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Measurements of neutron star masses, radii, and tidal deformability have direct connections to nuclear
physics via the equation of state (EoS), which for the cold, catalyzed matter in neutron star cores is
commonly represented as the pressure as a function of energy density. Microscopic models with exotic
degrees of freedom display nontrivial structure in the speed of sound (cs) in the form of first-order phase
transitions and bumps, oscillations, and plateaus in the case of crossovers and higher-order phase transitions.
We present a procedure based on Gaussian processes to generate an ensemble of EoS that include nontrivial
features. Using a Bayesian analysis incorporating measurements from x-ray sources, gravitational wave
observations, and perturbative QCD results, we show that these features are compatible with current
constraints. We investigate the possibility of a global maximum in cs that occurs within the densities realized
in neutron stars—implying a softening of the EoS and possibly an exotic phase in the core of massive stars—
and find that such a global maximum is consistent with, but not required by, current constraints.
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I. INTRODUCTION

One of the main goals of modern nuclear physics is to
determine the phase structure of QCD. The cold, catalyzed
nuclear matter in neutron stars probes the zero-temperature,
isospin asymmetric regime of QCD at baryon number
densities (nB) ranging from subnuclear to several times
nuclear saturation density (nsat ≡ 0.16 fm−3) in the core [1].
In this regime, first-principle QCD calculations are not yet
feasible because of the fermion sign problem [2,3], and
effective models and parametrizations of the equation of
state (EoS) are used instead.
A variety of models have been developed to compare

against astronomical observations, all of which have differ-
ent regimes of validity, advantages, and disadvantages. One
such model arises from chiral effective field theory (χEFT),
which breaks down at densities around 2nsat [4,5]. In this
effective theory, one prescribes a general Lagrangian that
respects the symmetries of low-energy QCD (with nucleons
and pions as degrees of freedom). This Lagrangian is then
expanded order by order in two- and multinucleon inter-
actions. The low-density crust (nB ≲ 0.5nsat) and the high-
density inner core (nB ≳ 1.1 − 1.5nsat) [6,7] of neutron
stars, however, require additional modeling and assump-
tions beyond χEFT about the underlying degrees of free-
dom and relevant interactions.
Another class of models relies on mean-field approx-

imations of an effective Lagrangian with nucleon, electron,
and muon degrees of freedom. These models lead to a

squared speed of sound c2s ¼ dp=dε (where p is the
pressure and ε is the energy density) that increases mono-
tonically with the density (see, e.g., Refs. [8–10]). Such
behavior leads to acausal sound speeds in nonrelativistic
models at densities only a few times that of nuclear
saturation and therefore cannot be the correct description
of nuclear matter at those densities. Relativistic hadronic
frameworks also break down at high densities (nB ≳ 6nsat),
when nucleons start to overlap [11].
Yet another set of results is available from perturbative

QCD (pQCD) calculations, in which the QCD field
equations are solved perturbatively in a small-coupling
expansion. These calculations have found that at very high
densities (nB ≳ 40nsat) c2s → 1=3 (in units where the
speed of light c ¼ 1) from below and high-density quark
matter is approximately mass-scale-invariant, or “con-
formal” [12–14]. Astronomical observations, however,
strongly suggest that c2s > 1=3 in the core of neutron
stars [15], at densities in the range of 2≲ nB=nsat ≲ 6. This
result indicates that c2s must display nonmonotonic behav-
ior with increasing density,1 which has motivated searches
for evidence that deconfinement into approximately

1While exact conformal symmetry implies c2s ¼ 1=3, and,
thus, that other EoS-related quantities must take on specific
values, the reverse is not a sufficient condition to establish
conformal symmetry. Indeed, it is possible for c2s to pass through
1=3 a number of times before eventually approaching it from
below at high densities.
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conformal quark matter occurs within densities realized in
neutron stars [16–19].
The onset of conformal quark matter is, however, not the

only question relevant to constraining the cold nuclear EoS.
Models that include heavy resonances and exotic hadronic
phases and/or strange and quark degrees of freedom predict,
respectively, higher-order phase transitions and crossovers
and/or first-order phase transitions [1,20–40]. An Nth-order
phase transition occurs when the Nth susceptibility of the
pressure (i.e., the Nth partial derivative of the pressure with
respect to the chemical potential) presents nonanalytic
behavior (such as a discontinuous jump or a divergence).
A crossover occurs when there is no phase separation, and
the change in degrees of freedom happens gradually over
some range in density (i.e., all derivatives of the pressure are
continuous). These different types of phase transitions and
crossovers do not necessarily predict an approach of c2s to
1=3 within neutron star densities (though it may happen at
much higher nB, well beyond the densities at which the star
would collapse to a black hole).
Different physical processes (i.e., phase transitions of

different order or crossovers) lead to unique and nontrivial
structure in c2s as a function of nB (see Ref. [41] for details
and extensive examples from microphysical models).
Generally, a first-order phase transition is associated with
the onset of new degrees of freedom. In neutron stars, a
first-order transition could separate a hadronic phase from a
quark phase, for example. When a first-order phase
transition takes place, the presence of latent heat leads to
a range in the energy density ε where the pressure p is
constant, which appears as a plateau in c2sðεÞ over which
c2s ¼ 0 for a system in equilibrium. On the other hand, a
crossover (or phase transitions of higher order) is typically
associated with the emergence of a new state, new degrees
of freedom/particles, or new interactions, that occur gradu-
ally across a range of nB. These new particles or inter-
actions lead to a bump in c2s , which may be wide (like a
positive plateau) or narrow (like a positive spike), depend-
ing on whether the crossover occurs over a wide or narrow
region in baryon density (see examples of quarkyonic
matter [24,42–44] or percolation approaches [45]).
Second-order phase transitions are associated with critical
points or, at vanishing temperatures, quantum critical
points. In this case, c2s displays a negative spike approach-
ing zero (for an example at finite temperatures, see Fig. 2
from Ref. [46]). Higher-order phase transitions are also
possible and may occur due to exotic baryon states or new
types of interactions that could lead to a kink in c2s [47]. An
EoS can display one or a combination of such features
depending on the assumptions made about the relevant
degrees of freedom and interactions.
Recently, astronomical observations across the electro-

magnetic and gravitational-wave spectra have placed
constraints on the macroscopic properties of neutron stars,
such as the mass (M), radius (R), and tidal deformability

(Λ). These measurements have also made it possible to
indirectly infer the allowed EoS via model-to-data
Bayesian comparisons, since the EoS determines M, R,
and Λ as a function of central number density nmax

B .
Analyses typically include binary tidal deformability (Λ̃)
posteriors from the LIGO gravitational wave observations
of events GW170817 [48–50] and GW190425 [51], the
existence of heavy pulsars [52–54] and NASA’s Neutron
Star Interior Composition Explorer (NICER) joint M − R
posteriors from PSR J0030-0451 [55] and PSR J0740þ
6620 [56] (see, respectively, Refs. [57,58] for independent
analyses of these two pulsars from a separate group within
the NICER Collaboration).
Other constraints are also available from the measured

properties of nuclei at nsat. These properties include the
symmetry energy (S ¼ ESNM − EPNM), defined as the
difference in the binding energy per nucleon between
symmetric nuclear matter (SNM) and pure neutron matter
(PNM) as a function of density, and the slope parameter
(L), which determines how the symmetry energy changes
with density [59–65].

From the theory perspective, it recently became possible
to consistently extrapolate pQCD results to densities as
low as ∼2.5nsat [66,67]. These constraints are based on the
mechanical stability and causality of the EoS (0 ≤ c2s ≤ 1)
and the consistency of the underlying thermodynamic
potential that connects the low-density regime of the
EoS to the high-density regime (≳40nsat) constrained by
pQCD. These constraints offer information at each nB
about the region in p − ε that can be connected to the high-
density perturbative results via a stable and causal EoS and
a consistent thermodynamic potential. For a given EoS,
it is possible to check its compatibility with stability,
causality, and consistency constraints at any density
between ∼2.5–40nsat. We will refer to these constraints
collectively as the pQCD constraints from here on.
The lack of first-principle approaches for the β-equili-

brated, zero-temperature nuclear EoS between ∼1.1nsat up
to nmax

B realized in neutron stars means that astronomical
observations are the only direct probe of the EoS in this
regime. Thus, model-to-data Bayesian comparisons of
generic functional forms of the EoS are the state of the
art for obtaining posterior distributions for the EoS.
Nonetheless, microscopic models are vital in providing
guidance for the behavior of functional forms of the EoS,
especially so that specific features associated with the onset
of new degrees of freedom and interactions can be correctly
identified.
The posterior distribution that is extracted from a

Bayesian analysis is sensitive to how data and theoretical
input are incorporated [68] as well as prior-imposed
assumptions about the EoS (e.g., correlations across
density scales) [69–72]. Parametric descriptions, such as
spectral expansions [73,74] or piecewise polytropes, pro-
vide a framework to represent the EoS without relying on
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microphysics models. Spectral representations of the
EoS assume the adiabatic index ΓðpÞ as a function of
pressure can be expanded in terms of a set of spectral basis
functions and coefficients, which uniquely determine the
EoS [73–75]. Piecewise polytropes divide the EoS into a
number of segments and represent the pressure for each
segment as a polytrope, p ¼ κρΓ, where κ and Γ are the fix-
ed polytropic constant and the adiabatic index, respectively
[76]. Parametric representations have been widely used,
since they do not rely on as many assumptions as physics-
based models (see, e.g., Refs. [16–18,50,55,56,76–82],
though this list is far from comprehensive). However, the
question of whether these parametrizations are flexible
enough to capture all relevant physics has recently been
raised in the literature [69,72,83]. Specifically, it has been
shown that parametrized EoS can introduce undesired
correlations across density scales [69,72] and are unable
to capture behavior consistent with state-of-the-art nuclear
physics models with exotic degrees of freedom [83].
Physics-agnostic frameworks based on Gaussian proc-

esses (GPs) offer more flexibility in the modeling of the EoS
at the cost of increased functional complexity [15,84–87].
Generally, a GP models the speed of sound as a continuous
function over a specified domain. The properties of the
probability density for the speed of sound at each point of
the domain are determined by a mean vector and covari-
ance matrix. The covariance matrix is calculated using a
specific kernel function that requires hyperparameters that
can be fixed or sampled from a hyperprior. The hyperprior
may be model agnostic or conditioned to more closely
reproduce a set nuclear physics models [87]. In principle, a
GP can be tailored to resemble any continuous function
across some domain. So far, GPs have been implemented
with a fixed set of hyperparameters for an individual
EoS [15,16,56,58,67,84–87], though priors may contain
samples drawn from mixture of multiple stationary ker-
nels, probing a wide range of potential correlation proper-
ties [15,87]. In contrast with the assumption of uniform
correlations across density scales, many state-of-the-art
nuclear physics models with exotic degrees of freedom
display multiscale correlations across various densities
[83]. Furthermore, the features that emerge in the speed of
sound as a result are known to be important for under-
standing heavy, ultraheavy (neutron stars with masses
above 2.5M⊙), and twin stars [41,83,88].

With that motivation, we introduce modified GPs (mGPs)
as a framework for modeling EoS with nontrivial features
that possess long-, medium-, and short-range correlations
across densities. First, we produce a family of EoS from a
benchmark model of GP EoS that contain only long- and
fixed-range correlations in c2s . We then generate a family of
EoS from mGPs, which introduce multiscale correlations in
the form of nontrivial features in c2s . With these two families
of EoS, we carry out Bayesian parameter estimation
analysis against observational and experimental data and

input from pQCD. The results of this analysis allow us to
compare the marginalized posteriors of the mass and radius
curve and the speed of sound and number density curve
when we use the benchmark GP model and the modified GP
to represent the EoS. We find that neither EoS family is
favored over the other by current data. We do find, none-
theless, that the marginalized posterior for the speed of
sound at densities ∼1.5–2nsat is not identical for EoS from
GPs compared to mGPs, although the data are not inform-
ative enough yet to discriminate between these posteriors.
The remainder of this manuscript presents the details of

the analysis summarized above. In Sec. II, we discuss GPs
as a model-agnostic framework for generating the EoS and
how we introduce multiscale correlations to the EoS with
mGPs. Section III outlines how we generate EoS priors
from the GP and mGP frameworks. Statistical methods are
discussed in detail in Sec. IV, followed by results in Sec. V
and conclusions and discussion in Sec. VI. Throughout this
manuscript, we use c ¼ 1 and the Einstein summation
convention when necessary. Thermodynamic quantities are
in centimeter-gram-second (cgs) units (unless otherwise
stated), with the exception of c2s , which we always normal-
ize by c2.

II. GENERATING THE EQUATION OF STATE

Both the benchmark EoS model that is a standard GP
and the modified GP EoS are built from model-agnostic
GPs, which approximate functional forms of c2s as a
function of the pressure over a fixed domain (for a more
comprehensive overview of Gaussian processes, we rec-
ommend Refs. [84,89].) We now discuss the details and
motivation for the construction of both models.
A GP provides the joint probability density for a

continuous function fðxÞ over a domain of interest, which
we represent here by a sample of discrete values labeled xi.
This probability density is assumed to be a multivariate
Gaussian distribution (no summation over i implied),

fðxiÞ ¼ N ½μiðxiÞ;ΣijðxiÞ�; ð1Þ

where N ð·; ·Þ is the normal distribution function at xi, with
a mean μi that varies with xi and a covariance matrix Σij,
which gives the correlation between the values of f at xi
and xj, where i can equal j.
In the context of extracting the properties of neutron stars

from data using an ensemble of synthetic EoS, GPs have
been used to approximate the EoS from samples of func-
tional forms of c2s [15,84,86,87,90–92]. Because the range
of Gaussian distributions is infinite, while c2s is bounded by
stability and causality (0 ≤ c2s ≤ 1), it is common to use the
GP to approximate an auxiliary variable that compactifies
the range of a Gaussian distribution (infinite in both the
positive and negative directions) to the range of c2s . Let us
call this variable ϕ [73,84] and define it via
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ϕ≡ lnðdε=dp − 1Þ ¼ lnð1=c2s − 1Þ; ð2Þ

where p is the pressure and ε is the energy density. This
auxiliary variable has the desired range for a GP, but when
mapped to c2s using the definition above, ϕ → þ∞ corre-
sponds to c2s → 0, while ϕ → −∞ corresponds to c2s → 1.
It is common in the literature to model ϕ as a function of
log10 p in cgs units [15,56,84,86,87,91,92]. More explic-
itly, Eq. (1) becomes

ϕðlog10piÞ ¼ N ½μiðlog10piÞ;Σij�: ð3Þ

Other units and thermodynamic variables can be used
instead (e.g., Ref. [90] uses baryon density in units of
nsat), but we will use the parametrization presented above.
A more computationally practical implementation of a

GP is to decompose it into a mean and a scatter via

ϕðlog10 piÞ ¼ μiðlog10 piÞ þ Lijuj; ð4Þ

where Lij is the Cholesky decomposition of the covariance
matrix plus a white-noise kernel contribution, i.e., LikLT

kj ≔
Σij þ σ2wnδðxi − xjÞ, with uj ¼ N ð0; 1Þ and σwn a constant
white-noise variance. The white-noise kernel (the second
term on the right-hand side of the Cholesky decomposition)
is added for numerical stability, since the determinant of Σij

can be nearly singular. The effect of the white-noise kernel
is to slightly smear the GP by adding noise to the diagonal
elements of Σij. A small σwn is sufficient to dramatically
increase the stability of the calculation without changing
the overall properties of the final sample. We use
σ2wn ¼ 0.0003, but any other value of the same order of
magnitude would produce similar results.
Given the joint probability density for ϕ, we can

construct a GP realization, or “sample,” by selecting a
range of pressures and then drawing the associated ϕ values
using Eq. (4) [64]. We then invert Eq. (2) to find c2s as a
function of p. The definition of the speed of sound can then
be used to specify a differential equation for the EoS,
c2sðpÞ ¼ dp=dε, which can be solved in first quadrature as

ε ¼
Z

dp
c2sðpÞ

; ð5Þ

and then inverted to find pðεÞ. We then obtain the baryon
density using the first law of thermodynamics, which, at
zero temperature and assuming charge neutrality, can be
written as

dnB
dε

¼ nB
εþ pðεÞ : ð6Þ

Once these equations are solved, we have the set
fϕðpÞ; c2sðnBÞ; pðεÞg, which defines an EoS sample from

a GP. In practice, we build our EoS numerically by
sampling on a finite set of pressures and baryon densities
with a sufficiently fine discretization. As pointed out in
Ref. [41], a simple check that the EoS is being recovered
correctly is to calculate c2s from p and the reconstructed ε
and check that it matches the c2s from the GP. The EoS
samples generated through the GPs will only be used above
0.5nsat [80], which we denote as the core-crust transition.
Below this density, we model the crust through the QHC19
EoS [39,93].

A. Benchmark Gaussian processes

Now that we have explained the idea behind constructing
an EoS sample from a GP, we need to specify the input for
the joint probability density function in Eq. (3). The two
main ingredients that define a GP are the means fμig,
which will determine the average trend for the function that
is being sampled, and the covariance matrix Σij, which
specifies the joint variability between two points xi and xj.
Let us first discuss how we model the means. Our

goal at this stage is to create a benchmark model c2sðpÞ
without any sharp, nontrivial features. To do so, we adopt
the approach taken in Miller et al. [56], which looked at a
collection of 12 cold neutron star EoS from the CompOSE
database [94,95] on the log10 p − ϕ plane, and find
that these EoS follow a linear trend over the domain
32.7 ≤ log10piðerg cm−3Þ ≤ 37. This trend was empiri-
cally approximated as

μiðlog10piÞ ¼ 5.5 −mðlog10pi − 32.7Þ; ð7Þ

wherem is the slope of the linear regression. Reference [56]
fixes m ¼ 2 based on the spread of EoS from CompOSE.
Other choices for the means are also possible [87]. Out of
the total 12 EoS that this model is based on, seven were
purely proton, neutron, and electron matter (npe) models
[8,9,96–104]; one model included npe matter, heavy bar-
yonic resonances, and a crossover transition to quarks
(QHC18 [1,93,105]); and four models included npe matter
plus strange baryons [8,102–104,106–110]. These models
largely approach the causal limit at high densities, which
biases the behavior of the EoS in that regime. Notably,
models that predict a softer EoS at large densities, such as
quarkyonic models [24,42–45], are missing from the
collection of EoS that was used to determine Eq. (7).
To test the assumption of Miller et al. [56], we use the

relation in Eq. (7) with m ¼ 2 to create a set of EoS
samples. As shown in the top left panel of Fig. 1 (solid, thin,
gray lines), these EoS samples cluster around a mean (solid,
thick, black line). The top right panel of this figure shows
that speed of sound functional forms constructed using
m ¼ 2 largely approach unity with increasing density. This
behavior is highlighted in the bottom panel, which shows c2s
as a function of pressure. Note that different EoS have
different ranges in baryon density for the same range of

MROCZEK, MILLER, NORONHA-HOSTLER, and YUNES PHYS. REV. D 110, 123009 (2024)

123009-4



pressure, so the range of pressures in the top left panel does
not correspond to the range of baryon densities in the top
right panel. We now contrast this set of EoS samples with a
new set, constructed from GPs with a softer mean. More
specifically, we set m ¼ 1.6 in Eq. (7), resulting in the
functional forms shown in the top left panel of Fig. 1 (dot-
dashed, thin, gray lines). As expected by construction, the
mean of these samples has a softer slope (dot-dashed, thick,
black line). The effect of this softer mean is to reduce the
speed of sound to values largely below ≈0.4 in the neutron
star range of baryon densities, as shown in the top right
panel of Fig. 1. For baryon densities larger than what we
expect in neutron stars, the distribution of speeds of sound
has a mean of 1=3 (i.e., the conformal limit), and a scatter
that leads to c2s’s as large as 0.8 and as small as 0.1, as shown
in the bottom panel. From here on, we refer to the set of EoS

samples resulting from GPs with m ¼ 2 and m ¼ 1.6 as
“hard GP” and “soft GP,” respectively. Figure 1 also
presents specific realizations of nuclear physics simulations
of the EoS, but we defer a discussion of those to Sec. II B.
Why consider a soft GP when astronomical observations

seem to indicate that the conformal limit is broken at nB ≈
2nsat [7,15,56,117]? Our motivation is to show the effect of
softer means in the speed of sound, while at the same time
generating a new benchmark model that can be modified
through sharp features in a narrow baryon density range to
make them consistent with astronomical observations. We
will discuss such modifications in the next subsection.
Before proceeding, let us discuss two other important

modifications from the approach in Miller et al. [56]. The
highest value sampled in log10 p is 37, instead of 36 in
Ref. [56], and we use a significantly finer grid—Miller

FIG. 1. The auxiliary variable ϕ≡ lnððdε=dPÞ − 1Þ as a function of log10 P in cgs units (left) and the speed of sound as a function of
baryon number density in units of nsat (right) for different parametrizations of the EoS from CMF, which include nucleons (np), D, H,
quarks (q), and leptons [109–115], the QHC19 EoS (npþ qþ leptons) [39], and the relativistic density-functional (RDF) approach
introduced in Ref. [116] (npþ qþ leptons). In light gray, we show a sample of 160 total functional forms for c2s from the benchmark
GPs using the ansatz in Eq. (7) and a squared-exponential kernel with l ¼ σ ¼ 1. The functional forms from the hard and soft GP are
shown in dot-dashed and solid lines, respectively. The benchmark GPs capture a wide range of behavior, but the a priori requirement
that functional forms display only long-range correlations across densities exponentially suppresses sharp and nontrivial features in c2s ,
which are observed in state-of-the-art nuclear physics simulations.
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et al. samples 50 points, whereas we sample 100. These
modifications are necessary because our procedure allows
for softer EoS, which result in higher neutron star central
pressures. Expanding the sampled domain ensures that the
entire stable branch is captured, rather than cutting it off at
an arbitrary, smaller value. Also, since in the next sub-
section we will introduce sharp features in c2s that lead to
rapid changes in the EoS, a finer grid is needed to keep
numerical errors under control when recovering the EoS
samples from a GP.
Let us now discuss the second ingredient that defines a

GP: the covariance matrix. We assume that Σij is a matrix
whose elements are determined through a kernel function
of the pair fxi; xjg, where xi is the point at which the
normal distribution is being sampled (i.e., in our case, x is
the log10 of the pressure in cgs units) and xj is any other
point, i.e., Σij ¼ Kðxi; xjÞ. We further assume a squared-
exponential kernel,

Kseðxi; xjÞ ¼ σ2 exp

�
−
ðxi − xjÞ2

2l2

�
; ð8Þ

which depends only on the distance between xi and xj and
on two hyperparameters, l and σ. Specifically, l deter-
mines the correlation length scale (e.g., when l → 0 all
points are independent of each other), and σ represents the
strength of the overall correlation (e.g., when σ → 0 all
points go to the mean). The benchmark models should be
smooth, meaning that l should be compatible with longer
correlations across domain points. In addition, because of
the exponential map between ϕ and c2s , a σ that is too large
would lead to c2s ≈ 0 or c2s ≈ 1 more often. Nonetheless, σ
should not be too small, so there is enough variability in the
EoS samples from any given GP. In accordance with Miller
et al. [56], we set l ¼ σ ¼ 1 for both the hard and soft GP
benchmark models.
Let us now consider the effect of our choice of l and σ on

our EoS samples. Figure 1 shows that, in the hard GP case,
σ ¼ 1 still allows for enough deviation from the mean to
create variability in the EoS samples, without oversampling
c2s ≈ 1 or c2s ≈ 0. In the case of the soft GP, a σ ¼ 1 leads to
oversampling c2s ≈ 0, since the mean is already at very low
values of c2s . However, for both GPs, l ¼ 1 heavily
suppresses large deviations in c2s from one value of pressure
to pressures in a close neighborhood, resulting in EoS
without sharp, nontrivial features. Our assumptions in the
benchmark models do not force c2s to increase monoton-
ically; nevertheless, because l ¼ 1 imposes large-scale
correlations, nonmonotonic behavior is smeared out across
a wide range of densities, a feature that is consistent only
with a smooth (i.e., wide) crossover.

B. Modified Gaussian process

Are the benchmark models discussed in the previous
subsection enough to accurately represent nuclear-physics-
derived EoS? Figure 1 shows a set of EoS derived from
state-of-the-art simulations of chiral mean field theory
(CMF) models [109–114], a simulation of the commonly
used quark-hadron crossover EoS framework (QHC19)
[39], and one example from the RDF model with density-
dependent vector and diquark couplings [116,118]. In
particular, we include in this figure CMF models with
delta resonances (D), hyperons (H), and quark (q) degrees
of freedom, where the transition to quark degrees of
freedom is a first-order phase transition (denoted CMF)
or a crossover due to an excluded volume term (denoted
CMFex) for two different parametrizations of the strange
vector quark couplings [115]. The RDF example included
here corresponds to the onset of a two-flavor color-
superconducting quark phase at nB ¼ 0.287 1=fm3, the
central density of a ∼1M⊙ star in this model. As shown in
Fig. 1, exotic degrees of freedom lead to kinks, spikes, and
plateaus in c2s that occur across short correlation lengths in
baryon density.2 None of the EoS samples drawn from
either of the two benchmark GPs is able to reproduce these
features.
This discrepancy between the benchmark GPs and

nuclear physics simulations motivates the creation of
mGP. More specifically, we wish to create a modification
to the benchmark GPs that lead to EoS samples that contain
the short-length correlation structures in the speed of sound
that are present in realistic nuclear-physics simulations,
while maintaining long-length correlation scales driven by
an overarching mean behavior. A mGP sample is built from
a benchmark GP that serves as a baseline but that is
modified through the addition of a specific feature in a
range of pressures. We do not introduce modifications
below nsat because a variety of experimental constraints
(see Ref. [60,119] for a recent review) and χEFT calcu-
lations [5] require no such structure at these low densities.
Two main reasons drive our choice to introduce mod-

ifications to a baseline GP. The first is direct control over
the functional form of c2s at a low computational cost. Each
modification that is introduced can be directly related to a
thermodynamic process, and we have the ability to track
where and how modifications appear without any post-
processing. The second is a priorimultiscale correlations in
density. We note that GPs with a fixed, but sufficiently
small correlation-length can converge to an EoS that
displays long, medium, and short correlations in density
a posteriori, in which case convergence (i.e., the posterior
credible regions are small and centered around the true EoS
at all density/mass scales) may require a large number of

2See also Fig. 2 in Ref. [83] for more examples of nuclear
physics simulations of EoS with exotic degrees of freedom and
how nontrivial features appear in the speed of sound.
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samples.3 However, if the GPs are constrained to larger
correlation lengths a priori, medium- and short-range
correlations will be exponentially suppressed, and an even
larger number of samples would be required to converge to
a posterior that displays multiscale correlations [120].
In the following paragraphs, we connect the types

of modifications we introduce in the mGPs to the
phase transition phenomenology from numerical simula-
tions of nuclear physics models and general thermody-
namic arguments.
There are a few different thermodynamic phenomena

relevant to study of phase transitions. These phenomena are
illustrated in Fig. 2 as functional forms of the speed of
sound as a function of baryon number density and Table I,

which connects the different features illustrated in Fig. 2 to
relevant physical processes and nuclear physics models. We
will now discuss each of the categories of physical
phenomena and modifications individually and draw con-
nections to Fig. 2 and Table I.

In general, a phase transition can be continuous (also
known as a crossover) or discontinuous. If continuous, all
derivatives of the pressure are finite, i.e.,�

∂
np
∂μnB

�
crossover

≠ ∞; ð9Þ

and the pressure is an analytic function of the energy
density. If a discontinuity exists, i.e.,�

∂
np
∂μnB

�
nth−order

→ ∞; ð10Þ

the phase transition is classified through its order n. An
(nth)-order phase transition is one in which the (nth)-order
derivative of the pressure with respect to the chemical
potential at the critical baryon density nB ¼ ncrit.
At vanishing temperatures, crossovers lead to a non-

monotonic peaklike behavior—i.e., a bump—in the speed
of sound (see Ref. [24] for an example and explanation of
this behavior). Mathematically, we can define the center of
this bump at ñB, and half the range in nB where this
bump occurs will be defined as δ. Then, if the peak of
the bump is centered at ñB (we make the assumption here
that ñB is centered at the middle of the bump but it does
not necessarily have to be the case), we find that at
nB ¼ ñB, ðc2sÞ0 ∼ 0.
Crossovers can be further classified into smooth (see,

e.g., Ref. [24]) or sharp (see, e.g., Ref. [121]), depending
on the abruptness of the nonmonotonic behavior. A sharp
crossover is when the change in degrees of freedom
happens rapidly (as expected in quarkyonic matter models
[24,42–44,121], for instance), such that δ ≪ 1nsat and the
peak behavior becomes more of a “spike” (although all
derivatives of the pressure remain finite). This kind of
crossover is summarized in the top row of Table I, is
illustrated through the drawing in the top left panel of
Fig. 2, and will be represented in the mGP framework by a
spike that rises relative to the baseline. A smooth crossover
is when the change in degrees of freedom happens slowly
so that δ > 0 is large and the peak behavior becomes more
of a “plateau” such that there is no longer a single sharp
point in baryon density where the derivative of c2s is zero
but rather a range of nB ∼ ñB such that ðc2sÞ0 ∼ 0. This kind
of crossover is summarized in the second row of Table I, is
illustrated through the cartoon in the top right panel of
Fig. 2, and will be represented in the mGP framework by
constant c2s ≠ 0 in a ñB � δ region. For both sharp and
smooth bumps, we define the bump as an increase of at

FIG. 2. Drawing of c2s as a function of nB to illustrate different
physical features to incorporate in mGPs. A sharp crossover
corresponds to a rapid change in degrees of freedom, where c2s
will first become stiffer—due to the onset of, e.g., repulsive or
excluded volume interactions—and then quickly soften with the
emergence of new degrees of freedom; this leads to a spike/sharp
bump upward in c2s with respect to the baseline (top left). A
smooth crossover corresponds to a slower change in degrees of
freedom, which we model as a plateau upward with respect to the
baseline (top right). A second-order phase transition corresponds
to the critical point at the end of a first-order phase transition line,
leading to a very small region (approximately a point) where
c2s ¼ 0, which can be modeled as a spike downward with respect
to the baseline (bottom left). Last, a first-order phase transition
separates two phases with distinct densities, leading to a gap in
c2s , which can be represented as a plateau, or region, where c2s ¼ 0
(bottom right).

3It is also important to note that data may not constrain large
changes in the speed of sound over a short range in density
very strongly. That is, the likelihood for any individual event
may not be very informative, which would required many events
to get an informative joint likelihood. In that case, any tighter
credible regions derived with priors constrained to display short-
range correlations would be due to the prior rather than the
likelihood [120].
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least 10% compared to the original benchmark functional
sampled in the regime of ñB � δ.
Let us consider an example of a sharp crossover in more

detail, taking the quarkyonic model as a reference [24,121].
In this framework, the speed of sound squared is always
below the conformal value of 1=3, except in a narrow range
of densities where the crossover transition happens. The
rapid stiffening is associated with repulsive, excluded
volume interactions, followed by a softening of the speed
of sound, once quark and gluon degrees of freedom appear
in the system. A scenario like this one is equivalent to a soft
GP baseline with a spike that rises up in a small baryon
density region. Our mGP also includes more general cases
where a spike up is added to a hard GP baseline, meaning
that c2s will not be required to stay below the conformal
value neither before nor after the crossover, since those
cases cannot yet be ruled out by the data.
Let us now consider a few examples of smooth cross-

overs in more detail. A minimal set of requirements to
create a plateau or “bump” structure is discussed in
Ref. [124], which found that in QCD this feature can be
the result of a “chiral-superfluid” transition, such as the
condensation of diquarks or dibaryons. In quarkyonic
frameworks, a plateau structure can appear when repulsive
excluded-volume terms are partially balanced by the onset
of quark degrees of freedom, which stiffen and soften the
EoS, respectively [42–44]. In the CMF model, implement-
ing an excluded-volume term for the hadrons leads to a
crossover transition to the quark phase [115]. In the quark-
hadron crossover EoS (QHC) [39], or three-window
modeling of the EoS [45], the crossover regime is con-
structed via a smooth interpolation of the hadronic and
quark regimes, which must also respect thermodynamic

constraints such as causality. Lastly, the quark-meson
coupling (QMC) class of models, which is based on
baryons that interact via the exchange of virtual mesons
between confined valence quarks, also gives rise to smooth
crossover structure in c2s [35,122]. Furthermore, QMC EoS
soften rapidly with the onset of hyperons, leading to c2s <
1=3 within neutron star densities even when no quarks are
produced [35], a feature that is relevant for recent dis-
cussions on the onset of a conformal regime in the core of
massive neutron stars [16,18,67]. Scenarios like the ones
described above lead to a rounded peak structure in the
speed of sound (see Fig. 1), which can be approximated as
a plateau at some finite c2s that rises above the baseline
EoS. We make this approximation for simplicity, given that
there is an infinite number of continuous functions that can
be constructed in the crossover regime. Although we do
not expect this approximation to affect macroscopic
observables significantly, it would be valuable to quantify
its impact in a future study, accounting for variables such
as the width and height of the peak and density depend-
ence. A smooth crossover can also be constructed phe-
nomenologically (see, e.g., Refs. [125–127]).
Discontinuous phase transitions of order higher than 2

lead to speeds of sound that resemble that of crossovers,
although technically the higher derivatives of the pressure
are not defined and the pressure is thus a nonanalytic
function of energy density. In fact, for some models, it is
still an open question whether certain phase transitions are
crossovers or discontinuous phase transitions of finite
order [47]. For this reason, we will model discontinuous
phase transitions of order higher than 2 through spikes and
plateaus in the speed of sound that dip below the baseline
but do not lead to vanishing c2s . The inclusion of these

TABLE I. Connection between phase transitions of different orders/crossover to corresponding physical processes in terms of the
effect on the speed of sound in equilibrium and modifications in the mGP framework. Note that a first-order phase transition has a jump
in baryon density across ΔnB.

Transition type Physical process Representation in c2s Modification

Sharp crossover Quarkyonic matter [24,42–44,121],
percolation to quark matter [39,45],
quark-meson coupling [35,122]
heavy resonances [109–115],

hyperons [47,109,123],
chiral-superfluid transition [124]

For δ ≪ 1, if nB ¼ ñB � δ,
then ðc2sÞ0 ¼ �δ−1

if nB ¼ ñB, then ðc2sÞ0 ¼ 0

Spike up, c2s ≠ 0

Smooth crossover For δ > 0,
if nB ¼ ñB � δ, then

ðc2sÞ0 ¼ �δ−1

if nB ∼ ñB, then ðc2sÞ0 ∼ 0

Plateau up, c2s ¼ 0

nth-order PT, n > 2 If nB ¼ ncrit, then
dnp=dμnB → ∞

Spike or plateau down, c2s ≠ 0

Second-order PT Critical point due to exotic
quark phases

c2sðncritÞ ¼ 0 Spike down toward c2s ≈ 0

First-order PT Quark deconfinement [109,111],
color superconductivity [116,118],

color-flavor locking [26]

c2sðnBÞ ¼ 0 with nB ∈ ½n�B; n�B þ
ΔnB�

Plateau down at c2s ≈ 0
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features leads to a variety of nonmonotonic structure in c2s
across some finite range in nB.
A discontinuous phase transition of order 2 is sometimes

referred to as a “critical point” (illustrated in Fig. 2, bottom
left) because it is the end point of a first-order phase
transition line. As presented in Table I, we are not aware of
any models that predict a critical point at zero temperature
for β-equilibrated nuclear matter (note that a zero temper-
ature critical point is known as a quantum critical point).
However, this possibility cannot currently be ruled out by
the data, and thus we choose to model it. At a critical point,
c2s ≈ 0 only at a critical baryon density ncrit. In the mGP
framework, we model a critical point as a spike that dips to
low values of c2s (below 0.1) at a single value of baryon
density. Ideally, we want c2sðncritÞ ¼ 0, but because we
reconstruct the EoS numerically, taking c2sðpÞ to be exactly
zero at any point along the grid would cause the expression
for the energy density to become nonanalytic. Additionally,
because we add a modification to a benchmark EoS that has
the same correlation length before and after the transition,
large deviations in the value of c2s before and after the
transition are suppressed in the prior. However, these values
could in principle be completely uncorrelated. In future
work, our model could be improved by considering differ-
ent benchmark EoS before and after the transition.
Nonetheless, the changes introduced by a spike going to
low c2s are significant on the ε − p plane (see Appendix).
A discontinuous phase transition of order 1, also known

as a first-order phase transition, occurs when the transition
between two different phases of matter requires a nonzero
latent heat. As a result, the two phases have different
baryon densities. If the transition density is n�B, then the
speed of sound displays a gap, i.e., a region where c2s ≈ 0,
between n�B and n�B þ Δn�B. The larger the gap, the stronger
the phase transition. This description assumes that the
system is in equilibrium and a Maxwell construction was
performed to remove any metastable region. In a dynamical
system, the first-order phase transition would present as a
metastable, or spinodal, region wherein one would see
nonmonotonic behavior in c2sðnBÞ, nB ∈ ½n�B; n�B þ Δn�B�.
Since neutron stars are in equilibrium, a Maxwell con-
struction across the phase transition is a good assumption,
leading to a plateau in pðεÞ that results in a region of
c2sðnBÞ ¼ 0, nB ∈ ½n�B; n�B þ Δn�B�.
First-order phase transitions arise in a variety of

nuclear-physics models, as presented in Table I. In the
CMF framework [109,111], a first-order phase transition
results from a Polyakov loop being used to describe the
separation between the hadronic phase with deltas and
hyperons from the quark phase. The Triplets model [26]
contains sequential first-order phase transitions that sep-
arate a density-dependent relativistic mean-field model
with nucleons and hyperons phase from a two-flavor quark

color-superconducting phase (2SC) and a quark color-
flavor-locked phase. The RDF model introduced in
Ref. [118], generalized to include density-dependent
vector and diquark couplings in Ref. [116], contains a
first-order transition that separates a hadronic regime [123]
from a 2SC phase. First-order phase transitions can also be
constructed phenomenologically to separate phases from
different descriptions using n�B and ΔnB as a variable
parameter to tune the transition density and the gap in
baryon number density between the two phases (see, e.g.,
Refs. [116,118,128–131]). Such transitions are straightfor-
ward to model with a mGP assuming a Maxwell con-
struction by replacing a portion of the baseline c2s with a
segment for which c2s ¼ 0.

III. CHOICE OF PRIORS

Now that we have described how EoS are created from
the benchmark GP and the mGP models for c2sðlog10 pÞ, we
will specify the relevant prior distributions. Generally, what
constitutes an appropriate prior will depend on the param-
eters being estimated in a Bayesian analysis. The implicit
assumptions we make by modeling the EoS from a non-
parametric framework are that (i) the speed of sound at each
sampled value of pressure, c2sðpiÞ, is an effective parameter,
and (ii) the method and the hyperparameters we choose for
generating c2sðpiÞ dictate both the prior distribution and the
correlations across the effective parameter space.
The prior distribution that we choose is, therefore, a

statement on our prior beliefs of the allowed values of
c2sðpiÞ. When dealing with effective parameters of this type,
there are two important aspects to consider. On the one
hand, we must model a diverse set of functional forms of
c2sðpiÞ to span a sufficiently large sample of its function
space. On the other hand, we must also ensure that this
diverse set of functional forms leads to c2sðpiÞ that are
statistically consistent with astronomical observations of
neutron stars, i.e., that, to the best of our knowledge, our
prior offers a reasonable description of neutron stars.
A technical point about modeling c2sðlog10 pÞ using GPs

is the following. In the previous section, we have defined
crossovers and phase transitions of different orders based on
the behavior of c2s as a function of p or n at the transition
point (in the case of phase transitions) or in the regime
where the transition happens (in the case of crossovers).
However, the GP kernel is the same before and after the
transition density. That means that the correlation length
will be the same across all phases of matter (though we do
not explicitly model different phases). This assumption is
contrary to what we expect to happen in nature and to what
is predicted by microscopic models, which is that different
phases of matter will lead to different correlations between
thermodynamic variables due to changing degrees of free-
dom and interactions. Even so, in the context of a Bayesian
analysis, as long as the prior is sufficiently flexible to
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capture the behavior of the true EoS, assuming a stationary
kernel, i.e., one that does not change as a function of the
independent thermodynamic variable in the GP, there will
be support for the true EoS in the posterior. In future work,
one could explore a piecewise or density-dependent kernel.
We also recommend Refs. [84,87] for a discussion on GP
kernels.
In the next two subsections, we will discuss in detail the

priors on the GP and mGP hyperparameters and how we
ensure the sample size is large enough and consistent with
reliable astronomical observations.

A. Priors on GP and mGP hyperparameters

Let us first discuss the priors that we choose on the
benchmark GP hyperparameters. These hyperparameters
correspond to the correlation length (l) and correlation
strength (σ) at each c2sðpiÞ and the slope (m) of the mean
function μiðlog10 piÞ. For l and σ, we choose delta-
function priors that fix these parameters to unity. For m,
we choose two equal-probability delta-function priors, one
peaked at m ¼ 1.6 and one at m ¼ 2, such that 50% of the
time the benchmark GP corresponds to a hard GP and 50%
of the time it corresponds to a soft GP.
We will now discuss the priors on the mGP hyper-

parameters. As noted in Sec. II B, the mGP model intro-
duces modifications on top of a baseline, which is modeled
through the benchmark GP. The introduction of one spike is
controlled by four hyperparameters: a true or false switch
qsp, a spike magnitude sp, a spike directioncsp, and a spike
location psp, such that c2sðpspÞ ¼ sp if a spike is present.
Similarly, the introduction of one plateau is controlled by
five hyperparameters: a true or false switch qpl, a plateau

magnitude pl, a plateau direction bpl, a plateau width in
pressure Δppl, and a plateau starting location ppl, such that
c2sðpÞ ¼ pl for p∈ ½ppl; ppl þ Δppl� if a plateau is present.
In this work, we will consider the introduction of one

spike, one spike and one plateau, and two plateaus.
This implies that every modification is controlled by a
choice of the hyperparameter vector  h ¼  h1 ∪  h2, where
 h1 ¼ fqsp; qpl1; qpl2;csp; bpl1; bpl2g determines whether

spikes and plateaus are present and  h2 ¼ fsp; psp; pl1;
Δppl1; ppl1; pl2;Δppl2; ppl2g determines the properties of
these modifications.
The hyperparameters in  h2 are dependent on the choices

made for  h1, so we first focus on  h1. The switch hyper-
parameters fqsp; qpl1; qpl2g determine whether a feature is
present, and thus they can only be 0 or 1. Similarly, the unit
vector hyperparameters fcsp; bpl1; bpl2g indicate the direc-
tion of a spike or a plateau (i.e., whether the modification
increases or decreases the speed of sound with respect to
the baseline) and can only take values of �1. We consider
the following seven configurations:

(i)  h1 ¼ f0; 0; 0;csp; bpl1; bpl2g. No modification is in-
troduced, and the mGP reduces to the bench-
mark model.

(ii)  h1 ¼ f1; 0; 0;�1; bpl1; bpl2g. A spike is introduced
that goes either above or below the baseline.

(iii)  h1 ¼ f1; 1; 0;�1;∓ 1; bpl2g. A spike is introduced
that goes either above or below the baseline, and a
plateau is introduced, which goes in the direction
opposite to the spike.

(iv)  h1 ¼ f0; 1; 1;csp;�1;�1g. Two plateaus with dif-
ferent magnitude are introduced, with both plateaus
being allowed to go above or below the baseline.

We assign equal prior probability to each of these four
options, implying that 25% of our samples are from the
benchmark GPs and the remaining 75% come from the
mGPs (i.e., out of the total number of samples, 25% contain
a single spike, 25% contain a spike and a plateau, and 25%
contain a double plateau.)
The remaining hyperparameters  h2 have specific allowed

ranges, which depend on which of the above four options
is drawn. In the single spike case (  h1 ¼ f1; 0; 0;�
1; bpl1; bpl2g), we must choose the height of the spike sp
and its location psp, such that at the spike c2sðpspÞ ¼ sp. For
the location of the spike, psp, we choose a flat prior with
edges at pðnB ¼ 1.1nsatÞ and p ¼ 1037 erg cm−3. For the
height parameter, sp, we choose different priors depending
on whether the spike goes above or below the baseline. If
the spike is up, then we choose a flat prior with edges at
sp ¼ 1.1c2s;benchmarkðpspÞ and sp ¼ 1. If the spike is down,
then we choose a flat prior with edges sp ¼ 0 and
sp ¼ 0.9c2s;benchmarkðpspÞ. This choice of prior guarantees
that the modified speed of sound squared is never negative,
never exceeds unity, and always introduces at least a 10%
modification.
In the spike plus a plateau case (  h1 ¼ f1; 1; 0;�1;∓

1; bpl2g), we must first choose the properties of the plateau
to guarantee that there are no spikes within the plateaus.
That is, because the plateau has a width Δppl1, when
sampling the location of the spike, psp, we must not sample
within ½ppl1; ppl1 þ Δppl1�. Given the above, for the plateau
width, Δppl1, we sample on log10Δppl1 from a flat prior on
the interval [0.12, 1.2], with pressure in units of erg cm−3.
For the plateau location, ppl1, we use a flat prior with
edges pðnB ¼ 1.1nsatÞ and p ¼ ð1037 erg cm−3 − Δppl1Þ
to ensure the entire plateau falls within the allowed
pressure range. Thus, the range of the prior for the
location of the spike, psp, must be modified (from the
case when there is no plateau) to [pðnB ¼ 1.1nsatÞ; ppl1Þ ∪
ðppl1 þ Δppl1; 1037 erg cm−3]. The prior on the plateau
magnitude, pl1, is chosen in the same way as the prior
on the spike magnitude sp (see the paragraph above),
but with one modification: instead of setting the edge at
0.9 or 1.1 of c2s;benchmarkðpspÞ, we use 0.9 or 1.1 of
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c2s;benchmarkðppl1Þ. With this adjustment, the plateau always
introduces at least a 10% modification to the benchmark
from the starting point of the plateau, ppl1.

In the case with two plateaus (  h1 ¼ f0; 1; 1;csp;�
1;�1g), we follow the same procedure as above, but with
the following modifications. After drawing a location and
width for the first plateau, we must ensure the second one is
distinct (i.e., nonoverlapping), and thus it must be placed to
the left or to the right of the first plateau. We enforce this
constraint by first drawingΔppl2 from the same flat prior as
that used for Δppl1. We then remove Δppl2 from the right
side of the intervals [pðnB ¼ 1.1nsatÞ; ppl1) and ðppl1 þ
Δppl1; 1037 erg cm−3] and draw ppl2 from a flat prior
in the interval [pðnB¼ 1.1nsatÞ;ppl1−Δppl2Þ∪ ðppl1 þ
Δppl1;1037 ergcm−3−Δppl2]. This procedure is computa-
tionally efficient, and it guarantees the two plateaus do not
overlap.
In Fig. 3, we show examples from each of the three

groups within the mGP framework: a spike modification
(csp ¼ �), a spike and a plateau modification [ð bpl1;cspÞ ¼
ð�;∓Þ], and a two-plateau modification [ð bpl1; bpl2Þ ¼
ð�;�Þ]. In the top panel, the samples are represented by
c2s as a function of log10 P, where p is in units of erg cm−3,
exactly as they were generated by the mGP. We can see that
the mGP framework succeeds in introducing multiscale
correlations to the speed of sound functional form. Once
the samples are generated, the EoS pðϵÞ is extracted by
solving the differential equation dp=dϵ ¼ c2sðlog10 pÞ.
In the middle panel, the same samples of c2s are shown
but now as a function of nB=nsat. In this panel, we also
calculate the maximal central density for a stable, non-
rotating star and denote it with a circle.
From these two panels, we can make several observa-

tions. First, note that in the middle panel the structure in c2s
is more condensed at low densities and more spread out at
large densities, relative to the structure in the top panel. This
is because the pressure increases more rapidly as a function
of density in the outer layers of the star, where the densities
are low. As a consequence, even the smallest structure in c2s
at low densities introduces structure over a large range of
pressures. In contrast, at higher densities, the pressure
increases slowly with respect to density. Therefore, dramatic
features in c2s at high densities translate into structure that
arises over a small range in pressures.
From this comparison, we also arrive at an important

conclusion regarding the optimal variable to sample over
when introducing modifications. As shown in the middle
panel, most stable, nonrotating stars (shown with darker
lines) will reach at most nB ∼ 7nsat. The density regime
between 1 − 7nsat is precisely where structure in c2s is
spread out over a larger interval in p. This implies that
sampling over pwill allow us to resolve this structure better
than if we sampled over nB, for a finite resolution. This is

FIG. 3. Top to bottom: the speed of sound squared in units of c2

as a function of the pressure in units of erg cm−3, the speed of
sound squared in units of c2 as a function of the baryon number
density in units of nsat, the pressure as a function of energy
density, both in units of MeV fm−3, for a representative set of
samples generated using the mGP framework. The circles in the
middle panel represent the maximal central density predicted for
a stable, nonrotating star. The squares in the bottom panel are the
corresponding maximal values for the pressure and energy
density for a stable, nonrotating star. Samples that contain a
spike are shown in pink, samples that contain a spike and a
plateau are shown in blue, and samples that contain two plateaus
are shown in green. Solid and dot-dashed lines differentiate
between different features for samples in the same category, as
indicated by the switch parameters csp; bpl1, and bpl2, which are
defined in Sec. III C. The mGP framework produces a diverse set
of EoS which contain multiscale correlations across densities at a
low computational cost.
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the choice, i.e., to sample in pressure, that we will make
henceforth in this paper. We also note that nmax

B can only be
determined once the modifications have been sampled.
During the sampling procedure, we reject mGP EoS for
which modifications are present only above nmax

B . In cases
where two modifications are sampled (e.g., a spike and a
plateau), we require that at least one modification is present
below nmax

B (an example is shown in the middle panel of
Fig. 3 in solid blue).
The bottom panel of Fig. 3 displays the EoS samples on

the ε − P plane, with squares denoting the maximal central
pressure and energy density for each EoS. From this panel,
it is clear that the modifications introduced in c2s are not
causing the EoS to significantly deviate from each other. In
fact, we see that large changes in the speed of sound
translate into rather small changes in the EoS, leading to
clustering around a region on the ε − p plane.
We will now discuss in detail the role of spike mod-

ifications. Because c2s is the differential of p with respect to
ε, changes in c2sðpÞ that span a short range in p may not
result in visible features on the pðεÞ plane, even if the
change in the value of c2s at a given point in p is significant.
An example of this behavior is seen in the blue-dashed
functional form in Fig. 3. The first spike is a significant
deviation from the baseline value of c2s as a function of both
log10 p and nB, but this modification has no visible effect
on the functional form on the ε − p plane. The impact of a
spike modification introduced in c2sðpÞ on the correspond-
ing EoS in pðεÞ depends on the value of p and the value of
c2s where the spike is introduced with respect to the original
benchmark value of c2s . We discuss the interplay between
these factors in the Appendix. In summary, we find that a
spike modification can lead to changes in ε as large as
Oð100Þ MeV=fm3. Therefore, what we call a spike modi-
fication may be pointlike on the log10ðpÞ − c2s plane, but it
can translate into a large modification to the EoS on the
ε − p plane. However, it can also result in no visible change
at all to the EoS on the ε − p plane.
A natural question at this stage is how many samples that

have a spike modification are a priori indistinguishable
from the original benchmark EoS, since these samples
would make the benchmark GP and the spike-type mGP
priors equivalent. Studying the relationship between obser-
vations and the scale of changes in pðεÞ is a central
component of this work. That is because how much an
observable, and thus the likelihood, changes in response to a
change in pðεÞ depends on the observable type, the
precision of the measurement, the individual EoS, and at
what densities the modifications are introduced. In this
work, we ask if current observations are sensitive to features
in the EoS corresponding to state-of-the-art predictions from
nuclear physics models with beyond neutron-proton-
electron degrees of freedom. These features include changes
in pðεÞwith respect to a benchmark model spanning a broad
range of scales, which we choose to categorize as spikes and

plateaus. To answer this question, we combine different
observation types, while accounting for their uncertainties
consistently and marginalizing over the uncertainties in the
EoS. We then check if there is a cutoff scale that emerges
from the data for the onset and/or the range over which
changes in the degrees of freedom can occur (i.e., if certain
features are favored/disfavored). Because our approach is
data driven, our priority is to sample broad range of features
and let the data determine if features can be distinguished
from each other, i.e., favored/disfavored.
One could, instead, pursue a model-based approach and

check how different modifications of c2sðlog10 pÞ or c2sðnBÞ
translate into changes in the pðεÞ EoS and, consequently,
the mass-radius or tidal deformability-compactness curves.
The downside of taking this approach is that, while one
could consider observational uncertainties, i.e., one can
argue that a modification is only relevant if it produces a
deviation with respect to the benchmark that would be
detectable taking into account current experimental uncer-
tainties, it does not make use of all available observations
and their uncertainties. Also, because the effect of a
modification on the ε − p plane depends on all the factors
mentioned above, systematically checking all the possibil-
ities would be a computational and analytical challenge.
Therefore, the approach taken in this work is appropriate
because it incorporates all the available experimental,
theoretical, and observational information we have on
beta-equilibrated, cold nuclear matter and allows for
adequate sampling of the features predicted by nuclear
physics models in our priors.
We stress here that Fig. 3 only shows six representative

samples of c2s and EoS out of the nearly one million
samples that we study in this paper.

B. Astronomical observables

We have specified a prior for the EoS, a quantity that we
cannot directly measure. Thus, we need to translate the
information carried by the EoS into astronomical observ-
ables if we wish to infer properties of the former. For each
EoS, we can calculate the mass-radius (M − R), moment of
inertia-mass (I −M), quadrupole moment-mass (Q −M),
and tidal deformability-mass curves (Λ −M), which
encode the properties of neutron stars of different central
densities. These properties can then be compared to
astronomical observations to determine the validity of
the EoS. In this subsection, we will discuss briefly how
these quantities are obtained, following mostly Ref. [132].
In the next subsection, we will explain how we use
astronomical observations of these quantities to inform
our prior sample size.
Millisecond pulsars rotate slowly compared to their mass-

shedding limit, and any radius corrections resulting from
rotation are significantly below measurement precision for
the NICER mission [56]. Therefore, for calculating the
mass-radius curve, we can approximate millisecond pulsars
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as nonrotating, isolated objects. The condition that a stable
nonrotating star must be in hydrostatic equilibrium yields
the well-known Tolman-Oppenheimer-Volkoff (TOV) equa-
tion. For each EoS, given a central pressure pc, the TOV
equation will describe how the mass and pressure vary with
the radial coordinate up to a limiting value, R�, where
pðR�Þ ≈ 0. The mass of the star is given by M ¼ MðR�Þ,
and the stellar radius is R ¼ R�. By repeating this process
for multiple values of pc, we get the M − R curve for a
given EoS.
At some value of central pressure, the M − R sequence

will become unstable, which occurs when dM=dpc < 0.
This value of the central pressure marks the end of what we
refer to as the (stable) neutron star EoS and establishes a
maximal allowed value for the central pressure, pmax

c ,
for astrophysically realistic stars. Note that the zero-
temperature QCD EoS continues beyond pmax

c , but we
do not expect to observe stable, isolated, nonrotating or
slowly rotating pulsars with central pressures exceeding
pmax
c , assuming the EoS used in the calculation is correct.

We also note that the M − R sequence can have multiple
stable branches separated by unstable regimes where
dM=dpc < 0. When that is the case, pmax

c is still the
largest density corresponding to the end point of a stable
branch, but it might not correspond to the central density of
a maximally massive star for a given EoS.
Now, let us consider an isolated star that rotates with

dimensionless angular velocity Ω, where we have normal-
ized the stellar angular velocity by the mass-shedding limit.
We assume Ω is small enough that the solutions to
the Einstein equations can be expanded in powers of this
dimensionless angular frequency. Note that to OðΩ0Þ the
ðt; tÞ and ðr; rÞ components of the Einstein equations, in
conjunction with the stress-energy conservation equation,
yield the TOV and continuity equations. At OðΩÞ, the
Einstein equations only modify the gravitomagnetic sector
of the metric, whose exterior behavior is characterized by
the moment of inertia I. At OðΩ2Þ, we obtain a correction
to the total mass and to the mass distribution within the star,
which now acquires an oblate spheroidal shape due to
rotational motion. The latter is controlled by the quadrupole
moment Q. Both I and Q vary with the central density of
the star, such that we can obtain solutions for a range of
central pressures and relate them to the M − R curve to
obtain the I −M and Q −M curves.
Finally, we will consider a nonrotating star in the

presence of a companion compact object, which causes
the star to tidally deform. We can study the redistribution of
mass due to the external perturbation through a multipolar
expansion. The deformation at leading order in perturbation
theory is dominated by the quadrupole moment. The
quadrupolar deformation is controlled by the Love number,
or its dimensionless version, the tidal deformability Λ. The
tidal deformability can be calculated by solving the

linearized Einstein equations combined with continuity
and differentiability arguments. Once again, the exact
solution for Λ requires an EoS and is dependent on the
central pressure of the star [133]. The calculation can
be repeated for a range of central pressures to obtain the
Λ −M curve.

C. Prior sample size

The priors on neutron star observables, such as their
mass, radius, and tidal deformability are determined by the
prior on the EoS. But how do we know that we have chosen
a good EoS prior? For each measurement available, we
want enough samples in the prior that offer a reasonable
match to observations as predictions. Because of the
functional complexity allowed by both the GP and mGP
frameworks, we expect that most EoS generated will not
meet basic requirements based on neutron star observa-
tions. With that in mind, we use three metrics to gauge the
how well samples in the prior describe astronomical
measurements. First, we check that Mmax ≥ 1.8M⊙ based
on the observation of three high-mass pulsars [52–54].
Second, based on the inference of the tidal deformability of
a 1.4M⊙ star, Λ1.4, from GW170817 [134], we check that
10 ≤ Λ1.4 ≤ 2000. Third, based on NICER’s inference of
the mass-radius posterior for PSR J0030þ 0451 [55,57],
we check that 8.0 ≤ R1.4 ≤ 16.0 km. We note that these
bounds are far outside the 90% credible region for the most
constraining estimates of the maximum mass [135], radius
of a 1.4M⊙ star [56], and tidal deformability of a 1.4M⊙
star [134].
For every sample EoS that we draw from our GP or mGP

framework, we keep tally of whether the three checks
specified above are passed or not. We emphasize that these
metrics are not used to cut the sample size or to modify our
priors in any way. We simply track how many samples
pass these checks to ensure that we have enough strong
candidate EoS in our prior sample. In particular, we
continue drawing samples until we have obtained a subset
of at least 100,000 candidate EoS that pass all three checks.
This requires that we sample about 1,000,000 times from
the benchmark GP and mGP frameworks.
Another benefit of checking our priors in terms of

astronomical observables is that we can assign zero like-
lihood to EoS that fall outside the intervals we defined
above. This is because those sample EoS are already in
significant conflict with the observations discussed above,
and thus their likelihood will be very close to zero. We can
justify this approach as follows. Consider an observable Y
at the value yk predicted by EoS k, which we will para-
metrize in terms of a vector  ϕk [see Eq. (2), where here the
vector symbol denotes the 100 values of ϕ that we sample
at each point in pressure]. Let us also consider a set of N
total number of EoS, such that k is between 1 and N. Then,
the conditional probability of yk given EoS k is
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PðykÞ ¼
qð  ϕkÞLð  ϕkÞP
N
i qð  ϕiÞLð  ϕiÞ

; ð11Þ

where qð  ϕkÞ is the prior probability assigned to EoS k and
Lð  ϕkÞ is the likelihood of the data given EoS k. Let us now
order the values of yk from smallest to largest, such that

Pðy1 ≤ y ≤ y2Þ ¼
X
k

PðykÞ; yk ∈ ½y1; y2� ð12Þ

defines the credible region delimited by y1 and y2. For most
observables, only a limited domain in yk will have nonzero
likelihood. That is,

Pðylow≤y≤yhighÞ¼
X
k

PðykÞ≈1; yk∈½ylow;yhigh�; ð13Þ

where PðykÞ ≈ 0 for yk outside the interval ½ylow; yhigh�. For
Nobs different observables (e.g., maximum mass, radius at
1.4M⊙, or dimensionless tidal deformability at 1.4M⊙), we
then simply have an Nobs-dimensional region ½y1low; y1high� ∪
½y2low; y2high� ∪ … ∪ ½yNobs

low ; yNobs
high� outside of which we expect

PðykÞ ≈ 0. In our case, we consider three observables, so
the region outside of which the posterior is approximately
zero is [Mmax;low¼1.8M⊙;Mmax;high¼∞Þ∪ ½R1.4;low¼
8.0km;R1.4;high¼16.0km�∪ ½Λ1.4;low¼10;Λ1.4;high¼2000�.
We can implement the condition that the posterior is zero

outside of the above region as follows. First, we divide our
prior sample into two subsets, one for which each EoS
meets all the requirements specified above (Φ✓), where

Φ✓ ¼ f  ϕk∶ Mmax;k ≥ 1.8M⊙ ∧ R1.4;k ∈ ½8.0 km; 16.0 km�
∧ Λ1.4;k ∈ ½10; 2000�g; ð14Þ

and one for which all EoS fail at least one of the checks
(Φ×), such that

Φ ¼ Φ✓ ∪ Φ×: ð15Þ

With this in hand, we now define the likelihood of the data
given EoS k to be Lð  ϕkÞ✓ ¼ Lð  ϕkÞ if  ϕk ∈Φ✓, and we
defineL×ð  ϕkÞ ¼ 0 if  ϕk ∈Φ×. We emphasize again that the
prior distribution remains unchanged, so this procedure is
in no way equivalent to performing cuts on the prior.
Our goal is to generate enough samples to ensure thatΦ✓

contains at least ∼100; 000 EoS. Using the Mmax; R1.4, and
Λ1.4 checks as a guide, we generate 900,000 EoS. Out of
this total sample, 104,594 EoS passed the checks and
therefore contribute non-negligibly to the posterior distri-
bution of the observables discussed later in Sec. V. Note
that the number of samples in Φ✓ is roughly 10% of the
total number of samples generated. Based on this result, we
argue that studies using nonparametric methods, or any

method that allows for a vast functional space, should
implement similar checks, or at least verify the robustness
of results for different prior sample sizes.

IV. STATISTICAL METHODS

There should be a unique EoS that correctly describes all
neutron stars in the Universe. However, honing in on this
exact EoS would only be possible with infinitely precise
observations. A more common and realistic approach is to
obtain posteriors that describe the probability of a given
EoS by comparing its predictions against data. Using an
ensemble of theoretical models for the EoS, each with a
corresponding posterior probability, we can extract credible
regions for the EoS that occurs in nature. This method
requires us to first state our prior beliefs about the EoS,
which then get updated as we gain knowledge of the EoS
through data.
We have introduced in Sec. II two frameworks for

generating theoretical models for the EoS: benchmark GPs
and mGPs. Those frameworks reflect two different beliefs
about the EoS. The GP assumes the EoS displays long-
range correlations in pressure, resulting in smooth func-
tional forms for c2sðpÞ. This belief is compatible with
nuclear physics simulations for hadronic models, or
models that display a smooth crossover into an exotic
phase, where the change in the degrees of freedom happens
over a wide range in density. On the other hand, the mGP
framework assumes the EoS contains nontrivial degrees of
freedom or interactions that lead to sudden changes in
c2sðpÞ in the form of kinks, spikes, and plateaus. These
features are predicted by many state-of-the-art nuclear
physics simulations with exotic degrees of freedom. With
these two distinct prior beliefs in mind, our goal is to assess
if one framework is better at accounting for observations
than the other.
We attempt to answer this question using a fully Bayesian

approach. In Sec. III, we detailed how we generate a prior
distribution using the benchmark GP and the mGP as
theoretical frameworks. Now, we need to discuss how we
calculate posterior distributions by incorporating constraints
on the EoS of neutron stars from astronomical observations,
controlled terrestrial experiments, and perturbative QCD
calculations,4 and howwe quantify each framework’s ability
to describe observations.
We begin this section with a Bayesian “primer,”where we

review a generic approach for implementing our knowledge
about the EoS into a posterior distribution and how we can
determine whether observations favor one of the EoS
frameworks over the other using the Bayes factor.
Obtaining posterior distributions requires specific choices
and assumptions for which observations and associated

4For a detailed discussion on current constraints on the QCD
EoS across different regimes, see Ref. [119].
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likelihood factors are used. Those are discussed in a
dedicated likelihood subsection. Similarly, we devote a
separate subsection to explaining how the model evidence
for the benchmark GP and the mGP are determined—a
requirement for calculating the Bayes factor.

A. Bayesian primer

Consider an EoS kwhich is represented by a set of values
sampled from either the benchmark GP or the mGP,  ϕk.
Bayes’s theorem states that the posterior probability of EoS
k is proportional to the product of a prior term and the
likelihood of the data given  ϕk,

PEoSð  ϕkÞ ∝ qð  ϕkÞLð  ϕkÞ; ð16Þ

where we recall that qð  ϕkÞ is the prior probability distri-
bution encoding our prior beliefs about how likely EoS k is
to occur and we recall that the likelihood term Lð  ϕkÞ
reflects how well predictions from EoS k match observed
properties.
In this paper, we assume that all observations are

independent of each other, which means the likelihood of
a set of observations ði; jÞ for EoS model k can be written as

Lð  ϕkÞ ¼
Y
i

"YjðiÞ
j¼1

Lkði; jÞ
#
; ð17Þ

where i is a type of measurement (e.g., mass, radius) and j is
an independent measurement of type i (e.g., two indepen-
dent measurements of the mass of one object). For each of
the measurements, we must make a choice for how it will be
incorporated into the analysis via a likelihood function,
Lkði; jÞ. We will discuss our choice of likelihood functions
and specify which measurements we include in our analysis
in the next subsection.
Let us now instead return to Eq. (16). The normalizing

factor that would make Eq. (16) an equality is called the
model evidence. The model evidence assesses the ability of
a set of prior beliefs to account for observations. In the case
of nonparametric EoS, the evidence can be defined as

Em ¼
Z
Φm

Lð  ϕkÞqð  ϕkÞdk; ð18Þ

where Φm is the set of samples in the prior that were
generated using a specific theoretical framework m. The
goal is often to have competing frameworks such that we
can compute the model evidence for each one and then take
the ratio between them. This ratio between model evidences
is known as the Bayes factor,

K ¼
R
Φm1

Lð  ϕk1Þqð  ϕk1Þdk1R
Φm2

Lð  ϕk2Þqð  ϕk2Þdk2
; ð19Þ

where m1 and m2 indicate distinct theoretical frameworks
with different equations of state in their samples (indexed
here by k1 and k2). When the Bayes factor deviates
significantly from unity, it indicates that the data prefer
one model and prior over the other.

B. Likelihood

As stated in Eq. (17), we assume that all measurements
we take into account are independent and that systematic
errors can be neglected such that the total likelihood is a
product of individual likelihood factors for each measure-
ment. In particular, we will consider estimates of the nuclear
symmetry energy, the three highest reliably measured pulsar
masses, two NICER simultaneous mass and radius mea-
surements, and tidal deformability estimates from two
gravitational-wave events. Additionally, we will incorporate
a perturbative QCD weight [67], which accounts for the
behavior of the EoS at very large (∼40nsat) densities from
pQCD calculations. In summary, Eq. (17) can then be
written as

Lð  ϕkÞ ¼ LSð  ϕkÞLMmaxð  ϕkÞLM−Rð  ϕkÞLΛð  ϕkÞwpQCDð  ϕkÞ;
ð20Þ

where S denotes the likelihood factor associated with
symmetry energy measurements, Mmax denotes that asso-
ciated with high-mass pulsar measurements, M − R
denotes that associated with simultaneous mass-radius
measurements, and Λ denotes that associated with tidal
deformability measurements. We represent input from
pQCD not as an additional likelihood factor but as a
weight, wpQCD. We make this choice because the uncer-
tainty in the pQCD input stems from its poorly constrained
regime of applicability and uncertainty around the missing
higher-order term error in truncated results, in contrast to
traditional measurements with quantifiable statistical un-
certainties that can be consistently included in a Bayesian
framework. Reference [136] demonstrated that Bayesian
inference techniques can be used to quantify the uncer-
tainty in the pQCD input. However, more work is needed
to determine if these results are sensitive to the choice of
uncertainty estimation technique. Our approach for incor-
porating observational and experimental constraints on the
EoS is based on Refs. [55,56,68], while the use of pQCD
input is based on Ref. [67]. We review and discuss the most
important aspects of these approaches as they pertain to
our analysis below and refer the reader to the correspond-
ing original works for further detail.
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1. Symmetry energy

In terrestrial experiments, it is possible to probe the
T → 0 limit of dense nuclear matter with low-energy
collisions of heavy ions [119]. However, the nuclei used
in these experiments have a charge fraction (the ratio of
proton number to baryon number or, in other words,
electric charge density nQ over baryon density nB) of
YQ ¼ nQ=nB ∼ 0.4–0.5. A value of YQ ¼ 0.5 is known as
SNM because there is an equal number of protons and
neutrons in the system. On the contrary, neutron stars are
primarily neutron rich, with YQ ∼ 0.001–0.2, thus probing
the asymmetric nuclear matter regime. PNM is the limit
where YQ ¼ 0.
The densities probed in these low-energy heavy-ion

experiments are at or near nsat, and in that regime, experi-
ments and χEFT calculations can extract properties that are
relevant to the EoS. A nucleus is composed of Z protons
and A − Z neutrons, where A is the total number of protons
and neutrons in the nucleus. The mass of the nucleus mA
that contains A nucleons is always less than the masses of
the individual protons, mp, and neutrons, mn, summed
together, i.e.,

mA < Zmp þ ðA − ZÞmn; ð21Þ

because a finite amount of energy is released in the
formation of a nucleus. That difference in the rest mass
energy per nucleon is known as the binding energy and is
defined as (we remind the reader that the speed of light is
c ¼ 1 in this work)

B ¼ 1

A
½mA − ðZmp þ ðA − ZÞmnÞ�: ð22Þ

It is often assumed that the mass of the proton and
neutron are identical since their masses differ by just
over 1 MeV. Setting the neutron and proton mass to be
the same and calling this the nucleon mass for simplicity,
mp ¼ mn ¼ mN , the above simplifies to

B ¼ mA

A
−mN ≡ E

A
; ð23Þ

where E=A is the nucleonic energy per particle. As defined
here, the binding energy does not depend explicitly on the
mass of the nucleon because themN dependence in the first
term of the above equation cancels the second term exactly.
The binding energy for SNM at nsat is estimated to

be B ∼ −16 MeV from previous global analyses5 that
extracted the volume term of the liquid drop model from
a large sample of nuclei, which reported values of B ¼
−15.77 [137] and B ¼ −16.24 MeV [138]. One can also
use χEFT tuned to a large number of experimentally

measured nuclei wherein one obtains B ¼ −15.86�
0.57 MeV [62]. However, in this work, we assume B ¼
−16 MeV is exact.
The next quantity that can be measured from nuclear

experiments is known as the symmetry energy, which we
denote as S. At nsat, the symmetry energy is the difference
in total energy between the SNM and PNM limits, i.e.,

SðnsatÞ ¼
1

A
ðEPNM − ESNMÞ; ð24Þ

or, in terms of energy densities, we can write

SðnsatÞ ¼
1

nsat
ðεPNM − εSNMÞ; ð25Þ

where we can relate the energy densities to the total
energy via

ε

nB
¼ E

A
þmN: ð26Þ

Neutron stars are not exactly in the limit of PNM since a
small fraction of protons exists is also present. Thus, for
asymmetric nuclear matter (ANM), where the system is at
finite value of YQ, the symmetry energy can be expanded
about YQ ¼ 1=2 to obtain

S2ðnBÞ½1−2YQ�2þO½1−2YQ�4¼
1

nB
ðεANM−εSNMÞ; ð27Þ

where the factor of 1=2 in the Taylor expansion is
reabsorbed into the quadratic term S2ðnBÞ. The quadratic
coefficient of the Taylor expansion, S2ðnBÞ, can then be
further Taylor expanded about nB ¼ nsat, but in this paper,
we will retain only the leading-order term in this expansion
and set SðnsatÞ ¼ S2ðnsatÞ in Eq. (26) (see Ref. [60] for a
derivation and further details).
We can relate the symmetry energy to the binding energy

by substituting in Eq. (26) into Eq. (27) at nB ¼ nsat for the
εSNM=nsat term to find

SðnsatÞ½1 − 2YQ�2 ≈
εANM
nsat

−
�
E
A
þmN

�
ð28Þ

¼ εANM
nsat

− ½BþmN �: ð29Þ

In an extreme extension of Taylor expansions, however, we
will evaluate the above expression at very small YQ because
state-of-the-art χEFT models predict a value for SðnsatÞ and
indicate that YQ ∼ 0.05 at nsat for β-equilibrated, cold
nuclear matter [139]. Therefore, setting YQ ¼ 0, B ¼
−16 MeV and mN ¼ mn ¼ 939.6 MeV in the above equa-
tion, we obtain5Uncertainty quantification was not performed in these studies.
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SðnsatÞ ∼
εPNM
nsat

− 923.6 ½MeV�: ð30Þ

Given all of the above, we assume a likelihood factor
associated with the symmetry energy of the form

LSð  ϕkÞ ¼ LðS0j; SkðnsatÞÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσSÞ2

p exp
�
−
ðSkðnsatÞ − S0Þ2

2ðσSÞ2
�
; ð31Þ

where SkðnsatÞ now denotes the EoS  ϕk from which the
SðnsatÞ is obtained using Eq. (30), assuming that
εPNM ¼ εkðnsatÞ, and we take the observed value of the
symmetry energy at nuclear saturation density to be S0 ¼
32 MeV with a standard deviation of σS ¼ 2 MeV [59,60].

Future work could consider other available constraints
[60,61] on the symmetry energy. Additionally, one could
fold into the analysis the uncertainty on the value of the
binding energy, the uncertainty on the value of nsat itself,
the systematic error introduced by neglecting deviations
from exact charge fraction asymmetry (i.e., the small YQ

that we set to zero in this derivation), and the slope of the
symmetry energy. The impact of uncertainties around the
binding energy, saturation density, and small deviations
from PNM at nsat mostly affect stars with masses below
1.0M⊙ [68]. A more promising direction is to include the
slope of the symmetry energy, L, which would provide
constraints when nB ≠ nsat. However, the exact value of the
slope of the symmetry energy is poorly constrained with
current theory and experiments. We also refer the reader to
Refs. [91,140], which extract from a GP prior and neutron
star measurements values for S0, L, and the neutron skin
thickness of 208Pb.

2. High-mass pulsars

In principle, we could gain information about the EoS
from any neutron star mass measurement. Given a fully
parametrized model for neutron star birth and accretion and
a prior for the neutron star EoS, we could make population
predictions that can be compared to measurements.
However, due to both computational and theoretical chal-
lenges, such a complete analysis is not currently feasible.
Without any information about how stars form and accrete,
we can focus instead on the maximum mass, since any
realistic EoS must be able to support the highest reliably
measured masses. As discussed in Sec. III B, in the slow
rotation regime, the maximum mass is a function only of
the EoS. We implement a likelihood factor for EoS k given
a likelihood function for the mass of star j obtained from a
radio observation of a binary pulsar, LðMjjMðρcÞÞ, that can
be written as

LðMjjkÞ ¼
Z

ρmax

ρmin

qðρcÞLðMjjMðρcÞÞdρc; ð32Þ

where ρc is the central density. The prior on the central
density, qðρcÞ, is calculated for each EoS from a distribu-
tion that is quadratic between the central density of a 1M⊙
star, which we denote ρmin, and that of a maximally massive
star, ρmax, assuming EoS k. That is, we sample uniformly
between 0 ≤ x ≤ 1 for ρc ¼ ρmin þ x2ðρmax − ρminÞ. We
use a quadratic prior to avoid giving greater prior weight
to more massive stars, since the central density changes
more rapidly near the maximum mass [56]. Outside the
interval ½ρmin; ρmax�, the prior probability is zero. We also
assign zero prior probability for any ρc resulting in an
unstable star, such that if two or more stable branches are
connected by an unstable branch the unstable branch does
not contribute to the likelihood.
We model the posterior probability distribution for the

mass of an observed pulsar with a Gaussian function,
namely,

PðMjjMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσMj

Þ2
q exp

�
−
ðM −MjÞ2
2ðσMj

Þ2
�
; ð33Þ

whereMj is the maximum likelihood estimate for the mass
of a given pulsar and σMj

is the standard deviation for that
observation. The total likelihood associated with heavy
pulsar mass measurements is then

LMmaxð  ϕkÞ ¼
Y
j

LðMjjMmax;kÞ: ð34Þ

This form for the likelihood only disfavors EoS withMmax;k

less than existing observations. We do not want to disfavor
EoS with Mmax;k higher than existing observations because
observations may be biased toward lower masses for a
variety of reasons unrelated to the EoS.
We incorporate in our analysis the two highest mass

measurements of neutron stars in relativistic binaries,
which allow for measurements of post-Keplerian parame-
ters, such as the Shapiro delay, pericenter precession, and
orbital decay due to the emission of gravitational radiation
(currently the gold standard for mass measurements of
neutron stars [68]). In particular, we use measurements of
MJ1614−2230 ¼ 1.908M⊙ with σMJ1614−2230

¼ 0.016M⊙ for
PSR J1614-2230 [52,141] andMJ0348þ0432 ¼ 2.01M⊙ with
σMJ0348þ0432

¼ 0.04M⊙ for PSR J0348þ 0432 [53]. There is
a third pulsar, PSR J0740þ 6620, with a measured mass of
MJ0740þ6620 ¼ 2.07M⊙ and σMJ0740þ6620

¼ 0.08M⊙ [54,142]
that we will also include in the next subsubsection as a joint
mass-radius measurement. We also note that the mass
measurement for PSR J1614 − 2230 was recently updated
and reported to be MJ1614−2230 ¼ 1.937M⊙ with
σMJ1614−2230

¼ 0.014M⊙ [135], but we do not expect this
update to affect our results significantly. In Sec. IV B 6, we
explain why we leave out of our analysis the even-higher
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neutron star masses that have been suggested in the
literature.
Lastly, we note that the likelihood-based approach used

here (emphasized in Ref. [68]) is preferable in a Bayesian
analysis compared to imposing a lower bound on the
maximum mass for two reasons. First, a hard bound does
not account for uncertainties in the mass measurements. As
Ref. [68] illustrates, if we consider the mass estimate for
PSR J0740þ 6620, MJ0740þ6620 ¼ 2.07� 0.08M⊙, a 1-σ
maximum mass cut at Mmax ≥ 2.04M⊙ predicts that EoS
with maximum masses of 2.04M⊙ and 2.14M⊙ are equally
viable, when in reality, assuming Gaussian statistical
uncertainties, the latter is substantially more consistent
with observations. Second, a hard bound does not allow for
the incorporation of information from multiple measure-
ments. Thus, although widely practiced in the literature,
imposing maximum mass cuts is statistically inconsistent
and discards important information.

3. NICER

Still assuming slow rotation, theM − R curve for an EoS
specifies a prediction for the radius given a stellar mass
which is only a function of the EoS itself. Thus, given a
joint M − R posterior, we can integrate over central
densities and the full M − R sequence predicted by EoS
k to obtain the likelihood factor associated with an
independent radius measurement l,

LðRljRkÞ ¼
Z

ρmax

ρmin

qðρcÞLlðMðρcÞ; RkðMðρcÞÞÞdρc; ð35Þ

where LlðMðρcÞ; RkðMðρcÞÞÞ is the likelihood of a mass
MðρcÞ and a radius RðMðρcÞÞ given measurement l,
RkðMðρcÞÞ is the circumferential radius for a star with
gravitational mass M given EoS k and central density ρc,
and qðρcÞ is the prior on the central density, which is
determined for each EoS in the same way as described in
the previous section.
The total likelihood associated with simultaneous mass

and radius measurements is then

LM−Rð  ϕkÞ ¼
Y
l

LðRljRkÞ: ð36Þ

This particular form for the likelihood is equivalent to
integrating the full mass and radius likelihood over the full
M − R sequence predicted by an EoS. It accounts for
measurement uncertainties and possible correlations
between radius and mass6 as well as the entire M − R
sequence, not just an individual RkðMÞ.

We adopt as constraints on the radius the posteriors
obtained from NICER measurements for PSR J0030-
0451 [55] and PSR J0740þ 6620 [56] (again, see,
respectively, Refs. [57,58] for independent analyses of
these two pulsars from a separate group within the NICER
collaboration).
Though other neutron star radii estimates are available,

there are potentially significant systematic errors that have
not been resolved [145,146]. In contrast, NICER posteriors
rely on fits of rotating hot spot patterns for which studies
using synthetic waveforms found no significant mass or
radius bias in statistically good fits [143,144]. Lastly, we
highlight that NICER posteriors for both pulsars are non-
trivial shapes on the M − R plane and display significant
correlations between mass and radius, further emphasizing
the importance of this particular approach to calculating the
likelihood.

4. Gravitational waves

As discussed in Sec. III B, for each EoS k, we can
calculate the Λ −M curve, such that for a star of gravi-
tational mass M and equatorial radius R the tidal deform-
ability is

Λk ¼
2

3
k2

�
Rc
GM

�
5

; ð37Þ

where k2 is the tidal love number, which depends intrinsi-
cally on the EoS [147,148].
In practice, it is more constraining to incorporate input

from gravitational-wave observations using information
from the binary tidal deformability, which can be measured
to higher accuracy. In the Taylor family of post-Newtonian
waveforms, given a binary neutron star system of stars with
massesM1 andM2 ≤ M1 with tidal deformabilities Λ1 and
Λ2, the most easily measurable quantity is [149]

Λ̃¼ 16

13

ðM1 þ 12M2ÞM4
1Λ1 þ ðM2 þ 12M1ÞM4

2Λ2

ðM1 þM2Þ5
; ð38Þ

which is sometimes called the binary or effective tidal
deformability. Similarly, it can be difficult to extract
individual masses from gravitational-wave events, but
the chirp mass, Mch ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5, can
be measured with high precision since it relates directly
to the gravitational-wave frequency during the inspi-
ral phase.
Assuming a gravitational-wave event n results in a full

posterior in ðM1;M2; Λ̃Þ space, our procedure for incor-
porating it is as follows. The total likelihood factor has the
form

6Correlations between mass and radius are system dependent
and may or may not be present; see Refs. [143,144] for more
details.
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LΛ ¼
Y
n

LðΛ̃njΛ̃kÞ ¼
Y
n

Z
dM1qðM1Þ

Z
qðM2jMch;n;M1ÞLnðM1;M2; Λ̃kÞdMch;n; ð39Þ

where qðM2jMch;M1Þ is the prior probability density for
M2 at the value of M2 implied by Mch and M1 and the
integral is over the probability distribution forMch obtained
from the gravitational-wave analysis. Since there is a limited
width for Mch which is dependent both on the EoS and the
prior for the masses, our implementation is as follows. For a
binary event involving two masses M1 ≥ M2, we select the
central density of a 1M⊙ star for the lower-mass star,
ρc;2 ¼ ρmin. Then, we calculate the value of M1 implied by
Mch, which we know to the precision that we know the chirp

mass. There is a range in ρc;1 that, given the value of M2

implied by ρc;2, leads toMch within the 68% credible region
inferred for event n. That is the range we integrate over for
ρc;1, using the same prior as before (quadratic between ρmin

and ρmax). We then select a new ρc;2, also following the
quadratic prior, and repeat the same process for ρc;1 that we
just outlined. We continue to increase ρc;2 up to the density
at whichMch impliesM1 ¼ M2. That means we can rewrite
Eq. (39) for a single event n in terms of the central densities
of the two objects,

LðΛ̃njΛ̃kÞ ¼
Z

dρc;1qðρc;1Þ
Z

qðρc;2jðMch;n;M1ðρc;1ÞÞÞLnðM1ðρc;1Þ;M2ðρc;2Þ; Λ̃kjM1ðρc;1Þ;M2ðρc;2ÞÞdρc;2; ð40Þ

where qðρc;2jðMch;n;M1ðρc;1ÞÞÞ ¼ 0 outside of the 68%
credible region for Mch;n. We highlight that, even though
Mch is typically measured to high precision, it is not
statistically consistent to write the integral over ρc;2 as a
delta function. That is because the range ofM1 allowed for a
givenM2 andMch depends on both the EoS and the prior for
the central densities. Consequently, it will vary between
individual EoS and must be calculated separately for each
EoS [68].
We include in our analysis binary tidal deformability

estimates from GW170817 [48–50] and GW190425 [51].
We use the publicly available posteriors over the full model
parameter space [150,151] as input for a kernel density
estimate of the marginalized posterior for M1 and Λ̃. Since
the combined mass in GW190425 is high enough that one
of the objects might have been a black hole, we check
whether for the EoS and central density under consideration
the higher-mass object is a neutron star. If so, we compute
the tidal deformabilities of both stars, using the same EoS,
following the procedure outlined in Refs. [147,148].
However, if the EoS predicts a black hole at the central
density under consideration for the higher-mass object, we
set its tidal deformability to zero. Lastly, we note that some
EoS predict more than one stable branch in the M − R
sequence and that we assign a prior probability of zero to all
central densities corresponding to an unstable branch for a
given EoS.

5. Perturbative QCD

Because of asymptotic freedom, QCD can be treated
perturbatively at high densities (∼40nsat) [152]. It has
recently been argued that perturbative QCD offers nontrivial

constraints to the neutron star EoS when state-of-the-art
next-to-next-to-next-to leading order (N3LO) perturbative
results [14,153] are extended to neutron star densities using
stability, causality, and consistency arguments [67,90]. The
formalism was initially introduced in Ref. [90]. We briefly
review its key components here but refer the reader to the
original work for additional details.
Suppose an EoS can be characterized by a correlated set

of values  β≡ fpðμÞ; nðμÞ; μg, where p is the pressure, n is
the number density, and μ is the chemical potential. Also
suppose that we have knowledge of the EoS at some low-
density limiting value, μlow, and a high-density limiting
value, μhigh, meaning that we know

 βlow ¼ fplow; nlow;μlowg≡ fpðμlowÞ; nðμlowÞ;μlowg; ð41Þ

 βhigh ¼ fphigh; nhigh; μhighg≡ fpðμhighÞ; nðμhighÞ; μhighg:
ð42Þ

There are an infinite number of EoS that can connect  βlow
and  βhigh, but any such EoS must respect thermodynamic
stability, causality, and consistency. Thermodynamic sta-
bility implies that the grand-canonical potential from which
the EoS is derived (Ω) is concave with respect to μ,
meaning that ∂2μΩ ≤ 0. At T ¼ 0, we also have

ΩðμÞ ¼ −pðμÞ; ð43Þ

n ¼ ∂p
∂μ

: ð44Þ
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Therefore, stability results in a constraint on the slope
of nðμÞ,

∂n
∂μ

≥ 0: ð45Þ

Moreover, the causality requirement constrains c2s ≤ 1,
which, at T ¼ 0, relates to nðμÞ and ∂μn such that

c−2s ¼ μ

n
∂n
∂μ

≥ 1: ð46Þ

Combining stability and causality, we have that, at each
point in μ − n space, the slope of the curve passing through
that point corresponding to a maximally stiff (c2s ¼ 1) EoS
is ∂n=∂μ ¼ n=μ.

Finally, because we must also ensure that at ðμlow; nlowÞ
the pressure is plow and, similarly, that at ðμhigh; nhighÞ the
pressure is phigh, it must also be true thatZ

μhigh

μlow

nðμÞdμ ¼ phigh − plow ¼ Δp: ð47Þ

We can derive constraints on Δp based on stability and
causality constraints on nðμÞ. We can place a lower bound
on Δp by asking which curve connecting ðμlow; nlowÞ to
ðμhigh; nhighÞ minimizes the integral in Eq. (47) while still
respecting stability and causality. We will call that quantity
Δpmin. Equivalently, we can construct the curve which
maximizes the integral in Eq. (47) and still respects stability
and causality and denote that Δpmax. Assuming c2s is
bounded from above only by the causal limit, we have [90]

Δpmin ¼
1

2

 
μ2high
μlow

− μlow

!
nlow ð48Þ

Δpmax ¼
1

2

 
μhigh −

μ2low
μhigh

!
nhigh: ð49Þ

These constraints combined imply that for any  βhigh
and for a fixed ðμlow; nlowÞ, plow must be between
½phigh − Δpmax; phigh − Δpmin�.
These guidelines for connecting two arbitrary regimes

via an EoS which respects stability, causality, and con-
sistency can be used to extrapolate pQCD results to
densities relevant to neutron stars. That is because, if we
know  βhigh ¼  βpQCD, we can check if an EoS for which we
only have knowledge up to a lower matching density
nlow ¼ nmatch can be connected to  βpQCD through a causal
and stable EoS.
Our knowledge from pQCD is derived from current

state-of-the-art calculations in Refs. [154,155], which
report a partial N3LO calculation of the zero-temperature,

high-density QCD grand-canonical potential. Because
these results arise from a series expansion in the QCD
coupling constant and are then truncated at a finite order,
we have to estimate the error introduced by the missing
higher-order (MHO) terms. In the case of QCD, the MHO
error depends on a residual, unphysical renormalization
scale, Λ̄ ∝ μ, which is underdetermined. Instead, the
standard approach is to vary Λ̄ around a fiducial scale
by some fixed factor. We follow Ref. [67], which adopted a
scale-averaging approach. That means that pQCD results
are given as a family of independent predictions  βpQCDðXÞ,
where X ≡ 3Λ̄=2μhigh. We set μhigh ¼ 2.6 GeV based on
Ref. [156], which points out that the uncertainty estimation
for pQCD calculations at this value is similar to that of
χEFT at 1.1nsat (about �24% variation around the mean
value [67]). We consider X∈ ½1=2; 2�, the same range that
was implemented in Ref. [67] and that has been suggested
by phenomenological models [157–160] as well as the
large-flavor limit of QCD [161].

Now that we have defined the theoretical input from high
densities, we need to discuss how we define the low-density
input from GP and mGP EoS. For any neutron star EoS that
we generate with the GP or the mGP,  ϕk, we have to check
that it can be connected to  βpQCDðXÞ, for a given X, from
 βlow ¼ fpkðnmatchÞ; nmatch; μkðnmatchÞg. In practice, we
check that pkðnmatchÞ leads to Δp∈ ½Δpmin;Δpmax�, given
phigh from  βpQCDðXÞ. Since the relevant scale for the
neutron star EoS is the central density of a maximally
massive star, nmax

B , we set nmatch ¼ nmax
B;k , which varies for

each EoS. For the renormalization scale parameter, we
follow Ref. [67] and sample 1000 values of X∈ ½1=2; 2�,
evenly spaced in logðXÞ. Hence, the pQCD weight asso-
ciated with EoS k is

wpQCDð  ϕkÞ ¼
1

1000

X1000
i¼1

1Xð  ϕkÞ; ð50Þ

where 1Xð  ϕkÞ is the indicator function

1Xð  ϕkÞ ¼
�
1; if Δpk ∈ ½Δpmin;Δpmax�
0; otherwise

; ð51Þ

and Δpk ¼ ppQCDðXÞ − pkðnmax
B;k Þ. Recall that Δpmin and

Δpmax can be obtained from Eqs. (48) and (49), using

μhigh ¼ 2.6 GeV;

μlow ¼ μkðnmax
B;k Þ;

nhigh ¼ npQCDðμ ¼ 2.6 GeV; XÞ;
nlow ¼ nmax

B;k :
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Effectively, wpQCDð  ϕkÞ captures how often, out of the 1000

values for X,  ϕk can be connected to  βpQCDðXÞwith an EoS
that respects thermodynamic stability, causality, and con-
sistency. This procedure defines a weighting scheme
associated with input from pQCD, which suppresses
EoS that are in tension with pQCD results by a factor
proportional to the strength of the disagreement under the
scale-averaging assumption.
We emphasize that the choice of nlow under this weight-

ing scheme defines a termination density for the benchmark
and modified GP priors on the EoS. Above nlow, which we
take to be nmax

B;k , the EoS is only bounded by stability and
causality. There are no assumptions about the smoothness of
the EoS or the number of phase transitions allowed.7 Once a
choice for nlow has been made, the posterior for the EoS is
conditional on nB ≤ nlow and should only be shown up to
nB ≤ nlow. That is, although any benchmark or modified GP
sample is defined up to a maximal central pressure of
log10p ¼ 37 erg cm−3, once pQCD input is applied at nmax

B;k ,
we impose that the EoS is only bounded by stability and
causality at higher densities, and it would be inconsistent to
show the GP EoS above nmax

B;k . For the interested reader, a
detailed analysis on the interplay between imposing a prior
above nmax

B and changing nlow was done in Ref. [162]. In
this work, our choice of setting nlow ¼ nmax

B;k is motivated by
the lack of observational/experimental constraints above
the maximum central density realized in neutron stars.
Although one could study a prior extending beyond this
regime using pQCD input as a constraint (as was done in,
e.g., Refs. [16,67,162,163]), the posterior above nmax

B cannot
not be verified by current or future observations of neutron
stars. A promising direction beyond mass, radius, and tidal
deformability is to study the gravitational waveform from
binary neutron star mergers [164,165] which could con-
strain the EoS at high densities and the maximum mass, and
thus the maximum central density, of neutron stars.

6. Observational measurements not included
in our analysis

We make the choice here to not include in our analysis
other recent claims of very heavy or very light neutron
stars. For example, there have been recent claims of pulsars
heavier than the ones considered here, namely, PSR
J1810þ 1744 at 2.13� 0.04M⊙ [166] and PSR J0952-
0607 at 2.35� 0.17M⊙ [167], but possible systematic
errors for these measurements are not as well understood
as those involved in Shapiro time-delay-based measure-
ments, such as those for PSR J0740þ 6620 and PSR
J1614 − 2230. Specifically, the fit residuals in Ref. [166]

for the properties of the companion to spider-pulsar PSR
J1810þ 1744 are clearly not a random scatter (see Fig. 1 in
Ref. [166]), which suggests that the fit values and inferred
mass are subject to systematic errors we do not currently
understand. The picture is more promising for the inferred
mass of PSR J0952-0607, where at least the residuals do
not seem to indicate problems with the fit (see Fig. 1 in
Ref. [167]). But there is still the question about whether the
good fit indicates that the system is well understood from a
theoretical perspective and whether the inferred mass is not
just precise but also accurate.
In a separate measurement, the central compact object of

the supernova remnant HESS J1731-347 was recently
estimated to have a mass of 0.77þ0.20

−0.17M⊙ and radius of
10.4þ0.86

−0.78 km [168], possibly making it the lightest neutron
star ever observed. Here, the low estimated mass stems from
the use of a low distance to the source combined with the
assumption that the surface radiates uniformly, which tends
to favor a carbon atmosphere over a hydrogen or helium
atmosphere. Moreover, in the fitting, it was assumed that
surface magnetic fields can be ignored. However, nonuni-
form emission is consistent with data on several similar
sources [169], making hydrogen and helium atmospheres
possible and making it plausible that the neutron star in
HESS J1731-347 could have a standard mass, well above
1M⊙ [119]. Thus, to remain conservative on the data we use
in this work, we do not consider PSR J1810þ 1744, PSR
J0952-0607, and the center compact object in HESS J1731-
347 in our analysis.

C. Model evidence

We have two distinct set of prior beliefs, or models, for
the EoS. We combine samples from these two models into
one prior, which we introduced in Sec. III C asΦ and which
can be represented as the union of samples from the mGP
and the benchmark GP, Φ ¼ ΦmGP ∪ ΦbenchmarkGP.
We defined the evidence (E) in Sec. IVA, where the

integral in Eq. (18) is over all possible samples that can be
generated from a model. In practice, we only have access to
a finite number of samples, and E is approximated as

Em ≈
XNm

i

Lð  ϕkÞqð  ϕkÞ;  ϕk ∈Φm; ð52Þ

where Nm is the number of samples from model
m ¼ fbenchmarkGP; mGPg, including the samples in
Φm ∩ Φ× for which Lð  ϕkÞ ¼ 0. Therefore, a key assum-
ption is that we sample enough EoS to correctly approxi-
mate E. This aspect further emphasizes the importance of
the prior sample size checks we introduced in Sec. III C—if
we do not have enough samples in the regions where Lð  ϕkÞ
is non-negligible, we cannot correctly approximate E.
Another assumption we make is that each EoS has an

equal prior probability. This implies that Eq. (52) is now

7Note that below nmax
B;k the prior is determined by the choice of

hyperparameters of the benchmark and modified GPs, which do
constrain the smoothness and number of phase transitions in the
EoS.
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Em ≈
1

Nm

XNm

i

Lð  ϕkÞ;  ϕk ∈Φm: ð53Þ

That is, the evidence becomes a simple average
over the likelihoods of all the EoS from model m ¼
fbenchmarkGP; mGPg.
A reasonable objection to this assumption is to question

whether the different hyperparameters in each framework
should have been included explicitly as hyperpriors.
In general, we expect that with an increased number of
parameters we also increase our chances of describing the
data but also that simplicity should be rewarded over
complexity. Here, the mGP is more complex than the
benchmark GP, so why is there not a penalty in the
calculation of the model evidence for mGP EoS?
Actually, the penalty exists, and it is included implicitly.
To understand this argument, recall the discussion in
Sec. III regarding assumptions that are implied in a non-
parametric framework. We stated that our effective param-
eters are the value of the speed of sound at each sampled
value of pressure, c2sðpiÞ, and that the method and the
hyperparameters we choose for generating c2sðpiÞ dictate
both the prior distribution and the correlations across the
effective parameter space. That means that the mGP covers
a bigger space in terms of the possible functional forms for
c2sðpiÞ, which results in more bad predictions [Lð  ϕkÞ ≈ 0]
compared to the simpler benchmark GP. Therefore, in order
to be competitive with the benchmark GP and make up for a
larger number of bad predictions, the mGP must be more
accurate in describing the data than the benchmark GP. We
do not need to include the different hyperpriors in Eq. (52)
because (i) the benchmark GP and mGP hyperparameters
are not the parameters being estimated, and (ii) the mGP
model is implicitly penalized for its increased functional
complexity in the effective parameter space because it
covers a larger volume in that space where Lð  ϕkÞ ≈ 0
compared to the benchmark GP.

V. BAYESIAN ANALYSIS OF NONTRIVIAL
FEATURES IN THE SPEED OF SOUND INSIDE

NEUTRON STARS

Now that we have established methods for generating
EoS that display long (benchmark GP) and multiscale
(mGP) correlations in c2sðnBÞ, we can implement the
constraints discussed in Sec. IVand begin to answer specific
physics questions from a Bayesian perspective.
We will begin with an important sanity check—does our

new framework provide reasonable agreement with data,
even when multiscale correlations and nontrivial features
appear in c2sðnBÞ? We will answer that question by looking
at the mass-radius posteriors. Following a discussion of the
mass-radius posteriors, we can explore other questions such
as follows. Are the EoS posteriors sensitive to the structure

in c2sðnBÞ? What is the maximum central density of a
neutron star? Do new pQCD constraints have a strong
influence on our analysis? Is a peak in c2sðnBÞ supported by
existing constraints? Finally, is the GP or the mGP
framework favored by the data?
To better understand our results, we use a plotting

method for our priors and posteriors that, to our knowledge,
has not been used to infer properties of the EoS in the
literature. Let us first describe our approach for plotting the
prior because there are subtle differences between its
plotting method and that of the posterior. We bin our
two-dimensional (variables X and Y, e.g., mass and radius
or c2s and nB=nsat) prior in bins of a certain width ΔX, ΔY.
We denote a particular bin as a pair ðXi; YiÞ, such that a
point ðx; yÞ is in bin i if Xi ≤ x < Xi þ ΔX and
Yi ≤ y < Yi þ ΔY. A given EoS k is characterized on
the X-Y plane by a set of l total pairs of points
fðx1k; y1kÞ;…; ðxlk; ylkÞg, which produce a curve that passes
through Nk of these bins. Every time the EoS passes
through a bin i, we count that as a hit: hkðXi; YiÞ ¼ 1.
Otherwise, if the EoS does not pass through that location,
we assign hkðXi; YiÞ ¼ 0. We sum over all hits within a bin
(i.e., count all the EoS that pass through it) to obtain the
total hits for that specific bin, HpriorðXi; YiÞ, where

HpriorðXi; YiÞ ¼
XNEoS

k

hkðXi; YiÞ; ð54Þ

and

hkðXi;YiÞ¼

8>><>>:
1; ifXi≤xl

�
k <XiþΔX∧Yi≤yl

�
k <YiþΔY;

l�∈f0;…;lg
0; otherwise:

ð55Þ

To normalize the hits within a bin, we determine the total
number of hits across all of our EoS samples across all bins,

Htot ¼
X
i

HpriorðXi; YiÞ; ð56Þ

such that our normalized distribution for the prior within a
given bin ðXi; YiÞ is

N priorðXi; YiÞ ¼
HpriorðXi; YiÞ

Htot
: ð57Þ

Our plotting method is similar for the posterior.
However, because the posterior probability is proportional
to the prior probability multiplied by the likelihood, we
have to include the likelihood, Lð  ϕkÞ, of each EoS when
calculating the hits of the bin. More concretely,
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HposteriorðXi; YiÞ ¼
XNEoS

k

Lð  ϕkÞhkðXi; YiÞ; ð58Þ

and N posterior has the same form as Eq. (57),

N posteriorðXi; YiÞ ¼
HposteriorðXi; YiÞ

Htot
; ð59Þ

but we use the posterior values instead of prior values to
calculate Htot.
The procedure described above for representing prior and

posterior distributions is equivalent to showing the prior as a
normalized two-dimensional (2D) histogram, and the pos-
terior as a weighted, normalized 2D histogram.Wewill refer
to these plotting methods as the binned joint prior/posterior
probability density. Representing probability densities in
this way is advantageous as long as the bin sizes are chosen
appropriately because we do not have to rely on kernel
density estimates that can smear out important information.
Kernel density estimates also perform poorly near sharp
boundaries and may predict a finite probability density in
regimes where data do not exist or, in cases where such
constraints exist, beyond physical boundaries (i.e., c2s < 0

or c2s > 1). The only aspect that requires care when applying
this method is the interplay between the size of the bins,
ðΔX;ΔYÞ, and the number of samples. Using a fine grid
with too few samples can result in bin heights that fluctuate
significantly between neighboring points. Similarly, using a
grid that is too coarse when there are an adequate number of
samples risks smearing out important features in the
distribution, as can be the case with kernel density estimates.
Finally, the prior and posterior distributions we show in

the sections below are conditional on nB ≤ nmax
B . That is,

we only plot results for the EoS of an isolated, stable, and
slowly rotating neutron star. We make this choice because
the constraints used in this work only inform the posteriors
up to nmax

B . Beyond that density, which is different for each
EoS, the posterior will be dominated by the prior. The
implications of this choice for interpreting the priors and
posteriors shown here are discussed in the sections below.

A. Are mass-radius posteriors sensitive
to structure in c2s ðnBÞ?

To fully explore the phase space of the EoS of neutron
stars, it is important to have a broad prior in the mass-radius
relation. In the left panels of Fig. 4, we show the stable
branches of the mass-radius prior for the benchmark GP
(top) and the mGP (bottom) using the plotting method
described in Eqs. (54)–(56). Here, we only plot the priors
corresponding to samples in the set that meets the basic
checks we outlined in Sec. III C (Φ✓). We find that both
priors produce a similarly diverse set of mass-radius
curves, with the highest prior regimes passing through
R ¼ 10–14 km and up to masses M ∼ 2–2.2M⊙. We also

see that both priors allow for maximum masses up to
M ∼ 3.5M⊙, although the prior disfavors M ≳ 2.2M⊙.
White regions in Fig. 4 indicate that no samples in Φ✓

reach that region in the M − R plane. The bottom right-
hand side of the left panels in Fig. 4—the large-radius,
low-mass regime—is primarily ruled out by constraints on
the symmetry energy, which predict a soft EoS in that
regime. The top left-hand side of the left panels in Fig. 4—
the small-radius, high-mass regime—is ruled out mostly
because it is beyond the point of stability for the M − R
sequences that reach such high masses. Comparing our
priors for the benchmark GP and the mGP, we find they are
nearly identical, despite the significant differences in how
the EoS are constructed.
After applying the constraints outlined in Sec. IV, we

then produce our posteriors, which are shown on the right
panels of Fig. 4. We use the plotting technique described in
Eqs. (54)–(56) to present the posterior distribution for the
benchmark GP (top panels) and the mGP (bottom panel)
models. In addition, in Table II, we present the median,
68%, and 90% credible regions from the benchmark GP
and mGP posteriors for the equatorial radius of a 1.4M⊙
star (R1.4), the equatorial radius of a 2.1M⊙ star (R2.1), and
maximum stellar mass (Mmax), assuming an isolated,
slowly rotating star. We find that in terms of the observables
highlighted in Table II as well as the binned joint posteriors
the results for the benchmark GP and the mGP are nearly
identical.
Observe that both benchmark GP and mGP EoS support

neutron star masses up toM ∼ 2.7M⊙ (albeit with a smaller
likelihood), but neutron stars with higher masses are
extremely disfavored. Observe also that, from the credible
bands alone, one would reasonably assume that all neutron
stars heavier thanM ∼ 2.7M⊙ must have larger radii at high
masses. However, from the joint posterior, it is clear that a
number of mass-radius curves for heavy neutron stars may
either be nearly straight or even bend slightly to the left. In
any case, we see that, although specific M–R curves may be
affected by structure in the speed of sound, the latter does
not affect the M–R posteriors, given currently available
observations.

B. Are EoS posteriors sensitive to structure in c2s ðnBÞ?
Next, we test if the different prior assumptions made

about correlations across densities in the benchmark GP
versus the mGP model lead to any significant differences in
the posterior for c2sðnBÞ. Recall that the benchmark GP
produces smooth c2s curves with uniform correlations
across densities, whereas the mGP display sharp features
in c2s and multiscale correlations across densities (refer also
to Figs. 1 and 3).
In Fig. 5, we show the priors (left panels) and the

posteriors (right panels) for c2s as a function of nB in units of
nsat, up to nmax

B for each EoS. Again, benchmark GP and
mGP results are shown on the top and bottom panels,
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TABLE II. Median, 68%, and 90% credible regions from the benchmark GP and mGP posteriors for the equatorial radius of a 1.4M⊙
star (R1.4), the equatorial radius of a 2.1M⊙ star (R2.1), and maximum stellar mass (Mmax), assuming an isolated, slowly rotating star.

EoS R1.4 (km) R2.1 (km) Mmax (M⊙)

Benchmark GP 12.55, (12.07, 13.05), (11.56, 13.37) 12.26, (11.52, 12.90), (11.02, 13.34) 2.26, (2.10, 2.51), (2.04, 2.68)
mGP 12.55, (12.04, 13.04), (11.54, 13.33) 12.34, (11.62, 12.98), (11.12, 13.39) 2.25, (2.09, 2.50), (2.03, 2.67)

FIG. 4. Mass-radius prior (left) and posterior (right) probability distributions for GP (top) and mGP (bottom) EoS. Both the prior and
posterior probability distributions are produced by binning the EoS by mass and radius and then normalizing the heights of the bins such
that their sum is equal to 1. For the posteriors, each EoS is weighted by the corresponding likelihood. Observe that the joint posteriors are
similar when using the GP or mGP models, with masses larger than 2.7M⊙ and radii larger than 14 km disfavored.
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respectively. The priors are shown using the binning
method outlined in Eqs. (54)–(56). The posteriors are
shown both in terms of the binned joint posteriors as well
as constant density 68% and 90% credible bands. In these
plots, we only show c2s up to the maximum central baryon
density for a stable star in the slow-rotation regime, nmax

B .

Most EoS lead to nmax
B around 4 − 7nsat with a handful that

extend up to 8nsat. Thus, we plot only up to nB ¼ 8.0nsat.
We will discuss the posterior for nmax

B separately in Fig. 6.
We note that Fig. 5 only includes EoS inΦ✓ (the set of EoS
that pass the constraints discussed in Sec. III), which clearly
affects the priors. This selection leads to c2sðnBÞ functional

FIG. 5. EoS prior (left) and posterior (right) probability distributions for GP (top) and mGP (bottom) EoS conditional on nB ≤ nmax
B for

each EoS. The EoS are represented by the speed of sound squared in units of c2 as a function of baryon number density in units of nsat.
The prior and posterior probability distributions are produced by binning the EoS by the speed of sound and number density and then
normalizing the heights of the bins such that their sum is equal to 1. For the posteriors, each EoS is weighed by the corresponding
likelihood. Also shown in the posterior plots are the 90% and 68% credible regions for the speed of sound squared at a given density for
0.5 ≤ nB ≤ 8.0nsat. The posterior probability that the central density for a maximally massive star is greater than ∼6.0nsat is negligible in
both cases. We note that probability densities are low in the regime between 2 and 6nsat because of the wide spread in the allowed
behavior for c2s. Observe that at the 90% level the mGP posterior is wider than the GP one for all densities above nsat.
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forms that favor high values (c2s ≥ 1=3) at large den-
sities (nB ≥ 2nsat).
Let us first discuss the priors. Observe that the highest

probability regions look nearly identical between the bench-
mark GP and mGP models when we only consider EoS in
Φ✓. In both cases, at very low densities (nB ≤ nsat), there is
a strong preference for a nearly vanishing c2s . This result is
unsurprising because we use the same crust at low densities
for both models and also impose that no modifications are
introduced in c2s below nB < 1.1nsat for mGP EoS.
Progressing to intermediate densities (nsat ≤ nB ≤ 3nsat),
we find a general trend in both priors to larger c2s, but this
trend has a rather wide spread, allowing for diverse behavior
in c2s , hence the lower probability within the credible bands.
At densities above 3nsat, we find a general trend upward in
c2s , but again with an even larger spread.
One key difference, however, does exist between the

benchmark GP and mGP priors. The benchmark GP EoS in
Φ✓ do not contain any samples that have a low c2s at large
nB (notice the large white region in the bottom-left corner
of the top-left panel in Fig. 5). On the other hand, the same
region in the mGP prior has a nonzero prior probability
density. The key difference is that the benchmark GPs are
smooth and domain points are correlated over a long range
in density. Therefore, the speed of sound functional forms
from the benchmark GP cannot easily fluctuate downward
to this region (especially since they need to support neutron
stars with M ≥ 1.8M⊙). In contrast, functional forms from
the mGP model can have fluctuations to larger c2s, followed
by regions of lower c2s. In this way, it is clear that the mGP

model allows us to explore a wider regime in EoS
parameter space.
Next, let us discuss the binned joint nB − c2s posteriors

and the constant density 90% and 68% credible regions,
shown in the right panels of Fig. 5. The posteriors and
credible bands are similar between the benchmark GP and
the mGP, but they are not identical. We find that, at the 90%
level, the mGP posterior is wider than the GP one for all
densities above nsat. Notably, the mGP posterior allows for
slightly stiffer EoS in the regime 1.5≲ nB ≲ 3.0nsat and
slightly softer EoS above 3.0nsat. For instance, at twice
nuclear saturation density and 68% credibility, we extract
c2s ¼ 0.29þ0.27

−0.11 using EoS from the GP posterior and c2s ¼
0.29þ0.34

−0.14 using the mGP posterior. At four times nuclear
saturation density, the GP EoS range is c2s ¼ 0.63þ0.27

−0.23 ,
while the mGP EoS allows for c2s ¼ 0.59þ0.31

−0.34. Thus, we
find that the GP leads to slightly stiffer EoS and has slightly
narrower posterior credible bands. As we will discuss later
in Fig. 6, very few EoS reach beyond nB > 6nsat, so the
statistics in that regime are not sufficient to draw con-
clusions about differences between the two frameworks.
This is evident from the highly oscillatory behavior of the
mGP credible bands in that region.
We can draw further conclusions from the binned joint

probability density posteriors. In both posteriors, there is a
strong preference (blue regions) for a sharp rise in the speed
of sound between 1 and 2nsat. Furthermore, at densities
larger than 2nsat, large c2s is favored, well beyond the
conformal limit of c2s ¼ 1=3. However, c2sðnBÞ is signifi-
cantly less constrained in that regime. Lastly, we also see
from the binned joint posteriors that a large fraction of EoS
must reach their maximum central densities around ∼5nsat
because the probability density decreases significantly
beyond that point.
While the relative differences in the posteriors are not

huge between the GP and mGP models, the point still holds
that when the c2s is allowed to display sharp features the
posteriors are wider than when a smooth EoS is presumed.
This is because implicitly imposing smoothness in the EoS
through benchmark EoS translates to a prior that disallows
low speeds of sound at high densities. We, therefore, argue
that such sharp features should be adequately represented in
priors for the extraction of the EoS in neutron star regimes.
Furthermore, it is clear that if one is especially interested in
studying whether low values of c2s at high densities are
allowed by nature it is even more important to allow for
sharp features in c2s .

C. Are maximum central density posteriors
sensitive to structure in c2s ðnBÞ?

We will now discuss the priors and posteriors for the
maximal central baryon density reached by a stable neutron
star in the slow rotation regime, nmax

B . From Fig. 5, we
already saw hints that nmax

B must peak around 5nsat because

FIG. 6. The estimated prior (solid lines) and estimated posterior
(dot-dashed, filled lines) probability density distributions for the
maximal central density of a stable, nonrotating star in units of
nsat for EoS from the benchmark GP (green) and mGP (blue). The
priors for GP and mGP produce nearly identical PDFs for nmax

B
such that the lines are indistinguishable from each other. The vast
majority of EoS from the posterior predict a maximal central
density between ∼4–8nsat.
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the posterior probability densities are low at baryon
densities higher than that. To study this systematically,
we have plotted the range of nmax

B for both our priors and
posteriors in Fig. 6 using a kernel density estimate.8

Observe that the nmax
B priors for the benchmark GP (blue

line) and mGP (green line) are essentially identical and
mostly overlapping, ranging between nmax

B ¼ 2–10nsat
(again, recall that our priors shown here represent only
the samples in Φ✓). However, there is a significant change
in the posterior probability density for both the benchmark
GP and the mGP compared to their priors. Both posteriors
are sharply peaked at nmax

B ¼ 5–6nsat with a range between
nmax
B ¼ 4–8nsat (with essentially no EoS that produce

nmax
B > 8nsat). The posterior for the mGP model peaks at

a slightly smaller nmax
B than that of the GP model, but the

difference between the two distributions is very small.
These results are consistent with what is shown in
Fig. 5, in which the probabilities are compatible with zero
for nB ≥ 8nsat.

D. What is the impact of pQCD constraints?

As discussed in Sec. IV B 5, in order to include pQCD
constraints, one must choose a matching density, nmatching.
This matching density reflects how pQCD results are being
propagated via stability, causality, and consistency con-
straints. In this work, we used nmatching ¼ nmax

B;k , the maxi-
mal central density predicted by EoS k for a stable,
nonrotating neutron star. Although nmax

B;k changes for each
EoS, we saw in Sec. V C and Fig. 6 that the posterior
probability density for nmax

B drops sharply above ∼6nsat and
is negligible beyond 8nsat.
In Fig. 7 (top), we quantify how pQCD constraints

affected our inference of the EoS. In the bar chart, we show
the proportion of EoS in our prior that are consistent
(wpQCD ¼ 1 exactly), in tension (0 < wpQCD < 1), and
inconsistent (wpQCD ¼ 0 exactly) with pQCD input [see
Eq. (50) for the definition of wpQCD]. A vast majority of the
EoS in the prior (∼96.5%) are consistent with pQCD
results, ∼3.5% are in tension, and only 0.0083% (11 total)
EoS are inconsistent with pQCD results. Because pQCD
only completely excludes a very small fraction of EoS,
these constraints cannot contribute strongly to the M − R
and c2sðnBÞ posteriors, shown in the previous section.
We observe, however, that a non-negligible population

(∼3.5%) that is in tension with pQCD results indeed exists.
In Fig. 7 (bottom), we show a histogram for wpQCD only for
the samples that were found to be in tension with pQCD.
Recall that wpQCD is proportional to the strength of the
disagreement between a given EoS and pQCD results over
the range of Λ̄ we sampled. Thus, we can quantify the

impact of these samples on the posterior probability by
looking at their wpQCD distribution. As shown in Fig. 7, the
median of the distribution is ∼0.95, meaning that more than
half of the samples in tension with pQCD are only
marginally suppressed.
The results shown here suggest that the impact of pQCD

input on the inference of the neutron star EoS is minimal.
Given that the opposite has been reported in the literature
recently [16,67,170], we would like to address why that is
the case. Let us recall Sec. IV B 5, in which we discussed
the assumptions associated with including pQCD input
in the analysis. We assume we know the EoS at a low-
density limit [see Eqs. (41) and (42)], each determined by a
set of three values that fix the EoS in those limits. These
values correspond to the number density (n), the chemical
potential (μ), and the pressure (p) at each limit. In the low-
density regime, we get μlow and plow from the EoS, but we
need to make a choice for nlow. This choice is important
because nlow ¼ nmatching, meaning that pQCD results will be
propagated down to nlow. This choice is in principle
arbitrary, but given that the largest density scale relevant
to the EoS of isolated, slowly rotating neutron stars is nmax

B ,
it is reasonable to impose nlow ¼ nmax

B for each EoS. This is
the choice that we make in this work and the choice that was

FIG. 7. Top: bar chart of the percentage of EoS that are
consistent (wpQCD ¼ 1), in tension (0 < wpQCD < 1), and not
consistent (wpQCD ¼ 0) with pQCD input based on the formalism
in Ref. [67]. Bottom: histogram of the wpQCD for the 4592 EoS
(∼3.5% of the total number of samples) in the combined
benchmark GP and mGP prior that are in tension with pQCD
input. The impact of pQCD input when nmax

B;k is used as the
matching density is negligible (see Sec. IV B 5 for definitions).

8For this observable, the probability densities vary smoothly
with nmax

B , and hence the use of kernel density estimates instead of
the binning method we discussed earlier is safe.
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made in Ref. [171], which also reported that pQCD only
affected a very small number of EoS in the prior.
Works that found a robust softening of the EoS at high

densities, leading to a peak in the c2sðnBÞ posterior, used
nmatching ¼ 10 nsat, where pQCD is more constraining
because it is closer to μhigh ¼ 2.6 GeV. However, as shown
in Fig. 6, the nmax

B posterior is essentially zero for nmax
B > 7

nsat. That means that in Refs. [16,67,170] pQCD con-
straints are being imposed far beyond the densities where
most realistic EoS predict a stable neutron star. There are no
constraints from astronomical observations in those den-
sities, so the impact of pQCD on the posterior will depend
on prior-imposed assumptions about the correlations in
c2sðnBÞ in the regime above nmax

B . We note here, as
Refs. [172,173] also noted, that such results are very
sensitive to the prior.
Imposing pQCD constraints at nmax

B with X ¼ ½1=2; 2�
results in only 3.5% of the EoS being affected. Only 11 are
completely ruled out. Again, we highlight that in Fig. 7,
which shows a histogram of the pQCD weights assigned to
EoS that were suppressed by pQCD, we see that the vast
majority of the EoS affected were only marginally sup-
pressed. With these results, we conclude that our posteriors
are dominated by astrophysical observations, which is why
we do not see a softening of the EoS at larger densities.
Nonetheless, pQCD offers nontrivial constraints even when
incorporated exclusively at densities where an EoS predicts
stable, slowly rotating neutron stars exist. Lastly, we point
out that our findings are in agreement with those of
Ref. [171], which found that pQCD affects the EoS mainly
beyond the densities realized in neutrons stars.

E. Does c2s ðnBÞ display a peak within neutron
star densities?

Given that mGP EoS lead to reasonable mass-radius and
c2sðnBÞ posteriors, we can now begin to explore the
existence of structure in c2sðnBÞ. One way to study the
latter is to look for a bump [i.e., c2sðnBÞ rises and reaches a
global maximum at some nB < nmax

B before decreasing
again] that would signify a crossover phase transition. This
type of structure is being actively discussed in the literature
[16,18,19,67,170,174,175] as a signature of quark matter in
the core of massive neutron stars. Such a structure has
become especially relevant after studies that use pQCD
constraints applied beyond densities realized in most
realistic neutron star EoS found a posterior for c2sðnBÞ that
displays a peak within neutron star densities [16,67].
One caveat here is that, as seen in Fig. 1, c2sðnBÞ can

oscillate or contain first-order phase transitions. Thus, the
absence of a global maximum in c2sðnBÞ before nmax

B does
not imply that a phase transition does not occur within
neutron star densities. Similarly, the presence of a global
maximum in c2sðnBÞ before nmax

B does not confirm a
transition to quark matter occurs in the core of massive

neutron stars because, as shown in Fig. 1, the onset of
degrees of freedom other than quarks, such as heavy
resonances or hyperons, can also cause the EoS to soften
in a similar way. With this caveat in mind, we define the
density at which the maximum in c2s is reached as
nBðc2s;maxÞ, or nB at maximum c2s .
The left panel of Fig. 8 shows the prior for nBðc2s;maxÞ for

both the benchmark GP and mGP models. The maximum
value of c2s can occur at any density up to nB ≤ 10nsat, as
seen for both priors. However, already at the level of the
prior, we do see differences between the two models.
The benchmark GP model prior has a peak at approximately
the same density as the nmax

B posterior shown in Fig. 6. This
feature indicates that benchmark GP samples mostly reach a
global maximum in c2s at or near their maximal baryon
density, i.e., nBðc2s;maxÞ ≈ nmax

B . This result is compatible
with the benchmark GP assumption that the low-density
(below ∼1.1nsat) and high-density (above ∼1.1nsat) regions
display correlations of length l ¼ 1 in units of log10
erg cm−3. The EoS in the low-density regime must be
smooth and soft to be in agreement with symmetry energy
estimates, while astronomical observations require an EoS
stiff enough to support 2M⊙ stars but not too stiff in the
regime below 3nsat because of tidal deformability con-
straints around 1.4M⊙ stars. This transition from soft to
stiff, by construction, happens over a range in pressure
corresponding to the hyperparameter l. Since we imposed a
reasonably large value for l, bumps are less likely in the
benchmark GP model. In contrast, the mGP model has a
prior that is relatively uniform in the range between
1.1 − 8nsat, rather than peaked at densities above 3nsat,
as in the benchmark GP case. That implies that some of
these EoS have a low-density bump in c2s . In this case, the
assumption that the low- and high-density regimes are
correlated over a long range in pressure is relaxed, allowing
for low-density bumps to appear.
In the right panel of Fig. 8, we show the posterior for the

density at which the speed of sound is maximal (computed
from a kernel density estimate), together with the prior, for
both the benchmark GP (blue) and mGP models (green).
The posteriors present interesting features and striking
differences between both models. The benchmark GP
model leads to a posterior with a maximum consistent with
its prior and, thus, consistent with the maximum density
nmax
B . However, the mGP posterior distribution for nB at the

global c2s maximum is bimodal, with peaks at ∼2nsat and
∼5nsat. The peak of the mGP posterior distribution centered
at nB ∼ 5nsat is somewhat larger than the peak at nB ∼ 2nsat.
Nonetheless, the peak at nB ∼ 2nsat is still quite significant,
and it is clearly a result of the extra structure built into the
mGP model. We note that this low-density bump is
consistent with recent preliminary findings from heavy-
ion collisions [176] and may be an indication of a crossover
phase transition (a possible explanation is quarkyonic
matter; see, e.g., Ref. [24]). We should be careful in our
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interpretation of these results, however, since the posterior is
bimodal, and a monotonically increasing c2s cannot be ruled
out. It remains to be seen if the low-density peak in the
posterior for nBðc2s;maxÞ will be further enhanced or sup-
pressed by future astrophysical observations of neu-
tron stars.
We now investigate the differences between the two

distinct peaks in the mGP posterior shown in Fig. 8 by
dividing the mGP EoS into two groups: one with
nBðc2s;maxÞ < 3nsat and one with nBðc2s;maxÞ > 3nsat. In
Fig. 9, we show the mGP posterior for c2sðnBÞ in the first
group (left panel) and in the second group (right panel),
using the binned probability densities from Eqs. (54)–(56),
together with the constant density 90% and 68% credible
regions. The resulting posteriors are qualitatively different
between the two groups. We see a much sharper increase in
c2s at low densities for the nBðc2s;maxÞ < 3nsat group in the
left panel. In that case, we see that c2s may have a peak,
followed by a decrease, or it may plateau, at larger nB.
Interestingly, the nBðc2s;maxÞ < 3nsat group allows for the
possibility of a softening in the EoS at large densities that is
not seen in the other group. The nBðc2s;maxÞ > 3nsat group on
the right panel appears to have a monotonically increasing
posterior that ends at a large c2s at large nB. This group more
closely resembles nucleonic-only EoS. Another interesting
difference is that, unlike the nBðc2s;maxÞ < 3nsat group, the
nBðc2s;maxÞ > 3nsat group has a tight c2s distribution at large
nB, which drives c2s to large values.
We can also analyze quantitative differences

between these posteriors. In the left panel, at 2nsat, the

nBðc2s;maxÞ < 3nsat group allows for c2s as high as ∼0.80 at
90% credibility and ∼0.55 at 68% credibility. In contrast,
the second group predicts much smaller c2s for nB ¼ 2nsat,
∼0.45 and ∼0.35 at 90% and 68% credibility, respectively.
At densities above 3nsat, the nBðc2s;maxÞ < 3nsat group
continues to allow for a wide range of c2s , displaying c2s
values as low as ∼0.2 at 90% credibility and as high as ∼0.8
at 90% credibility at 5nsat. At 68% credibility, the lower and
upper bands are at roughly c2s ≈ 0.3 and c2s ≈ 0.7, respec-
tively, at 5nsat. In contrast, at 5nsat, the ranges for the
nBðc2s;maxÞ > 3nsat group are approximately [0.5, 0.8] at
68% credibility and [0.3, 0.9] at 90% credibility. Overall, if
a global maximum occurs below 3nsat, our results indicate
that we can expect an EoS that is stiffer at low densities and
softer at high densities. On the other hand, if a global
maximum occurs above 3nsat, the c2s posterior suggests that
the EoS is stiffer and above the conformal value of 1=3 for
all nB > 3nsat.
Recalling an earlier discussion about what the absence of

a clear peaklike structure in c2s means, we emphasize that
the EoS in both posteriors shown in Fig. 9 were generated
using the mGP framework. Therefore, all these samples
contain nontrivial features. Thus, it is possible that the
nBðc2s;maxÞ > 3nsat group may have a small bump in c2s at
low densities but then the EoS continues to become stiffer,
ending at an even larger c2s near nmax

B .

F. Are there nontrivial features in c2s ðnBÞ?
We have established that different assumptions about the

scale of correlations across densities in the speed of sound

FIG. 8. Left: histograms of the prior distributions for the GP and mGP EoS of the value of the baryon density nB in units of nsat at the
global speed of sound maximum for a stable nonrotating neutron star. The increased flexibility of mGP EoS allows for a global c2s
maximum to occur at lower densities compared to the GP EoS. Right: the estimated prior probability density distributions corresponding
to the histograms on the left (solid curves) and estimated posterior probability density distribution after constraints on the symmetry
energy, mass, radius, and binary tidal deformability are imposed along with pQCD input (dot-dashed curves). Data and theoretical
constraints do not rule out a global c2s maximum at densities below 3nsat but are also not yet informative enough to favor or disfavor it
over a global c2s maximum above 3nsat.
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functional do not lead to significantly different predictions
for the mass-radius relation or c2sðnBÞ given current con-
straints. On the other hand, introducing multiscale corre-
lations via the mGP model had a significant impact on the
posterior for the value of nB at the maximum c2s . What we
learn from this is that both the benchmark GP and the mGP
models can describe astronomical observations, while
respecting symmetry energy and pQCD constraints. We
can now ask if the data prefer one of the two models.
As discussed in Sec. IVA, the model evidence quantifies

the level of support of the data for a given model, and the
ratio between the evidence for two different models, the
Bayes factor, quantifies if one of the models is preferred
over the other by the data. Using Eq. (52), we separate the
benchmark GP and the mGP samples and compute the
evidence for each. We find a Bayes factor of9

K ¼ EbenchmarkGP

EmGP
¼ 1.480: ð60Þ

This value is not a significant deviation from unity, which
means that current constraints do not favor either model.
The physical interpretation is that multiscale correlations
and nontrivial features in c2sðnBÞ are not ruled out by
current constraints, but neither are they required.
Because of the broad range of features represented in the

mGP samples, we further divide the mGP EoS into the
different classes discussed in Sec. III A, resulting in four
models: benchmark, mGP containing one spike, mGP
containing a spike and a plateau, and mGP containing
two plateaus. We present the log evidence for each of these
classes separately in Table III. The log evidence across all
classes of EoS is ∼5, so the log Bayes factor between any
two classes is ∼0, and thus the Bayes factor between any

FIG. 9. EoS posteriors for the case when a global maximum in the speed of sound is present below (left) and above (right) 3nsat for
mGP EoS conditional on nB ≤ nmax

B for each EoS. The EoS are represented by the speed of sound squared in units of c2 as a function of
baryon number density in units of nsat. The posterior probability distributions are produced by binning the EoS by the speed of sound
and number density, weighing each EoS by the corresponding likelihood, then normalizing the heights of the bins such that the sum of
all bin heights is equal to 1. Also shown in the posterior plots are the 90% and 68% credible regions for the speed of sound squared at a
given density for 0.5 ≤ nB ≤ 6.0nsat. The posterior probability that the central density for a maximally massive star is greater than
∼6.0nsat is negligible in both cases.

TABLE III. Log evidence for the benchmark model and the
three classes of modifications represented in the mGP model.

Model logðEÞ
Benchmark −5.340
mGP, ðcspÞ −5.452
mGP, ðcpl1;cspÞ −5.572
mGP, ðcpl1; cpl2Þ −5.577

9In a previous paper [177], we reported a Bayes factor of
K ¼ 1.126, which was obtained using a normalization factor [Nm
in Eq. (52)] that reflected the size of the subset of the priors for
each model that passed the checks (using the notation introduced
in Secs. III C and IV C, these sets are ΦbenchmarkGP ∩ Φ✓ and
ΦmGP ∩ Φ✓). This choice essentially ensured a Bayes factor of
∼1 because both priors have information about astrophysical
constraints (Ref. [172] also pointed this out). Here, Nm corre-
sponds to the full prior sample size (using the notation introduced
in Secs. III C and IV C, these sets are ΦbenchmarkGP and ΦmGP).
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two classes is ∼1. We can conclude that the data do not
favor a specific type of structure in c2sðnBÞ.
We highlight that, because modifications are introduced

on top of a benchmark model, there is overlap between the
type of structure that modifications create in c2sðnBÞ. For
instance, a spike or plateau placed above the benchmark
baseline may create a peak in c2sðnBÞ, but a peak can also be
achieved by a spike or plateau placed below the baseline.
This nontrivial interaction between modifications and the
baseline functional form of c2sðnBÞ is illustrated in Fig. 3.
The solid blue line is an example of a global maximum in
c2sðnBÞ created by the introduction of a plateau above the
baseline value for c2s. On the other hand, the dot-dashed
blue line shows a maximum in c2sðnBÞ created by a plateau
placed below the baseline. Yet another example is given by
the dot-dashed green curve, where a plateau is introduced
above the baseline which does not result in a maximum in
c2sðnBÞ, because the baseline value of c2s at the end of the
plateau is higher than the value of c2s across the plateau.
Thus, calculating the evidence for particular functional
forms of c2sðnBÞ (e.g., monotonic, one peak, multiple local
maxima) requires additional analysis which can be the
subject of future work.

VI. CONCLUSIONS

Nuclear physics models with phase transitions and exotic
degrees of freedom contain multiscale features that present
as nontrivial structure in c2s . In this work, we developed a
new framework, which we named modified Gaussian
processes, as a novel approach to producing functional
forms of the EoS for the cold, catalyzed nuclear matter in
neutron stars that each contain long-, medium-, and short-
range correlations. These EoS can be generated with high
computational efficiency and contain features that are
indicative of the emergence of exotic degrees of freedom.
We compared our new mGP EoS model to a benchmark

GP model that contains only long-range correlations (i.e.,
does not contain any short- or medium-range correlations),
using a Bayesian analysis that incorporated astrophysical
data, low-energy nuclear physics constraints, and input
from pQCD calculations. From our Bayesian analysis, we
found that both the benchmark GP and mGP models
provide nearly equivalent results for the mass-radius,
c2sðnBÞ, and maximum central density posteriors. In fact,
the Bayesian evidence for both models is nearly the same,
leading to a Bayes factor of 1.5 between them. Thus, it is
clear that we cannot rule out nontrivial features in the speed
of sound from the data and also that these EoS are as valid
as a smooth EoS, given current data.
Given the very similar posteriors for both the benchmark

GP and the mGP models, one may wonder if there are any
differences between the two. We found that the main
difference between the two models is that mGP model
allows for EoS that have bump in c2s at low densities. In

fact, the posterior for the baryon density at which the
maximum of c2s occurs leads to a binomial distribution with
peaks at nB ∼ 2nsat and nB ∼ 5nsat. In contrast, the bench-
mark model only produces a definite peak at nB ∼ 5nsat.
Thus, we must conclude that the benchmark model is not
adequately exploring the possibility of a bump in c2s at low
densities, due to long correlation lengths. We argue that it is
important to explore the possibility of peaks around nB ∼
2nsat because a global maximum at such densities is
compatible with the onset of exotic phases in the core of
neutron stars and, in this analysis, its existence is com-
pletely driven by astrophysical data.
We emphasize that interpreting the EoS posteriors shown

in this work above 2nsat warrants caution. Because the
mean values of c2s used for the benchmark GP and mGP
increase with density (although the soft GP mean is 1=3),
both posteriors are centered around high values of c2s (seen
in Fig. 5). However, while the correlation length used for
the benchmark GP suppresses low values of c2s at high
densities, the mGP model allows for low c2s in the same
regime, and therefore the posterior is dominated by the
prior. This feature of the mGP model is not apparent in
Fig. 5, but it can be seen clearly in Fig. 9. More importantly,
in this work, we do not attempt to infer the behavior of the
EoS near the maximum central density—in fact, our results
largely suggest that the likelihood is uninformative in that
regime. Instead, we test whether astrophysical data and
theory input prefer a smooth EoS displaying correlations
across large ranges in pressure or EoS that allow for
multiscale correlations that are compatible with nuclear
physics models.
Another question we explored is if the presence of sharp

features in c2s is potentially excluded due to pQCD
constraints at high nB. Similar to what was done in
Ref. [171], we applied the constraints at the maximum
central density that is peaked between 5 − 6nsat for both
models. We find that these pQCD constraints only have a
small effect on our results, with no visible effect on our
posteriors. Only 0.0083% of all EoS in our study were
inconsistent with the pQCD constraints entirely, and only
3.5% were in some degree of tension. Tension can occur
because of uncertainty in an undetermined scale that arises
from the contribution of missing higher-order terms. One
sets a range of values to that scale, and some of those values
may exclude an EoS, whereas others may not. The results
presented in this analysis are restricted to our choice of EoS
prior and matching density. The impact of different EoS
priors as well as different choices for the matching density
were studied in Ref. [162]. The authors found that the
impact of pQCD on the EoS inference was very sensitive to
the presence of EoS that display a drastic softening
immediately above the matching density followed by a
strong stiffening. We plan to further explore the conse-
quences of the pQCD constraints and EoS prior choices in a
follow-up analysis.
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Other approaches have been used to tackle similar
questions as studied here, such as a deep neural network
[117] or linear segments in c2s [178]. It would be relevant to
directly compare these different methods to our mGP
model in future work to study their ability to reproduce
specific features in c2s from nuclear physics models.
Additionally, Essick et al. [172] developed a new technique
to extract features indicative of phase transitions from
functional forms of the EoS. Rather than modifying
samples from a benchmark model, Essick et al. sample
from a mixture of GPs that contain a wide range of
correlation lengths that are fixed for a given EoS, including
short correlation lengths that lead to behavior in c2s that
mimics arbitrary phase transitions. Using this method,
which we emphasize does not include multiscale correla-
tions in the EoS, Essick et al. also find that current data are
not yet constraining enough to rule in favor or against
nontrivial features in c2s , with the exception of very strong
first-order phase transitions (latent energy per particle
≳100 MeV). Interestingly, they also conclude from real-
istic simulations of future data that a catalog of around 100
events would at best lead to a Bayes factor of ∼10∶1 in
favor of a phase transition, even when the true EoS contains
a strong phase transition. Their conclusions support the
idea that astrophysical observations of neutron stars,
currently and in the near future, will not be able to constrain
short-range correlations in the EoS.
Overall, the results presented here suggest that current

constraints are not enough to rule definitively in favor of or
against phase transitions to exotic degrees of freedom in
the core of neutron stars and that unambiguous signatures
of structure in the EoS still require investigation. A clear
ruling regarding the existence of exotic matter in the core
of neutron stars will require more precise input from
astronomical observations, laboratory measurements, and
input from effective theories and QCD at high densities
[179]. Fortunately, more data are anticipated from the
NICER Collaboration both in terms of better statistics on
existing measurements and radii from new neutron stars.
Additionally, LIGO/Virgo/KAGRA’s fourth observing run
started in May 2023 with better sensitivity than during the
third observing run, such that more neutron star mergers
that will provide Λ constraints are anticipated [180] and
the binary love relation may provide further insight into
structure in c2s [88]. Finally, more nuclear physics data are
anticipated from the Facility for Rare Isotope Beams that
will help constrain the low-density regime of the EoS and
from low-energy heavy-ion collisions that will probe the
large density, low-temperature region of the QCD phase
diagram [181].
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APPENDIX: QUANTIFYING THE IMPACT
OF SPIKES ON THE pðεÞ PLANE

In this appendix, we will motivate the inclusion of spikes
in c2sðlog10 pÞ and discuss how those modifications trans-
late into the ε − p plane. We will show that, under the
assumptions of the mGP, these spikes can result in
significant modifications to the benchmark EoS on the
ε − p plane.
In our work, we define a grid that is regularly spaced

in log10 p with Δ log10 p ¼ 0.043. That is, ΔpðpiÞ ¼
10piþ0.043 − 10pi grows with pi. Additionally, to recover
the energy density, we compute

εiþ1 ¼ εi þ
1

c2s;i
ðpiþ1 − piÞ ðA1Þ

Δεi ¼
1

c2s;i
ΔpðpiÞ: ðA2Þ

Thus, if a modification is introduced at pj such that
c2s;�ðpjÞ ≥ 0.1 [since c2s can be arbitrarily small, we will
focus on cases where c2s ¼ Oð0.1–1Þ first], the change in
energy density at point j is at least OðΔεjÞ ¼ OðΔpjÞ and
at most OðΔεjÞ ¼ 10OðΔpjÞ. We can derive some rough
bounds on Δεj by taking some representative values of
pressure; we choose log10pj;low ¼ 33.5 erg cm−3 (in most
EoS realizations, this value is slightly above nuclear
saturation density) and log10pj;high ¼ 36 erg cm−3 (in most
EoS realizations, this is close to the maximum central
pressure for a stable star). We then have
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Δplow¼10pj;lowþ0.043−10pj;low ¼Oð10−1ÞMeV=fm3; ðA3Þ

Δphigh¼10pj;highþ0.043−10pj;high ¼Oð100ÞMeV=fm3; ðA4Þ

implying that when c2s;�ðpjÞ ≥ 0.1, Oð10−1 MeV=fm3Þ ≤
Δεj ≤ Oð1000 MeV=fm3Þ. Considering the energy density
itself ε ¼ Oð100 MeV=fm3Þ, spike-type modifications
for which c2s remains above 0.1 (again, we will discuss
the case when c2s < 0.1 next) lead to changes of
order 0.1%–1000% in the energy density. Therefore,
Δp is not necessarily small, and increases in the energy
density from one grid point to the next can be large in our
analysis.
Now, let us focus on how a change in a single point on

the log10p-c2s plane compares to its benchmark value on the
ε − p plane. That is, we will estimate how different a spike-
modified εj;� is from its benchmark value εj. Dropping the j
index (from here on, it is implied we are talking about the
point where a spike is introduced), the change in energy
density due to a modification c2s;� is

Δε� ¼
1

c2s;�
Δp; ðA5Þ

such that the ratio between the benchmark value and the
spike-modified value above is

Δε
Δε�

¼ Δp
c2s

c2s;�
Δp

¼ c2s;�
c2s

: ðA6Þ

We can then write

Δε
Δε�

¼ R ¼ c2s;�
c2s

; ðA7Þ

usingR to represent the ratio. Because of causality, if both
c2s;� ≥ 0.1 and c2s ≥ 0.1, then R ¼ Oð0.1–10Þ, meaning
thatOðΔε�Þ is at least 0.1OðΔεÞ and at most 10OðΔεÞ. We
already discussed above that Δε can be as small as Oð0.1Þ
and as large as Oð100Þ MeV=fm3. This shows explicitly
that a spike-type modification in c2s can translate into a
large modification in pðεÞ.
Now, let us relax the assumption that c2s ≥ 0.1 and

c2s ≥ 0.1. From Eq. (A7), it is clear that if c2s;� ≫ c2s ,
R → 0, and Δε ≪ Δε�. Therefore, when a spike is intro-
duced such that c2s ≲ 0.1, the change in the pðεÞ compared
to the benchmark EoS could span different orders of
magnitude.
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