

Appendix: Artifact Description/Artifact Evaluation
Artifact Description/Evaluation (AD/AE)

We considered the integrated reading experience for the

readers and merged the description and evaluation sections of

the research paper artifacts.

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We develop a GPU-optimized interpolation-based data

predictor G-Interp with highly parallelized efficient interpo-

lation, which can present excellent data prediction accuracy.

C2 We design a lightweight interpolation auto-tuning kernel for

GPU interpolation to optimize both the performance and

compression quality of CUSZ-i.

C3 We improve the implementation of GPU-based Huffman

encoding and import a new lossless module to reduce its

encoding redundancy further.

C4 CUSZ-i improves compression ratio over other state-of-

the-art GPU-based scientific lossy compressors by up to

476% under the same error bound or PSNR. Meanwhile, it

preserves a compression throughput of the same magnitude

as other GPU compressors.

B. Computational Artifacts

A1 The NVIDIA-Bitcomp-integrated CUSZ-i code repository.

DOI: 10.5281/zenodo.13334684.

Artifact ID Contributions Related

Supported Paper Elements

A1 C1 §4, §5

A1 C2 §5

A1 C3 §6

A1 C4 §7

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This is our core artifact and is related to all contributions

described in §I.1.

Expected Results

With the provided setup, the artifacts reproduce the experi-

mental results reported in the paper, verifying CUSZ-i’s high

compression ratio and quality and moderate throughput.

Expected Reproduction Time (in Minutes)

Normally,

• The setup can be completed in 10 minutes.

• The executions should take 1 hour.

• The analysis can take a few minutes.

For compatibility, we also provide the spack installation

instruction to replicate our tested environment:

• Please refer to Installation and Deployment on 2.

• The alternative Spack installation/deployment significantly

increases the setup time to one hour due to building everything

from the source code.

• The time for executions and the analysis remains unchanged.

Artifact Setup (incl. Inputs)

Hardware

We require NVIDIA A100 GPU (40-GB, i.e., the common

variant) to cover the essential functionality and, optionally,

NVIDIA A40 GPU to cover the throughput scalability.

Software

• We require an up-to-date mainstream Linux distro as the base

environment.

• e.g., CentOS 7 onward, Ubuntu 22.04.

• We require CUDA SDK of version 11.4 onward but lower

than 12.5 (i.e., 11.4 to 12.4, inclusively).

• corresponding to CUDA driver of version 470 onward.

• We require C++17-compliant host compiler.

• e.g., GCC 9.3 onward.

• We require a modern cmake build system.

• e.g., 3.18 onward.

• In addition to the basic setup above, to maximize compatibil-

ity, we recommend GCC 9.3 and CUDA 12.4.1.

Datasets / Inputs

The data setup will be done in setting up the workplace. The

details are listed as follows.

• JHTDB

• Though hosted on https://turbulence.pha.jhu.

edu/ as open data, it requires a token to access the data,

which prohibits us from automating the data preprocessing.

Thus, we don’t include JHTDB datafields for the artifacts.

• Miranda, Nyx, QMCPack, S3D

• hosted on https://sdrbench.github.io

• Note that Miranda and S3D are originally double-precision

and conversion to single-precision is conducted when

setting up.

• RTM data are from proprietary simulations

• which are not open to the public.

• We exclude the use of RTM in this artifact.

Setup: Compilers (Normal)

To use module-load to set up the toolchain:

Please change the version accordingly.
module load cuda/12.4.1
module load gcc/9.3.0

Setup: Compilers (Alternative)

(Skip this if the normal way works.) To use Spack to set up

the toolchain:

cd $HOME
git clone -c feature.manyFiles=true \

https://github.com/spack/spack.git

Now, initialize Spack on terminal start
It is recommended to add the next line to
"$HOME/.bashrc" or "$HOME/.zshrc"

. $HOME/spack/share/spack/setup-env.sh
For other shells, please refer to the
instruction by typing (quotes not included)
"$HOME/spack/bin/spack load"

spack compiler find
spack install gcc@9.3.0
spack install cuda@12.4.1%gcc@9.3.0

Setup: Workspace

To set up the compressors and analyzer,

1 get the artifacts repo
cd $HOME ## It can be anywhere.
git clone --recursive \

https://github.com/jtian0/24_SC_artifacts.git \
sc24cuszi

cd sc24cuszi

2 setup
If you use CUDA 11
source setup-all.sh 11 <WHERE_TO_PUT_DATA_DIRS>
If you use CUDA 12
source setup-all.sh 12 <WHERE_TO_PUT_DATA_DIRS>

!! reset the workspace without removing data
bash setup-all.sh purge

3 prepare the data
python setup-data-v2.py

4 Python dependencies
Anaconda is recommended. Please refer to
https://docs.anaconda.com/anaconda/install/linux/
conda install -y pandas
conda install -y scipy

Artifact Execution

Navigate back to the workplace using cd $WORKSPACE. Then,

run for each dataset. By default, the following commands trigger

the execution of all compressors; if a specific compressor is the

focus, e.g., CUSZ-i, --cmp cuSZi is to be appended to the end

of each command. The compressor options are cuSZ, cuSZi,

FZGPU, cuSZp, cuzfp, and cuSZx.

${DATAPATH} is set in setup-all.sh

Nyx
THIS_DATADIR=SDRBENCH-EXASKY-NYX-512x512x512
python script_data_collection.py \

--input ${DATAPATH}/${THIS_DATADIR} \
--output ${DATAPATH}/${THIS_DATAIDR}_log \
--dims 512 512 512

Miranda
THIS_DATADIR=SDRBENCH-Miranda-256x384x384
python script_data_collection.py \

--input ${DATAPATH}/${THIS_DATADIR} \
--output ${DATAPATH}/${THIS_DATAIDR}_log \
--dims 384 384 256

QMC
THIS_DATADIR=SDRBENCH-SDRBENCH-QMCPack
python script_data_collection.py \

--input ${DATAPATH}/${THIS_DATADIR} \
--output ${DATAPATH}/${THIS_DATAIDR}_log \
--dims 69 69 33120

S3D
THIS_DATRADIR=SDRBENCH-S3D
python script_data_collection.py \

--input ${DATAPATH}/${THIS_DATADIR} \
--output ${DATAPATH}/${THIS_DATAIDR}_log \
--dims 500 500 500

Artifact Analysis (incl. Outputs)

The analysis results are in tabular form (.csv files)

in ${DATAPATH}/<dataset name>_csv, which include per-

dataset compression ratios/bitrates, compression and decompres-

sion throughputs (with or without Bitcomp-Lossless), PSNR,

etc. Testers can check the results and compare them with

the ones reported in the paper. The used commands are as

follows. Also, a single compressor can be specified by appending

--cmp [compressor name] to the end of a command.

${DATAPATH} is set in setup-all.sh

Nyx
THIS_DATADIR=SDRBENCH-EXASKY-NYX-512x512x512
python script_data_analysis.py \

--input ${DATAPATH}/${THIS_DATADIR}_log \
--output ${DATAPATH}/${THIS_DATADIR}_csv \
--dims 512 512 512

Miranda
THIS_DATADIR=SDRBENCH-Miranda-256x384x384
python script_data_analysis.py \

--input ${DATAPATH}/${THIS_DATADIR}_log \
--output ${DATAPATH}/${THIS_DATADIR}_csv \
--dims 384 384 256

QMC
THIS_DATADIR=SDRBENCH-SDRBENCH-QMCPack
python script_data_analysis.py \

--input ${DATAPATH}/${THIS_DATADIR}_log \
--output ${DATAPATH}/${THIS_DATADIR}_csv \
--dims 69 69 33120

S3D
THIS_DATRADIR=SDRBENCH-S3D
python script_data_analysis.py \

--input ${DATAPATH}/${THIS_DATADIR}_log \
--output ${DATAPATH}/${THIS_DATADIR}_csv \
--dims 500 500 500

	Introduction
	Related Work
	Background and Research Motivation
	cuSZ Framework
	Research Motivations
	Limitation of existing GPU-based lossy compressors in data reconstruction quality
	Limitation of existing GPU-based lossy compressors due to lossless encoding modules
	Design goals of cuSZ-i

	cuSZ-i Design Overview
	cuSZ-i Interpolation-based Data Predictor
	Basic Design Concept of G-Interp
	Interpolation Configurations of G-Interp
	Interpolation splines
	Level-wise interpolation error bound

	Profiling-based Auto-tuning of G-Interp Interpolations
	Data-profiling
	Interpolation auto-tuning

	Parallelizing G-Interp on GPU
	Advantages of G-Interp: A Quantitative Analysis

	Improving cuSZ-i Lossless Modules
	Tweaking Existing Huffman Coding
	Synergy of Lossless Modules: Huffman + Bitcomp-lossless

	Experimental Evaluation
	Experimental Setup
	Evaluation Metrics
	Evaluation Results and Analysis
	Compression Ratios.
	Compression Rate-Distortion.
	Case Study of Decompression Visualization.
	Compression Throughputs.
	Case Study: Distributed Lossy Data Transmission.

	Conclusion and Future Work
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1

