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Abstract—Decentralized federated learning (DFL) offers en-
hanced resilience to client failures and potential attacks than its
centralized counterpart. This advantage stems from its ability
to aggregate learning models from distributed clients requiring
centralized server coordination. However, the practical adoption
of DFL faces several challenges that threaten the robustness of
local models. On one hand, the distribution of data might change
over time, degrading the aggregated model’s performance on test
data. On the other hand, Byzantine attacks, where certain users
send malicious updates to their neighbors to spread erroneous
knowledge, can compromise the convergence and accuracy of
the global model. Notably, no existing work has simultaneously
addressed both distributional shifts and Byzantine attacks in
decentralized settings. To bridge this gap, we first propose a
robust aggregation algorithm, Local Performance Evaluation
with Temperature-Scaled Softmax Reweighting (LPE-TSR), to
defend against Byzantine attacks. We then integrate Wasserstein
distributionally robust optimization with LPE-TSR and develop
Distributional and Byzantine Robust Decentralized Stochastic
Gradient Descent (DB-Robust DSGD) to tackle both challenges
simultaneously. DB-Robust DSGD allows flexible selection of
robust aggregation algorithms tailored to specific scenarios.
Experimental results show that LPE-TSR achieves optimal per-
formance across diverse attack scenarios, while DB-Robust DSGD
effectively mitigates both distributional shifts and Byzantine
attacks.

Index Terms—Decentralized Federated Learning, Distribution-
ally Robust Optimization, Byzantine Robustness

I. INTRODUCTION

In decentralized federated learning (DFL), multiple clients
collaboratively carry out a common task based on a shared
machine learning model. Each client iteratively updates a local
model based on its raw data and exchanges model information
with neighboring clients within a one-hop communication
range. By eliminating the need for central server coordination,
DFL offers greater resilience to client failures and poten-
tial attacks compared to its centralized counterpart [1], [2].
Moreover, the fully decentralized structure and local training
property of DFL inherently allow for efficient allocation
and utilization of computational resources. Yet, two major
robustness challenges in DFL, namely Byzantine attacks and
distributional shifts, must be addressed to ensure model safety
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before deploying it in modern safety-critical fields such as
autonomous driving [3] and medical diagnosis [4], etc.

Byzantine attackers are dishonest clients that send arbitrary
malicious information to deliberately disrupt the entire system,
potentially compromising convergence or degrading the accu-
racy of the global model [5]-[7]. To defend against Byzantine
attacks, extensive work has been conducted. Statistics-based
methods leverage statistical features such as the median, mean,
variance, percentile, and distance to exclude potential attackers
from aggregation [5], [8]-[11]. Anomaly detection-based ap-
proaches identify clients with abnormal updates as anomalies
and perform aggregation after excluding these anomalous
clients [12]-[15]. Performance evaluation-based methods use
an additional evaluation dataset to filter out malicious updates
before model aggregation [16]-[18].

Distributional shift refers to the mismatch between the
distributions of training data and real-world test data [19],
[20]. Traditional empirical risk minimization (ERM) methods
often assume that training and test data share the same
distribution. However, this assumption frequently fails due
to dynamic environmental changes and uncertainty. To ad-
dress distributional shift, robust optimization assumes no prior
knowledge of the data distribution and minimizes the worst-
case scenario [21], [22]. However, this approach can lead to
over conservative solutions that perform poorly in practice. In
contrast, distributionally robust optimization (DRO) assumes
that the real-world data distribution lies within an ambiguity
set of the training data distribution, which is less conservative
in handling distributional ambiguity while still preserving key
statistical properties of the data [23], [24]. The ambiguity
set can be constructed based on moment conditions [25]
or probability distance such as f-divergence [26], [27] and
Wasserstein distance [28], [29]. Notably, distributional shift
occurs across all machine learning settings, including both
centralized and federated learning [30].

Although extensive efforts have been made to address
Byzantine attacks and distributional shifts separately, few
works have tackled both issues simultaneously. [30] attempts
to address both challenges; however, their federated learning
setting is less challenging than our DFL setting, where no
central server exists for model aggregation. In this work,
we aim to bridge this gap by developing a distributional
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and Byzantine robust decentralized learning algorithm. We
first leverage the unique nature of DFL, where each client
acts as a central server with its own evaluation dataset, an
integral component of performance evaluation-based robust
aggregation mechanism, and propose a novel approach for
performance evaluation and attacker detection in DFL sys-
tems. We then integrate Wasserstein DRO with various robust
aggregation techniques to address both distributional shifts and
Byzantine attacks simultaneously. Our main contributions are
summarized as follows.

e We propose the Local Performance Evaluation with
Temperature-Scaled Softmax Reweighting (LPE-TSR) al-
gorithm to defend against Byzantine attackers. LPE-TSR
allows each client to utilize its local training dataset as a
verification dataset to identify malicious and benign up-
dates. The influence or importance of benign updates on
the new aggregated model is controlled by a Temperature-
scaled Softmax Reweighting scheme, leading to a more
adaptive and potentially robust aggregated model.

o We adopt the Wasserstein distance to construct the am-
biguity set in DRO and integrate it with Byzantine
robust aggregation methods to form the Distributional
and Byzantine Robust Decentralized Stochastic Gradient
Descent (DB-Robust DSGD) algorithm. Wasserstein dis-
tance captures the geometric relationship between dis-
tributions and directly measures the minimum transport-
ing cost from one distribution to another. Additionally,
it is more sensitive to local perturbations than mean,
variance, or KL divergence methods. The integrated DB-
Robust DSGD algorithm address distributional shift and
Byzantine attack issues at the same time, which, to the
best of our knowledge, is the first work that tackles both
robustness issues at the same time.

o« We conduct extensive experiments to validate the ef-
fectiveness of the proposed algorithms on real-world
datasets. With the Fashion MNIST dataset, we show that
LPE-TSR is more robust than classic robust aggrega-
tion algorithms (median, Trimmed mean, Krum) in most
scenarios. Additionally, experiments on the Spambase
dataset reveal that DB-Robust DSGD exhibits superior
distributional and Byzantine robustness compared to the
conventional ERM algorithm.

II. PROBLEM STATEMENT

Consider a fully decentralized network of N clients inter-
connected over a fixed undirected graph G = (N, £), where
N = {1,2,..., N} denotes the client set and £ C N x N
denotes the edge set. Two clients n and m are said to be
one-hop neighbors if (n,m) € £, which can exchange model
information during the communication stage. By the symmetry
of the network, (m,n) € £. For client n, its one-hop neighbors
are in the set N;, = {m|(m,n) € £}. Under the assumption
that all clients work properly, the learning task of DFL is to

minimize the average of local clients’ loss, given by

min — ZEMNDH fn(w; zy,), (1)

weRd N

where w € R? is the model parameter to be learned and
fn(w; ) is the local loss of client n with respect to data x,,
sampled from local data distribution D,,, i.e., ,, ~ D,,.
Various popular decentralized algorithms such as decentral-
ized stochastic gradient descent (DSGD) and decentralized
alternating direction method of multipliers (ADMM) can be
utilized to solve (1). Take DSGD as an example, at each
communication round ¢, each client n. (n € N) performs the
following three-stage operations [31], [32].
Stage 1 (local training): a local SGD step is taken to obtain

+,
an intermediate update w,, *:

t+3
wy, 2=

- an(wm:c ) I NDn7 )

where 7’ is the learning rate, w is the local model of client
n at communication round ¢, ¢, is the data sample of client n
at communication round ¢, and Vfn(wh;xl) is the gradient
obtained from z!, at communication round ¢.

Stage 2 (communication): client n sends wnJr to its neigh-
bors m (m € N,) and receives wnj 2 from its neighbors
m (m € N,,), resulting in a local updates set W,, that includes

client n’s and its neighbors’ updates, i.e.,
W, = {w, 2}u{wmz\me./\/} 3

Stage 3 (aggregation): client n aggregates all local models
to get a new local model as

witt =)
w; EW,
where D := Dy UDy U ---UDy is the total data sample set.
These operations iterate until all local models converge
to the global model w?, ie., wlT = wg = ...,= wjj\},
which can then be deployed for practical usage. However, two
safety issues must be addressed before implementing DFL in
practice. First, unexpected behaviors such as data corruption,
device malfunctioning, or even malicious attacks, if not treated
properly, can lead to the failure of the whole system. Denote
M as the malicious clients set containing clients that send
omniscient arbitrarily malicious updates, and correspondingly
B as the benign clients set. Clearly, M U B = N. Under
Byzantine attacks, the local training in Stage 1 follows:

witt = {0 meM (5)
2) neB

Di| 141
B @

where * denotes arbitrarily malicious updates.

To eliminate the negative impact of malicious attacks,
instead of naive aggregation (4), Byzantine robust aggregation
algorithms (denoted as BRAgg()) need to be equipped for all
honest clients n (n € B) to perform local aggregation:

1 1
wi*! = BRAgg(w, *|w, 2 € M,UB,),  (6)
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where M, and B,, denotes the malicious neighbor set and the
benign neighbor set of client n, respectively.

Secondly, the assumption that training data D,, (Vn) shares
the same distribution as real-world data usually fails in prac-
tice due to the dynamic change of environments as well as
environment uncertainty. To combat distributional shifts, dis-
tributional robust optimization (DRO) is required. Specifically,
for each client n, DRO assumes that data xfl is sampled from
Q,, the worst-case distribution in an ambiguity set 2, that
encompasses a cluster of data distributions. In that way, the
local training step in (2) changes to

t+3
( 717

wy 2 =wl —n'Vf, al),xt ~ Q. @)

In the next section, we develop a novel robust aggregation
scheme and describe how to construct the ambiguity set, based
on which we develop a framework to address distributional
shift and Byzantine attack issues simultaneously.

III. PROPOSED ALGORITHMS

We first introduce a novel robust aggregation algorithm to
mitigate the impact of malicious attacks and adaptively assign
weights to benign updates based on their importance. The
developed Local Performance Evaluation with Temperature-
Scaled Softmax Reweighting (LPE-TSR) algorithm enhances
resilience against adversarial influences. We then develop the
Distributional and Byzantine Robust Decentralized Stochastic
Gradient Descent (DB-Robust DSGD) algorithm by integrat-
ing Wasserstein DRO with various robust aggregation tech-
niques to ensure robustness against both distributional shifts
and Byzantine attacks.

A. LPE-TSR algorithm

The LPE-TSR method consists of two components: Local
Performance Evaluation (LPE) and Temperature-Scaled Soft-
max Reweighting (TSR). The LPE component allows each
client to randomly sample from its local training data to obtain
an unbiased verification dataset. The classification/prediction
accuracy on this dataset, computed from the received updates,
is then used to determine whether the updates are malicious
or benign. The TSR component utilizes a parameter 7 to
enable adaptive aggregation based on the importance of benign
updates. The LPE-TSR algorithm is presented in Algorithm 1,
which consists of the following four steps.

Step 1 (Build the performance verification dataset PVD,,).
One of the defining characteristics of LPE-TSR is the random
sampling of the local training dataset to form the perfor-
mance verification dataset. Random sampling ensures that the
distributions of the performance verification dataset and the
local training dataset are consistent, thereby enabling a more
confident performance evaluation.

Step 2 (Perform performance evaluation). After obtaining
PVD,, in Step 1, we evaluate the performance of all models
updates w.,, that client n receives from its neighbors m (m €
N,.) based on PVD,,. The performance metric here can be
accuracy, loss, or other metrics that can determine whether
w,, is malicious or benign.

Step 3 (Determine the filtering threshold and filter out
malicious updates). Once the performance of all updates
W,, (including the local model w,) has been obtained, a
filtering threshold will be calculated to classify benign and
malicious updates. In this paper, we use average accuracy as
the threshold, which is straightforward and effective according
to the experimental results.

Step 4 (Aggregate model with temperature-scaled softmax
reweighting (TSR)). After obtaining the potential benign
neighbors, the local model is updated with TSR. Specifically,
each neighbor’s contribution is weighted according to its im-
portance using a softmax function with a tunable temperature
parameter 7. TSR ensures that the aggregation step assigns
weights dynamically based on the performance scores a; of
each model in the set W,,. By adjusting the temperature 7,
the influence of each model can be controlled, leading to a
more adaptive and potentially robust model update.

Algorithm 1 Local Performance Evaluation with Temperature-
scaled Softmax Reweighting (LPE-TSR) at client n

Input: W,, = {wHQ
«, temperature scale 7.
Output: wit!.

1: sample a of the local training data to form the local
performance verification dataset PVD,,.
for all w!"? € W, do

1
w2 (Vm € N.)}, sampling fraction

2:

2:  get the performance a; use PVD,,.

3: end for

4: calculate the filtering threshold 8 = I N i Z‘Nll a;.

5: filter w; t+3 if a; < /3 to get a new update set W,, and the

new index set N, = {ila; > B}.
t+1 _ ei/T
6: update local model w;,™ =3 . S e W
kENR
7: return w’ .

B. DB-Robust DSGD algorithm

To tackle Byzantine attacks and distributional shifts si-
multaneously, we present the DB-Robust DSGD algorithm.
Motivated by the successful implementation of distributed
Wasserstein DRO in [30], we start by constructing ambiguity
sets based on Wasserstein distance under the decentralized
setting. For each client n, the ambiguity set Qn is chosen as
a Wasserstein ball 2, := B,(D,,) = {Qy : We(Qpn,Dy) <
Pn}, with the empirical d1str1but10n D,, being the center and
pn, being the radius, and W,(-,-) is the Wasserstein distance
between two probability distributions Q,, and D,, with ¢(-,-)
being the transportation cost between two data points.

The optimization problem under distributional shifts and
Byzantine attacks is then formulated as

5]

min g sup
weR? |3| 1 Q. We(Qn, D) <pn

Bz, ~o, fo(wizn).  (8)

However, solving (8) exactly with all prespecified p,’s
is infeasible. Instead, we follow the duality proof in
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[33] and the distributed Wasserstein DRO [30] and
derive that supg .w,(0, D,)<pn Brnnonfo(Wwizn) =
infy, >0 {Anpn + Ezpop, 2, (Wi 20) }, where

O, (Wp; ) = sup, {fn(wn; 2n) — Anc(2n, 2,)} represents

the robust surrogate of f,,(w,;z,) and )\, is the dual variable

for agent n. In this way, given some fixed A\, > 0, we turn
to solve a easier problem
1 |B]

i B ; Ba, ~p, O, (w;an). )

The key to solving (9) is to find the best 2z}, that maximizes
frn(Wn;2n) — Anc(zn,Tn). In most cases, the maximizer
2} (wy,) does not have a closed-form solution, and thus can
only be solved to a certain precision via iterative methods,
which will be detailed in the experimental part. After obtaining
the e-optimal maximizer z{ (w,), DSGD can be utilized to
update the model following steps listed in Section II.

We summarize the proposed DB-Robust DSGD algorithm
in Algorithm 2, where BRAgg() in (6) can be any Byzantine
robust aggregation algorithms, including our proposed LPE-
TSR scheme. In this way, DB-Robust DSGD is robust to both
Byzantine attackers and distributional shifts.

Algorithm 2 Distributional and Byzantine Robust Decentral-
ized Stochastic Gradient Descent (DB-Robust DSGD)
0

Input: local model w", local training datasets D,,, dual
variable ),,, total communication round 7.
Output: w!

1: Initialize all local models w? = w°, n € N.

2: fort =0,1,...,7—1 do

32 forn=1,2,...,|N| do

4 sample data !, from D,,.

5 obtain z¢ (w!) for each local sample z! by solving

sup, {fn(w};zn) — Ae(zn, 2},)} to € precision.
1

6: compute local gradient and get w;+§ by
thr% . *, neM
" wt — 'V f(wh; 26 (wh)), neB’
t+1 . . . t+3
7: send w, ° to neighbors in N,, and receive w,, 2
from neighbors in N,,.

8: perform robust local aggregation with (6).
9:  end for
10: end for

11: return 'wg: .

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed LPE-TSR
and DB-Robust DSGD methods, we conduct several group
experiments under various scenarios.

A. Experiment settings

Hyperparameters. For LPE-TSR, all clients are trained
using a softmax regression model with cross-entropy loss

over 10,000 communication rounds on the Fashion MNIST
dataset [34]. The learning rate decays as n* = 0.9x \/Ot% as the
communication rounds ¢ increases. The temperature scaling
factor is set to be 7 = 0.1. For DB-Robust DSGD, all clients
are trained using a logistic regression model over 7' = 3, 000
communication rounds on the Spambase dataset [35]. The
learning rate gradually decays as n* = 0.01 x 0.9l0) as
the communication rounds ¢ increases.

Network topologies. Our study utilizes a random
Erd6s—Rényi graph containing |B| + |[M| nodes (|55 benign
nodes and |M| malicious nodes), characterized by a connec-
tion probability of 0.7. Following the settings in [36], benign
nodes will hold data samples, whereas the malicious nodes
will not hold any data samples.

Data perturbation in training. The perturbed sample is
obtained by approximately solving sup,{ f(w; z) — A,c(z, z)}
with ¢(z,2) = 1|z — z||? [30]. In accordance with the
adversarial perturbation on the test data, we only perturb the
feature vector x into z without changing the label y. For
logistic regression, the objective is g(z) = —ylng — (1 —
y)In(l — ) — 3|z — z||* with § = ﬁ which has no
closed-form solution. Therefore, we calculate the approximate
maximizer via gradient ascent z'™1 = 2! + 7, Vg(z!) using
T, iterations initialized at z° = z. The values for \,,, 7., and
T, are indicated in Table II.

Distributional shifts. The distributional shifts are simulated
by adding perturbations to the test data as [30]:

Ly shift: ||z —z|] < ¢
Lo shift: ||z — z|]a < ¢

; (10)

where x is the original data sample in test dataset, z is the
shifted data sample after adding perturbations, and ¢ is the
controlled budget for distributional shifts. Larger ¢ indicates
more data distribution deviations.

Byzantine attacks. We use 4 model poisoning attacks:
Gaussian Attack (GA) [36], [37], Sign-Flipping Attack (S-F)
[36], A Little Is Enough Attack (ALIE) [37]-[39], and Same-
Value Attack (SA) [40], [41]. GA sends an update conforming
to Gaussian distribution N(0, 30%). S-F flips the local model
weight’s sign by multiplying by —10. ALIE leverages the
mean and standard deviation to generate malicious updates.
SA sends malicious information with a constant value 0.

Benchmark robust aggregation algorithms. To compare
the Byzantine robustness of LPE-TSR and select an appro-
priate BRAgg() for DB-Robust DSGD, the following clas-
sic robust aggregation methods are evaluated: Median [11],
Trimmed Mean (TM) [11], and Krum [8].

Evaluation metric. The primary evaluation metric for both
Byzantine robustness and distributional shift robustness is the
average test accuracy (Acc.) of all local models on the test
dataset. A higher Acc. indicates greater robustness of the
algorithm.

B. Experimental results

Byzantine robustness of LPE-TSR. We compare the pro-
posed algorithm, LPE-TSR, with Median, TM, and Krum

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on June 25,2025 at 07:42:44 UTC from |IEEE Xplore. Restrictions apply.



TABLE I
AcC. (%) COMPARISON OF DIFFERENT AGGREGATION RULES WITH
LPE-TSR UNDER VARIOUS SCENARIOS ON FASHION MNIST. |B| = 10,

M| = 2.

AT [ Data ERM  Median ™ Krum LPE-TSR
GA ii.d. 82.32 82.21 82.31 82.31 82.41
non-i.i.d.  82.27 82.01 82.15 81.83 82.20
S-F iid. 82.32 79.71 7920  82.31 82.40
B non-i.i.d.  82.27 74.62 73.20  81.83 82.20
ALIE ii.d. 82.32 82.19 82.33 82.15 82.37
non-i.i.d.  82.27 81.10 81.85 79.88 81.12
SA ii.d. 82.32 79.79 79.22  82.19 82.40
non-i.i.d.  82.27 74.82 73.29 10.00 82.20

across various scenarios. Additionally, we evaluate the per-
formance of Empirical Risk Minimization (ERM) under non-
attack settings, which serves as the theoretical upper bound.
The independent and identically distributed (i.i.d.) setting
indicates that each local dataset contains the same number
of classes and has the same number of data samples. For
the non-i.i.d setting, we let each client hold a subset of
classes of data with 4 classes [36], [42]. As shown in Table
I, LPE-TSR achieves the best performance in all scenarios
except in the non-i.i.d. setting under the ALIE attack, although
its performance in that setting is comparable to the best-
performing algorithm TM. In addition, LPE-TSR outperforms
the theoretical upper bound in the i.i.d. setting, which may be
attributed to the benign noise.

Robustness of DB-Robust DSGD. We compare the per-
formance of DB-Robust DSGD, which integrates various
Byzantine-robust aggregation algorithms, with that of the
ERM. From the first row of Table II, we observe that in
the absence of Byzantine attacks and distributional shifts,
the performance of ERM and DB-Robust DSGD is nearly
identical. When L1 or L2 distributional shifts are present but
no Byzantine attacks exist (row 6 and 11 in Table II), DB-
Robust(*) demonstrates a certain higher level of robustness,
outperforming ERM due to its integration of decentralized
Wasserstein DRO. In scenarios with only Byzantine attacks
(row 2, 3, 4, and 5 in Table II), DB-Robust(*) achieves signif-
icantly higher accuracy, which also indicates the severe impact
of Byzantine attacks on the learning process in DFL systems
compared to distributional shifts. Finally, when both L1 or
L2 shifts and Byzantine attacks are present (remaining rows
in Table II), DB-Robust(*) substantially outperforms ERM,
further validating the superior robustness of our algorithm.

V. CONCLUSION

This paper proposes the first framework that addresses
both Byzantine attacks and distributional shifts simultaneously.
We started by proposing the Local Performance Evaluation
with Temperature-Scaled Softmax Reweighting algorithm to
mitigate the negative impact of Byzantine clients in DFL
systems. We then integrate decentralized Wasserstein distri-
butionally robust optimization with a plugable robust ag-

gregation modular to adaptively mitigate distributional shifts
and Byzantine attacks. Experimental results show that the
proposed algorithms achieve superior performance compared
with benchmark methods.
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