

0

70

140

210

280

350

420

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

565.73 509.97

T
h

ro
u

g
h

p
u

t
(G

B
/s

)
cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(a) Compression throughput with REL 1E-2 (Fixed-Rate 4 for cuZFP).

0

100

200

300

400

500

600

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

1072.85 834.551241.59 1188.03 709.33 697.31

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(b) Decompression throughput with REL 1E-2 (Fixed-Rate 4 for cuZFP).

0

70

140

210

280

350

420

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

562.36 552.71

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(c) Compression throughput with REL 1E-3 (Fixed-Rate 8 for cuZFP).

0

100

200

300

400

500

600

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

856.24 732.24948.26 714.44

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(d) Decompression throughput with REL 1E-3 (Fixed-Rate 8 for cuZFP).

0

70

140

210

280

350

420

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

553.74 544.7

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(e) Compression throughput with REL 1E-4 (Fixed-Rate 16 for cuZFP).

0

100

200

300

400

500

600

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

775.12863.79

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(f) Decompression throughput with REL 1E-4 (Fixed-Rate 16 for cuZFP).

Fig. 14: Compression and decompression throughput evaluation of CUSZP2 and other baseline compressors.

2, REL 1E-3, and REL 1E-4 error bounds. For cuZFP, we

measure throughput under fixed rates 4, 8, and 16.

Main Results of Throughput. Figure 14 presents through-

put for compression and decompression. We observe that

both CUSZP2-P and CUSZP2-O consistently outperform all

existing pure-GPU compressors in throughput. On average,

CUSZP2-P achieves compression and decompression through-

put of 334.91 and 538.27 GB/s, respectively, while CUSZP2-

O reaches 329.94 GB/s for compression and 597.29 GB/s

for decompression. These numbers only range from 107.10

(cuZFP compression) to 188.74 GB/s (cuSZp decompression)

for other GPU compressors. In JetIn dataset, CUSZP2-P can

even reach 1072.85 GB/s for decompression at REL 1E-2.

The reason is that JetIn is highly sparse and consists of

lots of zero data blocks (i.e. only containing zero values).

While processing such blocks, both CUSZP2-P and CUSZP2-

O directly flush zero values with cudaMemset() instead of

performing decompression computations, resulting in excep-

tionally high throughput. Similarly, since larger error bounds

create more zero data blocks, increasing error bounds (e.g.

from REL 1E-4 to REL 1E-2) in CUSZP2 leads to higher

throughput. We also observe that decompression in CUSZP2

usually has higher throughput than compression. The reason

is that CUSZP2 compression requires an extra loop to obtain

the lossless encoding information (e.g. fixed-length for each

block), whereas decompression can obtain this information by

directly reading block offsets from GPU global memory.

200

250

300

350

400

vx vy vz xx yy zzT
h
ro

u
g
h
p
u
t
(G

B
/s

) cuSZp2−P cuSZp2−O

(a) Compression

300

350

400

450

500

vx vy vz xx yy zzT
h
ro

u
g
h
p
u
t
(G

B
/s

) cuSZp2−P cuSZp2−O

(b) Decompression

Fig. 15: CUSZP2 throughput analysis on 6 fields from HACC.

CUSZP2-O vs CUSZP2-P. As mentioned in Section IV-A,

we preserve both lossless encoding methods within CUSZP2

framework due to their pros and cons. CUSZP2-P is optimized

for extreme throughput, while CUSZP2-O achieves higher

compression ratios with marginally reduced throughput, due to

the fine-tuned encoding selection. However, in HACC dataset,

we found that CUSZP2-O exhibits higher throughput than

CUSZP2-P in both compression and decompression, even with

more computations. We evaluate the throughput of all 6 fields

of HACC dataset, and the results can be seen in Figure 15. For

example, in xx field, CUSZP2-O and CUSZP2-P has 315.64

and 380.36 GB/s compression throughput, respectively. The

reason is that HACC is a highly smooth dataset, making the

first element very likely to be an outlier, allowing CUSZP2-O

to have much higher compression ratios (∼2×) than CUSZP2-

P. A higher compression ratio indicates fewer amounts of data

to be processed, for example, storing fewer compressed bytes

REL CESM-ATM HACC RTM SCALE QMCPack NYX JetIn Miranda SynTruss

CUSZP2-O

1E-2 18.44∼82.41

(avg: 42.98)

11.49∼20.09

(avg: 15.50)

30.12∼104.18

(avg: 61.48)

16.80∼109.55

(avg: 46.19)

12.44∼23.57

(avg: 18.01)

14.36∼127.80

(avg: 69.14)

126.28∼126.28

(avg: 126.28)

11.10∼11.10

(avg: 11.10)

12.96∼12.96

(avg: 12.96)

1E-3 12.99∼57.45

(avg: 24.53)

5.85∼12.47

(avg: 8.82)

12.00∼84.96

(avg: 40.24)

11.10∼79.69

(avg: 29.52)

6.07∼13.29

(avg: 9.68)

10.50∼125.56

(avg: 41.75)

120.04∼120.06

(avg: 120.06)

5.98∼5.98

(avg: 5.98)

6.47∼6.47

(avg: 6.57)

1E-4 7.85∼39.01

(avg: 14.97)

3.67∼6.27

(avg: 4.84)

6.51∼67.81

(avg: 29.36)

6.31∼49.95

(avg: 17.92)

3.79∼7.25

(avg: 5.52)

5.43∼98.37

(avg: 24.12)

106.50∼106.50

(avg: 106.50)

3.80∼3.80

(avg: 3.80)

4.25∼4.25

(avg: 4.25)

FZ-GPU

1E-2 17.62∼100.02

(avg: 40.52)

N.A.

(due to bugs)

12.25∼70.09

(avg: 34.60)

16.39∼124.25

(avg: 45.21)

7.53∼19.04

(avg: 13.28)

13.38∼222.62

(avg: 86.15)

N.A.

(due to bugs)

N.A.

(due to bugs)

N.A.

(due to bugs)

1E-3 12.03∼58.03

(avg: 21.57)

N.A.

(due to bugs)

6.37∼43.76

(avg: 20.42)

10.89∼69.61

(avg: 25.39)

4.33∼12.08

(avg: 8.20)

9.81∼183.98

(avg: 42.34)

N.A.

(due to bugs)

N.A.

(due to bugs)

N.A.

(due to bugs)

1E-4 7.10∼36.03

(avg: 12.98)

N.A.

(due to bugs)

4.02∼30.7

(avg: 13.92)

7.26∼39.22

(avg: 16.16)

2.99∼8.26

(avg: 5.62)

5.98∼59.98

(avg: 16.15)

N.A.

(due to bugs)

N.A.

(due to bugs)

N.A.

(due to bugs)

cuSZp

1E-2 3.88∼69.43

(avg: 32.56)

5.28∼10.6

(avg: 7.92)

29.08∼102.73

(avg: 60.10)

3.88∼105.89

(avg: 37.76)

12.44∼22.21

(avg: 17.33)

9.6∼127.8

(avg: 66.73)

126.27∼126.27

(avg: 126.27)

4.46∼4.46

(avg: 4.46)

12.67∼12.67

(avg: 12.67)

1E-3 2.78∼39.01

(avg: 14.53)

3.45∼5.37

(avg: 4.41)

11.06∼81.90

(avg: 38.43)

2.75∼72.60

(avg: 21.11)

6.08∼10.08

(avg: 8.08)

5.09∼125.55

(avg: 38.44)

119.86∼119.86

(avg: 119.86)

3.04∼3.04

(avg: 3.04)

6.37∼6.37

(avg: 6.37)

1E-4 2.11∼24.55

(avg: 8.26)

2.53∼3.47

(avg: 3.00)

6.07∼65.04

(avg: 28.04)

2.14∼42.06

(avg: 12.34)

3.79∼5.56

(avg: 4.68)

3.35∼98.23

(avg: 22.14)

105.59∼105.59

(avg: 105.59)

2.32∼2.32

(avg: 2.32)

4.21∼4.21

(avg: 4.21)

TABLE III: Compression ratio of 3 GPU error-bounded lossy compressors. We exclude CUSZP2-P here because it has very

close compression ratios with cuSZp due to the same lossless encoding method (i.e. plain fixed-length encoding). Each cell

follows a format ªmin∼max (avg: XX)º, and N.A. means ªnot applicableº. The highest average values are highlighted.

into global memory in the compression kernel. This reduces

the overhead for accessing global memory, increasing runtime

throughput in return. We will report more detailed results about

compression ratios in Section V-C.

Memory Bandwidth Utilization. In Figure 16, we inspect

the GPU memory bandwidth utilization of CUSZP2 and other

baseline compressors. Same as the settings in Figure 9, we

profile the memory throughput of compression kernels for

all compressors on NVIDIA A100 GPU by Nsight Compute.

Similar observations can be obtained for decompression as

well. As seen, on average, CUSZP2-P and CUSZP2-O achieve

global memory throughput of 1175.34 and 1103.45 GB/s,

respectively, approaching the hardware limit of 1555 GB/s. In

the meantime, this number only ranges from 134.10 (FZ-GPU,

due to atomic operations in global synchronization) to 410.90

GB/s (cuSZp, due to strided and scalar-manner memory access

patterns). Such results highlight the efficiency of our proposed

vectorized memory accesses in CUSZP2 framework.

0

300

600

900

1200

1500

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

Memory Throughput Limit: 1555 GB/s

T
h

ro
u

g
h

p
u

t
(G

B
/)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

Fig. 16: Memory throughput profiled on NVIDIA A100 GPU.

Examining Latency Control. We also examine the perfor-

mance of latency control in CUSZP2. Recall that the latency

in blockwise compressors is caused by global synchronization

(i.e. device-level prefix-sum while concatenating compressed

blocks), we measure the throughput of CUSZP2 synchroniza-

tion with the state-of-the-art synchronization method ± single-

pass plain chained-scan [23], [52], [53]. As seen in Figure 17,

on average, our proposed fine-tuned decoupled lookback in

CUSZP2 can achieve 846.85 GB/s in synchronization (2.41×

of baseline), hiding latency successfully.

0

200

400

600

800

1000

1200

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

846.85

350.73

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Decoupled Lookback Plained Chained−scan

Fig. 17: Evaluating proposed fine-tuned decoupled lookback

in CUSZP2 with state-of-the-art synchronization techniques.

Observation I: On average, CUSZP2 delivers 332.42

GB/s and 513.04 GB/s throughput for compression

and decompression, which is 2.85× of cuZFP, 2.11×

of FZ-GPU, 2.03× of cuSZp, and approximately 200×

of existing CPU-GPU hybrid compressors.

C. Compression Ratio

We evaluate compression ratios in this section. cuZFP is

excluded because it only supports fixed-rate mode, making

the compression ratio on one dataset a fixed number. Each

cell in Table III provides details for a specific compressor

on a given dataset at an error bound, formatted as ªmin∼max,

(avg)º to display the range and average values. We do not show

the compression ratios of CUSZP2-P, because it has similar

compression ratios (e.g. less than 0.01% differences) with

cuSZp due to the same lossless encoding method (i.e. Plain-

REFERENCES

[1] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, ªData compression for the exascale computing era-
survey,º Supercomputing frontiers and innovations, vol. 1, no. 2, pp.
76±88, 2014.

[2] S. Di and F. Cappello, ªFast error-bounded lossy HPC data compression
with SZ,º in 2016 IEEE International Parallel and Distributed Process-

ing Symposium. IEEE, 2016, pp. 730±739.

[3] D. Tao, S. Di, Z. Chen, and F. Cappello, ªSignificantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,º in 2017 IEEE International Parallel

and Distributed Processing Symposium. IEEE, 2017, pp. 1129±1139.

[4] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
ªError-controlled lossy compression optimized for high compression
ratios of scientific datasets,º in 2018 IEEE International Conference

on Big Data (Big Data). IEEE, 2018, pp. 438±447.

[5] S. Jin, J. Pulido, P. Grosset, J. Tian, D. Tao, and J. Ahrens, ªAdaptive
configuration of in situ lossy compression for cosmology simulations
via fine-grained rate-quality modeling,º in Proceedings of the 30th

International Symposium on High-Performance Parallel and Distributed

Computing, 2021, pp. 45±56.

[6] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, ªFull-state quantum circuit simulation by using data
compression,º in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2019, pp.
1±24.

[7] M. Dmitriev, T. Tonellot, H. AlSalem, and S. Di, ªError-bounded lossy
compression in reverse time migration,º in Sixth EAGE High Perfor-

mance Computing Workshop, vol. 2022, no. 1. European Association
of Geoscientists & Engineers, 2022, pp. 1±5.

[8] Y. Huang, K. Zhao, S. Di, G. Li, M. Dmitriev, T.-L. D. Tonellot, and
F. Cappello, ªTowards improving reverse time migration performance by
high-speed lossy compression,º in 2023 IEEE/ACM 23rd International

Symposium on Cluster, Cloud and Internet Computing (CCGrid). IEEE,
2023, pp. 651±661.

[9] Large language models - the hardware connection. [Online].
Available: https://community.juniper.net/blogs/sharada-yeluri/2023/10/
03/large-language-models-the-hardware-connection

[10] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, ªUse cases of lossy compression
for floating-point data in scientific data sets,º The International Journal

of High Performance Computing Applications, vol. 33, no. 6, pp. 1201±
1220, 2019.

[11] G. Marcus, Y. Ding, P. Emma, Z. Huang, J. Qiang, T. Raubenheimer,
M. Venturini, and L. Wang, ªHigh fidelity start-to-end numerical particle
simulations and performance studies for lcls-ii,º in Proceedings, 37th

International Free Electron Laser Conference (FEL 2015): Daejeon,

Korea, August 23-28, 2015.

[12] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,
J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su et al.,
ªGeneral atomic and molecular electronic structure system,º Journal of

computational chemistry, vol. 14, no. 11, pp. 1347±1363, 1993.

[13] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-
mann, ªHacc: Extreme scaling and performance across diverse ar-
chitectures,º in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, 2013, pp.
1±10.

[14] Ncar: Community earth system model. [Online]. Available: https:
//www.cesm.ucar.edu/

[15] Meta: Llama. [Online]. Available: https://llama.meta.com/

[16] Nvidia a100 gpu white paper. [Online]. Avail-
able: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

[17] Pcie 3.0 white paper. [Online]. Available: https://www.intel.com.ec/
content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf

[18] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin,
X. Liang, J. Calhoun, D. Tao et al., ªCusz: An efficient gpu-based error-
bounded lossy compression framework for scientific data,º in Proceed-

ings of the ACM International Conference on Parallel Architectures and

Compilation Techniques, 2020, pp. 3±15.

[19] X. Yu, S. Di, K. Zhao, J. Tian, D. Tao, X. Liang, and F. Cappello,
ªUltrafast error-bounded lossy compression for scientific datasets,º in

Proceedings of the 31st International Symposium on High-Performance

Parallel and Distributed Computing, 2022, pp. 159±171.

[20] X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress,
D. Pugmire, M. Wolf, N. Podhorszki et al., ªMgard+: Optimizing
multilevel methods for error-bounded scientific data reduction,º IEEE

Transactions on Computers, vol. 71, no. 7, pp. 1522±1536, 2021.

[21] P. Lindstrom, ªcuzfp,º https://github.com/LLNL/zfp/tree/develop/src/
cuda zfp.

[22] B. Zhang, J. Tian, S. Di, X. Yu, Y. Feng, X. Liang, D. Tao, and
F. Cappello, ªFz-gpu: A fast and high-ratio lossy compressor for
scientific computing applications on gpus,º in Proceedings of the 32nd

International Symposium on High-Performance Parallel and Distributed

Computing. ACM, 2023, pp. 129±142.

[23] Y. Huang, S. Di, X. Yu, G. Li, and F. Cappello, ªcuszp: An ultra-fast gpu
error-bounded lossy compression framework with optimized end-to-end
performance,º in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2023, pp.
1±13.

[24] V. Volkov, Understanding latency hiding on GPUs. University of
California, Berkeley, 2016.

[25] D. Merrill and M. Garland, ªSingle-pass parallel prefix scan with
decoupled look-back,º NVIDIA, Tech. Rep. NVR-2016-002, 2016.

[26] J. Chen, L. Wan, X. Liang, B. Whitney, Q. Liu, D. Pugmire, N. Thomp-
son, J. Y. Choi, M. Wolf, T. Munson et al., ªAccelerating multigrid-
based hierarchical scientific data refactoring on gpus,º in 2021 IEEE

International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2021, pp. 859±868.

[27] J. Diffenderfer, A. L. Fox, J. A. Hittinger, G. Sanders, and P. G.
Lindstrom, ªError analysis of zfp compression for floating-point data,º
SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. A1867±
A1898, 2019.

[28] P. Lindstrom, ªFixed-rate compressed floating-point arrays,º IEEE trans-

actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674±2683, 2014.

[29] J. Thayer, D. Damiani, C. Ford, M. Dubrovin, I. Gaponenko,
C. O’Grady, W. Kroeger, J. Pines, T. Lane, A. Salnikov et al., ªData
systems for the linac coherent light source,º Advanced structural and

chemical imaging, vol. 3, pp. 1±13, 2017.

[30] W. Xu, Y. Zhang, and X. Tang, ªParallelizing dnn training on gpus:
Challenges and opportunities,º in Companion Proceedings of the Web

Conference 2021, 2021, pp. 174±178.

[31] Y. Ko, K. Choi, J. Seo, and S.-W. Kim, ªAn in-depth analysis of
distributed training of deep neural networks,º in 2021 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021,
pp. 994±1003.

[32] C. Dun, C. R. Wolfe, C. M. Jermaine, and A. Kyrillidis, ªResist: Layer-
wise decomposition of resnets for distributed training,º in Uncertainty

in Artificial Intelligence. PMLR, 2022, pp. 610±620.

[33] S. C. Gundabolu, T. Vijaykumar, and M. Thottethodi, ªFastz: acceler-
ating gapped whole genome alignment on gpus,º in Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2021, pp. 1±13.

[34] M. G. Awan, S. Hofmeyr, R. Egan, N. Ding, A. Buluc, J. Deslippe,
L. Oliker, and K. Yelick, ªAccelerating large scale de novo metagenome
assembly using gpus,º in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1±11.

[35] J. Huang, S. Di, X. Yu, Y. Zhai, J. Liu, Y. Huang, K. Raffenetti,
H. Zhou, K. Zhao, X. Lu et al., ªgzccl: Compression-accelerated
collective communication framework for gpu clusters,º in Proceedings

of the 38th ACM International Conference on Supercomputing, 2024,
pp. 437±448.

[36] J. Huang, S. Di, X. Yu, Y. Zhai, J. Liu, Y. Huang, K. Raffenetti, H. Zhou,
K. Zhao, Z. Chen et al., ªPoster: Optimizing collective communications
with error-bounded lossy compression for gpu clusters,º in Proceedings

of the 29th ACM SIGPLAN Annual Symposium on Principles and

Practice of Parallel Programming, 2024, pp. 454±456.

[37] Q. Zhou, C. Chu, N. Kumar, P. Kousha, S. M. Ghazimirsaeed, H. Sub-
ramoni, and D. K. Panda, ªDesigning high-performance mpi libraries
with on-the-fly compression for modern gpu clusters,º in 2021 IEEE

International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2021, pp. 444±453.

[38] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M.
Arblaster, S. Bates, G. Danabasoglu, J. Edwards et al., ªThe community

earth system model (cesm) large ensemble project: A community
resource for studying climate change in the presence of internal climate
variability,º Bulletin of the American Meteorological Society, vol. 96,
no. 8, pp. 1333±1349, 2015.

[39] J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett,
M. A. Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley
et al., ªQmcpack: an open source ab initio quantum monte carlo package
for the electronic structure of atoms, molecules and solids,º Journal of

Physics: Condensed Matter, vol. 30, no. 19, p. 195901, 2018.
[40] K. Fatahalian, J. Sugerman, and P. Hanrahan, ªUnderstanding the effi-

ciency of gpu algorithms for matrix-matrix multiplication,º in Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2004, pp. 133±137.
[41] P. Jiang, C. Hong, and G. Agrawal, ªA novel data transformation and

execution strategy for accelerating sparse matrix multiplication on gpus,º
in Proceedings of the 25th ACM SIGPLAN symposium on principles and

practice of parallel programming, 2020, pp. 376±388.
[42] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang, ªA

systematic survey of general sparse matrix-matrix multiplication,º ACM

Computing Surveys, vol. 55, no. 12, pp. 1±36, 2023.
[43] E. Baysal, D. D. Kosloff, and J. W. Sherwood, ªReverse time migration,º

Geophysics, vol. 48, no. 11, pp. 1514±1524, 1983.
[44] D. Nuzman, I. Rosen, and A. Zaks, ªAuto-vectorization of interleaved

data for simd,º ACM SIGPLAN Notices, vol. 41, no. 6, pp. 132±143,
2006.

[45] S. S. Baghsorkhi, N. Vasudevan, and Y. Wu, ªFlexvec: Auto-
vectorization for irregular loops,º in Proceedings of the 37th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2016, pp. 697±710.
[46] J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and F. Cappello,

ªRevisiting huffman coding: Toward extreme performance on modern
gpu architectures,º in 2021 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). IEEE, 2021, pp. 881±891.
[47] M. Shah, X. Yu, S. Di, M. Becchi, and F. Cappello, ªLightweight

huffman coding for efficient gpu compression,º in Proceedings of the

37th International Conference on Supercomputing, 2023, pp. 99±110.
[48] A. Balevic, ªParallel variable-length encoding on gpgpus,º in Euro-

Par 2009±Parallel Processing Workshops: HPPC, HeteroPar, PROPER,

ROIA, UNICORE, VHPC, Delft, The Netherlands, August 25-28, 2009,

Revised Selected Papers 15. Springer, 2010, pp. 26±35.
[49] B. Zhang, J. Tian, S. Di, X. Yu, M. Swany, D. Tao, and F. Cappello,

ªGpulz: Optimizing lzss lossless compression for multi-byte data on
modern gpus,º in Proceedings of the 37th International Conference on

Supercomputing, 2023, pp. 348±359.
[50] M. Harris, S. Sengupta, and J. D. Owens, ªParallel prefix sum (scan)

with cuda,º GPU gems, vol. 3, no. 39, pp. 851±876, 2007.
[51] R. Nasre, M. Burtscher, and K. Pingali, ªAtomic-free irregular computa-

tions on gpus,º in Proceedings of the 6th Workshop on General Purpose

Processor Using Graphics Processing Units, 2013, pp. 96±107.
[52] S. Yan, G. Long, and Y. Zhang, ªStreamscan: fast scan algorithms

for gpus without global barrier synchronization,º in Proceedings of the

18th ACM SIGPLAN symposium on Principles and practice of parallel

programming, 2013, pp. 229±238.
[53] S. Maleki and M. Burtscher, ªAutomatic hierarchical parallelization of

linear recurrences,º ACM SIGPLAN Notices, vol. 53, no. 2, pp. 128±138,
2018.

[54] Argonne swing cluster. [Online]. Available: https://www.lcrc.anl.gov/
systems/swing

[55] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, ªSdrbench: Scientific data reduction benchmark for lossy
compressors,º in 2020 IEEE international conference on big data (Big

Data). IEEE, 2020, pp. 2716±2724.

[56] P. Klacansky, ªOpen scivis datasets,º December 2017,

https://klacansky.com/open-scivis-datasets/.
[Online]. Available: https://klacansky.com/open-scivis-datasets/

[57] S. Li, P. Lindstrom, and J. Clyne, ªLossy scientific data com-
pression with sperr,º in 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2023, pp.
1007±1017.

[58] T. Lu, Y. Zhong, Z. Sun, X. Chen, Y. Zhou, F. Wu, Y. Yang,
Y. Huang, and Y. Yang, ªAdt-fse: A new encoder for sz,º in Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2023, pp. 1±13.

[59] A. Rodriguez, N. Azami, and M. Burtscher, ªAdaptive per-file
lossless compression of floating-point data.º

[60] G.-Y. Lien, T. Miyoshi, S. Nishizawa, R. Yoshida, H. Yashiro,
S. A. Adachi, T. Yamaura, and H. Tomita, ªThe near-real-time
scale-letkf system: A case of the september 2015 kanto-tohoku
heavy rainfall,º Sola, vol. 13, pp. 1±6, 2017.

[61] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. LukiÂc, and
E. Van Andel, ªNyx: A massively parallel amr code for compu-
tational cosmology,º The Astrophysical Journal, vol. 765, no. 1,
p. 39, 2013.

[62] R. W. Grout, A. Gruber, H. Kolla, P.-T. Bremer, J. Bennett,
A. Gyulassy, and J. Chen, ªA direct numerical simulation study
of turbulence and flame structure in transverse jets analysed in
jet-trajectory based coordinates,º Journal of Fluid Mechanics,
vol. 706, pp. 351±383, 2012.

[63] A. W. Cook, W. Cabot, and P. L. Miller, ªThe mixing transition
in rayleigh±taylor instability,º Journal of Fluid Mechanics, vol.
511, pp. 333±362, 2004.

[64] P. Klacansky, H. Miao, A. Gyulassy, A. Townsend, K. Champ-
ley, J. Tringe, V. Pascucci, and P.-T. Bremer, ªVirtual inspection
of additively manufactured parts,º in 2022 IEEE 15th Pacific
Visualization Symposium (PacificVis). IEEE, 2022, pp. 81±90.

[65] A. Hore and D. Ziou, ªImage quality metrics: Psnr vs. ssim,º
in 2010 20th international conference on pattern recognition.
IEEE, 2010, pp. 2366±2369.

[66] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
ªImage quality assessment: from error visibility to structural
similarity,º IEEE transactions on image processing, vol. 13,
no. 4, pp. 600±612, 2004.

[67] J. H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R.
Hawkes, S. Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey,
N. Podhorszki et al., ªTerascale direct numerical simulations
of turbulent combustion using s3d,º Computational Science &
Discovery, vol. 2, no. 1, p. 015001, 2009.

[68] E. Apra, E. Bylaska, W. de Jong, N. Govind, K. Kowalski,
T. Straatsma, M. Valiev, H. van Dam, Y. Alexeev, J. Anchell
et al., ªNwchem,º 2020.

[69] G. MÈuller, ªStatic multiresolution grids with inline hierarchy
information for cosmic ray propagation,º Journal of Cosmology
and Astroparticle Physics, vol. 2016, no. 08, p. 025, 2016.

[70] F. Knorr, P. Thoman, and T. Fahringer, ªndzip-gpu: efficient
lossless compression of scientific floating-point data on gpus,º
in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2021, pp.
1±14.

[71] F. Zhang, Y. Hu, H. Ding, Z. Yao, Z. Wei, X. Zhang, and
X. Du, ªOptimizing random access to hierarchically-compressed
data on gpu,º in SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE, 2022, pp. 1±15.

[72] S. Song and P. Jiang, ªRethinking graph data placement for
graph neural network training on multiple gpus,º in Proceedings
of the 36th ACM International Conference on Supercomputing,
2022, pp. 1±10.

[73] S. Li, F. Tu, L. Liu, J. Lin, Z. Wang, Y. Kang, Y. Ding, and
Y. Xie, ªEcssd: Hardware/data layout co-designed in-storage-
computing architecture for extreme classification,º in Proceed-
ings of the 50th Annual International Symposium on Computer
Architecture, 2023, pp. 1±14.

[74] W. Chen, Z. Mo, H. Xu, K. Ye, and C. Xu, ªInterference-aware
multiplexing for deep learning in gpu clusters: A middleware
approach,º in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, 2023, pp. 1±15.

[75] Nvcomp. [Online]. Available: https://github.com/NVIDIA/
nvcomp

[76] X. Liang, S. Di, S. Li, D. Tao, B. Nicolae, Z. Chen, and F. Cap-
pello, ªSignificantly improving lossy compression quality based
on an optimized hybrid prediction model,º in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019, pp. 1±26.

[77] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, ªMul-
tilevel techniques for compression and reduction of scientific
dataÐthe univariate case,º Computing and Visualization in Sci-
ence, vol. 19, no. 5, pp. 65±76, 2018.

[78] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok,
J. Tian, J. Deng, J. C. Calhoun, D. Tao et al., ªSz3: A modular
framework for composing prediction-based error-bounded lossy
compressors,º IEEE Transactions on Big Data, vol. 9, no. 2, pp.
485±498, 2022.

[79] S. Di, J. Liu, K. Zhao, X. Liang, R. Underwood, Z. Zhang,
M. Shah, Y. Huang, J. Huang, X. Yu et al., ªA survey on
error-bounded lossy compression for scientific datasets,º arXiv
preprint arXiv:2404.02840, 2024.

[80] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and
F. Cappello, ªSignificantly improving lossy compression for hpc
datasets with second-order prediction and parameter optimiza-
tion,º in Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, 2020,
pp. 89±100.

[81] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and
F. Cappello, ªOptimizing error-bounded lossy compression for
scientific data by dynamic spline interpolation,º in 2021 IEEE
37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 1643±1654.

[82] M. A. O’Neil and M. Burtscher, ªFloating-point data compres-
sion at 75 gb/s on a gpu,º in Proceedings of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units,
2011, pp. 1±7.

[83] A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher, ªMpc:
a massively parallel compression algorithm for scientific data,º
in 2015 IEEE International Conference on Cluster Computing.
IEEE, 2015, pp. 381±389.

[84] J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao,
and F. Cappello, ªWavesz: A hardware-algorithm co-design of
efficient lossy compression for scientific data,º in Proceedings of
the 25th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2020, pp. 74±88.

[85] S. Song, Y. Huang, P. Jiang, W. Zheng, S. Di, Q. Cao, Y. Feng,
Z. Xie, and F. Cappello, ªCeresz: Enabling and scaling error-
bounded lossy compression on cerebras cs-2,º in Proceedings of
the 33rd International Symposium on High-Performance Parallel
and Distributed Computing, 2024.

[86] H. Ltaief, Y. Hong, L. Wilson, M. Jacquelin, M. Ravasi, and
D. E. Keyes, ªScaling the ªmemory wallº for multi-dimensional
seismic processing with algebraic compression on cerebras cs-
2 systems,º in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2023, pp. 1±12.

[87] Y. Zhou, F. Zhang, T. Lin, Y. Huang, S. Long, J. Zhai, and
X. Du, ªF-tadoc: Fpga-based text analytics directly on compres-
sion with hls,º in 2024 IEEE 40th International Conference on
Data Engineering (ICDE). IEEE, 2024, pp. 3739±3752.

[88] M. K. Tavana, Y. Sun, N. B. Agostini, and D. Kaeli, ªExploiting
adaptive data compression to improve performance and energy-
efficiency of compute workloads in multi-gpu systems,º in
2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2019, pp. 664±674.

[89] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, ªMitigat-
ing silent data corruptions in hpc applications across multiple
program inputs,º in SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE, 2022, pp. 1±14.

[90] Y. Li, A. Kashyap, W. Chen, Y. Guo, and X. Lu, ªAccelerating
lossy and lossless compression on emerging bluefield dpu archi-
tectures,º in 2024 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2024, pp. 373±385.

[91] Cerebras ai chips. [Online]. Available: https://www.cerebras.net/

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We summarize the drawbacks of existing GPU lossy

compressors and redefine the appropriate metrics for

evaluating lossy compressors on GPU.

C2 We propose and implement a new GPU error-

bounded lossy compressor called cuSZp21, with ex-

treme throughput and optimized compression ratios,

by integrating a novel lossless encoding method, op-

timized memory access patterns, and latency control.

C3 We evaluate cuSZp2 with three state-of-the-art pure

GPU compressors from three perspectives, including

throughput, compression ratios, and data quality.

C4 We propose four important use cases and evaluate

cuSZp2, including double-precision support, random

access support, lower-end GPU support, and a multi-

dimensional version of cuSZp2.

B. Computational Artifacts

The AD/AE version of the artifact can be downloaded

through the following Links.

A1 https://github.com/hyfshishen/SC24-cuSZp22 and its

corresponding generated persistent Zenodo DOI

https://zenodo.org/doi/10.5281/zenodo.13315525.

Artifact Contributions Related

ID Supported Paper Elements

A1 C1 Sec. II

A1 C2 Sec. IV

A1 C3 Sec. V

A1 C4 Sec. VI

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact includes the source code of the proposed ultra-

fast error-bounded GPU compressor ± cuSZp2. All four major

contributions identified in this work are based on the proposed

cuSZp2, including (1) strict throughput measurement, (2)

optimized implementation, (3) comprehensive measurements,

and (4) proposed use cases (e.g. random access support).

1cuSZp2 follows a similar 4-stage compression pipeline compared with
cuSZp ± so that we decided to name it as cuSZp2. However, the implemen-
tation and algorithm of each stage in cuSZp2 are significantly different.

2This repository is only for AD/AE purposes (e.g. including the execution
script for each discussion subsection). The publicly available version for
cuSZp2 can be found in GitHub Link: https://github.com/szcompressor/cuSZp.

Expected Results

After compiling the cuSZp2 code and executing the gener-

ated binary, the results will be printed in the command line

environment. Note that we integrate the time measurement

inside the code. All results should be consistent with what

is reported in the paper. Specifically:

1) The best throughput of all existing GPU compressors.

2) Higher compression ratios than FZ-GPU and cuSZp.

3) Better isosurface visualization compared with cuZFP.

Note that all baseline compressors, including FZ-GPU, cuSZp,

and cuZFP, along with adopted HPC datasets (SDRBench and

Open-SciVis), are publicly available.

Expected Reproduction Time

The major goal of GPU compression is throughput, so a

single pass for compression and decompression in cuSZp2 on

all datasets can be executed within several seconds. However,

compilation, measurement, and visualization may take differ-

ent efforts. These efforts are explained below:

• Compilation: Several minutes for cuSZp2 repository.

• Throughput: Several seconds for one compressor on one

field of one dataset (including passing data to GPU,

kernel execution, and printing all required information).

• Compression Ratio: Several seconds for one compressor

on one field of one dataset. The same as throughput.

• Data Quality: We visualize the isosurface to evaluate

reconstructed data quality using Mayavi, a Python-based

tool. One RTM field may take around 10 minutes.

Artifact Evaluation (AE)

In this section, we will provide the detailed steps to repro-

duce paper results. The required code is updated in a GitHub

repository mentioned before. For simplicity, we will use the

name GSZ (the name of cuSZp2 in the paper submission

version) in this section ± they here refer to the same thing.

For the two encoding mode, GSZ-P and GSZ-O denote, GSZ

with plain and outlier fixed-length encoding, respectively.

Artifact Setup (incl. Inputs)

■ Hardware: Most evaluations are conducted on NVIDIA

Ampere A100 GPU (40 GB). The compatibility for lower-end

GPU (in the Discussion Section) requires NVIDIA RTM 3090

and NVIDIA RTM 3080 (10 GB) GPUs.

■ Software:

• Git 2.15 or newer

• CMake 3.21 or newer

• CUDA Toolkit 11.0 or newer

• No requirement for GCC, better with 7.0 and newer

• Python3 and Mayavi Package.

■ Datasets: The metadata (including dimension) of each

dataset can be found in Table I. Downloading information for

each dataset can be found in the bullet point below:

• SDRBench datasets can be found in LINK.

– CESM-ATM: Download-Link

– HACC: Download-Link

– RTM: We exclude RTM due to confidential issues.

– SCALE: Download-Link

– QMCPack: Download-Link

– NYX: Download-Link

• Open-SciVis datasets can be found in LINK.

– JetIn: Download-Link

– Miranda: Download-Link

– SynTruss: Download-Link

The dataset can be downloaded using wget command.

Datasets Suite Dims per Field # Fields Total Size

CESM-ATM SDRBench 3600×1800×26 33 20.71 GB
HACC SDRBench 1,073,726,487 6 23.99 GB
RTM SDRBench 1008×1008×352 3 3.99 GB
SCALE SDRBench 1200×1200×98 12 6.31 GB
QMCPack SDRBench 69×69×33120 2 1.17 GB
NYX SDRBench 512×512×512 6 3.00 GB
JetIn Open-SciVis 1408×1080×1100 1 6.23 GB
Miranda Open-SciVis 1024×1024×1024 1 4.00 GB
SynTruss Open-SciVis 1200×1200×1200 1 6.42 GB

TABLE I
METADATA FOR REAL-WORLD HPC DATASETS USED IN THIS WORK.

■ Installation and Deployment of cuSZp2:

1 # Step 1: Download cuSZp2 source code

2 git clone https://github.com/hyfshishen/SC24-cuSZp2.git

3

4 # Step 2: Go to target building directory

5 cd SC24-cuSZp2/main-results && mkdir build && cd build

6

7 # Step 3: Prepare makefile using CMake.

8 cmake -DCMAKE_BUILD_TYPE=Release \

9 -DCMAKE_INSTALL_PREFIX=../install ..

10

11 # Step 4: Make and Install

12 make -j && make install

You can see two executable binary gsz_p and gsz_o

generated in folder main-results/install/bin/ .

These two executable binary represent GSZ-P and GSZ-O

mentioned in paper (for Figure 14, Table III, and Figure 21).

Artifact Execution

We use HACC dataset and GSZ-P as an example. GSZ-O

will be executed in the exactly same way. Besides, since all

fields in one dataset will exhibit similar throughput and con-

sistent compression ratios, so executing one field to showcase

the results and compressibility of GSZ compressor.

Given an error bound REL 1E-3 and field vx.f32 ,

GSZ-P can compress it by command:

1 cd main-results/install/bin/

2

3 ./gsz_p vx.f32 1e-3

4 # 1e-3 here denotes the relative error bound;

5 # you can also set it as 0.001.

After that, you can see output as below:

1 GSZ finished!

2 GSZ compression end-to-end speed: 359.554510 GB/s

3 GSZ decompression end-to-end speed: 437.775719 GB/s

4 GSZ compression ratio: 5.365436

5

6 Pass error check!

• The compression end-to-end speed (i.e. throughput) re-

flects to the HACC bar mentioned in Figure-14-(c).

• The decompression end-to-end speed (i.e. throughput)

reflects to the HACC bar mentioned in Figure-14-(d).

• The compression ratio is reported in Table III.

• If you are executing those scripts in other GPUs, such

as 3080 and 3080. The throughput that reported denote

Figure-21.

• The Pass error check! is the interal error bound checking.

Other datasets and GSZ-O will work in the same way.

Artifact Oneline Execution

Reproducing MAIN Results

In this part, we can reproduce all experiments about Figure

14 and Table III with several wrap-up python (version 3+)

command lines, including:

• Dataset prepartion.

• GSZ compilation.

• Execution and results observation.

The three procedures are described in the code block below.

1 # Step 1: Dataset preparation

2 cd SC24-cuSZp2/

3 python dataset-preparation.py

4 # After that, all datasets will be prepared in the folder

5 # SC24-cuSZp2/dataset, and we can go to the next step.

6

7 # Step 2: GSZ compilation

8 cd SC24-cuSZp2/main-results

9 python 0-compilation.py

10 # After that, the compilation of GSZ will be finished,

11 and we can go to the next step (execution).

12

13 # Step 3: GSZ execution

14 cd SC24-cuSZp2/main-results # The same folder as Step 2.

15 python 1-execution.py ERROR-BOUND-YOU-WANT-TO-EXECUTE

16 # python 1-execution.py 1E-2

17 # python 1-execution.py 1E-3

18 # python 1-execution.py 1E-4

After the execution, you can observe an output. We

use python 1-execution.py 1E-3 to understand

such output. After that, you can see a generated output as

shown in the following code block.

1 ==

2 Done with Execution GSZ-P and GSZ-O on cesm_atm under 1e-3

3 GSZ-P compression throughput: 267.28176896969694 GB/s

4 GSZ-P decompression throughput: 395.9575038787878 GB/s

5 GSZ-P max compression ratio: 39.039537

6 GSZ-P min compression ratio: 2.776141

7 GSZ-P avg compression ratio: 14.53542281818182

8

9 GSZ-O compression throughput: 256.82364506060605 GB/s

10 GSZ-O decompression throughput: 409.47252312121213 GB/s

11 GSZ-O max compression ratio: 57.453092

12 GSZ-O min compression ratio: 12.995819

13 GSZ-O avg compression ratio: 24.53496509090909

14 ==

15

16 ==

17 Done with Execution GSZ-P and GSZ-O on hacc under 1e-3

18 GSZ-P compression throughput: 339.03042400000004 GB/s

19 GSZ-P decompression throughput: 431.46155999999996 GB/s

20 GSZ-P max compression ratio: 5.365436

21 GSZ-P min compression ratio: 3.451861

22 GSZ-P avg compression ratio: 4.405594000000001

23

24 GSZ-O compression throughput: 344.9251053333334 GB/s

25 GSZ-O decompression throughput: 459.2428156666667 GB/s

26 GSZ-O max compression ratio: 12.470066

27 GSZ-O min compression ratio: 5.851711

28 GSZ-O avg compression ratio: 8.823446833333334

29 ==

30

31 ==

32 Done with Execution GSZ-P and GSZ-O on scale under 1e-3

33 GSZ-P compression throughput: 240.40884108333333 GB/s

34 GSZ-P decompression throughput: 335.2613445 GB/s

35 GSZ-P max compression ratio: 72.598979

36 GSZ-P min compression ratio: 2.750328

37 GSZ-P avg compression ratio: 21.11330458333333

38

39 GSZ-O compression throughput: 250.15284741666665 GB/s

40 GSZ-O decompression throughput: 316.6550965833334 GB/s

41 GSZ-O max compression ratio: 79.695224

42 GSZ-O min compression ratio: 11.102816

43 GSZ-O avg compression ratio: 29.52363491666667

44 ==

45

46 ==

47 Done with Execution GSZ-P and GSZ-O on qmcpack under 1e-3

48 GSZ-P compression throughput: 236.19716549999998 GB/s

49 GSZ-P decompression throughput: 315.8376475 GB/s

50 GSZ-P max compression ratio: 10.075567

51 GSZ-P min compression ratio: 6.076028

52 GSZ-P avg compression ratio: 8.0757975

53

54 GSZ-O compression throughput: 183.3123765 GB/s

55 GSZ-O decompression throughput: 319.8198355 GB/s

56 GSZ-O max compression ratio: 13.296692

57 GSZ-O min compression ratio: 6.077027

58 GSZ-O avg compression ratio: 9.6868595

59 ==

60

61 ==

62 Done with Execution GSZ-P and GSZ-O on nyx under 1e-3

63 GSZ-P compression throughput: 244.1977426666667 GB/s

64 GSZ-P decompression throughput: 305.4707613333333 GB/s

65 GSZ-P max compression ratio: 125.551299

66 GSZ-P min compression ratio: 5.090097

67 GSZ-P avg compression ratio: 38.44212666666666

68

69 GSZ-O compression throughput: 244.53299016666665 GB/s

70 GSZ-O decompression throughput: 326.64762433333334 GB/s

71 GSZ-O max compression ratio: 125.560284

72 GSZ-O min compression ratio: 10.501972

73 GSZ-O avg compression ratio: 41.756694333333336

74 ==

75

76 ==

77 Done with Execution GSZ-P and GSZ-O on jetin under 1e-3

78 GSZ-P compression throughput: 559.848637 GB/s

79 GSZ-P decompression throughput: 2626.161979 GB/s

80 GSZ-P max compression ratio: 119.858277

81 GSZ-P min compression ratio: 119.858277

82 GSZ-P avg compression ratio: 119.858277

83

84 GSZ-O compression throughput: 554.342144 GB/s

85 GSZ-O decompression throughput: 2658.088986 GB/s

86 GSZ-O max compression ratio: 120.064674

87 GSZ-O min compression ratio: 120.064674

88 GSZ-O avg compression ratio: 120.064674

89 ==

90

91 ==

92 Done with Execution GSZ-P and GSZ-O on miranda under 1e-3

93 GSZ-P compression throughput: 297.81917 GB/s

94 GSZ-P decompression throughput: 420.187394 GB/s

95 GSZ-P max compression ratio: 3.038741

96 GSZ-P min compression ratio: 3.038741

97 GSZ-P avg compression ratio: 3.038741

98

99 GSZ-O compression throughput: 330.657079 GB/s

100 GSZ-O decompression throughput: 423.426028 GB/s

101 GSZ-O max compression ratio: 5.981446

102 GSZ-O min compression ratio: 5.981446

103 GSZ-O avg compression ratio: 5.981446

104 ==

105

106 ==

107 Done with Execution GSZ-P and GSZ-O on syntruss under 1e-3

108 GSZ-P compression throughput: 319.446766 GB/s

109 GSZ-P decompression throughput: 317.919891 GB/s

110 GSZ-P max compression ratio: 6.371377

111 GSZ-P min compression ratio: 6.371377

112 GSZ-P avg compression ratio: 6.371377

113

114 GSZ-O compression throughput: 354.674088 GB/s

115 GSZ-O decompression throughput: 485.769935 GB/s

116 GSZ-O max compression ratio: 6.470316

117 GSZ-O min compression ratio: 6.470316

118 GSZ-O avg compression ratio: 6.470316

119 ==

To understand such results.

• º1E-3º denotes throughput in Fig.14 (c) and (d) (whereas

º1E-2º denote (a) and (b), º1E-4º denote (e) and (f)).

• For the throughput, you may observe a similar number

as the bar shown in Figure 14.

• For the compression ratio, you may observe the number

as reported in Table III.

• For the baseline compressors, our evaluations are consis-

tent with existing works (e.g. cuSZp and FZ-GPU). So

that they can be directly found in Figure itself.

Reproducing RTM Results

In this part, we can reproduce all experiments related to

RTM dataset within just several scripts. Note that the link to

this dataset is not directly provided in this repository due to

confidential issues ± it can only be accessed internally in the

AD-AE discussion. Assuming we already have our datasets,

the execution step of this phase includes:

• GSZ compilation.

• Execution and results observation. (this step can repro-

duce the results about throughput and compression ratio

in Figure.14 and Table.III)

Since RTM dataset only has three fields: pressure 1000,

pressure 2000, and pressure 3000, the dataset preparation

steps are described in the text below. In all, the execution to

reproduce all experiments is shown as the code block below.

1 # Step 0: Dataset preparation

2 cd SC24-cuSZp2/rtm-evaluation-results/

3 # Download pressure_1000, pressure_2000,

4 # and pressure_3000 manually from Google Drive.

5 # After that, when you list all files in this folder,

6 # all files should be arranged as below.

7 ls

8 1-compilation.py 2-execution.py 3-visualization.py cmake

9 CMakeLists.txt Config.cmake.in examples include

10 pressure_1000 pressure_2000 pressure_3000 src

11

12 # Step 1: GSZ compilation

13 python 1-compilation.py

14 # After that, the compilation of GSZ will be finished,

15 # and we can go to the next step (execution).

16

17 # Step 3: GSZ execution

18 python 2-execution.py

19 # After that, both GSZ-P and GSZ-O compression will be

20 # conducted under the error bound 1E-2, 1E-3, and 1E-4.

After the execution, results similar to the code block shown

below can be seen (such results are still measured on A100).

1 =====================================

2 GSZ-O 1E-3 Execution on Pressure_1000

3 =====================================

4 GSZ finished!

5 GSZ compression end-to-end speed: 469.758409 GB/s

6 GSZ decompression end-to-end speed: 1146.214499 GB/s

7 GSZ compression ratio: 84.968878

8

9 Pass error check!

10

11 =====================================

12 GSZ-O 1E-3 Execution on Pressure_2000

13 =====================================

14 GSZ finished!

15 GSZ compression end-to-end speed: 399.663872 GB/s

16 GSZ decompression end-to-end speed: 625.772303 GB/s

17 GSZ compression ratio: 23.767280

18

19 Pass error check!

20

21 =====================================

22 GSZ-O 1E-3 Execution on Pressure_3000

23 =====================================

24 GSZ finished!

25 GSZ compression end-to-end speed: 336.690098 GB/s

26 GSZ decompression end-to-end speed: 464.315184 GB/s

27 GSZ compression ratio: 12.002271

28

29 Pass error check!

Reproducing Double-Precision

In this part, we can reproduce all experiments related to

double-precision datasets within just several scripts. Note that

the data preparation step may take some time since S3D

dataset is more than 50 GB, and downloading it may take

some time. More information about the evaluated two double-

precision datasets (both are from SDRBench) can be found in

the table below.

It is worth mentioning that, similar to previous sections,

all provided scripts executed in Python are still under Python

3.0+. Specifically, the scripts include:

Datasets Suite Dims per Field # Fields Total Size

S3D SDRBench 11×500×500×500 5 51.22 GB

NWChem SDRBench 801,098,891 1 5.96 GB

TABLE II
REAL-WORLD DOUBLE-PRECISION HPC DATASETS.

• Dataset prepartion.

• GSZ compilation.

• Execution and results observation. (this step can repro-

duce the results)

Specifically, the first three procedures are explained in the code

block below.

1 # Step 1: Dataset preparation

2 cd SC24-cuSZp2/double-precision-results

3 python 0-dataset-preparation.py

4 # This step may take some time,

5 # since s3d dataset is more than 50 GB.

6

7 # Step 2: GSZ compilation

8 python 1-compilation.py

9 # After that, the compilation of GSZ will be finished,

10 # and we can go to the next step (execution).

11

12 # Step 3: GSZ execution

13 python 2-execution.py ERROR-BOUND-YOU-WANT-TO-EXECUTE

14 # There are 3 error-bounds, so the demo input includes:

15 # python 2-execution.py 1E-2

16 # python 2-execution.py 1E-3

17 # python 2-execution.py 1E-4

After the execution, you can observe an output. We will

then use python 2-execution.py 1E-2 to understand

such output. After that, you can see a generated output as

shown in the following code block.

1 ==

2 Done with Execution GSZ-P and GSZ-O on nwchem under 1e-2

3 GSZ-P compression throughput: 652.95619 GB/s

4 GSZ-P decompression throughput: 2350.036331 GB/s

5 GSZ-P max compression ratio: 82.506696

6 GSZ-P min compression ratio: 82.506696

7 GSZ-P avg compression ratio: 82.506696

8

9 GSZ-O compression throughput: 656.172996 GB/s

10 GSZ-O decompression throughput: 2326.732979 GB/s

11 GSZ-O max compression ratio: 82.51842

12 GSZ-O min compression ratio: 82.51842

13 GSZ-O avg compression ratio: 82.51842

14 ==

15

16 ==

17 Done with Execution GSZ-P and GSZ-O on s3d under 1e-2

18 GSZ-P compression throughput: 678.3954736 GB/s

19 GSZ-P decompression throughput: 1221.6985906 GB/s

20 GSZ-P max compression ratio: 44.289605

21 GSZ-P min compression ratio: 44.273392

22 GSZ-P avg compression ratio: 44.2824034

23

24 GSZ-O compression throughput: 712.9922364 GB/s

25 GSZ-O decompression throughput: 1318.336099 GB/s

26 GSZ-O max compression ratio: 90.287397

27 GSZ-O min compression ratio: 89.566029

28 GSZ-O avg compression ratio: 89.8573926

29 ==

	Introduction
	Motivation for Ultra-Fast GPU Lossy Compression
	Limitations of Existing Works and Goal
	Our Solution: cuSZp2

	Rethinking Throughput in GPU Lossy Compressors: Why End-to-End?
	cuSZp2: High-level Overview
	cuSZp2: Key Designs
	Outlier Fixed-length Encoding (in ➋)
	Vectorized Memory Accesses (in ➊ and ➍)
	Global Prefix-sum via Decoupled Lookback (in ➌)

	Evaluation
	Experimental Setups
	Platforms
	Dataset
	Compressor Settings

	Throughput
	Compression Ratio
	Data Quality

	Discussion of cuSZp2
	Double-Precision Support
	Random Access Support
	Compatibility with Other NVIDIA GPUs
	Rationale for 1D Data Processing
	Breakdown Throughput Gain Analysis

	Related Works
	Error-bounded Lossy Compression
	Data Compression on NVIDIA GPU
	Compression on Other Heterogeneous Processors

	Conclusion
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1

