1 imposes large-scale
correlations, nonmonotonic behavior is smeared out across
a wide range of densities, a feature that is consistent only
with a smooth (i.e., wide) crossover.

B. Modified Gaussian process

Are the benchmark models discussed in the previous
subsection enough to accurately represent nuclear-physics-
derived EoS? Figure 1 shows a set of EoS derived from
state-of-the-art simulations of chiral mean field theory
(CMF) models [109-114], a simulation of the commonly
used quark-hadron crossover EoS framework (QHCI19)
[39], and one example from the RDF model with density-
dependent vector and diquark couplings [116,118]. In
particular, we include in this figure CMF models with
delta resonances (D), hyperons (H), and quark (q) degrees
of freedom, where the transition to quark degrees of
freedom is a first-order phase transition (denoted CMF)
or a crossover due to an excluded volume term (denoted
CMF.,,) for two different parametrizations of the strange
vector quark couplings [115]. The RDF example included
here corresponds to the onset of a two-flavor color-
superconducting quark phase at nz = 0.287 1/fm?, the
central density of a ~1 M star in this model. As shown in
Fig. 1, exotic degrees of freedom lead to kinks, spikes, and
plateaus in ¢? that occur across short correlation lengths in
baryon density.2 None of the EoS samples drawn from
either of the two benchmark GPs is able to reproduce these
features.

This discrepancy between the benchmark GPs and
nuclear physics simulations motivates the creation of
mGP. More specifically, we wish to create a modification
to the benchmark GPs that lead to EoS samples that contain
the short-length correlation structures in the speed of sound
that are present in realistic nuclear-physics simulations,
while maintaining long-length correlation scales driven by
an overarching mean behavior. A mGP sample is built from
a benchmark GP that serves as a baseline but that is
modified through the addition of a specific feature in a
range of pressures. We do not introduce modifications
below ng, because a variety of experimental constraints
(see Ref. [60,119] for a recent review) and yEFT calcu-
lations [5] require no such structure at these low densities.

Two main reasons drive our choice to introduce mod-
ifications to a baseline GP. The first is direct control over
the functional form of ¢? at a low computational cost. Each
modification that is introduced can be directly related to a
thermodynamic process, and we have the ability to track
where and how modifications appear without any post-
processing. The second is a priori multiscale correlations in
density. We note that GPs with a fixed, but sufficiently
small correlation-length can converge to an EoS that
displays long, medium, and short correlations in density
a posteriori, in which case convergence (i.e., the posterior
credible regions are small and centered around the true EoS
at all density/mass scales) may require a large number of

’See also Fig. 2 in Ref. [83] for more examples of nuclear
physics simulations of EoS with exotic degrees of freedom and
how nontrivial features appear in the speed of sound.
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1 sharp crossover 1 smooth crossover
spike up plateau up
NUV)
0 0
1ond grger PT 174t order PT
spike down plateau down
NUU)
0 0
nB/nsat nB/nsat

FIG. 2. Drawing of ¢2 as a function of ny to illustrate different
physical features to incorporate in mGPs. A sharp crossover
corresponds to a rapid change in degrees of freedom, where c2
will first become stiffer—due to the onset of, e.g., repulsive or
excluded volume interactions—and then quickly soften with the
emergence of new degrees of freedom; this leads to a spike/sharp
bump upward in ¢? with respect to the baseline (top left). A
smooth crossover corresponds to a slower change in degrees of
freedom, which we model as a plateau upward with respect to the
baseline (top right). A second-order phase transition corresponds
to the critical point at the end of a first-order phase transition line,
leading to a very small region (approximately a point) where
¢2 = 0, which can be modeled as a spike downward with respect
to the baseline (bottom left). Last, a first-order phase transition
separates two phases with distinct densities, leading to a gap in
2, which can be represented as a plateau, or region, where ¢2 = 0
(bottom right).

samples.3 However, if the GPs are constrained to larger
correlation lengths a priori, medium- and short-range
correlations will be exponentially suppressed, and an even
larger number of samples would be required to converge to
a posterior that displays multiscale correlations [120].

In the following paragraphs, we connect the types
of modifications we introduce in the mGPs to the
phase transition phenomenology from numerical simula-
tions of nuclear physics models and general thermody-
namic arguments.

There are a few different thermodynamic phenomena
relevant to study of phase transitions. These phenomena are
illustrated in Fig. 2 as functional forms of the speed of
sound as a function of baryon number density and Table I,

It is also important to note that data may not constrain large
changes in the speed of sound over a short range in density
very strongly. That is, the likelihood for any individual event
may not be very informative, which would required many events
to get an informative joint likelihood. In that case, any tighter
credible regions derived with priors constrained to display short-
range correlations would be due to the prior rather than the
likelihood [120].

which connects the different features illustrated in Fig. 2 to
relevant physical processes and nuclear physics models. We
will now discuss each of the categories of physical
phenomena and modifications individually and draw con-
nections to Fig. 2 and Table 1.

In general, a phase transition can be continuous (also
known as a crossover) or discontinuous. If continuous, all
derivatives of the pressure are finite, i.e.,

0" p)
: # oo, 9)
<aﬂB crossover

and the pressure is an analytic function of the energy
density. If a discontinuity exists, i.e.,

al'l
( f) — 00, (10)
a:uB nth—order

the phase transition is classified through its order n. An
(nth)-order phase transition is one in which the (nth)-order
derivative of the pressure with respect to the chemical
potential at the critical baryon density ng = n;.

At vanishing temperatures, crossovers lead to a non-
monotonic peaklike behavior—i.e., a bump—in the speed
of sound (see Ref. [24] for an example and explanation of
this behavior). Mathematically, we can define the center of
this bump at 7ig, and half the range in np where this
bump occurs will be defined as 6. Then, if the peak of
the bump is centered at 71z (we make the assumption here
that 715 is centered at the middle of the bump but it does
not necessarily have to be the case), we find that at
ng = 1713, (C_%)/ ~0.

Crossovers can be further classified into smooth (see,
e.g., Ref. [24]) or sharp (see, e.g., Ref. [121]), depending
on the abruptness of the nonmonotonic behavior. A sharp
crossover is when the change in degrees of freedom
happens rapidly (as expected in quarkyonic matter models
[24,42-44,121], for instance), such that 6 < 1ng, and the
peak behavior becomes more of a “spike” (although all
derivatives of the pressure remain finite). This kind of
crossover is summarized in the top row of Table I, is
illustrated through the drawing in the top left panel of
Fig. 2, and will be represented in the mGP framework by a
spike that rises relative to the baseline. A smooth crossover
is when the change in degrees of freedom happens slowly
so that 6 > 0 is large and the peak behavior becomes more
of a “plateau” such that there is no longer a single sharp
point in baryon density where the derivative of ¢? is zero
but rather a range of ng ~ jiz such that (c2)’ ~ 0. This kind
of crossover is summarized in the second row of Table I, is
illustrated through the cartoon in the top right panel of
Fig. 2, and will be represented in the mGP framework by
constant ¢2 # 0 in a 7iz + & region. For both sharp and
smooth bumps, we define the bump as an increase of at

123009-7



MROCZEK, MILLER, NORONHA-HOSTLER, and YUNES

PHYS. REV. D 110, 123009 (2024)

TABLE L

Connection between phase transitions of different orders/crossover to corresponding physical processes in terms of the

effect on the speed of sound in equilibrium and modifications in the mGP framework. Note that a first-order phase transition has a jump

in baryon density across Ang.

Transition type Physical process

Representation in c¢? Modification

Sharp crossover Quarkyonic matter [24,42-44,121],
percolation to quark matter [39,45],
quark-meson coupling [35,122]
heavy resonances [109-115],
hyperons [47,109,123],

chiral-superfluid transition [124]

Smooth crossover

nth-order PT, n > 2

Second-order PT Critical point due to exotic

quark phases

Quark deconfinement [109,111],
color superconductivity [116,118],
color-flavor locking [26]

First-order PT

For 6 < 1, if ng = iy £ 6, Spike up, ¢Z # 0
then (c2) = £67!
if ng = fig, then (¢2)’ =0
For 6 > 0,
if ng = fig = 0, then
(e = =57
if ng ~ fig, then (c2)’ ~0

Plateau up, ¢ =0

If np = ng;, then Spike or plateau down, ¢2 # 0

d"p/duy — o

2 (ngy) =0 Spike down toward ¢? ~ 0

c2(ng) = 0 with ng € [n}, nj + Plateau down at ¢ ~ 0

Ang

least 10% compared to the original benchmark functional
sampled in the regime of 7ig £ 6.

Let us consider an example of a sharp crossover in more
detail, taking the quarkyonic model as a reference [24,121].
In this framework, the speed of sound squared is always
below the conformal value of 1/3, except in a narrow range
of densities where the crossover transition happens. The
rapid stiffening is associated with repulsive, excluded
volume interactions, followed by a softening of the speed
of sound, once quark and gluon degrees of freedom appear
in the system. A scenario like this one is equivalent to a soft
GP baseline with a spike that rises up in a small baryon
density region. Our mGP also includes more general cases
where a spike up is added to a hard GP baseline, meaning
that ¢? will not be required to stay below the conformal
value neither before nor after the crossover, since those
cases cannot yet be ruled out by the data.

Let us now consider a few examples of smooth cross-
overs in more detail. A minimal set of requirements to
create a plateau or “bump” structure is discussed in
Ref. [124], which found that in QCD this feature can be
the result of a “chiral-superfluid” transition, such as the
condensation of diquarks or dibaryons. In quarkyonic
frameworks, a plateau structure can appear when repulsive
excluded-volume terms are partially balanced by the onset
of quark degrees of freedom, which stiffen and soften the
EoS, respectively [42-44]. In the CMF model, implement-
ing an excluded-volume term for the hadrons leads to a
crossover transition to the quark phase [115]. In the quark-
hadron crossover EoS (QHC) [39], or three-window
modeling of the EoS [45], the crossover regime is con-
structed via a smooth interpolation of the hadronic and
quark regimes, which must also respect thermodynamic

constraints such as causality. Lastly, the quark-meson
coupling (QMC) class of models, which is based on
baryons that interact via the exchange of virtual mesons
between confined valence quarks, also gives rise to smooth
crossover structure in ¢2 [35,122]. Furthermore, QMC EoS
soften rapidly with the onset of hyperons, leading to ¢? <
1/3 within neutron star densities even when no quarks are
produced [35], a feature that is relevant for recent dis-
cussions on the onset of a conformal regime in the core of
massive neutron stars [16,18,67]. Scenarios like the ones
described above lead to a rounded peak structure in the
speed of sound (see Fig. 1), which can be approximated as
a plateau at some finite ¢? that rises above the baseline
EoS. We make this approximation for simplicity, given that
there is an infinite number of continuous functions that can
be constructed in the crossover regime. Although we do
not expect this approximation to affect macroscopic
observables significantly, it would be valuable to quantify
its impact in a future study, accounting for variables such
as the width and height of the peak and density depend-
ence. A smooth crossover can also be constructed phe-
nomenologically (see, e.g., Refs. [125-127]).
Discontinuous phase transitions of order higher than 2
lead to speeds of sound that resemble that of crossovers,
although technically the higher derivatives of the pressure
are not defined and the pressure is thus a nonanalytic
function of energy density. In fact, for some models, it is
still an open question whether certain phase transitions are
crossovers or discontinuous phase transitions of finite
order [47]. For this reason, we will model discontinuous
phase transitions of order higher than 2 through spikes and
plateaus in the speed of sound that dip below the baseline
but do not lead to vanishing c¢2. The inclusion of these
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features leads to a variety of nonmonotonic structure in ¢2

across some finite range in ng.

A discontinuous phase transition of order 2 is sometimes
referred to as a “critical point” (illustrated in Fig. 2, bottom
left) because it is the end point of a first-order phase
transition line. As presented in Table I, we are not aware of
any models that predict a critical point at zero temperature
for p-equilibrated nuclear matter (note that a zero temper-
ature critical point is known as a quantum critical point).
However, this possibility cannot currently be ruled out by
the data, and thus we choose to model it. At a critical point,
c2~0 only at a critical baryon density n;. In the mGP
framework, we model a critical point as a spike that dips to
low values of ¢2 (below 0.1) at a single value of baryon
density. Ideally, we want c2(ny;) = 0, but because we
reconstruct the EoS numerically, taking c2(p) to be exactly
zero at any point along the grid would cause the expression
for the energy density to become nonanalytic. Additionally,
because we add a modification to a benchmark EoS that has
the same correlation length before and after the transition,
large deviations in the value of ¢2 before and after the
transition are suppressed in the prior. However, these values
could in principle be completely uncorrelated. In future
work, our model could be improved by considering differ-
ent benchmark EoS before and after the transition.
Nonetheless, the changes introduced by a spike going to
low ¢? are significant on the & — p plane (see Appendix).

A discontinuous phase transition of order 1, also known
as a first-order phase transition, occurs when the transition
between two different phases of matter requires a nonzero
latent heat. As a result, the two phases have different
baryon densities. If the transition density is nj, then the
speed of sound displays a gap, i.e., a region where c2 = 0,
between njy and nj + Anjy. The larger the gap, the stronger
the phase transition. This description assumes that the
system is in equilibrium and a Maxwell construction was
performed to remove any metastable region. In a dynamical
system, the first-order phase transition would present as a
metastable, or spinodal, region wherein one would see
nonmonotonic behavior in c¢2(ng), ng€ [n}, nj + Anjl.
Since neutron stars are in equilibrium, a Maxwell con-
struction across the phase transition is a good assumption,
leading to a plateau in p(e) that results in a region of
cX(ng) =0, ng € [n}, ny + Anj).

First-order phase transitions arise in a variety of
nuclear-physics models, as presented in Table 1. In the
CMF framework [109,111], a first-order phase transition
results from a Polyakov loop being used to describe the
separation between the hadronic phase with deltas and
hyperons from the quark phase. The Triplets model [26]
contains sequential first-order phase transitions that sep-
arate a density-dependent relativistic mean-field model
with nucleons and hyperons phase from a two-flavor quark

color-superconducting phase (2SC) and a quark color-
flavor-locked phase. The RDF model introduced in
Ref. [118], generalized to include density-dependent
vector and diquark couplings in Ref. [116], contains a
first-order transition that separates a hadronic regime [123]
from a 2SC phase. First-order phase transitions can also be
constructed phenomenologically to separate phases from
different descriptions using nj and Ang as a variable
parameter to tune the transition density and the gap in
baryon number density between the two phases (see, e.g.,
Refs. [116,118,128—131]). Such transitions are straightfor-
ward to model with a mGP assuming a Maxwell con-
struction by replacing a portion of the baseline ¢? with a
segment for which ¢ = 0.

III. CHOICE OF PRIORS

Now that we have described how EoS are created from
the benchmark GP and the mGP models for ¢2(log;, p), we
will specify the relevant prior distributions. Generally, what
constitutes an appropriate prior will depend on the param-
eters being estimated in a Bayesian analysis. The implicit
assumptions we make by modeling the EoS from a non-
parametric framework are that (i) the speed of sound at each
sampled value of pressure, c2(p;), is an effective parameter,
and (ii) the method and the hyperparameters we choose for
generating c2(p;) dictate both the prior distribution and the
correlations across the effective parameter space.

The prior distribution that we choose is, therefore, a
statement on our prior beliefs of the allowed values of
c2(p;). When dealing with effective parameters of this type,
there are two important aspects to consider. On the one
hand, we must model a diverse set of functional forms of
c2(p;) to span a sufficiently large sample of its function
space. On the other hand, we must also ensure that this
diverse set of functional forms leads to c¢?(p;) that are
statistically consistent with astronomical observations of
neutron stars, i.e., that, to the best of our knowledge, our
prior offers a reasonable description of neutron stars.

A technical point about modeling ¢ (log,, p) using GPs
is the following. In the previous section, we have defined
crossovers and phase transitions of different orders based on
the behavior of ¢2 as a function of p or n at the transition
point (in the case of phase transitions) or in the regime
where the transition happens (in the case of crossovers).
However, the GP kernel is the same before and after the
transition density. That means that the correlation length
will be the same across all phases of matter (though we do
not explicitly model different phases). This assumption is
contrary to what we expect to happen in nature and to what
is predicted by microscopic models, which is that different
phases of matter will lead to different correlations between
thermodynamic variables due to changing degrees of free-
dom and interactions. Even so, in the context of a Bayesian
analysis, as long as the prior is sufficiently flexible to
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capture the behavior of the true EoS, assuming a stationary
kernel, i.e., one that does not change as a function of the
independent thermodynamic variable in the GP, there will
be support for the true EoS in the posterior. In future work,
one could explore a piecewise or density-dependent kernel.
We also recommend Refs. [84,87] for a discussion on GP
kernels.

In the next two subsections, we will discuss in detail the
priors on the GP and mGP hyperparameters and how we
ensure the sample size is large enough and consistent with
reliable astronomical observations.

A. Priors on GP and mGP hyperparameters

Let us first discuss the priors that we choose on the
benchmark GP hyperparameters. These hyperparameters
correspond to the correlation length (£) and correlation
strength (0) at each ¢?(p;) and the slope (m) of the mean
function y;(log,o p;). For ¢ and o, we choose delta-
function priors that fix these parameters to unity. For m,
we choose two equal-probability delta-function priors, one
peaked at m = 1.6 and one at m = 2, such that 50% of the
time the benchmark GP corresponds to a hard GP and 50%
of the time it corresponds to a soft GP.

We will now discuss the priors on the mGP hyper-
parameters. As noted in Sec. II B, the mGP model intro-
duces modifications on top of a baseline, which is modeled
through the benchmark GP. The introduction of one spike is
controlled by four hyperparameters: a true or false switch
qsp> @ spike magnitude sp, a spike direction sp, and a spike
location py,, such that ¢3(pg,) = sp if a spike is present.
Similarly, the introduction of one plateau is controlled by
five hyperparameters: a true or false switch g, a plateau
magnitude pl, a plateau direction 1;1, a plateau width in
pressure Ap,;, and a plateau starting location py,, such that
ci(p) = plfor p € [py. pp + Apy] if a plateau is present.

In this work, we will consider the introduction of one
spike, one spike and one plateau, and two plateaus.
This implies that every modification is controlled by a
choice of the hyperparameter vector h= ﬁl U 122, where
hy = {QSWqpllquIZvE.I\)’pll7p12}
spikes and plateaus are present and Ez = {sp. psp- Pl
Apuits Ppits Py Appi, pplz} determines the properties of
these modifications.

determines  whether

The hyperparameters in h2 are dependent on the choices

made for hl, so we first focus on hl The switch hyper-
parameters {¢qq,. gpi1- gpr2} determine whether a feature is
present, and thus they can only be O or 1. Similarly, the unit

vector hyperparameters {sp, pl l,ﬁlz} indicate the direc-
tion of a spike or a plateau (i.e., whether the modification
increases or decreases the speed of sound with respect to
the baseline) and can only take values of 1. We consider
the following seven configurations:

(i) i, ={0,0,0,5p, pl;, plr}. No modification is in-
troduced, and the mGP reduces to the bench-
mark model.

(i) hl ={1,0,0,+1 pll,plz} A spike is introduced
that goes either above or below the baseline.

(iii) hl ={1,1,0,£1,F 1 pl2} A spike is introduced
that goes either above or below the baseline, and a
plateau is introduced, which goes in the direction
opposite to the spike.

@iv) hy ={0,1,1,5p,+1,+1}. Two plateaus with dif-
ferent magnitude are introduced, with both plateaus
being allowed to go above or below the baseline.

We assign equal prior probability to each of these four
options, implying that 25% of our samples are from the
benchmark GPs and the remaining 75% come from the
mGPs (i.e., out of the total number of samples, 25% contain
a single spike, 25% contain a spike and a plateau, and 25%
contain a double plateau.)

The remaining hyperparameters ﬁz have specific allowed
ranges, which depend on which of the above four options
is drawn. In the single spike case (ﬁl ={1,0,0,+
1, 13\11,1;12}), we must choose the height of the spike sp
and its location py,, such that at the spike c2( psp) = sp. For
the location of the spike, pg,, we choose a flat prior with
edges at p(ng = 1.1ng) and p = 10*” ergem=>. For the
height parameter, sp, we choose different priors depending
on whether the spike goes above or below the baseline. If
the spike is up, then we choose a flat prior with edges at
sp = 1.1¢2 mark (Psp) and sp = 1. If the spike is down,
then we choose a flat prior with edges sp =0 and
sp = 0.9¢2 . hmark (Psp)- This choice of prior guarantees
that the modified speed of sound squared is never negative,
never exceeds unity, and always introduces at least a 10%
modification.

In the spike plus a plateau case (51 ={1,1,0,£1,F
1, 1; l,}), we must first choose the properties of the plateau
to guarantee that there are no spikes within the plateaus.
That is, because the plateau has a width Ap;, when
sampling the location of the spike, pg,, we must not sample
within [ppy;. ppir + Apyi]. Given the above, for the plateau
width, Apy;;, we sample on log;y Apy; from a flat prior on
the interval [0.12, 1.2], with pressure in units of ergcm™.
For the plateau location, pp;, we use a flat prior with
edges p(ng = 1.lng) and p = (10*" ergem™ — Ap,;)
to ensure the entire plateau falls within the allowed
pressure range. Thus, the range of the prior for the
location of the spike, py,, must be modified (from the
case when there is no plateau) to [p(ng = 1.1ng), ppi) U
(Ppit + Appii. 10%7 ergem™]. The prior on the plateau
magnitude, pl;, is chosen in the same way as the prior
on the spike magnitude sp (see the paragraph above),
but with one modification: instead of setting the edge at
0.9 or 1.1 of ¢y pmak(Psp)s We use 0.9 or 1.1 of
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€ penchmark (Ppi1 )- With this adjustment, the plateau always
introduces at least a 10% modification to the benchmark
from the starting point of the plateau, pp;.

In the case with two plateaus (ﬁ 1 =40,1,1,5p,+
1,+1}), we follow the same procedure as above, but with
the following modifications. After drawing a location and
width for the first plateau, we must ensure the second one is
distinct (i.e., nonoverlapping), and thus it must be placed to
the left or to the right of the first plateau. We enforce this
constraint by first drawing A p, from the same flat prior as
that used for Ap,;. We then remove Ap, from the right
side of the intervals [p(ng = l.1ng), ppi) and (pp +
Apy;.10°7 ergem™] and draw pp, from a flat prior
in the interval [p(ng=1.1ngy),pp—Appyn) U (Ppn +
Apyi,10%7 ergem™ — App]. This procedure is computa-
tionally efficient, and it guarantees the two plateaus do not
overlap.

In Fig. 3, we show examples from each of the three
groups within the mGP framework: a spike modification

(sp = %), a spike and a plateau modification [( pl;, sp) =

(£,¥F)], and a two-plateau modification [(ﬁll,ﬁlz) =
(&, £)]. In the top panel, the samples are represented by
2 as a function of log;, P, where p is in units of ergcm™,
exactly as they were generated by the mGP. We can see that
the mGP framework succeeds in introducing multiscale
correlations to the speed of sound functional form. Once
the samples are generated, the EoS p(e) is extracted by
solving the differential equation dp/de = c2(log,, p).
In the middle panel, the same samples of ¢2 are shown
but now as a function of ngz/ng,. In this panel, we also
calculate the maximal central density for a stable, non-
rotating star and denote it with a circle.

From these two panels, we can make several observa-
tions. First, note that in the middle panel the structure in ¢?
is more condensed at low densities and more spread out at
large densities, relative to the structure in the top panel. This
is because the pressure increases more rapidly as a function
of density in the outer layers of the star, where the densities
are low. As a consequence, even the smallest structure in ¢2
at low densities introduces structure over a large range of
pressures. In contrast, at higher densities, the pressure
increases slowly with respect to density. Therefore, dramatic
features in 2 at high densities translate into structure that
arises over a small range in pressures.

From this comparison, we also arrive at an important
conclusion regarding the optimal variable to sample over
when introducing modifications. As shown in the middle
panel, most stable, nonrotating stars (shown with darker
lines) will reach at most ng ~ 7ng,. The density regime
between 1 — 7ng, is precisely where structure in c¢? is
spread out over a larger interval in p. This implies that
sampling over p will allow us to resolve this structure better
than if we sampled over np, for a finite resolution. This is
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FIG. 3. Top to bottom: the speed of sound squared in units of ¢
as a function of the pressure in units of ergcm™, the speed of
sound squared in units of ¢? as a function of the baryon number
density in units of ng,, the pressure as a function of energy
density, both in units of MeV fm™3, for a representative set of
samples generated using the mGP framework. The circles in the
middle panel represent the maximal central density predicted for
a stable, nonrotating star. The squares in the bottom panel are the
corresponding maximal values for the pressure and energy
density for a stable, nonrotating star. Samples that contain a
spike are shown in pink, samples that contain a spike and a
plateau are shown in blue, and samples that contain two plateaus
are shown in green. Solid and dot-dashed lines differentiate
between different features for samples in the same category, as

indicated by the switch parameters sp, 1;1 1, and ];lz, which are
defined in Sec. III C. The mGP framework produces a diverse set
of EoS which contain multiscale correlations across densities at a
low computational cost.
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the choice, i.e., to sample in pressure, that we will make
henceforth in this paper. We also note that njg®* can only be
determined once the modifications have been sampled.
During the sampling procedure, we reject mGP EoS for
which modifications are present only above nz®*. In cases
where two modifications are sampled (e.g., a spike and a
plateau), we require that at least one modification is present
below ng®* (an example is shown in the middle panel of
Fig. 3 in solid blue).

The bottom panel of Fig. 3 displays the EoS samples on
the € — P plane, with squares denoting the maximal central
pressure and energy density for each EoS. From this panel,
it is clear that the modifications introduced in ¢2 are not
causing the EoS to significantly deviate from each other. In
fact, we see that large changes in the speed of sound
translate into rather small changes in the EoS, leading to
clustering around a region on the € — p plane.

We will now discuss in detail the role of spike mod-
ifications. Because c? is the differential of p with respect to
e, changes in ¢?(p) that span a short range in p may not
result in visible features on the p(e) plane, even if the
change in the value of ¢? at a given point in p is significant.
An example of this behavior is seen in the blue-dashed
functional form in Fig. 3. The first spike is a significant
deviation from the baseline value of ¢? as a function of both
log;o p and np, but this modification has no visible effect
on the functional form on the € — p plane. The impact of a
spike modification introduced in ¢2(p) on the correspond-
ing EoS in p(e) depends on the value of p and the value of
2 where the spike is introduced with respect to the original
benchmark value of ¢2. We discuss the interplay between
these factors in the Appendix. In summary, we find that a
spike modification can lead to changes in ¢ as large as
0O(100) MeV/fm?. Therefore, what we call a spike modi-
fication may be pointlike on the log;,(p) — ¢? plane, but it
can translate into a large modification to the EoS on the
& — p plane. However, it can also result in no visible change
at all to the EoS on the € — p plane.

A natural question at this stage is how many samples that
have a spike modification are a priori indistinguishable
from the original benchmark EoS, since these samples
would make the benchmark GP and the spike-type mGP
priors equivalent. Studying the relationship between obser-
vations and the scale of changes in p(e) is a central
component of this work. That is because how much an
observable, and thus the likelihood, changes in response to a
change in p(e) depends on the observable type, the
precision of the measurement, the individual EoS, and at
what densities the modifications are introduced. In this
work, we ask if current observations are sensitive to features
in the EoS corresponding to state-of-the-art predictions from
nuclear physics models with beyond neutron-proton-
electron degrees of freedom. These features include changes
in p(e) with respect to a benchmark model spanning a broad
range of scales, which we choose to categorize as spikes and

plateaus. To answer this question, we combine different
observation types, while accounting for their uncertainties
consistently and marginalizing over the uncertainties in the
EoS. We then check if there is a cutoff scale that emerges
from the data for the onset and/or the range over which
changes in the degrees of freedom can occur (i.e., if certain
features are favored/disfavored). Because our approach is
data driven, our priority is to sample broad range of features
and let the data determine if features can be distinguished
from each other, i.e., favored/disfavored.

One could, instead, pursue a model-based approach and
check how different modifications of ¢2(log;o p) or ¢2(ng)
translate into changes in the p(¢) EoS and, consequently,
the mass-radius or tidal deformability-compactness curves.
The downside of taking this approach is that, while one
could consider observational uncertainties, i.e., one can
argue that a modification is only relevant if it produces a
deviation with respect to the benchmark that would be
detectable taking into account current experimental uncer-
tainties, it does not make use of all available observations
and their uncertainties. Also, because the effect of a
modification on the ¢ — p plane depends on all the factors
mentioned above, systematically checking all the possibil-
ities would be a computational and analytical challenge.
Therefore, the approach taken in this work is appropriate
because it incorporates all the available experimental,
theoretical, and observational information we have on
beta-equilibrated, cold nuclear matter and allows for
adequate sampling of the features predicted by nuclear
physics models in our priors.

We stress here that Fig. 3 only shows six representative
samples of ¢2 and EoS out of the nearly one million
samples that we study in this paper.

B. Astronomical observables

We have specified a prior for the EoS, a quantity that we
cannot directly measure. Thus, we need to translate the
information carried by the EoS into astronomical observ-
ables if we wish to infer properties of the former. For each
EoS, we can calculate the mass-radius (M — R), moment of
inertia-mass (I — M), quadrupole moment-mass (Q — M),
and tidal deformability-mass curves (A — M), which
encode the properties of neutron stars of different central
densities. These properties can then be compared to
astronomical observations to determine the validity of
the EoS. In this subsection, we will discuss briefly how
these quantities are obtained, following mostly Ref. [132].
In the next subsection, we will explain how we use
astronomical observations of these quantities to inform
our prior sample size.

Millisecond pulsars rotate slowly compared to their mass-
shedding limit, and any radius corrections resulting from
rotation are significantly below measurement precision for
the NICER mission [56]. Therefore, for calculating the
mass-radius curve, we can approximate millisecond pulsars
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as nonrotating, isolated objects. The condition that a stable
nonrotating star must be in hydrostatic equilibrium yields
the well-known Tolman-Oppenheimer-Volkoff (TOV) equa-
tion. For each EoS, given a central pressure p,., the TOV
equation will describe how the mass and pressure vary with
the radial coordinate up to a limiting value, R,, where
p(R,) ~ 0. The mass of the star is given by M = M(R,),
and the stellar radius is R = R,.. By repeating this process
for multiple values of p., we get the M — R curve for a
given EoS.

At some value of central pressure, the M — R sequence
will become unstable, which occurs when dM/dp,. < 0.
This value of the central pressure marks the end of what we
refer to as the (stable) neutron star EoS and establishes a
maximal allowed value for the central pressure, pI®*,
for astrophysically realistic stars. Note that the zero-
temperature QCD EoS continues beyond p*, but we
do not expect to observe stable, isolated, nonrotating or
slowly rotating pulsars with central pressures exceeding
p2#* assuming the EoS used in the calculation is correct.
We also note that the M — R sequence can have multiple
stable branches separated by unstable regimes where
dM/dp,. < 0. When that is the case, p™* is still the
largest density corresponding to the end point of a stable
branch, but it might not correspond to the central density of
a maximally massive star for a given EoS.

Now, let us consider an isolated star that rotates with
dimensionless angular velocity €, where we have normal-
ized the stellar angular velocity by the mass-shedding limit.
We assume € is small enough that the solutions to
the Einstein equations can be expanded in powers of this
dimensionless angular frequency. Note that to O(Q) the
(t,t) and (r,r) components of the Einstein equations, in
conjunction with the stress-energy conservation equation,
yield the TOV and continuity equations. At O(Q), the
Einstein equations only modify the gravitomagnetic sector
of the metric, whose exterior behavior is characterized by
the moment of inertia 1. At O(Q?), we obtain a correction
to the total mass and to the mass distribution within the star,
which now acquires an oblate spheroidal shape due to
rotational motion. The latter is controlled by the quadrupole
moment Q. Both I and Q vary with the central density of
the star, such that we can obtain solutions for a range of
central pressures and relate them to the M — R curve to
obtain the 7 — M and Q — M curves.

Finally, we will consider a nonrotating star in the
presence of a companion compact object, which causes
the star to tidally deform. We can study the redistribution of
mass due to the external perturbation through a multipolar
expansion. The deformation at leading order in perturbation
theory is dominated by the quadrupole moment. The
quadrupolar deformation is controlled by the Love number,
or its dimensionless version, the tidal deformability A. The
tidal deformability can be calculated by solving the

linearized Einstein equations combined with continuity
and differentiability arguments. Once again, the exact
solution for A requires an EoS and is dependent on the
central pressure of the star [133]. The calculation can
be repeated for a range of central pressures to obtain the
A — M curve.

C. Prior sample size

The priors on neutron star observables, such as their
mass, radius, and tidal deformability are determined by the
prior on the EoS. But how do we know that we have chosen
a good EoS prior? For each measurement available, we
want enough samples in the prior that offer a reasonable
match to observations as predictions. Because of the
functional complexity allowed by both the GP and mGP
frameworks, we expect that most EoS generated will not
meet basic requirements based on neutron star observa-
tions. With that in mind, we use three metrics to gauge the
how well samples in the prior describe astronomical
measurements. First, we check that M, > 1.8M 4 based
on the observation of three high-mass pulsars [52-54].
Second, based on the inference of the tidal deformability of
a 1.4M star, A4, from GW170817 [134], we check that
10 < Ay 4 <£2000. Third, based on NICER’s inference of
the mass-radius posterior for PSR J0030 + 0451 [55,57],
we check that 8.0 < Ry 4 < 16.0 km. We note that these
bounds are far outside the 90% credible region for the most
constraining estimates of the maximum mass [135], radius
of a 1.4M, star [56], and tidal deformability of a 1.4M
star [134].

For every sample EoS that we draw from our GP or mGP
framework, we keep tally of whether the three checks
specified above are passed or not. We emphasize that these
metrics are not used to cut the sample size or to modify our
priors in any way. We simply track how many samples
pass these checks to ensure that we have enough strong
candidate EoS in our prior sample. In particular, we
continue drawing samples until we have obtained a subset
of at least 100,000 candidate EoS that pass all three checks.
This requires that we sample about 1,000,000 times from
the benchmark GP and mGP frameworks.

Another benefit of checking our priors in terms of
astronomical observables is that we can assign zero like-
lihood to EoS that fall outside the intervals we defined
above. This is because those sample EoS are already in
significant conflict with the observations discussed above,
and thus their likelihood will be very close to zero. We can
justify this approach as follows. Consider an observable Y
at the value y, predicted by EoS k, which we will para-

metrize in terms of a vector J;k [see Eq. (2), where here the
vector symbol denotes the 100 values of ¢ that we sample
at each point in pressure]. Let us also consider a set of N
total number of EoS, such that & is between 1 and N. Then,
the conditional probability of y, given EoS k is
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P(yk) o (](flzk)ﬁ(fﬁkl

=TT (11)
>V a(di) L)

where q(q_ék) is the prior probability assigned to EoS k and

£(q_5k) is the likelihood of the data given EoS k. Let us now
order the values of y; from smallest to largest, such that

Plyi<y<y) =) Py),  we€buy) (12)

defines the credible region delimited by y; and y,. For most
observables, only a limited domain in y; will have nonzero
likelihood. That is,

P(¥iow <Y <¥high) = D PO~ Vi€ [Viow Vhign,  (13)
k

where P(yy) = 0 for y, outside the interval [yqy, Vhign]- For
N s different observables (e.g., maximum mass, radius at
1.4M, or dimensionless tidal deformability at 1.4M ), we
then simply have an N gp,-dimensional region [yy,.,, Vhign] U

Viows Viigh) U -+ U [yiens, yﬁ‘gﬁ] outside of which we expect
P(y;) ~ 0. In our case, we consider three observables, so
the region outside of which the posterior is approximately
zero i [Mmax,low = 1'8MO’Mmax,high = OO) u [R1.4,10W =
8.0 km,R1_4‘high =16.0 km] U [A1.4,10W = 10’A1.4,high = 2000] .
We can implement the condition that the posterior is zero
outside of the above region as follows. First, we divide our
prior sample into two subsets, one for which each EoS
meets all the requirements specified above (®,), where

q)/ = {%k: Mmax,k > 18Mo AN R144.k (S [80 km, 16.0 km]
A Ay €[10,2000]1, (14)

and one for which all EoS fail at least one of the checks
(®,), such that

D=0, UD,. (15)

With this in hand, we now define the likelihood of the data
given EoS k to be E(gzk)/ = E(;ﬁk) if q?ﬁked)/, and we

define £, (Jsk) =0if Jsk € ®,.. We emphasize again that the
prior distribution remains unchanged, so this procedure is
in no way equivalent to performing cuts on the prior.
Our goal is to generate enough samples to ensure that ®,
contains at least ~100, 000 EoS. Using the M., R; 4, and
A4 checks as a guide, we generate 900,000 EoS. Out of
this total sample, 104,594 EoS passed the checks and
therefore contribute non-negligibly to the posterior distri-
bution of the observables discussed later in Sec. V. Note
that the number of samples in @, is roughly 10% of the
total number of samples generated. Based on this result, we
argue that studies using nonparametric methods, or any

method that allows for a vast functional space, should
implement similar checks, or at least verify the robustness
of results for different prior sample sizes.

IV. STATISTICAL METHODS

There should be a unique EoS that correctly describes all
neutron stars in the Universe. However, honing in on this
exact EoS would only be possible with infinitely precise
observations. A more common and realistic approach is to
obtain posteriors that describe the probability of a given
EoS by comparing its predictions against data. Using an
ensemble of theoretical models for the EoS, each with a
corresponding posterior probability, we can extract credible
regions for the EoS that occurs in nature. This method
requires us to first state our prior beliefs about the EoS,
which then get updated as we gain knowledge of the EoS
through data.

We have introduced in Sec. II two frameworks for
generating theoretical models for the EoS: benchmark GPs
and mGPs. Those frameworks reflect two different beliefs
about the EoS. The GP assumes the EoS displays long-
range correlations in pressure, resulting in smooth func-
tional forms for c¢2(p). This belief is compatible with
nuclear physics simulations for hadronic models, or
models that display a smooth crossover into an exotic
phase, where the change in the degrees of freedom happens
over a wide range in density. On the other hand, the mGP
framework assumes the EoS contains nontrivial degrees of
freedom or interactions that lead to sudden changes in
c2(p) in the form of kinks, spikes, and plateaus. These
features are predicted by many state-of-the-art nuclear
physics simulations with exotic degrees of freedom. With
these two distinct prior beliefs in mind, our goal is to assess
if one framework is better at accounting for observations
than the other.

We attempt to answer this question using a fully Bayesian
approach. In Sec. III, we detailed how we generate a prior
distribution using the benchmark GP and the mGP as
theoretical frameworks. Now, we need to discuss how we
calculate posterior distributions by incorporating constraints
on the EoS of neutron stars from astronomical observations,
controlled terrestrial experiments, and perturbative QCD
calculations,” and how we quantify each framework’s ability
to describe observations.

We begin this section with a Bayesian “primer,” where we
review a generic approach for implementing our knowledge
about the EoS into a posterior distribution and how we can
determine whether observations favor one of the EoS
frameworks over the other using the Bayes factor.
Obtaining posterior distributions requires specific choices
and assumptions for which observations and associated

*For a detailed discussion on current constraints on the QCD
EoS across different regimes, see Ref. [119].
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likelihood factors are used. Those are discussed in a
dedicated likelihood subsection. Similarly, we devote a
separate subsection to explaining how the model evidence
for the benchmark GP and the mGP are determined—a
requirement for calculating the Bayes factor.

A. Bayesian primer
Consider an EoS k which is represented by a set of values

sampled from either the benchmark GP or the mGP, g?ﬁk.
Bayes’s theorem states that the posterior probability of EoS
k is proportional to the product of a prior term and the

likelihood of the data given ¢,

Pios (1) o a(di) L), (16)

where we recall that g(¢;) is the prior probability distri-
bution encoding our prior beliefs about how likely EoS % is

to occur and we recall that the likelihood term E((;ﬁk)
reflects how well predictions from EoS k match observed
properties.

In this paper, we assume that all observations are
independent of each other, which means the likelihood of
a set of observations (i, j) for EoS model k can be written as

J(i)
7 = H[Hckm], )
i L=t

where i is a type of measurement (e.g., mass, radius) and j is
an independent measurement of type i (e.g., two indepen-
dent measurements of the mass of one object). For each of
the measurements, we must make a choice for how it will be
incorporated into the analysis via a likelihood function,
L, (i, j). We will discuss our choice of likelihood functions
and specify which measurements we include in our analysis
in the next subsection.

Let us now instead return to Eq. (16). The normalizing
factor that would make Eq. (16) an equality is called the
model evidence. The model evidence assesses the ability of
a set of prior beliefs to account for observations. In the case
of nonparametric EoS, the evidence can be defined as

_ / C(F0)a(d)d. (18)

where ®,, is the set of samples in the prior that were
generated using a specific theoretical framework m. The
goal is often to have competing frameworks such that we
can compute the model evidence for each one and then take
the ratio between them. This ratio between model evidences
is known as the Bayes factor,

fCDml 1
o, £

where m1 and m2 indicate distinct theoretical frameworks
with different equations of state in their samples (indexed
here by k; and k,). When the Bayes factor deviates
significantly from unity, it indicates that the data prefer
one model and prior over the other.

B. Likelihood

As stated in Eq. (17), we assume that all measurements
we take into account are independent and that systematic
errors can be neglected such that the total likelihood is a
product of individual likelihood factors for each measure-
ment. In particular, we will consider estimates of the nuclear
symmetry energy, the three highest reliably measured pulsar
masses, two NICER simultaneous mass and radius mea-
surements, and tidal deformability estimates from two
gravitational-wave events. Additionally, we will incorporate
a perturbative QCD weight [67], which accounts for the
behavior of the EoS at very large (~40n,) densities from
pQCD calculations. In summary, Eq. (17) can then be
written as

L(hr) = L(hi) Lotma (Bi) Lvi—r (Br) L4 (D) Woaen (1)
(20)

where S denotes the likelihood factor associated with
symmetry energy measurements, M, denotes that asso-
ciated with high-mass pulsar measurements, M — R
denotes that associated with simultaneous mass-radius
measurements, and A denotes that associated with tidal
deformability measurements. We represent input from
pQCD not as an additional likelihood factor but as a
weight, wyocp. We make this choice because the uncer-
tainty in the pQCD input stems from its poorly constrained
regime of applicability and uncertainty around the missing
higher-order term error in truncated results, in contrast to
traditional measurements with quantifiable statistical un-
certainties that can be consistently included in a Bayesian
framework. Reference [136] demonstrated that Bayesian
inference techniques can be used to quantify the uncer-
tainty in the pQCD input. However, more work is needed
to determine if these results are sensitive to the choice of
uncertainty estimation technique. Our approach for incor-
porating observational and experimental constraints on the
EoS is based on Refs. [55,56,68], while the use of pQCD
input is based on Ref. [67]. We review and discuss the most
important aspects of these approaches as they pertain to
our analysis below and refer the reader to the correspond-
ing original works for further detail.
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1. Symmetry energy

In terrestrial experiments, it is possible to probe the
T — 0 limit of dense nuclear matter with low-energy
collisions of heavy ions [119]. However, the nuclei used
in these experiments have a charge fraction (the ratio of
proton number to baryon number or, in other words,
electric charge density ng over baryon density ng) of
Yo = ng/ng ~0.4-0.5. A value of Yy = 0.5 is known as
SNM because there is an equal number of protons and
neutrons in the system. On the contrary, neutron stars are
primarily neutron rich, with Y4 ~ 0.001-0.2, thus probing
the asymmetric nuclear matter regime. PNM is the limit
where Yo = 0.

The densities probed in these low-energy heavy-ion
experiments are at or near ng,, and in that regime, experi-
ments and yEFT calculations can extract properties that are
relevant to the EoS. A nucleus is composed of Z protons
and A — Z neutrons, where A is the total number of protons
and neutrons in the nucleus. The mass of the nucleus m,
that contains A nucleons is always less than the masses of
the individual protons, m,, and neutrons, m,, summed
together, i.e.,

my < Zm,+ (A—Z)m,, (21)

because a finite amount of energy is released in the
formation of a nucleus. That difference in the rest mass
energy per nucleon is known as the binding energy and is
defined as (we remind the reader that the speed of light is
¢ = 1 in this work)

B:—[mA

L= (Zmy+ (A= 2m)).(22)

It is often assumed that the mass of the proton and
neutron are identical since their masses differ by just
over 1 MeV. Setting the neutron and proton mass to be
the same and calling this the nucleon mass for simplicity,

m, = m, = my, the above simplifies to
m E
B:f_mNEZ’ (23)

where E/A is the nucleonic energy per particle. As defined
here, the binding energy does not depend explicitly on the
mass of the nucleon because the m, dependence in the first
term of the above equation cancels the second term exactly.

The binding energy for SNM at ng, is estimated to
be B~—16 MeV from previous global analyses’ that
extracted the volume term of the liquid drop model from
a large sample of nuclei, which reported values of B =
—15.77 [137] and B = —16.24 MeV [138]. One can also
use yEFT tuned to a large number of experimentally

>Uncertainty quantification was not performed in these studies.

measured nuclei wherein one obtains B = —15.86 &+
0.57 MeV [62]. However, in this work, we assume B =
—16 MeV is exact.

The next quantity that can be measured from nuclear
experiments is known as the symmetry energy, which we
denote as S. At ng,, the symmetry energy is the difference
in total energy between the SNM and PNM limits, i.e.,

S(ngy) = %( pam — Esnm)s (24)

or, in terms of energy densities, we can write

S(ng) = L (epnm — Esnm) (25)

sat

where we can relate the energy densities to the total
energy via

e E
—=— . 2
g A+mN (26)

Neutron stars are not exactly in the limit of PNM since a
small fraction of protons exists is also present. Thus, for
asymmetric nuclear matter (ANM), where the system is at
finite value of Y, the symmetry energy can be expanded
about Y, = 1/2 to obtain

1
Sy(np)[1-2Y o]+ O[1=2Yo]* :a(SANM —esnm). (27)

where the factor of 1/2 in the Taylor expansion is
reabsorbed into the quadratic term S,(ng). The quadratic
coefficient of the Taylor expansion, S,(ng), can then be
further Taylor expanded about ng = ng,, but in this paper,
we will retain only the leading-order term in this expansion
and set S(ng) = S>(ng) in Eq. (26) (see Ref. [60] for a
derivation and further details).

We can relate the symmetry energy to the binding energy
by substituting in Eq. (26) into Eq. (27) at ny = ng, for the
esnm/ Nsar term to find

€ E
S(ng)[1 = 2Y o) ~ =2 _ [— + mN] (28)
Nga A
EANM
— N[5 . (29)
sat

In an extreme extension of Taylor expansions, however, we
will evaluate the above expression at very small Y, because
state-of-the-art yEFT models predict a value for S(ng,) and
indicate that Y, ~0.05 at ng for p-equilibrated, cold
nuclear matter [139]. Therefore, setting Y, =0, B =
—16 MeV and my = m,, = 939.6 MeV in the above equa-
tion, we obtain
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S(ng) ~ ™M _ 9236 [MeV]. (30)

sat

Given all of the above, we assume a likelihood factor
associated with the symmetry energy of the form

Ls(di) = L(So

’ Sk(nsat))

(Sk(nsat) B SO)2
2(os)?

| o

27(0g)? P [_

where S;(ng) now denotes the EoS (Zk from which the
S(ng) is obtained using Eq. (30), assuming that
epnm = €x(ng), and we take the observed value of the
symmetry energy at nuclear saturation density to be Sy =
32 MeV with a standard deviation of 63 = 2 MeV [59,60].

Future work could consider other available constraints
[60,61] on the symmetry energy. Additionally, one could
fold into the analysis the uncertainty on the value of the
binding energy, the uncertainty on the value of ng, itself,
the systematic error introduced by neglecting deviations
from exact charge fraction asymmetry (i.e., the small Y
that we set to zero in this derivation), and the slope of the
symmetry energy. The impact of uncertainties around the
binding energy, saturation density, and small deviations
from PNM at ng, mostly affect stars with masses below
1.0M [68]. A more promising direction is to include the
slope of the symmetry energy, L, which would provide
constraints when np # ng,. However, the exact value of the
slope of the symmetry energy is poorly constrained with
current theory and experiments. We also refer the reader to
Refs. [91,140], which extract from a GP prior and neutron
star measurements values for Sy, L, and the neutron skin
thickness of 2%%Pb.

2. High-mass pulsars

In principle, we could gain information about the EoS
from any neutron star mass measurement. Given a fully
parametrized model for neutron star birth and accretion and
a prior for the neutron star EoS, we could make population
predictions that can be compared to measurements.
However, due to both computational and theoretical chal-
lenges, such a complete analysis is not currently feasible.
Without any information about how stars form and accrete,
we can focus instead on the maximum mass, since any
realistic EoS must be able to support the highest reliably
measured masses. As discussed in Sec. III B, in the slow
rotation regime, the maximum mass is a function only of
the EoS. We implement a likelihood factor for EoS k given
a likelihood function for the mass of star j obtained from a
radio observation of a binary pulsar, £(M ;|M(p,)), that can
be written as

C(M,Jk) = / " o) LM, M(p))dpe. (32)

Pmin

where p,. is the central density. The prior on the central
density, g(p.), is calculated for each EoS from a distribu-
tion that is quadratic between the central density of a 1M,
star, which we denote p,,;,, and that of a maximally massive
star, poax, assuming EoS k. That is, we sample uniformly
between 0 < x <1 for p. = pmin + X>(Pmax — Prmin)- We
use a quadratic prior to avoid giving greater prior weight
to more massive stars, since the central density changes
more rapidly near the maximum mass [56]. Outside the
interval [ppin, Pmax), the prior probability is zero. We also
assign zero prior probability for any p,. resulting in an
unstable star, such that if two or more stable branches are
connected by an unstable branch the unstable branch does
not contribute to the likelihood.

We model the posterior probability distribution for the
mass of an observed pulsar with a Gaussian function,
namely,

(M —-M,)*

exp [—
ZH(GM]_)Z

where M is the maximum likelihood estimate for the mass
of a given pulsar and oum, is the standard deviation for that

observation. The total likelihood associated with heavy
pulsar mass measurements is then

EMmax(&k) = Hﬁ(Mj|Mmax,k)' (34)

This form for the likelihood only disfavors EoS with M ., «
less than existing observations. We do not want to disfavor
EoS with M, x higher than existing observations because
observations may be biased toward lower masses for a
variety of reasons unrelated to the EoS.

We incorporate in our analysis the two highest mass
measurements of neutron stars in relativistic binaries,
which allow for measurements of post-Keplerian parame-
ters, such as the Shapiro delay, pericenter precession, and
orbital decay due to the emission of gravitational radiation
(currently the gold standard for mass measurements of
neutron stars [68]). In particular, we use measurements of
MJ1614—2230 = 1908Mo with 6M.Il614—2230 = 0016MO for
PSR J1614-2230 [52,141] and MJO348+0432 = 201MO with
OMpsuso00y — 0-04M g for PSR J0348 + 0432 [53]. There is
a third pulsar, PSR J0740 + 6620, with a measured mass of
MJ0740+6620 = 207MO and 0MJ()740+6620 = 008M® [54,]42]
that we will also include in the next subsubsection as a joint
mass-radius measurement. We also note that the mass
measurement for PSR J1614 — 2230 was recently updated
and reported to be M;g14_2030 = 1.937TM, with
OM sy = 0-014M g [135], but we do not expect this
update to affect our results significantly. In Sec. IV B 6, we
explain why we leave out of our analysis the even-higher
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neutron star masses that have been suggested in the
literature.

Lastly, we note that the likelihood-based approach used
here (emphasized in Ref. [68]) is preferable in a Bayesian
analysis compared to imposing a lower bound on the
maximum mass for two reasons. First, a hard bound does
not account for uncertainties in the mass measurements. As
Ref. [68] illustrates, if we consider the mass estimate for
PSR J0740 4 6620, M ;574016620 = 2.07 £ 0.08 M, a 1-0
maximum mass cut at M, > 2.04M, predicts that EoS
with maximum masses of 2.04M  and 2.14M ; are equally
viable, when in reality, assuming Gaussian statistical
uncertainties, the latter is substantially more consistent
with observations. Second, a hard bound does not allow for
the incorporation of information from multiple measure-
ments. Thus, although widely practiced in the literature,
imposing maximum mass cuts is statistically inconsistent
and discards important information.

3. NICER

Still assuming slow rotation, the M — R curve for an EoS
specifies a prediction for the radius given a stellar mass
which is only a function of the EoS itself. Thus, given a
joint M — R posterior, we can integrate over central
densities and the full M — R sequence predicted by EoS
k to obtain the likelihood factor associated with an
independent radius measurement /,

Pmax

C(RIR,) = / 4(p ) Li(M(p.). R(M(p.)))dp.. (35)

Pmin

where £;(M(p.), R, (M(p.))) is the likelihood of a mass
M(p.) and a radius R(M(p.)) given measurement I,
R (M(p.)) is the circumferential radius for a star with
gravitational mass M given EoS k and central density p,,
and ¢(p.) is the prior on the central density, which is
determined for each EoS in the same way as described in
the previous section.

The total likelihood associated with simultaneous mass
and radius measurements is then

Ly-r(®) = [[LRIRY). (36)
[

This particular form for the likelihood is equivalent to
integrating the full mass and radius likelihood over the full
M — R sequence predicted by an EoS. It accounts for
measurement uncertainties and possible correlations
between radius and mass® as well as the entire M — R
sequence, not just an individual R, (M).

®Correlations between mass and radius are system dependent
and may or may not be present; see Refs. [143,144] for more
details.

We adopt as constraints on the radius the posteriors
obtained from NICER measurements for PSR J0030-
0451 [55] and PSR JO740 + 6620 [56] (again, see,
respectively, Refs. [57,58] for independent analyses of
these two pulsars from a separate group within the NICER
collaboration).

Though other neutron star radii estimates are available,
there are potentially significant systematic errors that have
not been resolved [145,146]. In contrast, NICER posteriors
rely on fits of rotating hot spot patterns for which studies
using synthetic waveforms found no significant mass or
radius bias in statistically good fits [143,144]. Lastly, we
highlight that NICER posteriors for both pulsars are non-
trivial shapes on the M — R plane and display significant
correlations between mass and radius, further emphasizing
the importance of this particular approach to calculating the
likelihood.

4. Gravitational waves

As discussed in Sec. III B, for each EoS k, we can
calculate the A — M curve, such that for a star of gravi-
tational mass M and equatorial radius R the tidal deform-
ability is

2 Rc 3
Ae =2k (25, 37
=34 (o) 37)

where k, is the tidal love number, which depends intrinsi-
cally on the EoS [147,148].

In practice, it is more constraining to incorporate input
from gravitational-wave observations using information
from the binary tidal deformability, which can be measured
to higher accuracy. In the Taylor family of post-Newtonian
waveforms, given a binary neutron star system of stars with
masses M, and M, < M, with tidal deformabilities A; and
A,, the most easily measurable quantity is [149]

A 16 (M +12My)M{A + (M + 12M ) M5 A,
13 (M, + M,)?

. (38)

which is sometimes called the binary or effective tidal
deformability. Similarly, it can be difficult to extract
individual masses from gravitational-wave events, but
the chirp mass, My, = (M\M,)**/(M, + M,)'/, can
be measured with high precision since it relates directly
to the gravitational-wave frequency during the inspi-
ral phase.

Assuming a gravitational-wave event n results in a full
posterior in (M 1,M2,/~\) space, our procedure for incor-
porating it is as follows. The total likelihood factor has the
form
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£n = TTE@RIR) =TT [ dMiadt) [ oMl M), Mo, R M (39)

where q(M,|M,, M) is the prior probability density for
M, at the value of M, implied by M, and M, and the
integral is over the probability distribution for M, obtained
from the gravitational-wave analysis. Since there is a limited
width for M, which is dependent both on the EoS and the
prior for the masses, our implementation is as follows. For a
binary event involving two masses M| > M,, we select the
central density of a 1My star for the lower-mass star,
Pe2 = Pmin- Then, we calculate the value of M, implied by
M ,, which we know to the precision that we know the chirp

mass. There is a range in p,; that, given the value of M,
implied by p..,, leads to M, within the 68% credible region
inferred for event n. That is the range we integrate over for
Pe.1, using the same prior as before (quadratic between pp,
and p.x). We then select a new p,.,, also following the
quadratic prior, and repeat the same process for p,. | that we
just outlined. We continue to increase p., up to the density
at which M, implies M; = M,. That means we can rewrite
Eq. (39) for a single event # in terms of the central densities
of the two objects,

C(A,R,) = / dperd(per) / 0 (0ea) (Mapme My (o)) (M (o) Ma(pe2). AelMy (Pt ). Mo (pon)dpee (40)

where q(peo|(Menn. Mi(pe1))) =0 outside of the 68%
credible region for M, ,,. We highlight that, even though
My, is typically measured to high precision, it is not
statistically consistent to write the integral over p., as a
delta function. That is because the range of M allowed for a
given M, and M, depends on both the EoS and the prior for
the central densities. Consequently, it will vary between
individual EoS and must be calculated separately for each
EoS [68].

We include in our analysis binary tidal deformability
estimates from GW170817 [48-50] and GW190425 [51].
We use the publicly available posteriors over the full model
parameter space [150,151] as input for a kernel density
estimate of the marginalized posterior for M, and A. Since
the combined mass in GW190425 is high enough that one
of the objects might have been a black hole, we check
whether for the EoS and central density under consideration
the higher-mass object is a neutron star. If so, we compute
the tidal deformabilities of both stars, using the same EoS,
following the procedure outlined in Refs. [147,148].
However, if the EoS predicts a black hole at the central
density under consideration for the higher-mass object, we
set its tidal deformability to zero. Lastly, we note that some
EoS predict more than one stable branch in the M — R
sequence and that we assign a prior probability of zero to all
central densities corresponding to an unstable branch for a
given EoS.

5. Perturbative QCD

Because of asymptotic freedom, QCD can be treated
perturbatively at high densities (~40ng,) [152]. It has
recently been argued that perturbative QCD offers nontrivial

constraints to the neutron star EoS when state-of-the-art
next-to-next-to-next-to leading order (N3LO) perturbative
results [14,153] are extended to neutron star densities using
stability, causality, and consistency arguments [67,90]. The
formalism was initially introduced in Ref. [90]. We briefly
review its key components here but refer the reader to the
original work for additional details.

Suppose an EoS can be characterized by a correlated set
of Valuesﬁ = {p(u),n(p),u}, where p is the pressure, n is
the number density, and y is the chemical potential. Also
suppose that we have knowledge of the EoS at some low-
density limiting value, y,,, and a high-density limiting
value, ppion, meaning that we know

Piow = {plow7 nlowv.ulow} = {p(.“low)’ n(ﬂlow>7ﬂlow}v (41)

ﬂhigh = {phigh» nhigh»/"high} = {p(ﬂhigh)7 n(/"high)’ﬂhigh}'
(42)

There are an infinite number of EoS that can connect f,,,,

and ﬁhigh, but any such EoS must respect thermodynamic
stability, causality, and consistency. Thermodynamic sta-
bility implies that the grand-canonical potential from which
the EoS is derived (€2) is concave with respect to p,
meaning that 0;Q < 0. At T = 0, we also have

Qu) = —p(u), (43)
op
n= a (44)
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Therefore, stability results in a constraint on the slope
of n(u),

—>0. (45)

Moreover, the causality requirement constrains c¢? < 1,
which, at T = 0, relates to n(x) and d,n such that

, __MOn
C; _nd/tz 1. (46)
Combining stability and causality, we have that, at each
point in 4 — n space, the slope of the curve passing through
that point corresponding to a maximally stiff (c2 = 1) EoS
is on/opu = n/p.

Finally, because we must also ensure that at (iioy, Miow)
the pressure is pioy and, similarly, that at (uhigh. 72hign) the
pressure is pyiop, it must also be true that

Hhigh
/ “ n(0)di = prigs — Pow = Ap. (47)

Hiow

We can derive constraints on Ap based on stability and
causality constraints on n(u). We can place a lower bound
on Ap by asking which curve connecting (pigy, Mtiow) tO
(Mhigh- Mhign) Minimizes the integral in Eq. (47) while still
respecting stability and causality. We will call that quantity
Apnin- Equivalently, we can construct the curve which
maximizes the integral in Eq. (47) and still respects stability
and causality and denote that Ap,,.. Assuming c? is
bounded from above only by the causal limit, we have [90]

A 1 High
Pmin = 5 1 — Hiow | Mow (48)
ow
1 2
Apmax =5 Hnigh — Hiow Mhigh- (49)
2 Hhigh

These constraints combined imply that for any Ehigh
and for a fixed (Uiow,7ow)> Plow Must be between
[phigh - Apmax’ Phigh — Apmin}'

These guidelines for connecting two arbitrary regimes
via an EoS which respects stability, causality, and con-
sistency can be used to extrapolate pQCD results to
densities relevant to neutron stars. That is because, if we
know ﬁhigh = EPQCD, we can check if an EoS for which we
only have knowledge up to a lower matching density
Mow = Mmatch €an be connected to EPQCD through a causal
and stable EoS.

Our knowledge from pQCD is derived from current
state-of-the-art calculations in Refs. [154,155], which
report a partial N3LO calculation of the zero-temperature,

high-density QCD grand-canonical potential. Because
these results arise from a series expansion in the QCD
coupling constant and are then truncated at a finite order,
we have to estimate the error introduced by the missing
higher-order (MHO) terms. In the case of QCD, the MHO
error depends on a residual, unphysical renormalization
scale, A 4, which is underdetermined. Instead, the
standard approach is to vary A around a fiducial scale
by some fixed factor. We follow Ref. [67], which adopted a
scale-averaging approach. That means that pQCD results
are given as a family of independent predictions BPQCD(X ),
where X = 3A/ 2ppign. We set pion = 2.6 GeV based on
Ref. [156], which points out that the uncertainty estimation
for pQCD calculations at this value is similar to that of
yEFT at 1.1ng, (about +24% variation around the mean
value [67]). We consider X € [1/2,2], the same range that
was implemented in Ref. [67] and that has been suggested
by phenomenological models [157-160] as well as the
large-flavor limit of QCD [161].

Now that we have defined the theoretical input from high
densities, we need to discuss how we define the low-density
input from GP and mGP EoS. For any neutron star EoS that
we generate with the GP or the mGP, qzk, we have to check
that it can be connected to EPQCD(X ), for a given X, from
ﬂlow = {pk(nmatch)v Nmatchs ﬂk(nmatch)}' In practice, we
check that py(npaen) leads to Ap € [Apin, APmax)> given
Phigh from EPQCD (X). Since the relevant scale for the
neutron star EoS is the central density of a maximally
massive star, ng™, we set npy = Ny, Which varies for
each EoS. For the renormalization scale parameter, we
follow Ref. [67] and sample 1000 values of X €[1/2,2],
evenly spaced in log(X). Hence, the pQCD weight asso-
ciated with EoS k is

. 1 1000

wpaep (x) = 1000 1y (). (50)
i=1

where IX((;ﬁk) is the indicator function

- 1, if Apy € [APmin: APmax
1X(¢k)_{ 1 Pk [ Pmin pma]7 (51)

0, otherwise

and Apy = ppocp(X) — pe(ngy). Recall that Ap,y, and
Apnax can be obtained from Egs. (48) and (49), using

ﬂhigh =26 GCV,

Hiow = pi(nEL).
nhigh = anCD(,u =26 GCV,X),

— max
Now = Np -
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Effectively, wyocp (qzk) captures how often, out of the 1000

values for X, g?ﬁk can be connected to BPQCD(X ) with an EoS
that respects thermodynamic stability, causality, and con-
sistency. This procedure defines a weighting scheme
associated with input from pQCD, which suppresses
EoS that are in tension with pQCD results by a factor
proportional to the strength of the disagreement under the
scale-averaging assumption.

We emphasize that the choice of ny,, under this weight-
ing scheme defines a termination density for the benchmark
and modified GP priors on the EoS. Above ny,, which we
take to be np7’, the EoS is only bounded by stability and
causality. There are no assumptions about the smoothness of
the EoS or the number of phase transitions allowed.” Once a
choice for ny,, has been made, the posterior for the EoS is
conditional on ng < ny,, and should only be shown up to
np < npy- Thatis, although any benchmark or modified GP
sample is defined up to a maximal central pressure of
log,op = 37 ergcm™, once pQCD input is applied at ngd,
we impose that the EoS is only bounded by stability and
causality at higher densities, and it would be inconsistent to
show the GP EoS above ng%*. For the interested reader, a
detailed analysis on the interplay between imposing a prior
above ng™ and changing ny,, was done in Ref. [162]. In
this work, our choice of setting n,,, = ng7* is motivated by
the lack of observational/experimental constraints above
the maximum central density realized in neutron stars.
Although one could study a prior extending beyond this
regime using pQCD input as a constraint (as was done in,
e.g., Refs. [16,67,162,163]), the posterior above ny™* cannot
not be verified by current or future observations of neutron
stars. A promising direction beyond mass, radius, and tidal
deformability is to study the gravitational waveform from
binary neutron star mergers [164,165] which could con-
strain the EoS at high densities and the maximum mass, and
thus the maximum central density, of neutron stars.

6. Observational measurements not included
in our analysis

We make the choice here to not include in our analysis
other recent claims of very heavy or very light neutron
stars. For example, there have been recent claims of pulsars
heavier than the ones considered here, namely, PSR
J1810+ 1744 at 2.13 £ 0.04M, [166] and PSR J0952-
0607 at 2.35+0.17M [167], but possible systematic
errors for these measurements are not as well understood
as those involved in Shapiro time-delay-based measure-
ments, such as those for PSR J0740 + 6620 and PSR
J1614 — 2230. Specifically, the fit residuals in Ref. [166]

"Note that below npi the prior is determined by the choice of
hyperparameters of the benchmark and modified GPs, which do
constrain the smoothness and number of phase transitions in the
EoS.

for the properties of the companion to spider-pulsar PSR
J1810 + 1744 are clearly not a random scatter (see Fig. 1 in
Ref. [166]), which suggests that the fit values and inferred
mass are subject to systematic errors we do not currently
understand. The picture is more promising for the inferred
mass of PSR J0952-0607, where at least the residuals do
not seem to indicate problems with the fit (see Fig. 1 in
Ref. [167]). But there is still the question about whether the
good fit indicates that the system is well understood from a
theoretical perspective and whether the inferred mass is not
just precise but also accurate.

In a separate measurement, the central compact object of
the supernova remnant HESS J1731-347 was recently

estimated to have a mass of 0.77'){YM and radius of

10.41“8‘% km [168], possibly making it the lightest neutron
star ever observed. Here, the low estimated mass stems from
the use of a low distance to the source combined with the
assumption that the surface radiates uniformly, which tends
to favor a carbon atmosphere over a hydrogen or helium
atmosphere. Moreover, in the fitting, it was assumed that
surface magnetic fields can be ignored. However, nonuni-
form emission is consistent with data on several similar
sources [169], making hydrogen and helium atmospheres
possible and making it plausible that the neutron star in
HESS J1731-347 could have a standard mass, well above
1M [119]. Thus, to remain conservative on the data we use
in this work, we do not consider PSR J1810 + 1744, PSR
J0952-0607, and the center compact object in HESS J1731-
347 in our analysis.

C. Model evidence

We have two distinct set of prior beliefs, or models, for
the EoS. We combine samples from these two models into
one prior, which we introduced in Sec. I1I C as ® and which
can be represented as the union of samples from the mGP
and the benchmark GP, ® = @ ,6p U ®pepchmark GP-

We defined the evidence (£) in Sec. IVA, where the
integral in Eq. (18) is over all possible samples that can be
generated from a model. In practice, we only have access to
a finite number of samples, and & is approximated as

N, N N R
w® ) L@ald). €D, (2)

where N,, is the number of samples from model
m = {benchmark GP, mGP}, including the samples in

@,, N ®, for which L((Z)k) = 0. Therefore, a key assum-
ption is that we sample enough EoS to correctly approxi-
mate £. This aspect further emphasizes the importance of
the prior sample size checks we introduced in Sec. IIl C—if

we do not have enough samples in the regions where £((Zk)

is non-negligible, we cannot correctly approximate &.
Another assumption we make is that each EoS has an

equal prior probability. This implies that Eq. (52) is now
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| LA -
gmzN_le:C(qﬁk)’ ¢k€q)m' (53)

That is, the evidence becomes a simple average
over the likelihoods of all the EoS from model m =
{benchmark GP, mGP}.

A reasonable objection to this assumption is to question
whether the different hyperparameters in each framework
should have been included explicitly as hyperpriors.
In general, we expect that with an increased number of
parameters we also increase our chances of describing the
data but also that simplicity should be rewarded over
complexity. Here, the mGP is more complex than the
benchmark GP, so why is there not a penalty in the
calculation of the model evidence for mGP EoS?
Actually, the penalty exists, and it is included implicitly.
To understand this argument, recall the discussion in
Sec. III regarding assumptions that are implied in a non-
parametric framework. We stated that our effective param-
eters are the value of the speed of sound at each sampled
value of pressure, c2(p;), and that the method and the
hyperparameters we choose for generating ¢2(p;) dictate
both the prior distribution and the correlations across the
effective parameter space. That means that the mGP covers
a bigger space in terms of the possible functional forms for

c2(p;), which results in more bad predictions [E((Zk) ~ 0]
compared to the simpler benchmark GP. Therefore, in order
to be competitive with the benchmark GP and make up for a
larger number of bad predictions, the mGP must be more
accurate in describing the data than the benchmark GP. We
do not need to include the different hyperpriors in Eq. (52)
because (i) the benchmark GP and mGP hyperparameters
are not the parameters being estimated, and (ii) the mGP
model is implicitly penalized for its increased functional
complexity in the effective parameter space because it

covers a larger volume in that space where ﬁ(q_ék) ~0
compared to the benchmark GP.

V. BAYESIAN ANALYSIS OF NONTRIVIAL
FEATURES IN THE SPEED OF SOUND INSIDE
NEUTRON STARS

Now that we have established methods for generating
EoS that display long (benchmark GP) and multiscale
(mGP) correlations in c¢2(ngz), we can implement the
constraints discussed in Sec. IV and begin to answer specific
physics questions from a Bayesian perspective.

We will begin with an important sanity check—does our
new framework provide reasonable agreement with data,
even when multiscale correlations and nontrivial features
appear in ¢2(ng)? We will answer that question by looking
at the mass-radius posteriors. Following a discussion of the
mass-radius posteriors, we can explore other questions such
as follows. Are the EoS posteriors sensitive to the structure

in c¢2(ng)? What is the maximum central density of a
neutron star? Do new pQCD constraints have a strong
influence on our analysis? Is a peak in ¢2(ny) supported by
existing constraints? Finally, is the GP or the mGP
framework favored by the data?

To better understand our results, we use a plotting
method for our priors and posteriors that, to our knowledge,
has not been used to infer properties of the EoS in the
literature. Let us first describe our approach for plotting the
prior because there are subtle differences between its
plotting method and that of the posterior. We bin our
two-dimensional (variables X and Y, e.g., mass and radius
or ¢2 and ng/ng,) prior in bins of a certain width AX, AY.
We denote a particular bin as a pair (X;, Y;), such that a
point (x,y) is in bin i if X;<x<X;+ AX and
Y;<y<Y;+AY. A given EoS k is characterized on
the X-Y plane by a set of [ total pairs of points
{(xt.¥4) ... (xk, 1)}, which produce a curve that passes
through N, of these bins. Every time the EoS passes
through a bin i, we count that as a hit: i, (X;,Y;) = 1.
Otherwise, if the EoS does not pass through that location,
we assign h(X;, Y;) = 0. We sum over all hits within a bin
(i.e., count all the EoS that pass through it) to obtain the
total hits for that specific bin, H o (X;, Y;), where

NEOS
Hprior(Xh Yi) = Z hk(Xi’ Y,'), (54)
k
and
1, if X;<xt <X;+AXAY; <yt <Y;+AY,
h(X;,Y;) = I*€{o,...,1} (55)

0, otherwise.

To normalize the hits within a bin, we determine the total
number of hits across all of our EoS samples across all bins,

Htot = ZHprior(Xiv Yi)’ (56)

such that our normalized distribution for the prior within a
given bin (X;,Y;) is

Hpn'or(Xiv Yi)

Nprior(Xh Yi) = H
tot

(57)

Our plotting method is similar for the posterior.
However, because the posterior probability is proportional
to the prior probability multiplied by the likelihood, we

have to include the likelihood, £(g;), of each EoS when
calculating the hits of the bin. More concretely,
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NEos

7—[posterior(xi’ Yi) = Z ‘C(sz)hk(xi’ Yi)’ (58)
k

and NV posterior N1as the same form as Eq. (57),

Hposterior (Xi’ Yl)

Nposterior(Xiv Yi) = H s
tot

(59)

but we use the posterior values instead of prior values to
calculate H,.

The procedure described above for representing prior and
posterior distributions is equivalent to showing the prior as a
normalized two-dimensional (2D) histogram, and the pos-
terior as a weighted, normalized 2D histogram. We will refer
to these plotting methods as the binned joint prior/posterior
probability density. Representing probability densities in
this way is advantageous as long as the bin sizes are chosen
appropriately because we do not have to rely on kernel
density estimates that can smear out important information.
Kernel density estimates also perform poorly near sharp
boundaries and may predict a finite probability density in
regimes where data do not exist or, in cases where such
constraints exist, beyond physical boundaries (i.e., ¢ < 0
or ¢2 > 1). The only aspect that requires care when applying
this method is the interplay between the size of the bins,
(AX,AY), and the number of samples. Using a fine grid
with too few samples can result in bin heights that fluctuate
significantly between neighboring points. Similarly, using a
grid that is too coarse when there are an adequate number of
samples risks smearing out important features in the
distribution, as can be the case with kernel density estimates.

Finally, the prior and posterior distributions we show in
the sections below are conditional on ng < ng®*. That is,
we only plot results for the EoS of an isolated, stable, and
slowly rotating neutron star. We make this choice because
the constraints used in this work only inform the posteriors
up to n**. Beyond that density, which is different for each
EoS, the posterior will be dominated by the prior. The
implications of this choice for interpreting the priors and
posteriors shown here are discussed in the sections below.

A. Are mass-radius posteriors sensitive
to structure in c?(ng)?

To fully explore the phase space of the EoS of neutron
stars, it is important to have a broad prior in the mass-radius
relation. In the left panels of Fig. 4, we show the stable
branches of the mass-radius prior for the benchmark GP
(top) and the mGP (bottom) using the plotting method
described in Egs. (54)—(56). Here, we only plot the priors
corresponding to samples in the set that meets the basic
checks we outlined in Sec. I C (®,). We find that both
priors produce a similarly diverse set of mass-radius
curves, with the highest prior regimes passing through
R = 10-14 km and up to masses M ~ 2-2.2M . We also

see that both priors allow for maximum masses up to
M ~3.5Mg, although the prior disfavors M 2 2.2M.
White regions in Fig. 4 indicate that no samples in ©,
reach that region in the M — R plane. The bottom right-
hand side of the left panels in Fig. 4—the large-radius,
low-mass regime—is primarily ruled out by constraints on
the symmetry energy, which predict a soft EoS in that
regime. The top left-hand side of the left panels in Fig. 4—
the small-radius, high-mass regime—is ruled out mostly
because it is beyond the point of stability for the M — R
sequences that reach such high masses. Comparing our
priors for the benchmark GP and the mGP, we find they are
nearly identical, despite the significant differences in how
the EoS are constructed.

After applying the constraints outlined in Sec. IV, we
then produce our posteriors, which are shown on the right
panels of Fig. 4. We use the plotting technique described in
Egs. (54)—(56) to present the posterior distribution for the
benchmark GP (top panels) and the mGP (bottom panel)
models. In addition, in Table II, we present the median,
68%, and 90% credible regions from the benchmark GP
and mGP posteriors for the equatorial radius of a 1.4M g
star (R} 4), the equatorial radius of a 2.1M, star (R, ), and
maximum stellar mass (M), assuming an isolated,
slowly rotating star. We find that in terms of the observables
highlighted in Table II as well as the binned joint posteriors
the results for the benchmark GP and the mGP are nearly
identical.

Observe that both benchmark GP and mGP EoS support
neutron star masses up to M ~ 2.7M  (albeit with a smaller
likelihood), but neutron stars with higher masses are
extremely disfavored. Observe also that, from the credible
bands alone, one would reasonably assume that all neutron
stars heavier than M ~ 2.7M ; must have larger radii at high
masses. However, from the joint posterior, it is clear that a
number of mass-radius curves for heavy neutron stars may
either be nearly straight or even bend slightly to the left. In
any case, we see that, although specific M—R curves may be
affected by structure in the speed of sound, the latter does
not affect the M—R posteriors, given currently available
observations.

B. Are EoS posteriors sensitive to structure in c?(ng)?

Next, we test if the different prior assumptions made
about correlations across densities in the benchmark GP
versus the mGP model lead to any significant differences in
the posterior for ¢2(ng). Recall that the benchmark GP
produces smooth ¢? curves with uniform correlations
across densities, whereas the mGP display sharp features
in ¢2 and multiscale correlations across densities (refer also
to Figs. 1 and 3).

In Fig. 5, we show the priors (left panels) and the
posteriors (right panels) for ¢2 as a function of n3 in units of
Ngy, Up to ng™ for each EoS. Again, benchmark GP and
mGP results are shown on the top and bottom panels,
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FIG. 4. Mass-radius prior (left) and posterior (right) probability distributions for GP (top) and mGP (bottom) EoS. Both the prior and
posterior probability distributions are produced by binning the EoS by mass and radius and then normalizing the heights of the bins such
that their sum is equal to 1. For the posteriors, each EoS is weighted by the corresponding likelihood. Observe that the joint posteriors are
similar when using the GP or mGP models, with masses larger than 2.7M, and radii larger than 14 km disfavored.

TABLEII. Median, 68%, and 90% credible regions from the benchmark GP and mGP posteriors for the equatorial radius of a 1.4M
star (R, 4), the equatorial radius of a 2.1M, star (R, ), and maximum stellar mass (M ,,), assuming an isolated, slowly rotating star.

EoS R, 4 (km) R, (km) Mo (Mo)
Benchmark GP 12.55, (12.07, 13.05), (11.56, 13.37) 12.26, (11.52, 12.90), (11.02, 13.34) 2.26, (2.10, 2.51), (2.04, 2.68)
mGP 12.55, (12.04, 13.04), (11.54, 13.33) 12.34, (11.62, 12.98), (11.12, 13.39) 2.25, (2.09, 2.50), (2.03, 2.67)
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EoS prior (left) and posterior (right) probability distributions for GP (top) and mGP (bottom) EoS conditional on np < n®™ for

each EoS. The EoS are represented by the speed of sound squared in units of ¢? as a function of baryon number density in units of n,.
The prior and posterior probability distributions are produced by binning the EoS by the speed of sound and number density and then
normalizing the heights of the bins such that their sum is equal to 1. For the posteriors, each EoS is weighed by the corresponding
likelihood. Also shown in the posterior plots are the 90% and 68% credible regions for the speed of sound squared at a given density for
0.5 < np < 8.0ng,. The posterior probability that the central density for a maximally massive star is greater than ~6.0ng, is negligible in
both cases. We note that probability densities are low in the regime between 2 and 6ng, because of the wide spread in the allowed
behavior for c2. Observe that at the 90% level the mGP posterior is wider than the GP one for all densities above 7ng,.

respectively. The priors are shown using the binning
method outlined in Egs. (54)—(56). The posteriors are
shown both in terms of the binned joint posteriors as well
as constant density 68% and 90% credible bands. In these
plots, we only show ¢2 up to the maximum central baryon
density for a stable star in the slow-rotation regime, njg®*.

Most EoS lead to ng®* around 4 — 7ng, with a handful that
extend up to 8ng,. Thus, we plot only up to ny = 8.0n,.
We will discuss the posterior for ny®* separately in Fig. 6.
We note that Fig. 5 only includes EoS in ®, (the set of EoS
that pass the constraints discussed in Sec. III), which clearly
affects the priors. This selection leads to ¢2(ng) functional
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FIG. 6. The estimated prior (solid lines) and estimated posterior
(dot-dashed, filled lines) probability density distributions for the
maximal central density of a stable, nonrotating star in units of
N, for EoS from the benchmark GP (green) and mGP (blue). The
priors for GP and mGP produce nearly identical PDFs for ng**
such that the lines are indistinguishable from each other. The vast
majority of EoS from the posterior predict a maximal central
density between ~4—8ng,.

forms that favor high values (c? > 1/3) at large den-
sities (ng > 2ng,)-

Let us first discuss the priors. Observe that the highest
probability regions look nearly identical between the bench-
mark GP and mGP models when we only consider EoS in
@, . In both cases, at very low densities (ng < ng,), there is
a strong preference for a nearly vanishing ¢2. This result is
unsurprising because we use the same crust at low densities
for both models and also impose that no modifications are
introduced in ¢? below ny < 1.lng for mGP EoS.
Progressing to intermediate densities (ny < ng < 3ng),
we find a general trend in both priors to larger ¢2, but this
trend has a rather wide spread, allowing for diverse behavior
in ¢2, hence the lower probability within the credible bands.
At densities above 3ng,, we find a general trend upward in
2, but again with an even larger spread.

One key difference, however, does exist between the
benchmark GP and mGP priors. The benchmark GP EoS in
®,, do not contain any samples that have a low c2 at large
np (notice the large white region in the bottom-left corner
of the top-left panel in Fig. 5). On the other hand, the same
region in the mGP prior has a nonzero prior probability
density. The key difference is that the benchmark GPs are
smooth and domain points are correlated over a long range
in density. Therefore, the speed of sound functional forms
from the benchmark GP cannot easily fluctuate downward
to this region (especially since they need to support neutron
stars with M > 1.8M ). In contrast, functional forms from
the mGP model can have fluctuations to larger 2, followed
by regions of lower c2. In this way, it is clear that the mGP

model allows us to explore a wider regime in EoS
parameter space.

Next, let us discuss the binned joint ngz — ¢2 posteriors
and the constant density 90% and 68% credible regions,
shown in the right panels of Fig. 5. The posteriors and
credible bands are similar between the benchmark GP and
the mGP, but they are not identical. We find that, at the 90%
level, the mGP posterior is wider than the GP one for all
densities above ng,. Notably, the mGP posterior allows for
slightly stiffer EoS in the regime 1.5 < np < 3.0ng, and
slightly softer EoS above 3.0ng,. For instance, at twice
nuclear saturation density and 68% credibility, we extract
c? =0.2970%/ using EoS from the GP posterior and ¢? =
0.2979-* using the mGP posterior. At four times nuclear
saturation density, the GP EoS range is 2= O.63f8‘22; ,
while the mGP EoS allows for ¢2 = 0.5973). Thus, we
find that the GP leads to slightly stiffer EoS and has slightly
narrower posterior credible bands. As we will discuss later
in Fig. 6, very few EoS reach beyond ng > 6ny,, so the
statistics in that regime are not sufficient to draw con-
clusions about differences between the two frameworks.
This is evident from the highly oscillatory behavior of the
mGP credible bands in that region.

We can draw further conclusions from the binned joint
probability density posteriors. In both posteriors, there is a
strong preference (blue regions) for a sharp rise in the speed
of sound between 1 and 2ng,. Furthermore, at densities
larger than 2n,, large c? is favored, well beyond the
conformal limit of ¢Z = 1/3. However, c2(ng) is signifi-
cantly less constrained in that regime. Lastly, we also see
from the binned joint posteriors that a large fraction of EoS
must reach their maximum central densities around ~5n,
because the probability density decreases significantly
beyond that point.

While the relative differences in the posteriors are not
huge between the GP and mGP models, the point still holds
that when the ¢? is allowed to display sharp features the
posteriors are wider than when a smooth EoS is presumed.
This is because implicitly imposing smoothness in the EoS
through benchmark EoS translates to a prior that disallows
low speeds of sound at high densities. We, therefore, argue
that such sharp features should be adequately represented in
priors for the extraction of the EoS in neutron star regimes.
Furthermore, it is clear that if one is especially interested in
studying whether low values of c¢2 at high densities are
allowed by nature it is even more important to allow for
sharp features in c2

e

C. Are maximum central density posteriors

sensitive to structure in c?(ng)?

We will now discuss the priors and posteriors for the
maximal central baryon density reached by a stable neutron
star in the slow rotation regime, ng®*. From Fig. 5, we
already saw hints that njy®* must peak around 5ng, because
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the posterior probability densities are low at baryon
densities higher than that. To study this systematically,
we have plotted the range of ng® for both our priors and
posteriors in Fig. 6 using a kernel density estimate.®

Observe that the ng® priors for the benchmark GP (blue
line) and mGP (green line) are essentially identical and
mostly overlapping, ranging between ng™ = 2-10ng,
(again, recall that our priors shown here represent only
the samples in ®,). However, there is a significant change
in the posterior probability density for both the benchmark
GP and the mGP compared to their priors. Both posteriors
are sharply peaked at ng®* = 5-6ng, with a range between
np™ = 4-8ng, (with essentially no EoS that produce
ng™ > 8ng,). The posterior for the mGP model peaks at
a slightly smaller nz** than that of the GP model, but the
difference between the two distributions is very small.
These results are consistent with what is shown in
Fig. 5, in which the probabilities are compatible with zero
for ng > 8ngy.

D. What is the impact of pQCD constraints?

As discussed in Sec. IV B 5, in order to include pQCD
constraints, one must choose a matching density, 7yqching-
This matching density reflects how pQCD results are being
propagated via stability, causality, and consistency con-
straints. In this work, we used nyqching = 157> the maxi-
mal central density predicted by EoS k for a stable,
nonrotating neutron star. Although njy{* changes for each
EoS, we saw in Sec. VC and Fig. 6 that the posterior
probability density for ny®* drops sharply above ~6ng, and
is negligible beyond 8ngy.

In Fig. 7 (top), we quantify how pQCD constraints
affected our inference of the EoS. In the bar chart, we show
the proportion of EoS in our prior that are consistent
(Wpoep = 1 exactly), in tension (0 < wygep < 1), and
inconsistent (wpocp = 0 exactly) with pQCD input [see
Eg. (50) for the definition of wyocp]. A vast majority of the
EoS in the prior (~96.5%) are consistent with pQCD
results, ~3.5% are in tension, and only 0.0083% (11 total)
EoS are inconsistent with pQCD results. Because pQCD
only completely excludes a very small fraction of EoS,
these constraints cannot contribute strongly to the M — R
and c¢2(ng) posteriors, shown in the previous section.

We observe, however, that a non-negligible population
(~3.5%) that is in tension with pQCD results indeed exists.
In Fig. 7 (bottom), we show a histogram for wy,ocp only for
the samples that were found to be in tension with pQCD.
Recall that wyocp is proportional to the strength of the
disagreement between a given EoS and pQCD results over
the range of A we sampled. Thus, we can quantify the

¥For this observable, the probability densities vary smoothly
with ng**, and hence the use of kernel density estimates instead of

the binning method we discussed earlier is safe.

96.5%

3.48%

[ — 0.00835%
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1 03 4
=
5102
o
o

1 01 4

—— median
T I
1071 100
WpQcD

FIG. 7. Top: bar chart of the percentage of EoS that are
consistent (wpocp = 1), in tension (0 < wygep < 1), and not
consistent (wyocp = 0) with pQCD input based on the formalism
in Ref. [67]. Bottom: histogram of the wyocp for the 4592 EoS
(~3.5% of the total number of samples) in the combined
benchmark GP and mGP prior that are in tension with pQCD
input. The impact of pQCD input when ng{* is used as the
matching density is negligible (see Sec. IV B 5 for definitions).

impact of these samples on the posterior probability by
looking at their wyocp distribution. As shown in Fig. 7, the
median of the distribution is ~0.95, meaning that more than
half of the samples in tension with pQCD are only
marginally suppressed.

The results shown here suggest that the impact of pQCD
input on the inference of the neutron star EoS is minimal.
Given that the opposite has been reported in the literature
recently [16,67,170], we would like to address why that is
the case. Let us recall Sec. IV B 5, in which we discussed
the assumptions associated with including pQCD input
in the analysis. We assume we know the EoS at a low-
density limit [see Egs. (41) and (42)], each determined by a
set of three values that fix the EoS in those limits. These
values correspond to the number density (n), the chemical
potential (u), and the pressure (p) at each limit. In the low-
density regime, we get p.,, and p),,, from the EoS, but we
need to make a choice for n,,,. This choice is important
because 1oy = Nmaching, meaning that pQCD results will be
propagated down to ny,,. This choice is in principle
arbitrary, but given that the largest density scale relevant
to the EoS of isolated, slowly rotating neutron stars is ng®,
it is reasonable to impose ny,,, = n™* for each EoS. This is
the choice that we make in this work and the choice that was
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made in Ref. [171], which also reported that pQCD only
affected a very small number of EoS in the prior.

Works that found a robust softening of the EoS at high
densities, leading to a peak in the c¢2(ng) posterior, used
Nmaiching = 10 Ngy, where pQCD is more constraining
because it is closer to pyn, = 2.6 GeV. However, as shown
in Fig. 6, the n§™ posterior is essentially zero for njy™ > 7
ng:. That means that in Refs. [16,67,170] pQCD con-
straints are being imposed far beyond the densities where
most realistic EoS predict a stable neutron star. There are no
constraints from astronomical observations in those den-
sities, so the impact of pQCD on the posterior will depend
on prior-imposed assumptions about the correlations in
c2(ng) in the regime above n™. We note here, as
Refs. [172,173] also noted, that such results are very
sensitive to the prior.

Imposing pQCD constraints at nj** with X = [1/2,2]
results in only 3.5% of the EoS being affected. Only 11 are
completely ruled out. Again, we highlight that in Fig. 7,
which shows a histogram of the pQCD weights assigned to
EoS that were suppressed by pQCD, we see that the vast
majority of the EoS affected were only marginally sup-
pressed. With these results, we conclude that our posteriors
are dominated by astrophysical observations, which is why
we do not see a softening of the EoS at larger densities.
Nonetheless, pQCD offers nontrivial constraints even when
incorporated exclusively at densities where an EoS predicts
stable, slowly rotating neutron stars exist. Lastly, we point
out that our findings are in agreement with those of
Ref. [171], which found that pQCD affects the EoS mainly
beyond the densities realized in neutrons stars.

E. Does c?(ng) display a peak within neutron
star densities?

Given that mGP EoS lead to reasonable mass-radius and
c2(ng) posteriors, we can now begin to explore the
existence of structure in ¢2(ng). One way to study the
latter is to look for a bump [i.e., cZ(np) rises and reaches a
global maximum at some ng < ng*™* before decreasing
again] that would signify a crossover phase transition. This
type of structure is being actively discussed in the literature
[16,18,19,67,170,174,175] as a signature of quark matter in
the core of massive neutron stars. Such a structure has
become especially relevant after studies that use pQCD
constraints applied beyond densities realized in most
realistic neutron star EoS found a posterior for ¢2(np) that
displays a peak within neutron star densities [16,67].

One caveat here is that, as seen in Fig. 1, ¢2(ng) can
oscillate or contain first-order phase transitions. Thus, the
absence of a global maximum in ¢2(ny) before ¥ does
not imply that a phase transition does not occur within
neutron star densities. Similarly, the presence of a global
maximum in c2(ng) before n3®* does not confirm a

transition to quark matter occurs in the core of massive

neutron stars because, as shown in Fig. 1, the onset of
degrees of freedom other than quarks, such as heavy
resonances or hyperons, can also cause the EoS to soften
in a similar way. With this caveat in mind, we define the
density at which the maximum in ¢? is reached as
np (€2 max)s OF np at maximum c?.

The left panel of Fig. 8 shows the prior for np(c2 . ) for
both the benchmark GP and mGP models. The maximum
value of ¢2 can occur at any density up to ng < 10ny,, as
seen for both priors. However, already at the level of the
prior, we do see differences between the two models.
The benchmark GP model prior has a peak at approximately
the same density as the njy™ posterior shown in Fig. 6. This
feature indicates that benchmark GP samples mostly reach a
global maximum in ¢? at or near their maximal baryon
density, i.e., ng(c2 )~ n5*. This result is compatible
with the benchmark GP assumption that the low-density
(below ~1.1ng,) and high-density (above ~1.1ng,) regions
display correlations of length £ =1 in units of log,
ergcm™. The EoS in the low-density regime must be
smooth and soft to be in agreement with symmetry energy
estimates, while astronomical observations require an EoS
stiff enough to support 2M, stars but not too stiff in the
regime below 3ng, because of tidal deformability con-
straints around 1.4M stars. This transition from soft to
stiff, by construction, happens over a range in pressure
corresponding to the hyperparameter . Since we imposed a
reasonably large value for Z, bumps are less likely in the
benchmark GP model. In contrast, the mGP model has a
prior that is relatively uniform in the range between
1.1 — 8ng,, rather than peaked at densities above 3ng,
as in the benchmark GP case. That implies that some of
these EoS have a low-density bump in ¢2. In this case, the
assumption that the low- and high-density regimes are
correlated over a long range in pressure is relaxed, allowing
for low-density bumps to appear.

In the right panel of Fig. 8, we show the posterior for the
density at which the speed of sound is maximal (computed
from a kernel density estimate), together with the prior, for
both the benchmark GP (blue) and mGP models (green).
The posteriors present interesting features and striking
differences between both models. The benchmark GP
model leads to a posterior with a maximum consistent with
its prior and, thus, consistent with the maximum density
ny™. However, the mGP posterior distribution for np at the
global ¢? maximum is bimodal, with peaks at ~2ng, and
~5ng,. The peak of the mGP posterior distribution centered
at ng ~ Sng, is somewhat larger than the peak at ng ~ 2n,.
Nonetheless, the peak at ng ~ 2ng, is still quite significant,
and it is clearly a result of the extra structure built into the
mGP model. We note that this low-density bump is
consistent with recent preliminary findings from heavy-
ion collisions [176] and may be an indication of a crossover
phase transition (a possible explanation is quarkyonic
matter; see, e.g., Ref. [24]). We should be careful in our
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Left: histograms of the prior distributions for the GP and mGP EoS of the value of the baryon density np in units of ng, at the

global speed of sound maximum for a stable nonrotating neutron star. The increased flexibility of mGP EoS allows for a global ¢2
maximum to occur at lower densities compared to the GP EoS. Right: the estimated prior probability density distributions corresponding
to the histograms on the left (solid curves) and estimated posterior probability density distribution after constraints on the symmetry
energy, mass, radius, and binary tidal deformability are imposed along with pQCD input (dot-dashed curves). Data and theoretical
constraints do not rule out a global ¢? maximum at densities below 3, but are also not yet informative enough to favor or disfavor it

over a global ¢2 maximum above 3ng,.

interpretation of these results, however, since the posterior is
bimodal, and a monotonically increasing ¢2 cannot be ruled
out. It remains to be seen if the low-density peak in the
posterior for ng(c?,,.) will be further enhanced or sup-
pressed by future astrophysical observations of neu-
tron stars.

We now investigate the differences between the two
distinct peaks in the mGP posterior shown in Fig. 8 by
dividing the mGP EoS into two groups: one with
np(€? max) < 3ng and one with ng(c? ) > 3ng. In
Fig. 9, we show the mGP posterior for ¢2(np) in the first
group (left panel) and in the second group (right panel),
using the binned probability densities from Egs. (54)—(56),
together with the constant density 90% and 68% credible
regions. The resulting posteriors are qualitatively different
between the two groups. We see a much sharper increase in
c? at low densities for the ng(c3 ) < 3ngy group in the
left panel. In that case, we see that ¢2 may have a peak,
followed by a decrease, or it may plateau, at larger np.
Interestingly, the np(c? ) < 3ng group allows for the
possibility of a softening in the EoS at large densities that is
not seen in the other group. The np(c2 nax) > 3ngy group on
the right panel appears to have a monotonically increasing
posterior that ends at a large ¢2 at large n. This group more
closely resembles nucleonic-only EoS. Another interesting
difference is that, unlike the ng(c3 na) < 3ng group, the
np (€2 max) > 3ng group has a tight ¢? distribution at large
ng, which drives c? to large values.

We can also analyze quantitative differences
between these posteriors. In the left panel, at 2ng,, the

np (€2 max) < 3ngy group allows for ¢2 as high as ~0.80 at
90% credibility and ~0.55 at 68% credibility. In contrast,
the second group predicts much smaller ¢? for ng = 2ngy,
~0.45 and ~0.35 at 90% and 68% credibility, respectively.
At densities above 3ng, the ng(c?p.) < 3ng group
continues to allow for a wide range of ¢2, displaying c?
values as low as ~0.2 at 90% credibility and as high as ~0.8
at 90% credibility at Sng,. At 68% credibility, the lower and
upper bands are at roughly ¢2 ~ 0.3 and ¢2 ~ 0.7, respec-
tively, at Sng,. In contrast, at 5ng,, the ranges for the
np(c? max) > 3ng group are approximately [0.5, 0.8] at
68% credibility and [0.3, 0.9] at 90% credibility. Overall, if
a global maximum occurs below 3ng,, our results indicate
that we can expect an EoS that is stiffer at low densities and
softer at high densities. On the other hand, if a global
maximum occurs above 37, the ¢2 posterior suggests that
the EoS is stiffer and above the conformal value of 1/3 for
all ng > 3ng,.

Recalling an earlier discussion about what the absence of
a clear peaklike structure in ¢ means, we emphasize that
the EoS in both posteriors shown in Fig. 9 were generated
using the mGP framework. Therefore, all these samples
contain nontrivial features. Thus, it is possible that the
np (€2 max) > 3ngy group may have a small bump in ¢? at
low densities but then the EoS continues to become stiffer,
ending at an even larger ¢? near njj™~.

F. Are there nontrivial features in cZ(ng)?

We have established that different assumptions about the
scale of correlations across densities in the speed of sound
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FIG. 9. EoS posteriors for the case when a global maximum in the
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speed of sound is present below (left) and above (right) 3n,, for

mGP EoS conditional on nz < ny** for each EoS. The EoS are represented by the speed of sound squared in units of ¢? as a function of
baryon number density in units of ng,. The posterior probability distributions are produced by binning the EoS by the speed of sound
and number density, weighing each EoS by the corresponding likelihood, then normalizing the heights of the bins such that the sum of
all bin heights is equal to 1. Also shown in the posterior plots are the 90% and 68% credible regions for the speed of sound squared at a
given density for 0.5 < np < 6.0n,. The posterior probability that the central density for a maximally massive star is greater than

~6.0ng, is negligible in both cases.

functional do not lead to significantly different predictions
for the mass-radius relation or ¢2(ng) given current con-
straints. On the other hand, introducing multiscale corre-
lations via the mGP model had a significant impact on the
posterior for the value of ny at the maximum c2. What we
learn from this is that both the benchmark GP and the mGP
models can describe astronomical observations, while
respecting symmetry energy and pQCD constraints. We
can now ask if the data prefer one of the two models.

As discussed in Sec. IV A, the model evidence quantifies
the level of support of the data for a given model, and the
ratio between the evidence for two different models, the
Bayes factor, quantifies if one of the models is preferred
over the other by the data. Using Eq. (52), we separate the
benchmark GP and the mGP samples and compute the
evidence for each. We find a Bayes factor of’

’In a previous paper [177], we reported a Bayes factor of
K = 1.126, which was obtained using a normalization factor [N,
in Eq. (52)] that reflected the size of the subset of the priors for
each model that passed the checks (using the notation introduced
in Secs. Il C and IV C, these sets are Ppepchmarkgp N P, and
D,cp N D). This choice essentially ensured a Bayes factor of
~1 because both priors have information about astrophysical
constraints (Ref. [172] also pointed this out). Here, N,, corre-
sponds to the full prior sample size (using the notation introduced
in Secs. III C and IV C, these sets are @y chmarkgp and @gp)-

123009-
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This value is not a significant deviation from unity, which
means that current constraints do not favor either model.
The physical interpretation is that multiscale correlations
and nontrivial features in c?(ng) are not ruled out by
current constraints, but neither are they required.
Because of the broad range of features represented in the
mGP samples, we further divide the mGP EoS into the
different classes discussed in Sec. III A, resulting in four
models: benchmark, mGP containing one spike, mGP
containing a spike and a plateau, and mGP containing
two plateaus. We present the log evidence for each of these
classes separately in Table III. The log evidence across all
classes of EoS is ~5, so the log Bayes factor between any
two classes is ~0, and thus the Bayes factor between any

TABLE III. Log evidence for the benchmark model and the
three classes of modifications represented in the mGP model.
Model log(€)
Benchmark —5.340
mGP, (5p) —5.452
mGP, (pl,,sp) -5.572
mGP, (ply, ply) -5.577
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two classes is ~1. We can conclude that the data do not
favor a specific type of structure in c¢2(ng).

We highlight that, because modifications are introduced
on top of a benchmark model, there is overlap between the
type of structure that modifications create in ¢?(ng). For
instance, a spike or plateau placed above the benchmark
baseline may create a peak in ¢2(ng), but a peak can also be
achieved by a spike or plateau placed below the baseline.
This nontrivial interaction between modifications and the
baseline functional form of ¢2(ny) is illustrated in Fig. 3.
The solid blue line is an example of a global maximum in
c2(ng) created by the introduction of a plateau above the
baseline value for c% On the other hand, the dot-dashed
blue line shows a maximum in ¢?(n) created by a plateau
placed below the baseline. Yet another example is given by
the dot-dashed green curve, where a plateau is introduced
above the baseline which does not result in a maximum in
c2(ng), because the baseline value of ¢? at the end of the
plateau is higher than the value of ¢? across the plateau.
Thus, calculating the evidence for particular functional
forms of ¢2(ng) (e.g., monotonic, one peak, multiple local
maxima) requires additional analysis which can be the
subject of future work.

VI. CONCLUSIONS

Nuclear physics models with phase transitions and exotic
degrees of freedom contain multiscale features that present
as nontrivial structure in ¢2. In this work, we developed a
new framework, which we named modified Gaussian
processes, as a novel approach to producing functional
forms of the EoS for the cold, catalyzed nuclear matter in
neutron stars that each contain long-, medium-, and short-
range correlations. These EoS can be generated with high
computational efficiency and contain features that are
indicative of the emergence of exotic degrees of freedom.

We compared our new mGP EoS model to a benchmark
GP model that contains only long-range correlations (i.e.,
does not contain any short- or medium-range correlations),
using a Bayesian analysis that incorporated astrophysical
data, low-energy nuclear physics constraints, and input
from pQCD calculations. From our Bayesian analysis, we
found that both the benchmark GP and mGP models
provide nearly equivalent results for the mass-radius,
c2(ng), and maximum central density posteriors. In fact,
the Bayesian evidence for both models is nearly the same,
leading to a Bayes factor of 1.5 between them. Thus, it is
clear that we cannot rule out nontrivial features in the speed
of sound from the data and also that these EoS are as valid
as a smooth EoS, given current data.

Given the very similar posteriors for both the benchmark
GP and the mGP models, one may wonder if there are any
differences between the two. We found that the main
difference between the two models is that mGP model
allows for EoS that have bump in ¢2 at low densities. In

fact, the posterior for the baryon density at which the
maximum of ¢2 occurs leads to a binomial distribution with
peaks at ng ~ 2ng, and np ~ Sng,. In contrast, the bench-
mark model only produces a definite peak at ng ~ Sng.
Thus, we must conclude that the benchmark model is not
adequately exploring the possibility of a bump in ¢2 at low
densities, due to long correlation lengths. We argue that it is
important to explore the possibility of peaks around npg ~
2ng, because a global maximum at such densities is
compatible with the onset of exotic phases in the core of
neutron stars and, in this analysis, its existence is com-
pletely driven by astrophysical data.

We emphasize that interpreting the EoS posteriors shown
in this work above 2n, warrants caution. Because the
mean values of ¢? used for the benchmark GP and mGP
increase with density (although the soft GP mean is 1/3),
both posteriors are centered around high values of ¢2 (seen
in Fig. 5). However, while the correlation length used for
the benchmark GP suppresses low values of ¢? at high
densities, the mGP model allows for low ¢2 in the same
regime, and therefore the posterior is dominated by the
prior. This feature of the mGP model is not apparent in
Fig. 5, but it can be seen clearly in Fig. 9. More importantly,
in this work, we do not attempt to infer the behavior of the
EoS near the maximum central density—in fact, our results
largely suggest that the likelihood is uninformative in that
regime. Instead, we test whether astrophysical data and
theory input prefer a smooth EoS displaying correlations
across large ranges in pressure or EoS that allow for
multiscale correlations that are compatible with nuclear
physics models.

Another question we explored is if the presence of sharp
features in ¢2 is potentially excluded due to pQCD
constraints at high np. Similar to what was done in
Ref. [171], we applied the constraints at the maximum
central density that is peaked between 5 — 6ng, for both
models. We find that these pQCD constraints only have a
small effect on our results, with no visible effect on our
posteriors. Only 0.0083% of all EoS in our study were
inconsistent with the pQCD constraints entirely, and only
3.5% were in some degree of tension. Tension can occur
because of uncertainty in an undetermined scale that arises
from the contribution of missing higher-order terms. One
sets a range of values to that scale, and some of those values
may exclude an EoS, whereas others may not. The results
presented in this analysis are restricted to our choice of EoS
prior and matching density. The impact of different EoS
priors as well as different choices for the matching density
were studied in Ref. [162]. The authors found that the
impact of pQCD on the EoS inference was very sensitive to
the presence of EoS that display a drastic softening
immediately above the matching density followed by a
strong stiffening. We plan to further explore the conse-
quences of the pQCD constraints and EoS prior choices in a
follow-up analysis.
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Other approaches have been used to tackle similar
questions as studied here, such as a deep neural network
[117] or linear segments in ¢2 [178]. It would be relevant to
directly compare these different methods to our mGP
model in future work to study their ability to reproduce
specific features in c¢? from nuclear physics models.
Additionally, Essick et al. [172] developed a new technique
to extract features indicative of phase transitions from
functional forms of the EoS. Rather than modifying
samples from a benchmark model, Essick ef al. sample
from a mixture of GPs that contain a wide range of
correlation lengths that are fixed for a given EoS, including
short correlation lengths that lead to behavior in ¢? that
mimics arbitrary phase transitions. Using this method,
which we emphasize does not include multiscale correla-
tions in the EoS, Essick et al. also find that current data are
not yet constraining enough to rule in favor or against
nontrivial features in ¢2, with the exception of very strong
first-order phase transitions (latent energy per particle
2100 MeV). Interestingly, they also conclude from real-
istic simulations of future data that a catalog of around 100
events would at best lead to a Bayes factor of ~10:1 in
favor of a phase transition, even when the true EoS contains
a strong phase transition. Their conclusions support the
idea that astrophysical observations of neutron stars,
currently and in the near future, will not be able to constrain
short-range correlations in the EoS.

Overall, the results presented here suggest that current
constraints are not enough to rule definitively in favor of or
against phase transitions to exotic degrees of freedom in
the core of neutron stars and that unambiguous signatures
of structure in the EoS still require investigation. A clear
ruling regarding the existence of exotic matter in the core
of neutron stars will require more precise input from
astronomical observations, laboratory measurements, and
input from effective theories and QCD at high densities
[179]. Fortunately, more data are anticipated from the
NICER Collaboration both in terms of better statistics on
existing measurements and radii from new neutron stars.
Additionally, LIGO/Virgo/KAGRA'’s fourth observing run
started in May 2023 with better sensitivity than during the
third observing run, such that more neutron star mergers
that will provide A constraints are anticipated [180] and
the binary love relation may provide further insight into
structure in ¢2 [88]. Finally, more nuclear physics data are
anticipated from the Facility for Rare Isotope Beams that
will help constrain the low-density regime of the EoS and
from low-energy heavy-ion collisions that will probe the
large density, low-temperature region of the QCD phase
diagram [181].
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APPENDIX: QUANTIFYING THE IMPACT
OF SPIKES ON THE p(¢) PLANE

In this appendix, we will motivate the inclusion of spikes
in c2(log,, p) and discuss how those modifications trans-
late into the € — p plane. We will show that, under the
assumptions of the mGP, these spikes can result in
significant modifications to the benchmark EoS on the
& — p plane.

In our work, we define a grid that is regularly spaced
in log,, p with Alog,yp =0.043. That is, Ap(p;) =
1070043 _ 107 grows with p,;. Additionally, to recover
the energy density, we compute

1
g1 =&+ 2 (Pis1— D) (A1)

5,0

1

Ag; = TAP(Pi)- (A2)

c

1

Thus, if a modification is introduced at p; such that
cz.(p;) 2 0.1 [since ¢ can be arbitrarily small, we will
focus on cases where ¢ = O(0.1-1) first], the change in
energy density at point j is at least O(Ae;) = O(Ap;) and
at most O(Ag;) = 100(Ap;). We can derive some rough
bounds on Ag; by taking some representative values of
pressure; we choose log;op;ow = 33.5 erg cm™ (in most
EoS realizations, this value is slightly above nuclear
saturation density) and 10g;op; pigh = 36 erg cm™3 (in most
EoS realizations, this is close to the maximum central
pressure for a stable star). We then have
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APiow = 1020043 _ 10Psiow =O(1071) MeV/fm?, (A3)
A Pyigh = 1070043 _10pin = O(100) MeV /fm?,  (A4)

implying that when ¢5.(p;) > 0.1, O(10~! MeV/fm?®) <
Ae; < O(1000 MeV/fm?). Considering the energy density
itself ¢ = O(100 MeV/fm?), spike-type modifications
for which ¢? remains above 0.1 (again, we will discuss
the case when c¢? <0.1 next) lead to changes of
order 0.1%-1000% in the energy density. Therefore,
Ap is not necessarily small, and increases in the energy
density from one grid point to the next can be large in our
analysis.

Now, let us focus on how a change in a single point on
the log,,p-c? plane compares to its benchmark value on the
& — p plane. That is, we will estimate how different a spike-
modified ¢; , is from its benchmark value ¢;. Dropping the j
index (from here on, it is implied we are talking about the
point where a spike is introduced), the change in energy
density due to a modification c%* is

1
Ae, = SO Ap,
cy.

(A5)

*

such that the ratio between the benchmark value and the
spike-modified value above is

Ae _Apch.

—_— = = . A6
Ae, 2 Ap ¢ (A6)
We can then write
Ae 2
=R =17, A7
Aeg, c? (A7)

using R to represent the ratio. Because of causality, if both
c2,>0.1 and ¢2 >0.1, then R = O(0.1-10), meaning
that O(Ae, ) is at least 0.1O(A¢) and at most 100(Ae). We
already discussed above that Ae can be as small as O(0.1)
and as large as O(100) MeV/fm?. This shows explicitly
that a spike-type modification in ¢2 can translate into a
large modification in p(e).

Now, let us relax the assumption that ¢z > 0.1 and
c?>0.1. From Eq. (A7), it is clear that if 2, > c2,
R — 0, and Ae < Ag,. Therefore, when a spike is intro-
duced such that ¢2 < 0.1, the change in the p(¢) compared
to the benchmark EoS could span different orders of
magnitude.
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