FRSZ2 for In-Register Block Compression Inside
GMRES on GPUs

Thomas Griitzmacher* Robert Underwood!

*Karlsruhe Institute of Technology
Technical University of Munich
thomas.gruetzmacher @tum.de

Abstract—The performance of the GMRES iterative solver
on GPUs is limited by the GPU main memory bandwidth.
Compressed Basis GMRES outperforms GMRES by storing the
Krylov basis in low precision, thereby reducing the memory
access. An open question is whether compression techniques
that are more sophisticated than casting to low precision can
enable large runtime savings while preserving the accuracy of
the final results. This paper presents the lightweight in-register
compressor FRSZ2 that can decompress at the bandwidth speed
of a modern NVIDIA H100 GPU. In an experimental evaluation,
we demonstrate using FRSZ2 instead of low precision for
compression of the Krylov basis can bring larger runtime benefits
without impacting final accuracy.

Index Terms—compression, FRSZ2, GMRES, CB-GMRES,
high-performance, sparse, solver, hpc, GPU

I. INTRODUCTION

The Generalized Minimal Residual Method (GMRES) is
a popular method for solving linear systems of equations
iteratively. GMRES is widely used in applications that result
in large, sparse linear systems that are not symmetric positive
definite. Systems of this kind are common in scientific com-
puting applications, ranging from finite element discretizations
over combinatorial problems to circuit simulations. GMRES
builds up out of matrix-vector operations with the system
matrix, vector operations, and orthogonalization, building up
the Krylov subspace and a minimization process. All these
building blocks are memory-bound, and thus the performance
of the GMRES solver is limited by the main memory band-
width of the processor. Consequently, strategies to accelerate
the GMRES method aim to reduce the data transfer. In the
Compressed Basis GMRES (CB-GMRES [1]) method, the
Krylov basis vectors are compressed by conversion to lower
precision formats, e.g., IEEE 754 single precision or half
precision. This strategy reduces the data transfers of the
individual iterations and allows for faster execution of the
iterations while mostly preserving the quality of the final
solution. The information loss caused by storing the Krylov
basis in low precision can delay convergence, experiments
however indicate that in most scenarios the convergence delay
is easily compensated by the faster exection [1]. Converting the
individual vector values to low precision is a straightforward

We thank the U.S. Department of Energy and the National Science
Foundation for funding this work.

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00038

TArgonne National Laboratory
University of Chicago
{runderwood, sdil, cappello}@anl.gov

240

Sheng Dif Franck Cappello? Hartwig Anzt *

YTechnical University of Munich
University of Tennessee, Knoxville
hartwig.anzt @tum.de

compression scheme, and a valid question is whether more
sophisticated compression schemes operating not on a value
level but on a block level allow for higher compression rates
or reduced information loss.

In this paper, we investigate this question by employing
lossy compression for the compression of the Krylov vectors
inside the CB-GMRES algorithm. Lossy compression maps
the input data into a different representation with a smaller
memory footprint through a series of computations that decor-
relate and then encode common patterns in the data leaving a
smaller representation. However, the compression has to hap-
pen in processor registers and needs to be extremely fast to not
incur measurable overhead to the Krylov solver. In particular,
all compression and decompression have to be hidden behind
the memory access. A quick pen-and-paper calculation reveals
this strategy to be viable: The latest Nvidia server line GPU,
the Nvidia H100 GPU, has a memory bandwidth of roughly
2 TB/s and a peak double-precision performance of ~ 25
TFLOP/s. That means an algorithm can execute up to 100
double-precision (64-bit) computations per double-precision
value retrieved from main memory before hitting the compute
peak. For a sparse linear algebra routine executing 4 operations
on each retrieved value, one could consider 96 operations to
be “wasted”. Suppose some of these operations could be used
to compress the data to consume only 32 bits per value. In
that case, the compute-to-read ratio reduces to 50:1 and one
could use 46 operations for compression and decompression
of the double-precision values. While this sounds viable,
several critical aspects constrain the design of the compression
strategy. First, implementing compression and decompression
in only 46 operations is not straightforward and excludes many
sophisticated compression strategies. Second, the compressor
must support at least random access by block to support the
memory access patterns used within CB-GMRES. Third, the
data values to be compressed in CB-GMRES are generally
uncorrelated, presenting a challenge to effectively decorrelate.

This paper presents FRSZ2, a highly specialized compres-
sor designed to support CB-GMRES. Our key contributions
include:

1) We study the impacts of lossy compression error bounds

on this problem to demonstrate that this problem prefers
point-wise error bounds.



2) We identify the bottlenecks of using compression tech-
niques for this problem and accommodate these in the
compressor design.

We describe in detail the design of FRSZ2 and demon-
strate how it integrates into Ginkgo’s CB-GMRES.

We compare FRSZ2 to other compression techniques
and demonstrate that FRSZ2 is the fastest compressor,
achieving performance 99.6% of loading double preci-
sion from memory, which is 1.2 ~ 3.1x faster than the
next fastest compressor cuSZp2 at the roofline.

We report that for selected problems, FRSZ2 compres-
sion can render performance advantages of up to 1.3x
over single-precision compression in CB-GMRES.

We discuss how lossy compression could be used in a
generic framework for accelerating CB-GMRES.

The remainder of the paper is organized as follows: In
Section II, we describe CB-GMRES and describe in detail
where compression can be applied. In Section III and Sec-
tion IV, we present the challenges and how we tackle them
in the design of FRSZ2. We then present our evaluation
methodology in Section V before presenting the experimental
results in Section VI. We provide an overview of related work
in Section VII and conclude in Section VIII with a summary
of the findings, challenges, and potential.

3)

4)

5)

6)

II. BACKGROUND

Krylov methods are an essential building block in scientific
high-performance computing for the rapid solution of large,
sparse linear systems. They approximate the solution in a sub-
space that is generated iteratively in the Krylov solver iteration.
Starting from an initial guess, each iteration adds a Krylov
basis vector by orthogonalizing a new search direction against
the already computed basis until the subspace spanned by the
basis is large enough to contain a solution approximation of
sufficient accuracy. For a problem of dimension n, the exact
solution is available after n iterations, as then the Krylov basis
spans the whole space. However, in practice, a much smaller
number of iterations is typically sufficient to find a suitable
solution approximation. Long recurrence Krylov methods, like
the popular GMRES solver we focus on in this paper, build
up the Krylov basis in main memory, and for each new
search direction, the pre-existing basis has to be retrieved from
main memory for the orthogonalization procedure such that it
can then be appended to the extended basis. This makes the
orthogonalization a memory-bound step that often dominates
the overall solver runtime. A strategy to accelerate the Krylov
solver can thus be to compress the data of the Krylov basis
to reduce the main memory access volume. In [1], the authors
realize this idea by storing the Krylov basis in low precision —
a simple lossy compression technique. The GMRES algorithm
and the compression potential is shown in Figure 1. Reducing
the precision may incur perturbations in the Krylov basis,
thereby harming the convergence. The experimental results,
however, reveal that the slower convergence can typically be
compensated by faster execution. Hence, more Krylov basis
vectors can be generated in less time, thereby still accelerating

241

1. Compute rg := b — Az, 8 := ||rgll2,andv := rg/B.Set V1 = [v]
2. forj:=1,2,...,m

3. Compute w := A(Jv[flv)

4. w = ||wl2

5. Orthogonalize hy.j j := V]-T'w,w =w — Vjhyjj

6. hjt1,5 = llwll2

7. if (hjt1,; < nw)then

8. Re-orthogonalize u := V]-va wi=w — Vju

9. hiijj = hij +u

10. hjy1,5 = llwll2

11. endif

12. if (hjy1,; =0)or(hji1; < nw)thensetm := j and go to step 17, endif
13. vi=w/hji

14. Set Vjp1 := [Vj v]

15.
16.

endfor _

Define the (m + 1) X m Hessenberg matrix H,, = (hiJ)1<1‘,<m,+1 1<i<m
17.
18.

Compute Yy, the minimizer of || Be; — Hypy||2 and @4y, := xg + M1 (oo i)
if satisfied then Stop, else set £ := x4, and go to step 1, endif

Fig. 1: Algorithmic formulation of the restarted GMRES
algorithm for solving sparse linear systems. Sections where
compression can be used are highlighted.

the solution process. In this paper, we replace the compression
of the vector entries based on casting to lower precision with a
more sophisticated block-based compression. The hope is that
higher compression ratios can be achieved while still hiding all
compression and decompression behind the memory access.

III. PROBLEM FORMULATION

Designing block compression inside of GMRES on the GPU
presents several critical requirements on the compressor to
produce a usable solution: 1) Quality: the compression error
must not affect the solution accuracy, 2) Decorrelation: the
compression needs to succeed in reducing the data volume
without sacrificing too much information, and 3) Performance:
The compression and decompression needs to be hidden
behind the memory access to not incur any overhead to the
CB-GMRES algorithm.

In the following subsections, we expand on the definition
of the critical requirements of decorrelation and performance
and how they impact the design of a compressor. We discuss
quality later in Section VI.

A. Decorrelation

The Krylov vectors compressed in GMRES are difficult
to decorrelate. Krylov vectors are normalized, which means
all values are in [—1,1]. Figure 2a-2d show the values and
distribution of the values. While the first iteration of a solver
may show some patterns in the data to be compressed', the
values become uncorrelated in the subsequent iterations. There
is no particular pattern to their ordering or values with both
uniformly distributed over the domain.

To understand why these vectors are hard to decorrelate
and the impact that has on the compressor design, it is
helpful to consider how lossy compressors work. Modern
lossy compressors feature three key stages to achieve high
compression ratios: decorrelation, quantization, and encoding
[2]. Decorrelation is a class of techniques that reduces autocor-
relation in data and produces a new version with a distribution

For example, the solver might initialize the vectors using values from a
sin function.



105

~

20 10

_;...IIIIIH|
40 3

0.02 0.01 0.00 0.01 0.02 0
(a) histogram values (b) histogram exponent
le 5
5 B
151
- _0 -
20 A
5 4
6 2I5 5I0 7I5 160 0 25 50 75 100
(c) values (d) exponent

Fig. 2: Histogram of Exponents and values from the at-
mosmodd matrix. Only the exponent has a few common val-
ues, but values are normally distributed making decorrelation
difficult.

that ideally has a much smaller variance that can then be quan-
tized into fewer values, finally reducing entropy and allowing
improved compression ratios. Each leading lossy compressor
uses different decorrelation mechanisms. For example, SZ uses
a collection of predictors (e.g., cubic spline [3], Lorenzo [4],
block linear regression [5]) to predict later values with earlier
values, and ZFP [6] uses a near orthogonal transform similar
to JPEG. However, all of these methods rely on patterns in
the values to reduce the entropy. Figure 2a reveals that these
patterns do not exist for Krylov vectors. In consequence, the
compression will be ineffective at best or counterproductive
at worst. In the worst case, an ineffective decorrelation mech-
anism can introduce systematized decompression errors or
increase compressed size 2.

Some compression is still possible, as, for example, a
substantial fraction of the values in the Krylov basis share
common exponents, see Figure 2d. This inspires a design that
attempts to decorrelate the exponents but not the values. To
the best of our knowledge, we present the first design for this
kind of decorrelation scheme.

B. Performance

For this paper, we will define the performance challenge in
terms of the speedup relative to the standard GMRES using
IEEE 754 double precision for all arithmetic operations and for
storing the Krylov basis vectors. Additionally, we will compare
against the CB-GMRES algorithm storing the Krylov basis in
single(float32)- and half(float16)-precision, respectively.

The performance envelope for compression is more ag-
gressive than converting to single- or half-precision without
increased information loss, is extremely tight. As explained in
the introduction, there is time for only about 46 instructions
to perform compression and decompression without affecting

2e.g. from space usage overheads from the unpredictable data correction
mechanisms in prediction scheme-based methods like SZ

242

the runtime of the solver. This eliminates entire classes of
encoding stages that use methods such as Huffman encoding
and the embedded encoding used by ZFP that require far too
many instructions, leaving only designs with more primitive
truncation-based encoding schemes.

Notwithstanding the challenges with the decorrelation
schemes used in other ultra-fast GPU compressors discussed
previously in Section III-A, even the fastest compression
schemes with simple encoding schemes such as cuSZp2 [7]
are far too computationally complex and exceed the instruction
limits. Even at its fastest configuration, cuSZp2 achieves only
1241GB/s on an A100 GPU, which is ~ 80% of its bandwidth.
In a more typical case, it achieves closer to 500GB/s, which
is ~ 32% of its bandwidth, making it too slow to be used in
GMRES without an unacceptable slowdown.

Consequently, a highly specialized high throughput com-
pression algorithm is required to compete with compression
based on converting to low precision.

IV. DESIGN

In this section, we detail the new compression format
FRSZ2 that is fast in decompression while retaining more
information per value than IEEE float32 for GMRES. In order
to decorrelate the exponent information of values efficiently,
the format initially evaluates the universally used IEEE 754
double-precision format float64. Each float64 can be separated
into its sign s, 11-bit unsigned exponent e, and 52 significand
bits b51 . . . b1bg. Formula 1 is used to compute the represented
value for the most common format:

value = (—1)* - (1.bs1...b1bg)y - 2671023 (1)

The exponent is stored in an offset-binary representation,
which means it is stored as an unsigned integer and needs to
be subtracted by an offset number to get the actual value. For
float64, this offset is 1023. The significand in (Equ. 1) has a
leading 1 bit, which is not explicitly stored.

The compression aims to group multiple values into a
block and extract their exponent 3. Freely choosing which
values to group is impossible because that would reduce
our decompression speed for consecutive values. The idea
is that neighboring Krylov vector values are likely close in
magnitude, which means they can be grouped together. The
block size is fixed to avoid global synchronization points and
increase the throughput on GPUs, which are massively parallel
architectures. This block size BS is one of two optimization
parameters of FRSZ2. An effective value will be determined
in Section I'V-C.

To account for small differences in the magnitude of values
in a block, the maximum IEEE exponent ey, is identified,
and all values are normalized with this exponent. This implies
that, in contrast to the IEEE format, the significands are not
normalized to sub-unit values, but the integer part of the

3block floating point implementations are not novel. They are used in ZFP
[6] and proposed as early as 1964 in [8]. We differ from ZFP in that we do
not feature a decorrelation stage which is counterproductive for this data and
our unique data layout. Our approach differs from [8] in our data layout



significand of the represented numbers has to be stored. For
each number in a block that has a smaller exponent e < enax,
we need to prefix the significand with k = e, — e zeros in
order to represent the same value. We limit the number of bits
per value, which includes the sign and significand, to a fixed
length [. [ adjusts the compression ratio and the maximum
precision retained per value. We evaluate and advocate for
different [ in Section IV-C.

We represent the compressed value, consisting of the sign
bit and the significand, with the symbol c. For [ bits, the com-
pressed value c¢;_1 ... cico represents the following number:

@

To summarize, the sign bit is stored as the most significant
bit of ¢, followed by the significand’s integer part and then the
significand’s fractional part. BS and [ are the two optimization
parameters of FRSZ2. For increased memory access speed,
we read and write our memory as integers with at least [
bits, which requires the beginning of a block to be aligned to
that value. The exponent is stored in integer representation.
For 16 < [ < 32, we use an integer type with 32 bits,
so the memory needs to be aligned to 4 bytes. The storage
requirement in bytes for n elements and an assumed integer
representation with 4 bytes is:

value = (=) - (¢_2.¢j—3...c1¢0)2 - 26

n BS-I n
[BSH 4 ]‘”[BSW L)
———
compressed values exponents

A. Compression

€max

4

51 Sl I-

Fi

=

g. 3: FRSZ2 compression steps (BS = 2 and arbitrary [ > 2).

243

The compression algorithm performs the following 6 steps:

1) Extract the exponent e and find the maximum exponent
emax from all values in the block;

Extract the sign s and significand; add the usually
implicit 1 bit to the significand representation;
Normalize the significand to the maximum exponent
emax Dy prefixing the significand with k = epax — € 0
bits;

Put the sign bit to the left of the normalized significand;

2)

3)

4)
5) Cut the new representation to the appropriate length [.
Now, we have c;

6) Store enax and all ¢ of the block.

An illustration of this process is provided in Figure 3. If [ does
not match the size of the integer representation type exactly
(e.g. I = 21), step 6 needs to merge neighboring values before
storing them since GPUs can only store values at a byte level.
The compression must be performed on all BS elements
simultaneously to efficiently utilize the GPU bandwidth. Up-
dating just a single element would require reading en.x before
writing the compressed value. If e, changes as a result, all
values of the same block need to be read from memory, renor-
malized to this new exponent, and written back to memory.

B. Decompression

Decompression is an easier procedure and does not require
the full block to be read simultaneously. The following steps
retrieve a value at index ¢:

1) Read ey for the corresponding block and read the
correct compressed value c at index 1;

Separate c into the sign bit s and the significand; Count
the number of inserted zeros k at the beginning of the
significand;

Remove the inserted zeros and the explicit 1 bit from the
significand; Compute the actual exponent € = e, — k;

2)

3)

4) Merge s, e, and the corrected significand back to an

IEEE double-precision value.

As not the complete block has to be decompressed to retrieve
one value, random access is possible. To decompress value
c at index i, the only overhead is that e,,,, must also be
retrieved from the main memory. However, the most efficient
access is to read the whole block and reuse the cached epax
to decompress all values in the block.

C. Implementation and synthetic performance

To ensure good performance on the Nvidia H100 GPU, we
perform the following optimizations: (1) We utilize intrinsic
functions to convert between the IEEE format and the ap-
propriate integer type so we can analyze it bit-by-bit. The
intrinsic function to count the leading zeros of an integer:
count_zero is also mandatory for good performance. (2) We
mandate a block size BS = 32 for Nvidia GPUs. This allows
us to use warp-shuffles, the fastest communication between
threads, to determine ep,y during compression. Additionally,



it guarantees that ep,x is cached for all threads of the warp
during decompression of the same block. (3) Have separate
compression and decompression routines for | = 2% and
[ # 2%, For | = 2%, compression and decompression are much
simpler because values do not interleave in memory, making
reading and writing them significantly faster. (4) Perform all
index computations in 32-bit integer types. Originally, we used
64-bit, but those are noticeably slower than 32-bit on an H100.
(5) Store the exponent for the blocks and the compressed
values in separate memory locations, which simplifies the
index computations substantially.

We implement the FRSZ2 format in C++ and CUDA. Ad-
ditionally, for the decompression, we can utilize the Accessor
interface in Ginkgo [1], [9], which is a software interface that
decouples the storage format from the arithmetic format. So
far, it has been used to store values in half- or single-precision
while performing all computations in double-precision. The
same interface is used for reading and decompressing data
in FRSZ2 while computing in double-precision because de-
compression does not require any form of communication
with other threads. We need to read the complete block of
values to maximize cache usage, but that is already the access
pattern for the Krylov vectors, so we do not need to treat them
differently when we use FRSZ2. Writing and compressing data
can not be handled through the Accessor interface because
it was designed for random access in both directions. Our
compression must be applied to a full block of values and
requires local communication to find en.. Figure 1 is the
implemented GMRES algorithm, which also highlights all
sections that compress or decompress data.

We evaluate the usage and efficiency of the FRSZ2 de-
compression inside the Accessor interface with a synthetic
benchmark that reads consecutive elements from the main
memory and executes a pre-defined number of arithmetic
operations on each value retrieved from main memory to
vary the arithmetic intensity. For each storage format, we
run this benchmark for 27 arithmetic intensity settings. In
Figure 4, we report for increasing arithmetic intensity the
performance of the kernel using different storage formats. We
use an array with 228 randomized elements to utilize the full
GPU. Each data point in the plot is the minimum from 10
individual executions. The resulting roofline analysis allows
us to compare the performance and memory bandwidth of
the different storage and compression formats. We note that
float64 and float32 do not use the Accessor interface but read
and compute in their respective precision directly. This allows
us to evaluate the overhead of the Accessor. Acc<float64> and
Acc<float32> compute in double-precision while storing the
values in float64 and float32, respectively. The performance
of the Accessor is identical to the native implementation as
long as they are memory-bound, which proves the zero-cost
abstraction. For FRSZ2, we always use BS = 32 and three
different bit lengths: | € {16,21,32}. We chose 16 and 32
for their value alignment, making their decompression less
complex, and 21 to observe the penalty of the additional
decompression steps.

244

10 4 - float64
-~ float32
—>é Acc<float64>

Acc<float32>
== Acc<frsz2_16>
+ Acc<frsz2_21>

Acc<frsz2_32>
== Peak fp64 perf.
Peak fp32 perf.

103 4

Compute Performance [GFLOP/s]

10° 10! 10? 10°
Arithmetic Intensity [FLOP/Value]
Fig. 4: Performance on the H100
! = 16 shows the highest performance per value. How-

ever, it is not a factor of 2 faster than the single-precision
storage, which means we do not saturate the full bandwidth.
Additionally, the gap between float64 and Acc<frsz2_16>
decreases rapidly with higher arithmetic intensity, so it is
unsuitable for workloads with slightly higher arithmetic in-
tensity. Acc<frsz2_32> achieves slightly lower performance
than Acc<float32>. The reason is simple: frsz2_32 needs
33 bits per value on average because it needs to store
one exponent value, which occupies 32 bits as well, per
block, and since BS 32, the average bits per value is:
(BS-14-32)/BS = (32-32+32)/32 = 33. This difference could
be explained by the additional exponent that needs to be read
by block, which translates to roughly 33 bits per value for
frsz2_32. When measuring the bandwidth instead of perfor-
mance, Acc<frsz2_32> reaches 1991GB/s, which is ~ 99.6%
of the reachable bandwidth. This confirms the viability of our
compression target: Our decompression algorithm can saturate
the bandwidth and has cycles to spare for many additional
floating-point computations.

Acc<frsz2_21> displays a similar performance to
Acc<frsz2_32> despite reducing the memory footprint by
~ 33%. This clearly states that the overhead in the more
complex index computation and the unaligned memory read
operation is too high to translate to higher performance.
frsz2_21 will always be less precise than frsz2_32, which
means frsz2_21 is only useful in case frsz2_32 would not fit
in GPU memory. We have not encountered any problem large
enough to reach the GPU memory capacity, so its usefulness
is limited.

V. METHODOLOGY

This section describes common details to reproduce our
experiments and motivations for these choices. We begin with
hardware and software choices, then discuss the choice of
benchmark problems for evaluation, and finally, we discuss
the configuration of compressors used in the comparison.

A. Hardware and Software

We choose the latest NVIDIA H100 GPU for our exper-
imental evaluation. We also considered other GPUs, but we
present results only for the H100 for brevity. The results for



Matrix Size Non-zeros  target RRN
atmosmodd 1,270,432 8,814,880 4.0-10° 16
atmosmodj 1,270,432 8,814,880 4.0-1016
atmosmodl 1,489,752 10,319,760  4.0-10—16
atmosmodm 1,489,752 10,319,760  4.0-10~16
cfd2 123,440 3,085,406 1.8-10710
HVI5R 2,017,169 283,073,458  1.6-10792
lung2 109,460 492,564  1.8-1008
parabolic_fem 525,825 3,674,625 4.0-10716
PRO2R 161,070 8,185,136  4.0-10793
RMO7R 381,680 37,464,962 8.0-10703
StocF-1465 1,465,137 21,005,389  4.0-1096

TABLE I: Details of the computational fluid dynamic matrices
used from SuiteSparse

other GPUs are not meaningfully different in conclusion. The
Nvidia H100 is the PCle variant with 80 GB of RAM, 50
MB of L2 cache, 25.6 TFLOP/s double-precision, and 51.2
TFLOP/s single-precision performance. The peak memory
bandwidth is 2000 GB/s. The host system is a server with
two Intel Xeon Silver 4309 processors.

We use the default compilers on the system: CUDA 12.1
and GCC 11.4. We choose the default (latest) packages from
spack. We utilize LibPressio [10] version 0.98.0 to manage
and interact with the other compression algorithms we use: sz
version 2.1.12.5, sz3 version 3.1.7 and zfp version 1.0.0.

Our CB-GMRES implementation with FRSZ2 and the
benchmark code is open-source and can be accessed in the
Ginkgo branch 2024-drbsd-paper®.

B. Problem Selection

The matrices we use are from the SuiteSparse matrix
collection [11]. It is widely used for various sparse benchmarks
because of its vast size (2,893 matrices) and diversity in
domains (48). We focus on matrices that solve computational
fluid dynamics problems because they worked poorly in [1]
and aim to improve the convergence rate with our FRSZ2
compression. As an additional restriction, they need to have
a matrix size of more than 100,000 rows to avoid caching
mechanisms blurring the understanding of the performance
analysis. The most important properties of the matrices we
use can be seen in table L.

For each matrix A, we generate the right hand side b
deterministically and identical to [1] to ensure fair compar-
isons: First, we take a vector s and set the i-th entry to
its sin value: s[i] sin(é) for i € {0,1,...,n—1}. The
expected solution x is gained by normalizing s with its unit
norm: Zs = 8/||s||2. The right-hand side b is computed by
multiplying the expected result with the matrix A: b= A - z.
All GMRES algorithms are started with the initial guess
zo =0, using a restart parameter m = 100°, and are stopped
when the solution approximation « fulfills the relative residual
norm specified in Table I: |4z — bl < RRN - ||b]|2.

“https://github.com/ginkgo- project/ginkgo/tree/2024-drbsd- paper

STo limit the memory requirements, GMRES is restarted after a Krylov
basis of 100 vectors has been built up. The restart uses the latest solution
approximation as initial guess, and starts building up a new Krylov search
space.

245

C. Solver Configuration

GMRES is an iterative solver that tries to solve the equation
A-x = bto a predefined accuracy. The sparse matrix A and the
right-hand-side vector b are problem-dependent and immutable
inputs to the solver. GMRES also needs an initial guess xg as
a starting vector, which is then iteratively improved to get
closer and closer to the solution xg,. The residual r is the
difference vector between the targeted result b and the result
achieved with the current approximation of x. To quantify the
quality of the current approximation of x in a single number,
we compute the relative residual norm (RRN):

Irlla _ b= A- 2],
161]2 16112

This value is given to the GMRES algorithm to determine
when the computed solution approximation is sufficiently ac-
curate. The lower RRN, the closer we are to the exact solution.
The ideal case is RRN = 0. However, we compute with finite
IEEE double-precision, with a unit roundoff of u ~ 10716,
thus RRN = 0 may not be achievable. Additionally, some
problems are inherently difficult to solve, so we adjust our
target accuracy for each problem. For this, we solve each
problem with 20, 000 iterations of a standard double-precision
GMRES. The solution accuracy achieved is then used with
some wiggle room as the stopping criterion for the CB-
GMRES variants using different storage formats for the Krylov
basis.

Table I lists the obtained targeted relative residual norms
we use from this point forward.

We do not use any preconditioner to not blur the numerical
impact by the use of a sophisticated preconditioner.

RRN =

“

D. Compression Configuration

Details about the FRSZ2 compression are outlined in Sec-
tion IV. Every decompression happens through the Accessor
interface, while the compression is called directly without an
intermediate interface. frsz2_XX corresponds to the FRSZ2
format with BS = 32 and [ = X X. We also experimented
with different block sizes, but the end-to-end runtime worsens
with block sizes different than 32 elements, so we focus purely
on BS = 32.

We also run all experiments with the original CB-GMRES
storage formats: float64, which stores the values in IEEE
double-precision storage format; float32, which stores values
in single-precision; and float16, which store values in half-
precision. All these options use the Accessor to have varying
storage formats, but all arithmetic calculations are still done
in IEEE 754 double precision.

While we also want to evaluate the compression efficiency
of other compression schemes, implementing these in the
Accessor interface would require a substantial amount of work.
Thus, we decided to simulate the effect of other compression
schemes on the CB-GMRES convergence by using them via
LibPressio [10]. We do this by compressing and immediately
decompressing the Krylov vectors through the LibPressio
interface. This helps us to analyze the loss of information



of various compressors without the need to implement any of
them. We focus on SZ, SZ3, and ZFP because they are leading
lossy compressors with multiple error bounds supported while
using different decorrelation strategies.

We experiment with many error-bound settings for SZ, SZ3,
and ZFP. Many behave the same or at least very close to the
others, so we chose the settings shown in Table II.

Name error-bound type error-bound
sz3_06 absolute 10~06
sz3_07 absolute 10707
sz3_08 absolute 1008
zfp_06 absolute 1.4-10706
2fp_10 absolute 4.0-1010
sz_pwrel_04 relative 10-04
sz3_pwrel_04 relative 10—04
zfp_fr_16 fixed rate 16 bits
zfp_fr_32 fixed rate 32 bits

TABLE II: Compressor name and requested bounds.

VI. EVALUATION

There are two classes of experiments to perform: compar-
isons of the quality of the solution and end-to-end perfor-
mance. GMRES requires a compression format that reduces
data transfers without impacting neither the accuracy of the
final result nor requiring significantly more iterations to reach
convergence. Lastly, we consider the total algorithm runtime.

A. Quality of Solution

First, we compare the accuracy of FRSZ2 with the other
compression schemes presented in [3], [6], [12] for different
absolute error-bound settings to understand their impact on
conversion rates. We choose the matrix atmosmodd here
because this is one of the rare test problems where storing
the Krylov basis in single precision impacts the accuracy of
the final result [1]. Figure 5 displays the relative residual norm
development throughout the GMRES solve. For atmosmodd,
we target a relative residual norm of 4 - 10716, This target is
reached faster if the compression preserves more information.

For atmosmodd, the convergence rates for the different
compression schemes vary substantially. The convergence rate
of frsz2_32 is close to matching the convergence rate of
the uncompressed float64 storage. frsz2_32 improves over
float32 despite using the same space. We can attribute this
improvement in convergence over float32 to the increased
space to store precision information created by externalizing
the exponent to the block.

Considering the other absolute error bounded compressors,
none of the ZFP or SZ3 settings manage to match the
convergence of the float32 compression, even though sz3_08
uses 46 bits per value on average, compared to the 32 from
float32. zfp_I10 outperforms sz_08 both in convergence and
compression rate as it only uses 28 bits per value. We attribute
the slower convergence of SZ and ZFP to these compressors’
ill-fated attempts to predict or decorrelate the uncorrelated
Krylov vectors, resulting in a bias in the reconstructed values.

Next, we investigate the pointwise relative error bounds
in Figure 6. We observe that the pointwise error bounds

246

10! A = = float64 (uncompressed) * 2fp_10
- + float32 sz3_06
£ 10 2 A floatl6e @- sz3_07
—
] - —f= frsz2_32 sz3_08
— zfp_06
© 10 54 }
°
wn
g
(]
2
=]
o
(9]
(4
0 200 400 600 800 1000 1200

Iteration count

Fig. 5: Residual norm development for the atrmosmodd matrix
with various compressions.

enable better convergence rates than absolute error bounds.
The pointwise relative error preserves z(1—e¢) < T < z(1+-e).
Consequently, the values’ magnitude is better preserved than
using the absolute error bound, which is more similar to
our FRSZ2 approach. Still, though the convergence rates are
improved, none of the compressors can match thefloat32 com-
pression in terms of GMRES convergence. The fixed-rate ZFP
compression achieved the best convergence rate among the
other compressors. It occupies the same memory as float32 but
retains slightly less information for this application. frsz2_32
has the best convergence rate among all tested compression
techniques.

10! = = float64 (uncompressed) sz_pwrel_04
- + float32 sz3_pwrel_04
€ 10 21 floatl6 zfp_fr_16
§ _ —f= frsz2_32 @ zfp_fr 32
T 10 > -
3 -
‘0
Y 10 8
o -
2
E 10 114
[9] -
4
10 14
0 200 400 600 800 1000

Iteration count

Fig. 6: Residual norm development for the atmosmodd matrix
with pointwise relative error settings.

After showing that frsz2_32 improves convergence for one
test problem, we investigate whether this effectiveness gener-
alizes to other problems. Figure 7 presents the target and the
achieved relative residual norm for the storage formats float64,
float32, floatl6, and frsz2_32 for all considered matrices. The
exact target relative residual norm is listed in Table I. We
observe two instances where we do not reach the targeted
relative residual norm with float16: PRO2R and StocF-1465.
The loss of information is too significant for these problems.
For the other matrices, all settings converge to the target



1072 { == Target
£ float64 w w - A
Z 105 float32 *
©
2 _( floatl6
B - frsz2_32
g 107 - *»
: »
2
E 1011 4
o
E 10-14 4
S & % L »
3 S N v - Q = \a¢ H
&ob @06 @°b S & & & & & 9
S & & £ By N S & o‘(’(’
£ & & g <& &
Q
Matrix

Fig. 7: Final relative residual norm for various matrices on the
H100.

precision.

Y float32 )\ float16 —( frsz2_32
+ A
A

II***éY**
A

Ay

X <

Iterations relative to float64

0_
SO ) Y »
& &S EFEF S
¢ & & & D A 4
& & & & s
Matrix

Fig. 8: Mean number of iterations to the solution of various
matrices for the H100 over 10 runs. Zero means the solver
does not reach the target precision.

Next, we compare the convergence rate with the float64
convergence rate. We do this by showing the number of iter-
ations each storage type needs to achieve the target precision
as a factor of the reference float64 in Figure 8. We set the
relative value to zero if the target accuracy is not achieved.
We observe that all matrices with the prefix atmosmod behave
similarly: float64 converges fastest, followed by frsz2_32,
then float32, and finally float16. Here, frsz2_32 is clearly the
best compression format because it comes with the smallest
iteration overhead. In contrast, PRO2R is the worst problem
for FRSZ2. frsz2_32 eventually converges to the target norm,
but the iteration count increases by 3.5x. All other matrices
barely show a difference in convergence rate.

We now focus on the test cases where frsz2_32 performs
extremely well and extremely badly. Figure 9 provides a
deeper insight into the convergence rate by plotting the rel-
ative residual norm for each iteration for the matrices where
frsz2_32 works well, represented by atmosmodm in Figure 9a,
and the matrix PRO2R in Figure 9b.

247

10! 4 == float64 (uncompressed)
c 5 float32
5 1071 float16
c —f= frsz2 32
— -5 _
[ 10
ke
§ 10—8 4
[}
>
5 1071 ~
:: |

10724 4 SANG

0 100 200 300 400
Iteration count
(a) Matrix atmosmodm
10!
== float64 (uncompressed) float1l6
c float32 —f= frsz2_32
5 1005
c
© I !
S }
B -1
§ 1071
9]
2
®
@ 10724
<
L L L
A} ) D
1073 T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600

Iteration count

(b) Matrix PRO2R

Fig. 9: Relative residual norm development for the best- and
worst-performing matrices for FRSZ2.

atmosmodm has a big residual norm correction after the
first restart at iteration 100 for all storage formats except for
the uncompressed float64. These corrections exist because the
residual norms are only explicitly computed at every restart
in GMRES, which we do every 100 iterations. For all other
iterations, it only adjusts the previous residual norm by the
assumed amount of improvement. During the restart, the resid-
ual and its norm are explicitly computed and used as the new
baseline. These adjustments are the sudden jumps in Figure 9.
frsz2_32 seems to recover from that correction the fastest
from all the other compressions and only requires 31 more
iterations to achieve the same accuracy as the uncompressed
at convergence. The order from best to worst seems sorted by
the number of significand bits for each compression scheme.

Figure 9b shows a different side of the compression scheme.
Here, frsz2_32 follows both the single- and double-precision
storage format until a relative residual norm of 2 - 1072 is
reached, then stagnates. It barely improves the residual norm
between iterations 400 and 1600, which might indicate that it
reached its maximum accuracy. Half-precision does not even
reach an accuracy of 1072, Even after 20,000 iterations, it
only managed to go down to 5- 107!,

Part of the reason might be the huge range of non-zero val-
ues the matrix PRO2R has. Figure 10 visualizes the exponent



distribution of matrix PRO2R, which ranges from —178 to 36.
If a block of Krylov basis values contains exponents with a
large range, we lose a lot of precision in values with smaller
exponents when we fill the significands with zeros in the
normalization step. However, this is not the only contributing
factor. The matrix HVI5R has an extremely similar value
distribution to PRO2R. The ordering of non-zero values in
HVI5R may lead neighboring Krylov vector values to have a
similar magnitude, mitigating the effects observed in PRO2R.

10° A

104 4

102 ]

150

100 50 0

Fig. 10: Base-2 exponent histogram of all non-zero values of
PRO2R.

B. End-to-End Performance

2.00
< 1754 —— Average float32 I float32 B frsz2_32
% ’ —— Average frsz2_32 mmm floatl6
2 1.50 A
1=
21251
[
>
£ 1.00
[
a 0.75 |
3
3 0.50
[
& 0.25 4

0.00 -

(S S D Vv o v SN o ]
&ob S & &S & & § RS
& g &P (9(0 RS o R < K
& e & &
» & ,&,@ @@ 24
]
Matrix

Fig. 11: Mean speedup of various matrices for the H100 with
an error bar. Each matrix was solved ten times.

Finally, we investigate the end-to-end speedup achieved
when using frsz2_32. Looking back at the read performance
in Figure 4 and combining that with the usually same number
of iterations in Figure 8, we expect the frsz2_32 performance
to be similar to using single precision for compression. The
mean speedup compared to double-precision storage is shown
in Figure 11 with error bars. The entire bar is removed from a
matrix if a storage format does not reach the targeted relative
residual norm. As expected, frsz2_32 performs well in the
atmosmod group. It is faster than single-precision storage and
also beats the double-precision storage format. For problems
outside the atmosmod group, frsz2_32 is consistently slower
than the float32 storage format.

248

The average speedup over all matrices for the float32 storage
format is 1.16, while the average is 1.09 for frsz2_32. Ignoring
matrix PRO2R, the average speedup increases to 1.16.

We also experimented with a variant of our method using
21 bits, the frsz2_21 storage format. Experiments revealed
that the convergence for frsz2_21 is superior to floatl6, but
dramatically slower than frsz2_32 due to worse alignment. We,
therefore, omit the experimental results from the evaluation.

VII. RELATED WORK

There is a rich history of using lossy compression to
accelerate computations. One paper used lossy compression
to effectively expand the memory by compressing key data
structures instead of recomputing them when they could not all
fit in memory [13]. A more recent paper used compression to
speed up I/O [14] even if the resulting operations were slower
to make it possible on a given set of resources. For accelerating
memory-bound algorithms, the compression has to happen
in processor registers, without touching main memory for
either compression or decompression. In both of these papers,
the operation that was avoided by using compression was
substantially slower than a single access from the HBM on
the GPU. We in contrast present a uniquely challenging case
where the operation being modified is itself fast.

The idea of in-register data compression to speed up
memory-bound linear algebra operations was initially realized
by casting data to lower precision. In [15], the authors accel-
erate a block-Jacobi preconditioner by storing the individual
block-inverses in lower precision, while keeping high precision
for the arithmetic operations. The same strategy was later
used for accelerating sparse approximate inverse precondi-
tioners [16]. Similarly, the idea of compressing the Krylov
basis of a GMRES iterative solver was initially using low
precision for compression of the vector values [1]. Almost
at the same time, this concept was proposed also by [17],
however following a more sophisticated strategy by storing the
preconditioned Krylov vectors inside a flexible GMRES solver
in low precision. This improves the numerical stability at the
price of reduced runtime benefits. Casting to lower precision
can render only a moderate compression ratio without losing
too much information. This motivates the use of sophisticated
compression strategies. In [18] we investigated the use of
advanced compression strategies yielding large compression
factors. The results, however, indicated that these methods are
too clumsy to operate on GPU registers, and the compression
factors were too small to translate to speedup factors. We
hence developed a more lightweight compression drawing a
good balance between compression ratio and compression cost
and presented the results in this paper.

However, the alternative was not to perform the computation
at all. In GMRES, the inputs are 1) not bound by GPU memory
size indicating the problem would be unlikely if it exists, and
2) have the clear alternative of performing the calculation in
mixed or lower precision such as Float32 achieving a similar
outcome without the possible overheads of compression.



VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present FRSZ2, a highly specialized
compressor for GMRES, that provides unparalleled perfor-
mance among modern compressors and is uniquely capable of
accelerating end-to-end performance of GMRES for a class of
applications up to 1.3x compared to uncompressed methods as
well as 1.2 ~ 3.1x faster than existing compressors obtaining
99.6% of the peak bandwidth at the roofline.

However, more work is needed to realize FRSZ2 as a
generalizable solution for use in GMRES solvers in pack-
ages such as Ginkgo. Either 1) there needs to be continued
work to accelerate FRSZ2 even further — this could come
in the form of additional hardware improvements for certain
assembly instructions (i.e., masked shuffle operations) used
in decompression routines or algorithmic improvements that
could eliminate the dependence on these slow instructions
or changes to the balance between memory and compute
bandwidth 2) we need an accurate, robust, and fast method
to predict when an application will benefit from FRSZ2
compared to mixed-precision methods.

Given the degree of optimization already applied to FRSZ2,
we believe these benefits are most likely to come from
predictions that can be applied just before the first restart.
We explored this briefly in our work prior to submission.
We considered features such as the condition number, value
distribution, exponent distribution, and even autotuned meth-
ods that detect and observe the convergence per unit time of
several candidate methods and then speculatively execute that
the best initial method will continue to dominate. We have only
scratched the surface of possible methods, and with further
work, an appropriate prediction method may be identified.

ACKNOWLEDGMENT

This work was performed on the NHR@KIT Future Tech-
nologies Partition testbed funded by the Ministry of Science,
Research and the Arts Baden-Wiirttemberg and by the Federal
Ministry of Education and Research. The authors thank the
Innovative Computing Lab for access to their NVIDIA H100
GPU.

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research
Program, under Contract DE-AC02-06CH11357. This research
was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration. This material is based upon work supported by
the National Science Foundation under Grant No. #2311875
and #2104203. This work has been conducted within the Joint
Laboratory for Extreme-Scale Computing (JLESC).

REFERENCES

[1] J. I. Aliaga, H. Anzt, T. Griitzmacher, E. S. Quintana-Orti, and A. E.
Tomads, “Compressed basis GMRES on high-performance graphics pro-
cessing units,” The International Journal of High Performance Comput-
ing Applications, pp. 1-18, Aug. 2022.

249

[2

—

[3

[4

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of lossy compression
for floating-point data in scientific data sets,” The International Journal
of High Performance Computing Applications, vol. 33, pp. 1201-1220,
Nov. 2019. Number: 6.

X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “SZ3: A
Modular Framework for Composing Prediction-Based Error-Bounded
Lossy Compressors,” IEEE Transactions on Big Data, vol. 9, pp. 485—
498, Apr. 2023. Conference Name: IEEE Transactions on Big Data.

S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Com-
pression with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 730-739, May 2016.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly Improving Lossy
Compression for Scientific Data Sets Based on Multidimensional Pre-
diction and Error-Controlled Quantization,” in 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1129—
1139, May 2017.

P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20,
pp. 2674-2683, Dec. 2014. Number: 12.

Yafan Huang, Sheng Di, Guanpeng Li, and Franck Cappello, “cuSZp2:
A GPU Lossy Compressor with Extreme Throughput and Optimized
Compression Ratio,” in roceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
(Atlanta, GA, USA), pp. 1-14, IEEE, Nov. 2024.

J. H. Wilkinson, Rounding Errors in Algebraic Processes. Prentice-Hall,
1964. Google-Books-ID: cBol1AAAAIAAJ.

T. Griitzmacher, H. Anzt, and E. S. Quintana-Orti, “Using Ginkgo’s
memory accessor for improving the accuracy of memory-bound low
precision BLAS,” Software - Practice and Experience, no. September,
pp. 1-18, 2021.

R. Underwood, V. Malvoso, J. C. Calhoun, S. Di, and F. Cappello,
“Productive and Performant Generic Lossy Data Compression with
LibPressio,” in 2021 7th International Workshop on Data Analysis and
Reduction for Big Scientific Data (DRBSD-7), (St. Louis, Missouri),
pp. 1-10, IEEE, Nov. 2021.

T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software, vol. 38, Nov.
2011.

X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An Efficient
Transformation Scheme for Lossy Data Compression with Point-Wise
Relative Error Bound,” in 2018 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 179-189, Sept. 2018.

A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and
F. Cappello, “PaSTRI: Error-Bounded Lossy Compression for Two-
Electron Integrals in Quantum Chemistry,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 1-11, Sept. 2018.
X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 19,
(New York, NY, USA), pp. 1-24, Association for Computing Machinery,
Nov. 2019.

H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-
Orti, “Adaptive precision in block-jacobi preconditioning for iterative
sparse linear system solvers,” Concurrency and Computation: Practice
and Experience, vol. 31, no. 6, p. e4460, 2019.

F. Gobel, T. Griitzmacher, T. Ribizel, and H. Anzt, “Mixed precision
incomplete and factorized sparse approximate inverse preconditioning
on gpus,” in Euro-Par 2021: Parallel Processing (L. Sousa, N. Roma,
and P. Tomis, eds.), vol. 1, pp. 550-564, 2021.

E. Agullo, F. Cappello, S. Di, L. Giraud, X. Liang, and N. Schenkels,
“Exploring variable accuracy storage through lossy compression tech-
niques in numerical linear algebra: a first application to flexible GM-
RES,” Research Report RR-9342, Inria Bordeaux Sud-Ouest, May 2020.
F. Cappello, S. Di, R. Underwood, D. Tao, J. Calhoun, Y. Kazutomo,
K. Sato, A. Singh, L. Giraud, E. Agullo, X. Yepes, M. Acosta, S. Jin,
J. Tian, F. Vivien, B. Zhang, K. Sano, T. Ueno, T. Griitzmacher,
and H. Anzt, “Multifacets of lossy compression for scientific data in
the Joint-Laboratory of Extreme Scale Computing,” Future Generation
Computer Systems, 2024.



