Check for
Updates

CUSZ-i: High-Ratio Scientific Lossy Compression on
GPUs with Optimized Multi-Level Interpolation

Jinyang Liu **, Jiannan Tian °®, Shixun Wu >®, Sheng Di °*, Boyuan Zhang °, Robert Underwood °, Yafan Huang %,
Jiajun Huang ™, Kai Zhao ¥, Guanpeng Li ¥, Dingwen Tao °*, Zizhong Chen®, Franck Cappello ©

* University of Houston, Houston, TX, USA; jliu217@central.uh.edu
¢ Indiana University, Bloomington, IN, USA; {jtil, bozhan, ditao }@iu.edu
® University of California, Riverside, CA, USA; {swu264, jhuan380 }Oucr.edu, chen@cs.ucr.edu
¢ Argonne National Laboratory, Lemont, IL, USA; {sdil, runderwood }@anl.gov, cappello®@ucs.anl.gov
§ University of lowa, Iowa City, IA, USA; { yafan-huang, guanpeng-1i }@uiowa.edu
9 Florida State University, Tallahassee, FL, USA; kai.zhao@fsu.edu

Abstract—Error-bounded lossy compression is a critical tech-
nique for significantly reducing scientific data volumes. Com-
pared to CPU-based compressors, GPU-based compressors exhibit
substantially higher throughputs, fitting better for today’s HPC
applications. However, the critical limitations of existing GPU-
based compressors are their low compression ratios and qualities,
severely restricting their applicability. To overcome these, we intro-
duce a new GPU-based error-bounded scientific lossy compressor
named CUSZ-i, with the following contributions: (1) A novel
GPU-optimized interpolation-based prediction method significantly
improves the compression ratio and decompression data quality. (2)
The Huffman encoding module in CUSZ-; is optimized for better
efficiency. (3) CUSZ-: is the first to integrate the NVIDIA Bitcomp-
lossless as an additional compression-ratio-enhancing module.
Evaluations show that CUSZ-i significantly outperforms other
latest GPU-based lossy compressors in compression ratio under the
same error bound (hence, the desired quality), showcasing a 476 %
advantage over the second-best. This leads to CUSZ-i’s optimized
performance in several real-world use cases.

I. INTRODUCTION

Large-scale scientific applications and advanced experimental
instruments produce vast data for post-analysis, creating exas-
cale scientific databases in supercomputing clusters. For instance,
Hardware/Hybrid Accelerated Cosmology Code (HACC) [1, 2]
may produce petabytes of data over hundreds of snapshots when
simulating 1 trillion particles. Those extremely large databases
raise tough challenges for the management and utility of data.
To this end, data reduction is becoming an effective method
to resolve this big data issue. Although traditional methods of
lossless data reduction can guarantee zero information loss, they
suffer from limited compression ratios. Specifically, lossless
compression by roughly 2:1 to 3:1 [3, 4]. Over the past years,
error-bounded lossy compressors have strived to address the high
compression ratio requirements for scientific data: they get not
only very high compression ratios [5, 6, 7, 8] but also perform
strict control over the data distortion regarding various modes
of user-set error bounds for post-analysis. Notably, CPU-based
lossy compressors have assisted scientific simulation to achieve
longer simulating time (e.g., CESM-LE [9]), and larger scales
(e.g., quantum circuit simulation [10]).

Yet, there are scenarios where even state-of-the-art CPU-
based scientific compressors fall short and throttle performance.

¢ Jinyang Liu, Jiannan Tian, and Shixun Wu contributed equally to this work.
* Corresponding authors: Sheng Di, Dingwen Tao.

SC24, November 17-22, 2024, Atlanta, GA, USA
979-8-3503-5291-7/24 /$31.00 ©2024 IEEE

1 Current large-scale scientific simulations have offloaded
the computationally intensive components to GPU [, 11, 12,
13] such that GPU, with its limited space, resides large amounts
of data temporarily, and moving them to the main memory incurs
undesired latency. ‘2 Advanced instruments have unprecedented
peak data acquisition rates, e.g., LCLS-II [14] X-ray imaging
can top at 1 TB/s [15] (2023), far beyond what CPU-based
compressors can handle. As a reference, QoZ [7] I achieves a
single-core compressing rate of up to 0.23 GB/s. Thus, high-
throughput GPU-based scientific lossy compressors have been
developed for in situ data compression, such as CUSZ [16,
17], cuSZx [18], FZ-GPU [19], cuSZp [20], and cuZFP [21],
topping at tens to hundreds of gigabytes per second compression
throughputs per GPU. Nevertheless, they suffer from a low com-
pression ratio (or quality) at each quality (or ratio) constraint. For
instance, although CUSZ has achieved the highest compression
ratio among existing GPU-based compressors, it typically only
reaches about 10% to 30% (data-dependent) of the CPU-based
SZ3 compressor at the same PSNR. Thus, existing works have
not fulfilled the requirement of high-ratio-quality error-bounded
lossy compression for scientific data on GPU platforms.

In this work, we leverage the strengths of the existing CPU-
and GPU-based work to design the new GPU-based error-
bounded lossy compressor. Specifically, we expect to achieve
sufficient compression throughput, far over typical CPU-based
ones, and adequate compression ratios, which are improved
over the mentioned GPU-based ones. The challenges are three-
fold: first, many CPU-prototyped predictors carry intrinsic data
dependency, inhibiting parallelization; second, sophisticated
CPU-side tuning techniques that are proven effective can incur
high latency even considering customization for GPU; third,
most high-ratio lossless encoders in existing error-bounded lossy
compressors only show poor throughputs on GPU platforms.
Responding to these challenges, we introduce a novel, fine-
tuned, highly parallelized interpolation-based data predictor. We
also introduce a synergetic lossless scheme by coupling the
improved Huffman encoding and additional de-redundancy pass
and demonstrate it using NVIDIA Bitcomp-lossless. Having
overcome the challenges above, we propose a GPU-based

'QoZ, as an interpolation-based scientific error-bounded lossy compressor, is
the state-of-the-art CPU-SZ variant in terms of rate-distortion.

error-bounded lossy compressor with both high compression
throughput and effectiveness, named CUSZ-¢. Overall, CUSZ-7
preserves a high compression throughput within the same
magnitude as existing GPU-based compressors and profoundly
prevails over all others regarding compression ratio and data
quality. To our best knowledge, CUSZ-¢ is the first and the
only high-ratio and high-quality GPU-based scientific error-
bounded lossy compressor, which fills the major gap between
the compression ratio and quality of CPU-based and GPU-based
scientific lossy compressors.
We summarize our contributions as follows:

« We develop a GPU-optimized interpolation-based data predic-
tor G-Interp with highly parallelized efficient interpolation,
which can present excellent data prediction accuracy, thus
leading to a high overall compression ratio.

« We design and implement a lightweight interpolation auto-
tuning kernel for GPU interpolation to optimize both the
performance and compression quality of CUSZ-i.

« We improve the implementation of GPU-based Huffman
encoding and import a new lossless module to reduce its
encoding redundancy further.

e CUSZ-i substantially improves compression ratio over other
state-of-the-art GPU-based scientific lossy compressors up
to 476% under the same error bound or PSNR. Meanwhile, it
preserves a compression throughput of the same magnitude
as other GPU compressors.

The rest of this paper is arranged as follows: § II introduces
related works. § III provides the background and motivation
for our research. § IV demonstrates the framework of CUSZ-i.
The design of CUSZ-: interpolation-based predictor: G-Interp is
illustrated in detail in § V, and the new design of CUSZ-¢ lossless
encoding modules is proposed in § VI. In § VII, the evaluation
results are presented and analyzed. Finally, § VIII concludes our
work and discusses future work.

II. RELATED WORK

Scientific data compression has been studied for years to
address storage burdens and I/O overheads. The compression
techniques are in two classes: lossless and lossy. Compared
to lossless compression, lossy compression can provide a
much higher compression ratio at the cost of information loss.
Moreover, scientific computing practice often requires the error
to be quantitatively determined for accurate post-analysis.

Recently, many error-bounded lossy compressors for scientific
data have been developed, such as SZ [4, 6, 22], ZFP [23],
QoZ [7], SPERR [8], TTHRESH [24], and several Al-assisted
works [25, 26, 27]. The usability of these compressors lies in
allowing users to strictly control accuracy loss in data reconstruc-
tion and post-analysis across various domains. these specialized
compressors are also crucial for the treatment of scientific
data, one important aspect of which is high-dimensional data
interpretation. Previous work [28, 29, 30] emphasize the high-
dimensional data continuity, necessitating the preservation of
such information. To this end, we are set to design an efficient
high-dimensional data compressor.

Moreover, considering the increasing data generation speed
of scientific instruments/simulations, and the popularity of
heterogenous HPC systems and applications that directly yield
data on GPU platforms, GPU-based scientific lossy compressors
have been proposed to deliver orders of magnitude higher
throughputs than CPU compressors. Specifically, cuZFP [21],
the CUDA implementation of transform-based ZFP, leverages
discrete orthogonal transform and embedding encoding for
compression, allowing the user to specify the desired bit rate.
Also, prediction-based GPU compressors have been proposed,
including cUSZ, cuSZx [18], FZ-GPU [19], and cuSZp [20].
While sharing the error-boundness in the reconstructed data,
these prediction-based compressors can fit into different use
scenarios, as detailed below. 1) CUSZ [16, 17] features fully
parallelized prediction-quantization with outlier compacted
and coarse-grained Huffman coding that encodes multibyte
quantization codes using bits inverse to their frequencies; 2)
cuSZx [18] features a monolithic design to deliver extremely
high throughput at the cost of lower data quality and compression
ratio. 3) FZ-GPU [19] alters the compression pipeline by
replacing the entire lossless encoding stage with bit-shuffle and
dictionary encoding, aiming to deliver higher throughput. 4)
cuSZp [20] modifies CUSZ by fusing prediction-quantization
and 1D blockwise encoding subroutine into a monolithic GPU
kernel, practically achieving high end-to-end throughput. All
the high-throughput-oriented GPU-based compressors share the
limitation of suboptimal compression ratios. For example, CUSZ,
FZ-GPU, and cuSZp all feature Lorenzo prediction, resulting in
the ceiled data quality, as described in [4]. Furthermore, note that
MGARD-X (CUDA-backend) [31] is another GPU compressor
practice; though it achieves comparable rate-distortion to CUSZ,
it has been reported to be significantly lower in throughput than
other GPU-based compressors [19], making it not fit our use
scenarios. Therefore, we exclude it from the discussion.

III. BACKGROUND AND RESEARCH MOTIVATION

In this section, we elaborate on our research background.
First, we demonstrate CUSZ (the CUDA version of SZ) [16, 17]
because its prediction-based nature typically results in a higher
compression ratio and makes it the fundamental of CUSZ-i.
Next, we specify our research motivation by analyzing the
characteristics and limitations of existing GPU-based scientific
lossy compressors, then set up our research target.

A. CUSZ Framework

CUSZ [16, 17] is a GPU-based scientific error-bounded lossy
compression, which shows state-of-the-art compression ratios
and distortions among GPU-based error-bounded scientific lossy
compressors. Like the CPU SZ framework, CUSZ also has a
modular compression framework composed of data prediction,
data quantization, and lossless encoding. In these frameworks,
predictions are made for each element of the input data, and
the predicted values adjusted by quant-codes (denoted by ¢’s)
are accurate with respect to the user-specified error bound and
replace the original data values. The quant-codes are either
encoded when |¢| < R, an internal parameter, or otherwise

saved as outliers when they are too big (i.e., |¢| > R) for efficient
encoding. CUSZ features fully parallelized Lorenzo prediction-
quantization kernels for compression and decompression. The
lossless encoding component features a GPU-based coarse-
grained parallelized Huffman encoding, which is the source
of the relatively high compression ratios. CUSZ crucially differs
from CPU SZ as it does not have a further pass of de-redundancy
lossless encoding (e.g., Zstd). This is considered a tradeoff
between the throughput and the compression ratio because the
sophisticated logic in the redundancy-canceling component can
significantly deteriorate the data-processing performance. We
refer readers to the CUSZ papers [16, 20] for more details.

B. Research Motivations

In this part, we discuss several key limitations of existing
GPU-based scientific lossy compressors such as CUSZ, then
propose our design target of CUSZ-¢ to address those issues.

B B.1) Limitation of existing GPU-based lossy compressors
in data reconstruction quality The first limitation of existing
GPU-based lossy compressors is that their data reconstruction
quality is sub-optimal in various cases. As mentioned before
in § II, the Lorenzo data predictor leveraged by CUSZ, cuSZp,
and cuSZx have been proven to be inaccurate in many cases [4],
so their compression ratios at the desired data qualities are far
lower than interpolation-based scientific compressors on CPU
such as SZ3 [4, 6]. Therefore, we would like to learn from the
advanced predictor design of high-ratio CPU data compressors
and propose a GPU-customized high-accuracy data predictor for
error-bounded lossy compression on GPUs.

B B.2) Limitation of existing GPU-based lossy compressors
due to lossless encoding modules Another critical limitation
of existing GPU-based lossy compressors is that their lossless
encoding modules produce smaller compression ratios due to
the concern of compression throughput. Taking CUSZ as an
example, its sole lossless encoding module, Huffman encoding,
uses at least 1 bit to map each data element, making the
compression bit rate always higher than 1. More importantly,
the compressed data of CUSZ still has high redundancy in broad
cases. Therefore, we need to address this issue by designing or
employing new lossless encoding techniques.

B B.3) Design goals of cUSZ-i Overall, we endeavor to
significantly boost the compression quality of existing GPU-
based error-bounded lossy compressors by applying a series
of optimizations to address the above issues. Our development
of CUSZ-7 contains and is not limited to ‘1 leveraging a more
effective data prediction scheme for better compression quality,
and 2 integrating high-performance lossless modules in the
pipeline for better compression ratios. As noted, there are three
primary challenges. First, the existing CPU-based high-accuracy
data predictor, e.g., SZ3 and QoZ interpolators, features many
levels of interpolations and will result in heavy data dependency
and low throughputs if directly ported to GPUs. Second, we need
to effectively configure the predictor to boost the compression
ratio on GPU. Third, we need to efficiently utilize the GPU
resource for usable throughputs in real-use scenarios. In the
following § IV, we will present how we overcame this challenge

by proposing a novel GPU-optimized design of the data predictor
to optimize the prediction throughput on GPUs.

IV. cuSZ-i DESIGN OVERVIEW

In this section, we present the design of CUSZ-:. First,
Fig. 1 presents the pipelines of CUSZ and cUSZ-i. Like CUSZ
and many other GPU-based compressors, CUSZ-i is also a
prediction-based error-bounded lossy compressor that features
data prediction, error quantization, and lossless encoding. In the
compression pipeline, CUSZ-¢ follows the CPU-SZ/CUSZ to
approximate input data with a data predictor, and the prediction
errors are quantized and recorded. The quantized errors are
further encoded and stored to be used in the decompression
process. The core innovations in CUSZ-: are as follows.

o We develop a practically GPU-optimized interpolation-based
data predictor with efficient parallelization to replace the
Lorenzo data predictor [5, 32], leading to much higher data
prediction accuracy and better rate-distortion.

« We integrate a lightweight profiling-based auto-tuning mech-
anism into its kernel to jointly optimize the quality and
performance of the interpolation-based data predictor.

« To enhance the throughput when Huffman-encoding quant-
codes, the component of building the histogram is optimized.

« To maximally boost the compression ratio with minor speed
degradation, we can enable another lossless encoding pass
(e.g., Bitcomp-lossless) after Huffman encoding in CUSZ-.

In the remainder of this section, we will detail the innova-
tions we used to design the interpolation-based data predictor
practically optimized on GPU.

V. CUSZ-i INTERPOLATION-BASED DATA PREDICTOR

Based on CPU interpolation-based data predictor design [4,
7, 33], cUSZ-¢ introduces a new interpolation-based predic-
tion scheme, named G-Interp, for GPU platforms featuring
hardware-software codesign. The new scheme consists of a
spline interpolative predictor utilizing anchor points and an auto-
tuning strategy. As we will show in most use scenarios, the new
interpolative predictor has advantages over the Lorenzo predictor
in terms of prediction accuracy and compression ratio.

A. Basic Design Concept of G-Interp

Fig. 2 demonstrates the basic design of G-Interp with a 3D
example. Though accurate, the existing CPU-based interpo-
lation data predictors [4, 7, 33] are slow (e.g., 0.23 GB/s)
and cannot directly be ported to GPU platforms. G-Interp
becomes a re-design according to the hardware trait to maximize
its data-processing parallelism. Compared to the CPU-based
interpolation, it exhibits an accuracy-parallelism tradeoff but
still preserves substantially higher data prediction accuracy
than the baseline Lorenzo. To these ends, we partition the
input data into relatively small chunks and eliminate the data
dependencies across them. In the illustration, the 3D input data
is partitioned into 83 chunks (or 162 for 2D chunks/512 for
1D chunks). Next, to avoid cross-chunk data dependencies, the
interpolation operations need to be confined to limited units
of data chunks within a short range. Inspired by QoZ [7], we

PREDICTION-QUANTIZATION STATISTICS

dual-quant Lorenzo

CUSZ + outlier filter
§V spline §V-B G-Interp
cUSZ-i | interpolation |§V-C auto-tuning

+ outlier filter [§V-D parallel algo.

introduced anchor points in G-Interp that are losslessly stored so
that all interpolations are bounded in the range of any 2 adjacent
anchor points (i.e., within one single data chunk). For example,
in the 3D case shown in Fig. 2-'1 , in each data chunk, one vertex
point is assigned as an anchor point (red points in Fig. 2), and 7
other anchor points (on the rest vertices) are borrowed from the
surrounding chunks. Afterward, the interpolation within each
data chunk is parallelizable and independent of others. In the
3D input data array, approximately 1 of 512 elements becomes
anchor points to preserve, whose saving overhead can be further
decreased by the additional pass of lossless encoding.

Once the partitioned data chunks and anchor points are set up,
as shown in Fig. 2-('3 —4), the interpolation-based data predic-
tions in each chunk are performed in parallel. Like in existing
works [4, 7], the interpolations are performed level by level, from
a large stride to smaller ones (from 4 to 2 and 1 for G-Interp),
and each chunk is expanded from 12 to 23, 43, lastly 83. At
each level, interpolations are performed subsequently along each
dimension. Moreover, within each chunk, the interpolations on
the same level and along the same dimension are also performed
in parallel without dependencies. Later, we will feature essential
details of this process, including the interpolation splines, error
bounds, and the order of interpolation direction.

B. Interpolation Configurations of G-Interp

B B.1) Interpolation splines Shown in Fig.2, for the com-
pression and decompression of a multi-dimensional data grid,
G-Interp performs the interpolations with 1D splines, executed
along different dimensions. For the specific 1D splines, Fig. 3
presents an example with 1D data slices. For each interpolation
(to predict x,, with a predicted value p,,), depending on the num-
ber of available neighbor points, there are four circumstances:

« 4 neighbors available: The cubic spline interpolation with
Tp—3, Tn—1, Tnt1, and T, 43 is computed to predict z,,;

« 3 neighbors available: The quadratic spline interpolation
with z,,_3, T,,—1, and zy,41 (Or p_1, Ty41, and x4 3) 1S
computed to predict z,,;

« 2 neighbors available: The linear spline interpolation with
ZTy—1 and z,41 is computed to predict z,,;

« 1| neighbor available: z,,_; serves as a prediction of z,,.

As mentioned, because the predicted values with quant-code ad-
justment replace the original value, the decompression precisely
replays the interpolation-based prediction from the quant-code.
Fig. 4 demonstrates the interpolation on a 9 x 9 2D grid with
an anchor stride of 8. The predicted data points with different
interpolation splines are marked with their corresponding shapes.
We list each spline function in G-Interp as follows:
o Linear Spline:

1 1
Dn = 5%Tn—1 + 5Tn+41

LOSSLESS ENC. (1)

multibyte §VI-A tweak
Huffman enc.
multibyte
Huffman enc.

LOSSLESS ENC. (2)
Fig. 1: The compression pipe-
line of CUSZ-i and the

comparison between it and
CUSZ one. The shading in-
dicates the differentiators of
CUSZ-: from one design ba-
sis, CUSZ.

§VI-B encoding synergy

de-redundancy
enc. (e.g., Bitcomp)

o anchor points

A basic data chunk consists of 8 x 8 x 8
elements; extra 7 elements (x) are bor-
rowed from neighboring chunks, making
the workspace 9 x 9 x 9 elements in total
(shown below).

e the 1st iter.

In the first iteration, N

the interpolation of ”'\\ '
stride 4 is on an 8 x 8 x)
8 chunk, corresponding A e
to 9 X 9 X 9 elements ’
in the workspace, as
shown in a cube in
blue, black, and white.

R 9-by-9-by-9
e | w/ anchor points

e the 3 stages

The interpolation fol-
lows the (red, blue,
yellow, hollow) order,
where red represents
the anchor points.

e the 2nd iter.

After three stages, the in-
terpolation stride becomes
2. The 9 x 9 x 9 elements
are split into overlapping
5 x 5 x 5 octants (in blue,
black, and white). Similar '
to the final third iteration
of stride 1.

type Nz -Ny-N:
= subtotal

Iv. 3 predicted ©2.2=20
ap =4 dim0
dim1
dim2

Iv. 2 predicted
o =2 dim0
diml

dim2

[CRFRSONTY EENCEN)

e calculating degree of parallelism

-

Data-parallel scheme: multiple points in
each direction are independently interpo-
lated. The number of points is determined
offline for each stage of the three iterations.

[|Nooo|oean

Iv. 1 predicted
dim0
dim1
dim2

az =1

[
~

& o
= ot on

Fig. 2: G-Interp, the parallelized interpolation-based data predictor.

o Quadratic Spline:

1 6 3
Pn = —§Tn-3 + §Tn—1 T §Tn+1
3 6 1
or pp = g.’En,1 + gxn+1 - ganrS
o Cubic Spline (not-a-knot):
1 9 9 1
Pn = _Exnf3 + 1_6mn71 + 1_6In+1 - 1_6m7b+3
o Cubic Spline (natural):
3 23 23 3
Pn = —35Tn-3 T 75Tn-1 T 35%n+1 — 10Tn+3

We refer the reader to [4] and [33], from which we derived the
function from their analyses. It is worth noting that two different

cubic splines serve the same circumstance because each can
outperform the others on different datasets. We will use an auto-
tuning model of G-Interp to select a best-fit cubic spline during
each compression task (to be explained in § V-C).

. known data points O unknown data points (to be predicted)

L O
® O [
@ O e O e
RO SON NON RON J

single prediction
linear spline interpolation
quadratic spline interpolation

cubic spline interpolation

Fig. 3: Interpolation splines.

dim0

Aoco+xexooA

00000000 O)

0 0O%0%00 0 A Anchor points
— 3k sk ok ok ok ok ok ok ok Points predicted by:
5 ® OO *x®*x OO0 @ . Linear-spline

H K kK kK Sk kK o Quadratic-spline

0O 0O0O%X0%x00 O . .

* Cubic-spline
00000000 O
AooxexooA

Fig. 4: Tllustration of spline interpolations using a 2D slice.

W B.2) Level-wise interpolation error bound The interpolation-
based prediction features the synchronous data prediction and
error control process. For each input data point, G-Interp
quantizes the error of its interpolation-based prediction and
adjusts the prediction value with an offset of the quantized error.
The adjusted prediction will serve as the decompression output
and be used to predict subsequent input data points. Therefore,
the prediction quality of early interpolations will impact later
ones. As verified by [7], for this prediction paradigm, applying
lower error bounds on higher interpolation levels (i.e., with larger
interpolation strides) can significantly decrease the compression-
introduced distortion with little compression ratio degradation.
In some cases, it can even improve both compression ratio and
distortion. Thus, similarly with [7] and [33], G-Interp reduces
the error bounds for high-level interpolations according to
¢ =e-(a’~1)7!, where a > 1, e is the global error bound,
{ is the interpolation level, and ey is the error bound on level
{. v is a parameter of error-bound reduction. In § V-C, we will
discuss how the specific o value is determined.

C. Profiling-based Auto-tuning of G-Interp Interpolations

Because the prediction accuracy of interpolation-based data
predictors is highly sensitive to their configurations [7], auto-
tuning modules are often jointly leveraged with the interpolation-
based predictors for preserving the data prediction accuracy [4,
7, 33, 34]. However, existing CPU-based auto-tuning strategies
cannot be directly transferred to GPU platforms because they
will introduce more computational overhead on GPUs. To this
end, we leverage a lightweight profiling-and-auto-tuning kernel
for G-Interp. This kernel comprises two functionalities: data
profiling and interpolation auto-tuning.

B C.1) Data-profiling We profile the input data in 2 steps. First,
we compute its value range to acquire both the absolute and
value-range-based relative error bounds (the former divided by
the value range equals to the latter). Second, G-Interp uniformly
samples a small number of data points from the input (e.g., a
43 sub-grid for 3D cases). For each sampled point, G-Interp
performs two instances of cubic spline interpolations along each
dimension (e.g., totaling 2 x 3 tests for 3D cases). The profiling
kernel accumulates the interpolation prediction errors separately
for each interpolation spline and interpolation dimension.

B C.2) Interpolation auto-tuning With the profiling information,
G-Interp determines the interpolation configurations by the
following strategy. First, G-Interp computes the error-bound
reduction factor « by a piecewise linear function of the value-
range-based relative error bound e:

2 107 <e
e—10—2 —2 —1
1754025 50— 1072 <e<10
e—10"3

1.5 0.25 —~—*+~ 1073 < 10,2
a=Ae) = + T0-2-10-3 <e< W

125+ 025 50 107 <e< 1072
1 4025 =00 107°<e<107"

1 €<107°
Dynamically, an optimization of « can be based on both the input
data and the value of error bound e. To reduce the computational
overhead, we empirically apply this effective calculation instead
of a more precise optimization for . Eq. 1 is established for the
reason that from our and [7]’s observations, the optimized value
of « is relevant to € and should decrease with the decrease of e.

Lastly, G-Interp evaluates the cubic splines and the smooth-
ness of dimensions by profiling interpolation errors. For each
dimension, the cubic spline with the lower error will be applied.
Moreover, on each level, the interpolation will start from the
least smooth dimension (largest in profiled error) and end in
the smoothest dimension (smallest in profiled error). This is
explained in [4]: the earlier processed dimension will have fewer
interpolations performed along it, and vice versa. As a result of
performing more interpolations along smoother dimensions, the
overall data prediction accuracy can be well optimized.

D. Parallelizing G-Interp on GPU

We practically take advantage of the modern GPU architec-
ture to realize the G-Interp’s concepts on the GPU platform.
The algorithm-determined data-dependency challenges are as
follows: 1) a portion of data loading and storing are non-
coalescing, ? 2) at each interpolation level, dependent traversal
stages need to be done, and 3) the finer interpolation depends
on the coarser interpolation levels. Our solutions to meet the
challenges sufficiently are stated below.

First, we exploit the data-caching capacity paired with
the thread numbers for each thread block. A thread block
corresponds to four basic block of 8 elements (featured in
§ V-A). This builds up a 32, x 8, x 8, chunk for a coalescing
load (Fig. 2-2), minimizing the DRAM transaction. After that,

2Memory coalescing is achieved when parallel threads access consecutive
global memories to minimize transaction times by loading the same amount of
data, allowing for the optimal usage of the global memory bandwidth.

borrowed anchor points are loaded from neighbor blocks before
interpolation. Fig. 2-'3 shows the first-level interpolation (with
a stride of g = 4) in the view of a basic block. After the three-
stage interpolation in iteration 1 (og = 4), the inwardly finer
interpolation with stride a; = 2 continues (Fig. 2-'4) and forth
for even finer interpolation with aig = 1.

Next, each GPU thread block interpolates within a 33, x 9,, %
9. data block, which encloses the 32, x 8, x 8 input data chunk
and borrowed anchor points (Fig. 2-'2). The interpolations are
performed as described in § V-A, but now more neighbor points
can be available as 4 basic blocks can share their data. For each
interpolation level, Fig. 2-'5 enumerates the interpolated points
along each dimension (suppose the interpolations are performed
from dim0 with length 9 to dim2 with length 33). In the level
1 interpolation, the number of interpolated points surpasses the
thread number limits of each thread block. Thus, we dynamically
assign the number of data points to an active thread.

E. Advantages of G-Interp: A Quantitative Analysis

We present two showcases to clearly show how the CUSZ-¢
G-Interp data predictor advantages over Lorenzo predictor in
CUSZ. With better data prediction capability, G-Interp generally
produces more minor predicting errors. Since those errors will
be quantized to a collection of integers, smaller errors will lead
to a more concentrated distribution of quantization bins and a
higher compression ratio after the Huffman Encoding process.

First, Fig. 5 compares the quantized prediction errors of CUSZ-
Lorenzo, G-Interp, and CPU-interpolation SZ3 (as a benchmark)
when applied to field pressure of Miranda dataset [35]. In the
figure, the nonzero quant-codes (i.e., the prediction error is larger
than eb) are colored according to the amplitude of the quant-code.
Under the same error bounds, the G-Interp design results in
much less nonzero quant-codes than CUSZ’s Lorenzo predictor
and smaller in amplitude, achieving closer outcomes with the
CPU-based SZ3. Next, because G-Interp exhibits significantly
better data prediction accuracy than CUSZ-Lorenzo, its data
reconstruction fidelity is also substantially improved over the
Lorenzo predictor. In Fig. 6, we propose the comparison between
decompression PSNR of G-Interp and CUSZ-Lorenzo (under
the same error bound, both CPU-based and GPU-based) on
37 snapshots of dataset RTM (sample 1 snapshot from every
100 timesteps). We find that G-Interp is constantly better than
GPU-Lorenzo in terms of PSNR under all error bounds, gaining
PSNR improvements of 2.5 to 10 dB. Moreover, attributed to the
anchor point design, the PSNR from G-Interp even outperforms
the CPU version of interpolation (implemented in SZ3 [4]).

VI. IMPROVING CUSZ-i LOSSLESS MODULES

In this section, we detail important optimizations on CUSZ-7’s
lossless encoding module, which crucially boosts the compres-
sion ratio of G-Interp-predicted quant-codes.

A. Tweaking Existing Huffman Coding

Adapted from the previous practice [16], the procedures of
building a histogram of quant-code for the Huffman codebook
and conducting Huffman coding based on the codebook remain

in the CUSZ-{ pipeline. Thanks to the more accurate prediction
from G-Interp, the histogram contains a more centralized quant-
code ¢ distribution. This centralization can be modeled as
follows. Recall the outlier-thresholding internal parameter R
mentioned in § ITI-A, for each prediction with respect to the user-
specified eb, a much smaller range, denoted by |¢| < 7* < R,
corresponds to an empirical coverage of very few outliers (e.g.,
< 1%); and at the same eb, G-Interp results in a much smaller
r® than Lorenzo. As reported in [36], building a Huffman tree on
GPU is worthwhile only when the number of histogram entries
(i.e., r*) is large enough. Therefore, we shift the procedure of
building the Huffman codebook to CPU, with roughly an end-
to-end time of 200 us. This time is excluded in the benchmarks
in § VII-{C.4, C.5}. Admittedly, this CPU component needs to
be further optimized, following approaches such as prebuilding
Huffman trees [37]. On the other hand, a much smaller r; < r®
further signifies this centralization and corresponds to our
attempt to allocate small thread-private buffers to cache the count
of the center top-k quant-codes. This significantly decreases
the transaction between threads’ register files and the shared
memory buffer. A large k (or r;) can incur higher register
pressure; thus, for graceful degradation, &k can fall back to 1,
which is still helpful for highly compressible cases.

Last, though highly concentrated, quant-codes in corner cases
could still contain modestly deviated numbers. In those cases,
we gather them as outliers and losslessly store them with trivial
space and time costs using the stream compaction technique.

B. Synergy of Lossless Modules: Huffman + Bitcomp-lossless

Though the Huffman-coding-only practice balances through-
put and compression ratio in average cases, its compression is ob-
structed given that each input quant-code must be represented by
at least one bit; At the same time, it can still present redundancy
of repeated patterns after encoding (e.g., continuous 0x00 bytes).
Nevertheless, sophisticated dictionary-based encoders are either
limited in throughput (e.g., GPU-LZ [38]) or compression ratio
on GPU. Though previous work proposed several de-redundancy
lossless encoding schemes encoding [17, 19, 20] (alternative to
Huffman encoding) that can surpass the one-bit-per-element
limitation in extremely compressible cases, they still have
unsatisfactory compression ratios in many cases, as evidenced in
Fig. 7a. Therefore, we propose synergizing Huffman encoding
and the subsequent repeated pattern-canceling encoding scheme,
which could result in a huge gain in the compression ratio with
minimal throughput overhead because this additional scheme
only takes inputs of reduced sizes after Huffman encoding. To
fit our chart of high ratio and high throughput, we selected
Bitcomp-lossless [39] from NVIDIA, a performance-oriented
encoder on GPU, after trial and error over a large variety of
existing GPU-based bitstream lossless encoders, We are aware
of the proprietary nature of NVIDIA’s Bitcomp; however, it only
serves for demonstration purposes for effectively utilizing the
created high compressibility from G-Interp on GPU. In § VII,
we will present how Bitcomp-lossless helps to greatly remove
the redundancy of Huffman-encoded quant-codes generated by
CUSZ-: data predictor with negligible computational overhead.

o ®w o B N o

o ®w o A N O

:
CcUSZ-i (G-Interp)
le-2 (top): 44 nonzeros

SZ3
le-2 (top): 9 nonzeros >
le-3 (bottom): 60 nonzeros ’ 0 2y

le-3 (bottom): 283 nonzeros & 0 2 ’ y

o ® o ke O

o W O e O

z 2
cuSZ (Lorenzo) 24 =

le-2 (top): 745 nonzeros » -
le-3 (bottom): 1105 nonzeros 32 02y

Fig. 5: Showcase: counts of nonzero quant-code among CPU SZ3, GPU G-Interp, and GPU Lorenzo. Two relative-to-value-range error bounds
are used on Miranda-Pressure. Dots in the 33 X 9 x 9 bounding box indicate the nonzeros.

PSNR Advantage of CPU-/GPU-Interpolation
over CPU-/GPU-Lorenzo at Two Error Bounds

T
---- GPU Lorenzo: 1e-3
GPU interp. (our work): 1e—3 ~

-+ CPU Lorenzo: 1e—3
-~ CPU interp.: 1e—3

simulations in prior works [4, 16, 19, 33]. Most are open
data from Scientific Data Reduction Benchmarks suite [43].

TABLE I: Testbeds for our experiments.

=4

T
---- GPU Lorenzo: 1e—4
GPU interp. (our work): 1e—4

-+ CPU Lorenzo: 1e—4
- CPU interp.: 1e—4

PSNR Advantage
8
>

= vy
=4 o
o =)

90.0

0,500 1,000 1,500 2,000 3,500

RTM Snapshot Number

2,500

Fig. 6: The PSNR advantage of interpolation over Lorenzo on two error
bounds. One snapshot is selected for every 100 among 3700, excluding
several ones corresponding to the simulation’s initialization phase.

VII. EXPERIMENTAL EVALUATION

This section presents our experimental setup and evaluation
results. To systematically and convincingly evaluate CUSZ-i,
experiments with diverse datasets and from various aspects of
CUSZ-i, together with five other state-of-the-art error-bounded
lossy compressors, are presented in this section.

A. Experimental Setup

O Platforms. We evaluate on ‘1 NVIDIA A100 GPUs from
ALCF-ThetaGPU [40] and Purdue-Anvil [41] for profiling
and Globus test and ‘2 NVIDIA A40 GPU on ANL-JLSE [42]
for profiling. More details are in TABLE I.

O Baselines. We compare our CUSZ-i with state-of-the-art
GPU-based lossy compressors, namely CUSZ, cuSZp, cuSZx,
cuZFP, and FZ-GPU, as baselines.

O Test datasets. 'The experiments are based on six real-world
scientific simulation datasets, detailed in TABLE II. They
have been reported as representative of production-level

| GPU | A100 (40GB) | A40 (48 GB) |
testbed Theta-GPU | Anvil JLSE
mem. bw. 1555 GB/s 695.8 GB/s
compute (FP32) 19.49 TFLOPS 37.42 TFLOPS
CUDA version 11.4 11.6 11.8
driver version 470.161.03 530.30.02 545.23.06

TABLE II: Information of the datasets in experiments

JHTDB [44]: numerical simulation of turbulence.

10 files dim: 512, X 512y x 512, total: 5 GB
Miranda [35]: hydrodynamics simulation.
7 files dim: 256, x 384, x 384, total: 1 GB

Nyx [11]: cosmological hydrodynamics simulation.
6 files dim: 512, X 512y X 512, total: 3.1 GB
QMCPack [13]: Monte Carlo quantum simulation.

1 files dim: (288 x 115), x 69, X 69, total: 612 MB
RTM [12]: reverse time migration for seismic imaging.
37 files dim: 449, x 449, x 235, total: 6.5 GB
S3D [43]: combustion process simulation.
11 files dim: 500 x 500y x 5004 total: 5.1 GB

B. Evaluation Metrics

Our evaluation is based on the following key metrics:

O Fixed-error-bound compression ratio (CR). CR is the origi-
nal input size divided by the compressed size.

O Rate-distortion graph. This graph shows the compression bit
rate and the decompression data PSNR for compressors. The
bit rate b is the average of bits in the compressed data for each
input element (i.e., 32X the reciprocal of CR).

O Fixed-CR visualization. The visual qualities of the recon-
structed data from all the compressors at the same CR.

O Throughput. Compression and decompression throughputs of
all the compressors in GB/s.

O Data transfer time. We perform distributed and parallel data
transfer tests in the form of lossy compression archives (from
all compressors) on multiple supercomputers.

C. Evaluation Results and Analysis

B C.1) Compression Ratios. We compress the datasets under
fixed error bounds that are commonly used and list all the results
in TABLE III (no results for cuZFP as it does not support
absolute error-bounding, and no results for cuSZx on dataset
Nyx for its runtime errors). TABLE III presents the two-fold
achievement of our novel pipeline. ‘1 In the left half, we present
the compression ratios without an extra lossless module; even so,
CUSZ-7 outperforms others in 14 of 18 cases, exhibiting 10%
to 30% advantages over the second-bests (column 6). ‘2 In the
right half, we examine the full pipeline integrating Bitcomp-
lossless. For fairness, we apply Bitcomp-lossless to all other
compressors’ outputs. First, the full pipeline sees a significant
gain in compression ratio from the one without Bitcomp-lossless
(i.e., comparing column v with 5). Second, CUSZ-i achieves
the highest compression ratios in all 18 cases. CUSZ-7 expands
advantage over the second-best with Bitcomp-lossless enabled
(column vi) and tops at 476%. These note that G-Interp creates
more profound compressibility and is more attuned to the
additional pass of lossless encoding than any other compressors.
Last, it is worth noticing that, for all results in TABLE III, the
decompression PSNR of cUSZ-: is also much higher than other
compressors. If we compare the compression ratio under the
same PSNR instead of the same error bound, the improvements
from CUSZ-: will be amplified (to be detailed in § C.2).

B C.2) Compression Rate-Distortion. Both Interpolation-based
data predictor and Bitcomp-lossless contribute to better compres-
TABLE III: Compression ratios without (columns 1 to 6) and with

Bitcomp-lossless (cols. i to vi) at error bounds 1e-2, 1e-3, and 1e-4.
The best CRs are boldface, and the second-best are underlined.

- = ¥ D 8
ELO%2 % 0% % % 3 % 0% % & %3 2
A @ 153 3] 3] =] 3] < 153 33 3] B~ 3] <
g le—2 26.6 10.3 3.0 12.1 29.3| 10.2||27.8 19.9 3.1 18.0 132.0(374.8
; le-3 || 17.7 54 2.5 9.9 25.2| 42.4||17.7 6.0 2.5 11.5 34.8| 96.6
= le4 10.7 3.5 1.8 6.4 13.3| 24.3|10.7 3.6 1.8 7.8 13.3| 24.3
g le-2 27.1 16.8 7.9 30.6 28.5| —6.9||67.4 18.7 8.1 43.9 174.0|158.2
E le-3 || 229 96 .1 19.2 26.3| 14.8|38.5 10.7 5.2 27.1 77.2|100.5
Z le-4 153 6.0 3.6 11.8 19.5| 27.5((19.8 6.7 3.7 154 34.3| 73.2
» le—2 | [30.2 20.3 N/A 25.3 29.6| —2.0||71.6 95.9 N/A 84.5 256.0|166.9
2> 1le-3[[23.9 9.6 N/A 1.4 28.0| 17.2||34.4 19.0 N/A 26.2 66.1| 92.2
le-4 || 15.3 5.7 N/A 84 18.7| 22.2(|179 7.5 N/A 12.3 25.1| 40.2
—:‘% le—2 || 28.6 22.2 3.3 19.0 29.3| 2.4|(46.0 38.7 3.3 30.3 168.0|265.2
E‘ le-3 || 20.9 10.1 2.5 12.1 27.7| 32.5((23.7 11.5 2.5 14.7 178.7|232.1
S le4 14.8 56 1.9 83 22.6| 52.7||15.3 5.8 .9 10.2 34.6/126.1
le—2 || 28.7 41.6 53.7 32.0 28.8|-46.4||84.1 100.5 70.4 69.7 234.0|132.8
é le-3 || 24.7 19.8 30.7 20.9 27.4|-10.7||50.2 31.1 38.8 35.5 96.2| 91.6
le—4 17.7 10.7 17.4 12.1 21.5| 21.5||26.6 14.0 21.4 18.4 45.4| 70.7
le—2 28.0 7.2 19.5 15.5 29.5 5.4|(42.5 18.9 19.9 25.6 245.0(476.5
% le-3||23.3 45 9.3 11.8 28.8| 23.6((28.3 88 9.5 16.1 137.0(384.1
le—4 17.3 3.1 5.0 9.0 26.0| 50.3|(19.0 5.0 5.1 11.6 58.2|206.3
without Bitcomp-lossless with Bitcomp-lossless
. -

2 3 !

5 6

<

col. no.

sion rate-distortion trait. To exhibit the separate contributions,
we present the rate-PSNR curves on 6 datasets in 2 parallel
series in Fig. 7a: without and with Bitcomp-lossless. When no
extra lossless module is appended, CUSZ-: has already achieved
the best rate-distortion, attributed to the effective G-Interp data
predictor. On dataset JHTDB under a PSNR of 70 dB, or on
dataset QMCPACK under a PSNR of 80 dB, CUSZ-i shows 60%
to 80% advantages in compression ratio over the second-best
cuZFP/cUSZ. In the with-Bitcomp results, CUSZ-i has far
better compression ratios than any other, achieving roughly
100% to 500% advantages under the same PSNRs in low-bit-
rate cases. In high-bit-rate cases, it also promotes considerable
reduction rates. The great extent of compression boost by
CUSZ-i originates from its high adaptability to Bitcomp-lossless
since its G-Interp results in highly compressible error quant-
codes, which is visualized as the fixed-PSNR bit rate change
in auxiliary Fig. 7b. As a reference baseline in Fig. 7a, we also
include the rate-distortion of QoZ [7], which reflects the latest
interpolation-based art on the CPU platform and one design
basis of CUSZ-i. We conclude that 1) CPU-based QoZ still
features a better compression ratio than CUSZ-¢ due to larger
interpolation blocks and more effective lossless modules, but
CUSZ-i features far better throughputs; 2) nevertheless, CUSZ-i
(with Bitcomp-lossless) has, for the first time, approximated the
best-in-class CPU interpolation-based compressor (i.e., QoZ) in
rate-distortion trait.

B C.3) Case Study of Decompression Visualization. To further
verify the high compression quality of CUSZ-i, we visualize
certain data decompression snapshots from the datasets. Fig. 8
shows the original and decompression visualization of two
data snapshots by six compressors, together with a note of the
compression ratios, error bounds, and PSNRs. For each set of
visualizations on the same snapshot, we align the compression
ratios to the same value (e.g., ~ 27 for JHTDB).

Under a fixed compression ratio, CUSZ-: has the best and
closest-to-the-original visualization quality from the decom-
pressed data in all cases. In contrast, all other compressors
have exhibited severe visualization artifacts. On the visualized
decompressions of JHTDB, CUSZ-i achieved a PSNR of 70.2 dB,
which is 8 dB better than the second-best cuZFP. On data
snapshot CO of S3D, under the same compression ratio, around
80 dB. The decompression PSNR of CUSZ-: gets a value of
81.3 dB, notably outperforming all other existing compressors
(the second-best is only 37.8 dB).

B C.4) Compression Throughputs. After discussing the com-
pression ratio and quality of the compressors, we would like to
address the concerns regarding the throughputs. We profiled the
compression throughputs of the GPU-based lossy compressors
by measuring the kernel execution time with NVIDIA Nsight
System on two NVIDIA GPUs: A100 on ThetaGPU and A40
on JLSE. Fig. 9a presents the compression and decompression
throughputs of all 6 GPU-based compressors under two different
error bounds, 1e-2 and 1e-3, on the A100 on ThetaGPU. Specif-
ically, cuSZ-i indicates the CUSZ-: pipeline without Bitcomp-
lossless, and cuSZ-i w/ Bitcomp indicates the proposed full
pipeline of higher compression ratios. We observe that adding

120 FJHTDB QMCPACK i
2100 e o
)
= 80
g o
="
40 6 7 8
120 RTM %
r"’
EIUO r
Z
80 Fs
= o
% o 1 A I;’
A Lo L
& ;‘ & +Bitcomp +Bitcomp 4’{ +Bitcomp . +Bitcomp
oy 7 O)0 0 0 0 0 0 0 ko S 0 0 0
QoZ (CPU reference, no Bitcomp) mmm CUSZ-i --=- cUuSZ -=4- cuZFP - FZ-GPU --4- cuSZp e cuSZx Bit rate (a-axis)
(a) (Bit rate)-PSNR graphs from compression results without (top row) and with Bitcomp-lossless (bottom row) encoding pass.
120 FyHTDB [Miranda] FNyx QMCPACK 1
e 7
Flo0f . - b b
= /
~ 80k L 2, LI fixed PSNR,
Lé I/ " Sialler bit rate
2 6ol o t
! bit rate change bit rate change bit rate change bit rate change bit rate change bit_rate chang
“przyas etz rsp iz e TRtz e TR e sp Ly ey

EE (oZ (CPU reference, no Bitcomp) — HEEEE cUSZ-i S CcUSZ

. cuZFP

FZ-GPU cuSZp N cuSZx Bit rate (z-axis)

(b) (Bit rate)-PSNR leftward change due to the fixed PSNR and the smaller bit rate from the extra pass of lossless encoding (Bitcomp-lossless).

Fig. 7: Compression (bit rate)-PSNR graphs on six datasets. A curve toward upperleft indicates both advantageous quality and compression ratios.

Bitcomp-lossless brings negligible overhead to compression
throughputs. Also, CUSZ-¢’s throughput is at the same magni-
tude as CUSZ and cuSZp. Specifically, it has approximately 60%
of CUSZ’s compression throughput and 80% to 90% of CUSZ’s
decompression throughput. Moreover, Fig. 9b presents profiling
results on A40 on JLSE. Here, CUSZ-i performs closer to CUSZ,
reaching 70% to 80% of CUSZ’s compression throughput, and
nearly the same as CUSZ’s decompression throughput.

Due to the intrinsic data dependency and more sophisti-
cated computational operations in spline interpolation kernels,
interpolation-based CUSZ-i is inevitably slower than Lorenzo-
based CUSZ and its derivatives. However, the kernel throughput
of CUSZ-7 is still on the same magnitude as CUSZ, and it can
be further improved to better serve as a component for real-time
processing. Moreover, although cuSZx, cuZFP, and FZ-GPU
have relatively higher throughput than CUSZ-i, they present
much lower compression ratios than CUSZ-¢’s, inadequate
to many use cases in which data storage and transfer costs
need to be minimized. Next, we will see how CUSZ-i can
be advantageous in real-use tasks that are even sensitive to
compression throughputs, and when considering the achieved
data decompression quality and the compression ratio simulta-
neously, CUSZ-: have established the Pareto front in scenarios
of transferring data over the bandwidth-limited channels.

B C.5) Case Study: Distributed Lossy Data Transmission. In
this part, we conduct a practical case study of distributed lossy
data transmission as discussed in [45]. Initially, a distributed
scientific database is deployed across several supercomputers.
Rapid data transfer and access between two distributed machines
within this database system are desired. Rather than transfer
the original exascale data due to an impractical amount of
time, the database system can transfer the significantly smaller
compressed data. To this end, an error-bounded lossy compressor

operates on the source and destination machines. The overall
time required for this process is the sum of local data I/O time,
the data compression and decompression time, and the time for
transferring the compressed data between the machines. Since
the data transfer between remote machines will be performed
under relatively low bandwidths, a data compressor with both
high ratios and high performance (therefore, the GPU-based is
preferred) is required for an optimized data transfer efficiency.
Fig. 10 shows the data-transfer cost in time and decompression
data PSNR for this task. Specifically, the source and desti-
nation machines are ALCF Theta-GPU and Purdue RCAC
Anvil, respectively. Since the local I/O time is irrelevant to
this scenario, we compute the overall time only from data
compression/decompression time and the data-transfer time of
distributed compressed data. Managed by Globus [46], the data-
transfer bandwidth between the two machines is approximately
1 GB/s. With the full pipeline (including Bitcomp-lossless) fairly
applied to all compressors to further reduce data-transfer costs,
CUSZ-i has the best-in-class time cost on all high-quality data-
transfer cases (PSNR > 70 dB), as indicated in Fig. 10. CUSZ-¢
is also very competitive on specific data transfer tasks with low-
quality data. For dataset QMCPACK, CUSZ-i can reduce around
30% of the time cost of the second-best CUSZ at a PSNR of
90 dB. For dataset S3D, it can reduce around 40% of the time
cost of the second-best cuZFP at a PSNR of 80 dB. Overall, it is
evident that the high compression ratio and quality of CUSZ-¢
have gracefully compensated for its speed degradation, implying
significance in a great variety of real-world use cases.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose CUSZ-i, an efficient GPU-based
scientific error-bounded lossy compressor, which exhibits the
best compression ratio and quality compared with other related

JHTDB
Pressure
#2500

Slice z=140
zy-Plane
512-by-512

eb = 8.0e-4, br = 1.19, eb = 3.2e-1, eb =1.2e-2, eb = 2.0e-2, eb = 3.0e-2,
PSNR=70.2, CR=26.9 PSNR=62.1, CR=26.9 PSNR=35.3, CR=26.4 PSNR=43.2, CR=27.2 PSNR=38.8, CR=27.4 PSNR=35.2, CR=27.6

Miranda
Viscosity
Slice z=120
zy-Plane
384-by-384

eb = 5.2e-4, br = 0.51, eb = le-1, eb = 2.0e-3, eb = 8.5e-3, eb = 1.8e-3,
PSNR=79.5, CR=69.6 ~PSNR=49.3, CR=62.1 PSNR=44.1, CR=29.0 PSNR=65.9, CR=70.3 PSNR=534.0, CR=70.0 PSNR=48.2, CR=69.5

Nyx
Temperature
Slice y=232
zz-Plane
512-by-512 !))
origin CUSZ-i cuZFP cuSZx: N/A cuSZ) uSZ FZ-GPU

eb = 1.0e-3, br = 0.26, eb = 4.7e-2, eb = 3.4e-2, eb = 4.6e-2,
PSNR=75.4, CR=126.0 PSNR=53.8, CR=120.0 PSNR=54.8, CR=126.2 PSNR=55.3, CR=123.5 PSNR=54.8, CR=124.7

qQucpack [F Ml 1" FF F s\ F i
einspline.pre
Slice (w, z)=
(144, 0)
zy-Plane
69-by-69 __’ cuSZ-i ! cuZFP i ! cuSZx ! cuSZ __’ cuSZp i _’ FZ-GPU (i

eb=1.0e 4, br=0.85, eb=1.0e0, eb=>5.0e-3, eb=8.Te-3, eb=1.3¢ 2,
PSNR=88.8, CR=34.6 PSNR=53.8, CR=34.8 PSNR=42.1, CR=21.7 PSNR=52.3, CR=35.4 PSNR=47.8.8, CR=34.9 PSNR=44.8, CR=35.4

X/

E——
=]
<

RTM ’ Y
#2800

Slice =120
yz-Plane A
449-by-449

A\
2

N\ \\
N
eb = 3.5¢ 4, br = 0.4134, eb = le 2, eb = 4.8e3, eb = 3.75e-3, eb = 5.2e 3,
PSNR=80.2, CR=80.3 PSNR=56.0, CR=79.7 PSNR=43.9, CR=065.8 PSNR=56.6, CR=80.6 PSNR=57.5, CR=80.3 PSNR=56.3, CR=79.6

cuSZx CuSZ | uSZp FZ-GPU,
N\, N\ N N

N\

CUSZ-i |

S3D

Stat Planar
2.35e-3 CO
Slice =216
yz-Plane
origin 500-by-500 cuZFP

cuSZp FZ-GPU

eb = 5.0e-4, br = 0.40, eb = 1.0e-1, eb = 7.5¢-2, eb = 1.0e-2, eb = 1.0e-1,
PSNR=81.3, CR=80.4 PSNR=37.8, CR=78.8 PSNR=16.5, CR=63.9 PSNR=29.8, CR=78.3 PSNR=29.8, CR=71.4 PSNR=34.6, CR=66.8

Fig. 8: Showcases of visualized decompressed data, with key subregions zoomed in. For each snapshot, we align the (with-Bitcomp) compression
ratio for every compressor with a fixed values. In addition, CUSZ, FZ-GPU, and cuSZp share the same Lorenzo predictor, exhibiting simiar data
visualizations. Hence, they are grouped as the last three.

Miranda Nyx

Do
[=}
o

QMCPACK

==
o L
o O O

1 1 1

Compress.
(Unit: GB/s)

KKK KK

Decompress
Throughput

I cuSZ-i w/ Bitcomp [cuSZ

B

cuSZp BN cuSZx

(a) Compression and decompression throughputs on NVIDIA A100.

Miranda

QMCPACK

Compress.
(Unit: GB/s)

Decompress
Throughput

[cuSZ-i

[cuSZ-i w/ Bitcomp @ cuSzZ

B cuSZp

cuSZx FZ-GPU cuZFP

(b) Compression and decompression throughputs on NVIDIA A40.

Fig. 9: Compression and decompression throughputs on NVIDIA A100 (top row) and A40 (bottom row) for CUSZ-i, CUSZ-i with Bitcomp-
lossless, CUSZ, cuZFP, cuSZp, cuSZx, and FZ-GPU. cuZFP’s throughput corresponds to a similar average PSNR with CUSZ-:.

Miranda

@ 20r £ w/ Bitcomp [/& rs w/ Bitcomp | [«& & w/ Bitcomp
c 0 50 100 150 [0 5 10 15 20(|0 10 20 30 40 5
~ 1 1 L 1 L 1 1 1 1 1 1 1 1 1 1
o

=W -

AT
&

50 .’.r’ w/ Bitcomp | | ¢ w/ Bitcomp w/ Bitcomp |
0 5 10 15110 wev25 50 75 10 75,90
it it L rdll l b i f h v o i
— CUSZ-i --4- cuZFP --&-- cuSZp Dataset Tranfer Time
--=- CUSZ e FZ-GPU e cuSZx (z-axis, in seconds)

Fig. 10: (Transfer time)-PSNR graphs of compressors on six datasets.
A curve toward upperleft indicates the advantageous performance in
both better quality and shorter transfer time.

works. With a highly parallelized interpolation-based data
predictor and a lightweight auto-tuning mechanism, CUSZ-¢
achieves state-of-the-art compression quality under the same
error bounds or compression ratios rooted in its high data pre-
diction accuracy. With an additional lossless module (NVIDIA
Bitcomp), CUSZ-¢ further outperforms other GPU-based scien-
tific lossy compressors in compression ratios by a significant
advantage, approaching CPU-based compressors with far higher
throughputs than CPU-based ones. In the case studies, CUSZ-i
presents excellent decompression data visualization that prevails
over existing state-of-the-art GPU-based lossy compressors
and reduces the distributed lossy data transmission time to a
considerable extent for distributed scientific databases.

CUSZ-i has a few limitations, e.g., its compression speeds
are slower than other GPU-based compressors, its interpolation-

based prediction still has lower accuracy than the CPU-based
interpolators, and its lossless module involves CPU and is
partially dependent on the NVIDIA GPU ecosystem. In the
future, we will endeavor to address those limitations, working
on improving its speeds, prediction accuracy, and compatibility
with more GPU architectures such as AMD and Intel GPUs.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research (ASCR), under contracts DE-AC02-06CH11357. This
work was also supported by the National Science Foundation
(Grant Nos. 2003709, 2303064, 2104023, 2247080, 2247060,
2312673, 2311875, and 2311876). We also acknowledge
the computing resources provided by Argonne Leadership
Computing Facility (ALCF) and Advanced Cyberinfrastructure
Coordination Ecosystem—Purdue Anvil through Services &
Support (ACCESS).

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]
(12]

(13]

[14]
[15]

(16]

REFERENCES

S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K.
Heitmann, K. Kumaran, V. Vishwanath, T. Peterka, J. Insley, et
al., “HACC: Extreme scaling and performance across diverse
architectures,” Communications of the ACM, vol. 60, no. 1,
pp. 97-104, 2016.

S. C. V. Vishwanath and K. Harms, Parallel 1/0 on Mira, https:
/Iwww.alcf.anl.gov/files/Parallel_IO_on_Mira_0.pdf, Online,
2019.

S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, “Data compression for the exascale computing
era-survey,” Supercomputing Frontiers and Innovations, vol. 1,
no. 2, pp. 76-88, 2014.

K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and
F. Cappello, “Optimizing error-bounded lossy compression for
scientific data by dynamic spline interpolation,” in 2021 IEEE
37th International Conference on Data Engineering (ICDE),
IEEE, 2021, pp. 1643-1654.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and
F. Cappello, “Error-controlled lossy compression optimized for
high compression ratios of scientific datasets,” in 20/8 I[EEE
International Conference on Big Data (Big Data), Seattle, WA,
USA: IEEE, 2018, pp. 438—447.

X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok,
J. Tian, J. Deng, J. C. Calhoun, D. Tao, et al., “SZ3: A modular
framework for composing prediction-based error-bounded lossy
compressors,” IEEE Transactions on Big Data, 2022.

J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Dy-
namic quality metric oriented error bounded lossy compression
for scientific datasets,” in 2022 SC22: International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC), IEEE Computer Society, 2022, pp. 892-906.

S. Li, P. Lindstrom, and J. Clyne, “Lossy scientific data
compression with sperr,” in 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), IEEE, 2023,
pp. 1007-1017.

F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H.
Yoon, X.-C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of
lossy compression for floating-point data in scientific data sets,”
The International Journal of High Performance Computing
Applications, vol. 33, no. 6, pp. 1201-1220, 2019.

X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y.
Alexeev, and F. T. Chong, “Full-state quantum circuit simulation
by using data compression,” in Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, ser. SC ’19, Denver, Colorado: Association
for Computing Machinery, 2019, 1SBN: 9781450362290. DOTI:
10.1145/3295500.3356155.

Nyx simulation, https://amrex-astro.github.io/Nyx/, Online.

S. Kayum e al., “GeoDRIVE - a high performance computing
flexible platform for seismic applications,” First Break, vol. 38,
no. 2, pp. 97-100, 2020.

QMCPACK: many-body ab initio Quantum Monte Carlo code,
http://vis.computer.org/vis2004contest/data.html, Online, 2019.
https://Icls.slac.stanford.edu/lasers/lcls-ii, Online.

R. Underwood, C. Yoon, A. Gok, S. Di, and F. Cappello,
“ROIBIN-SZ: Fast and science-preserving compression for serial
crystallography,” Synchrotron Radiation News, vol. 36, no. 4,
pp. 17-22, 2023.

J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood,
S. Jin, X. Liang, J. Calhoun, D. Tao, et al., “CUSZ: An efficient
gpu-based error-bounded lossy compression framework for
scientific data,” in Proceedings of the ACM International Con-
ference on Parallel Architectures and Compilation Techniques,
2020, pp. 3-15.

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

J. Tian, S. Di, X. Yu, C. Rivera, K. Zhao, S. Jin, Y. Feng, X.
Liang, D. Tao, and F. Cappello, “Optimizing error-bounded
lossy compression for scientific data on gpus,” in 2021 IEEE
International Conference on Cluster Computing (CLUSTER),
Los Alamitos, CA, USA: IEEE Computer Society, Sep. 2021,
pp- 283-293. por: 10.1109/Cluster48925.2021.00047.

X. Yu, S. Di, K. Zhao, D. Tao, X. Liang, F. Cappello, et al.,
“SZx: An ultra-fast error-bounded lossy compressor for scientific
datasets,” arXiv preprint arXiv:2201.13020, 2022.

B. Zhang, J. Tian, S. Di, X. Yu, Y. Feng, X. Liang, D. Tao, and
F. Cappello, “FZ-GPU: A fast and high-ratio lossy compressor
for scientific computing applications on gpus,” arXiv preprint
arXiv:2304.12557, 2023.

Y. Huang, S. Di, X. Yu, G. Li, and F. Cappello, “cuSZp: An
ultra-fast gpu error-bounded lossy compression framework
with optimized end-to-end performance,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2023, pp. 1-13.

cuZFP, https://github.com/LLNL/zfp/tree/develop/src/cuda_zfp,
Online, 2019.

X. Liang, S. Di, S. Li, D. Tao, B. Nicolae, Z. Chen, and
F. Cappello, “Significantly improving lossy compression quality
based on an optimized hybrid prediction model,” in Proceedings
of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, ser. SC *19, Denver,
Colorado: Association for Computing Machinery, 2019, ISBN:
9781450362290. DOT: 10.1145/3295500.3356193. [Online].
Available: https://doi.org/10.1145/3295500.3356193.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 12, pp. 2674-2683, 2014.

R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH:
Tensor compression for multidimensional visual data,” IEEE
transactions on visualization and computer graphics, vol. 26,
no. 9, pp. 2891-2903, 2019.

J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen,
and F. Cappello, “Exploring autoencoder-based error-bounded
compression for scientific data,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 1EEE, 2021,
pp- 294-306.

J. Liu, S. Di, S. Jin, K. Zhao, X. Liang, Z. Chen, and F.
Cappello, “Scientific error-bounded lossy compression with
super-resolution neural networks,” in 2023 IEEE International
Conference on Big Data (BigData), Los Alamitos, CA, USA:
IEEE Computer Society, 2023, pp. 229-236. Do1: 10.1109/
BigData59044.2023.10386682. [Online]. Available: https://
doi.ieeecomputersociety.org/10.1109/BigData59044 .2023.
10386682.

J. Han and C. Wang, “Coordnet: Data generation and visual-
ization generation for time-varying volumes via a coordinate-
based neural network,” IEEE Transactions on Visualization and
Computer Graphics, 2022.

D. Wang, J. Pulido, P. Grosset, S. Jin, J. Tian, J. Ahrens, and
D. Tao, “TAC: Optimizing error-bounded lossy compression
for three-dimensional adaptive mesh refinement simulations,”
in Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC
’22, Minneapolis, MN, USA: Association for Computing Ma-
chinery, 2022, 135-147, 1SBN: 9781450391993. pot: 10.1145/
3502181.3531458. [Online]. Available: https://doi.org/10.1145/
3502181.3531458.

D. Wang, J. Pulido, P. Grosset, J. Tian, S. Jin, H. Tang, J. Sexton,
S. Di, K. Zhao, B. Fang, Z. Luki¢, F. Cappello, J. Ahrens, and
D. Tao, “AMRIC: A novel in situ lossy compression framework
for efficient i/o in adaptive mesh refinement applications,” in
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ser. SC

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]
[40]

[41]
(42]

[43]

[44]

[45]

[46]

’23, Denver, CO, USA: Association for Computing Machinery,
2023, 1SBN: 9798400701092. DOI: 10.1145/3581784.3613212.
[Online]. Available: https://doi.org/10.1145/3581784.3613212.
D. Wang, J. Pulido, P. Grosset, S. Jin, J. Tian, K. Zhao, J.
Ahrens, and D. Tao, “TAC+: Optimizing error-bounded lossy
compression for 3d amr simulations,” IEEE Transactions on
Parallel and Distributed Systems, vol. 35, no. 3, pp. 421438,
2024. por: 10.1109/TPDS.2023.3339474.

MGARD-X: A portable implementation of the MGARD lossy
compressor supporting various types of GPUs and CPUs, https:
// github . com / CODARcode / MGARD /blob / master / doc /
MGARD-X.md.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly im-
proving lossy compression for scientific data sets based on
multidimensional prediction and error-controlled quantization,”
in 2017 IEEE International Parallel and Distributed Processing
Symposium, Orlando, FL, USA: IEEE, 2017, pp. 1129-1139.
J. Liu, S. Di, K. Zhao, X. Liang, S. Jin, Z. Jian, J. Huang, S. Wu,
Z. Chen, and F. Cappello, “High-performance effective scien-
tific error-bounded lossy compression with auto-tuned multi-
component interpolation,” arXiv preprint arXiv:2311.12133,
2023.

J. Liu, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello,
“FAZ: A flexible auto-tuned modular error-bounded compression
framework for scientific data,” in Proceedings of the 37th
International Conference on Supercomputing, 2023, pp. 1-13.
Miranda Radiation Hydrodynamics Data, https://wci.llnl.gov/
simulation/computer-codes/miranda, Online, 2019.

J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and
F. Cappello, “Revisiting Huffman Coding: Toward extreme
performance on modern gpu architectures,” in 2021 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), Portland, OR, USA, May 17-21, 2021, 1IEEE, 2021,
pp. 881-891.

M. Shah, X. Yu, S. Di, M. Becchi, and F. Cappello, “Lightweight
huffman coding for efficient gpu compression,” in Proceed-
ings of the 37th International Conference on Supercomputing,
ser. ICS °23, Orlando, FL, USA: Association for Computing
Machinery, 2023, 99-110, 1SBN: 9798400700569. DoI: 10.1145/
3577193.3593736.

B. Zhang, J. Tian, S. Di, X. Yu, M. Swany, D. Tao, and F.
Cappello, “GPULZ: Optimizing lzss lossless compression for
multi-byte data on modern gpus,” in Proceedings of the 37th
International Conference on Supercomputing, 2023, pp. 348—
359.

NVIDIA, https://developer.nvidia.com/nvcomp, Online.
Theta/ThetaGPU - Argonne Leadership Computing Facility,
https://www.alcf.anl.gov/alcf-resources/theta, 2021.

Anvil - Purdue RCAC, https://www.rcac.purdue.edu/anvil.
Joint laboratory for system evaluation — evaluating future high-
performance computing platforms, https://www.jlse.anl.gov/,
(Accessed on 03/15/2021).

Scientific Data Reduction Benchmarks, https://sdrbench.github.
io/, Online, 2019.

Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns,
S. Chen, A. Szalay, and G. Eyink, “A public turbulence database
cluster and applications to study lagrangian evolution of velocity
increments in turbulence,” Journal of Turbulence, no. 9, N31,
2008.

Y. Liu, S. Di, K. Chard, I. Foster, and F. Cappello, Optimizing
scientific data transfer on globus with error-bounded lossy
compression, 2023. arXiv: 2307.05416 [cs.DC].

R. Ananthakrishnan, K. Chard, I. Foster, and S. Tuecke, “Globus
platform-as-a-service for collaborative science applications,”
Concurrency and Computation: Practice and Experience,
vol. 27, no. 2, pp. 290-305, 2015.

Appendix: Artifact Description/Artifact Evaluation

Artifact Description/Evaluation (AD/AE)

We considered the integrated reading experience for the
readers and merged the description and evaluation sections of
the research paper artifacts.

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

C1 We develop a GPU-optimized interpolation-based data
predictor G-Interp with highly parallelized efficient interpo-
lation, which can present excellent data prediction accuracy.

Cy We design a lightweight interpolation auto-tuning kernel for
GPU interpolation to optimize both the performance and
compression quality of CUSZ-i.

C3 We improve the implementation of GPU-based Huffman
encoding and import a new lossless module to reduce its
encoding redundancy further.

Cy CUSZ-i improves compression ratio over other state-of-
the-art GPU-based scientific lossy compressors by up to
476% under the same error bound or PSNR. Meanwhile, it
preserves a compression throughput of the same magnitude
as other GPU compressors.

B. Computational Artifacts

Ay The NVIDIA-Bitcomp-integrated CUSZ-i code repository.
DOI: 10.5281/zenodo . 13334684.

Artifact ID Contributions Related
Supported Paper Elements
Ay Ch §4, 85
Ay Co §5
Ay Cs §6
Ay Cy §7

II. ARTIFACT IDENTIFICATION
A. Computational Artifact A,
Relation To Contributions
This is our core artifact and is related to all contributions
described in §I.1.
Expected Results

With the provided setup, the artifacts reproduce the experi-
mental results reported in the paper, verifying CUSZ-i’s high
compression ratio and quality and moderate throughput.

Expected Reproduction Time (in Minutes)
Normally,

* The setup can be completed in 10 minutes.
* The executions should take 1 hour.
 The analysis can take a few minutes.

For compatibility, we also provide the spack installation
instruction to replicate our tested environment:

* Please refer to Installation and Deployment on 2.

* The alternative Spack installation/deployment significantly
increases the setup time to one hour due to building everything
from the source code.

* The time for executions and the analysis remains unchanged.

Artifact Setup (incl. Inputs)

Hardware
We require NVIDIA A100 GPU (40-GB, i.e., the common
variant) to cover the essential functionality and, optionally,
NVIDIA A40 GPU to cover the throughput scalability.
Software
* We require an up-to-date mainstream Linux distro as the base
environment.
e e.g., CentOS 7 onward, Ubuntu 22.04.
* We require CUDA SDK of version 11.4 onward but lower
than 12.5 (i.e., 11.4 to 12.4, inclusively).
e corresponding to CUDA driver of version 470 onward.
* We require C++17-compliant host compiler.
e e.g., GCC 9.3 onward.
* We require a modern cmake build system.
* e.g., 3.18 onward.

* In addition to the basic setup above, to maximize compatibil-
ity, we recommend GCC 9.3 and CUDA 12.4.1.

Datasets / Inputs
The data setup will be done in setting up the workplace. The
details are listed as follows.

e JHTDB

e Though hosted on https://turbulence.pha. jhu.
edu/ as open data, it requires a token to access the data,
which prohibits us from automating the data preprocessing.
Thus, we don’t include JHTDB datafields for the artifacts.

* Miranda, Nyx, QMCPack, S3D

* hosted on https://sdrbench.github.io

* Note that Miranda and S3D are originally double-precision
and conversion to single-precision is conducted when
setting up.

* RTM data are from proprietary simulations

* which are not open to the public.
¢ We exclude the use of RTM in this artifact.

Setup: Compilers (Normal)
To use module-1load to set up the toolchain:

module load cuda/12.4.1
module load gcc/9.3.0
Setup: Compilers (Alternative)
(Skip this if the normal way works.) To use Spack to set up
the toolchain:
cd $HOME

git clone -c feature.manyFiles=true \
https://github.com/spack/spack.git

. $HOME/spack/share/spack/setup-env.sh

spack compiler find

spack install gcc@9.3.0

spack install cuda@12.4.1%gcc@9.3.0
Setup: Workspace
To set up the compressors and analyzer,

o
cd $HOME
git clone --recursive \
https://github.com/jtian0/24_SC_artifacts.git \
sc24cuszi
cd sc24cuszi

2]

source setup-all.sh 12 <WHERE_TO_PUT_DATA_DIRS>

bash setup-all.sh purge

3]

python setup-data-v2.py

(4]

conda install -y pandas
conda install -y scipy

Artifact Execution

Navigate back to the workplace using cd $WORKSPACE. Then,
run for each dataset. By default, the following commands trigger
the execution of all compressors; if a specific compressor is the
focus, e.g., CUSZ-7, ——cmp cuSZi is to be appended to the end
of each command. The compressor options are cuSZ, cuSZi,
FZGPU, cuSZp, cuzfp, and cuSZx.

Nyx

THI&TADIR=SDRBENCH-EXASKY—NYX-512x5 12x512

python script_data_collection.py \
--input ${DATAPATH}/${THIS_DATADIR} \
—-output ${DATAPATH}/${THIS_DATAIDR} log \
--dims 512 512 512

THIS_DATADIR=SDRBENCH-Miranda-256x384x384
python script_data_collection.py \
—--input ${DATAPATH}/${THIS_DATADIR} \
-—output ${DATAPATH}/${THIS_DATAIDR} log \
--dims 384 384 256

THIS_DATADIR=SDRBENCH-SDRBENCH-QMCPack
python script_data_collection.py \

--input ${DATAPATH}/${THIS_DATADIR} \
—-output ${DATAPATH}/${THIS_DATAIDR} log \
--dims 69 69 33120

THIS_DATRADIR=SDRBENCH-S3D

python script_data_collection.py \
—--input ${DATAPATH}/${THIS_DATADIR} \
--output ${DATAPATH}/${THIS_DATAIDR} log \
--dims 500 500 500

Artifact Analysis (incl. Outputs)

The analysis results are in tabular form (.csv files)
in ${DATAPATH}/<dataset name>_csv, which include per-
dataset compression ratios/bitrates, compression and decompres-
sion throughputs (with or without Bitcomp-Lossless), PSNR,
etc. Testers can check the results and compare them with
the ones reported in the paper. The used commands are as
follows. Also, a single compressor can be specified by appending
--cmp [compressor name] to the end of a command.

Nyx

THI&TADIR=SDRBENCH—EXASKY—NYX—5 12x512x512

python script_data_analysis.py \
—--input ${DATAPATH}/${THIS_DATADIR} log \
--output ${DATAPATH}/${THIS_DATADIR} csv \
--dims 512 512 512

THIS_DATADIR=SDRBENCH-Miranda-256x384x384
python script_data_analysis.py \
--input ${DATAPATH}/${THIS_DATADIR} log \
——output ${DATAPATH}/${THIS_DATADIR} csv \
--dims 384 384 256

THIS_DATADIR=SDRBENCH-SDRBENCH-QMCPack

python script_data_analysis.py \
—--—input ${DATAPATH}/${THIS_DATADIR} log \
--output ${DATAPATH}/${THIS_DATADIR} csv \
--dims 69 69 33120

THIS_DATRADIR=SDRBENCH-S3D

python script_data_analysis.py \
--input ${DATAPATH}/${THIS_DATADIR} log \
——output ${DATAPATH}/${THIS_DATADIR} csv \
--dims 500 500 500

	Introduction
	Related Work
	Background and Research Motivation
	cuSZ Framework
	Research Motivations
	Limitation of existing GPU-based lossy compressors in data reconstruction quality
	Limitation of existing GPU-based lossy compressors due to lossless encoding modules
	Design goals of cuSZ-i

	cuSZ-i Design Overview
	cuSZ-i Interpolation-based Data Predictor
	Basic Design Concept of G-Interp
	Interpolation Configurations of G-Interp
	Interpolation splines
	Level-wise interpolation error bound

	Profiling-based Auto-tuning of G-Interp Interpolations
	Data-profiling
	Interpolation auto-tuning

	Parallelizing G-Interp on GPU
	Advantages of G-Interp: A Quantitative Analysis

	Improving cuSZ-i Lossless Modules
	Tweaking Existing Huffman Coding
	Synergy of Lossless Modules: Huffman + Bitcomp-lossless

	Experimental Evaluation
	Experimental Setup
	Evaluation Metrics
	Evaluation Results and Analysis
	Compression Ratios.
	Compression Rate-Distortion.
	Case Study of Decompression Visualization.
	Compression Throughputs.
	Case Study: Distributed Lossy Data Transmission.

	Conclusion and Future Work
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1

