
FRSZ2 for In-Register Block Compression Inside

GMRES on GPUs

Thomas GrÈutzmacher∗ Robert Underwood† Sheng Di† Franck Cappello† Hartwig Anzt ‡

∗Karlsruhe Institute of Technology

Technical University of Munich

thomas.gruetzmacher@tum.de

†Argonne National Laboratory

University of Chicago

{runderwood, sdi1, cappello}@anl.gov

‡Technical University of Munich

University of Tennessee, Knoxville

hartwig.anzt@tum.de

AbstractÐThe performance of the GMRES iterative solver
on GPUs is limited by the GPU main memory bandwidth.
Compressed Basis GMRES outperforms GMRES by storing the
Krylov basis in low precision, thereby reducing the memory
access. An open question is whether compression techniques
that are more sophisticated than casting to low precision can
enable large runtime savings while preserving the accuracy of
the final results. This paper presents the lightweight in-register
compressor FRSZ2 that can decompress at the bandwidth speed
of a modern NVIDIA H100 GPU. In an experimental evaluation,
we demonstrate using FRSZ2 instead of low precision for
compression of the Krylov basis can bring larger runtime benefits
without impacting final accuracy.

Index TermsÐcompression, FRSZ2, GMRES, CB-GMRES,
high-performance, sparse, solver, hpc, GPU

I. INTRODUCTION

The Generalized Minimal Residual Method (GMRES) is

a popular method for solving linear systems of equations

iteratively. GMRES is widely used in applications that result

in large, sparse linear systems that are not symmetric positive

definite. Systems of this kind are common in scientific com-

puting applications, ranging from finite element discretizations

over combinatorial problems to circuit simulations. GMRES

builds up out of matrix-vector operations with the system

matrix, vector operations, and orthogonalization, building up

the Krylov subspace and a minimization process. All these

building blocks are memory-bound, and thus the performance

of the GMRES solver is limited by the main memory band-

width of the processor. Consequently, strategies to accelerate

the GMRES method aim to reduce the data transfer. In the

Compressed Basis GMRES (CB-GMRES [1]) method, the

Krylov basis vectors are compressed by conversion to lower

precision formats, e.g., IEEE 754 single precision or half

precision. This strategy reduces the data transfers of the

individual iterations and allows for faster execution of the

iterations while mostly preserving the quality of the final

solution. The information loss caused by storing the Krylov

basis in low precision can delay convergence, experiments

however indicate that in most scenarios the convergence delay

is easily compensated by the faster exection [1]. Converting the

individual vector values to low precision is a straightforward

We thank the U.S. Department of Energy and the National Science
Foundation for funding this work.

compression scheme, and a valid question is whether more

sophisticated compression schemes operating not on a value

level but on a block level allow for higher compression rates

or reduced information loss.

In this paper, we investigate this question by employing

lossy compression for the compression of the Krylov vectors

inside the CB-GMRES algorithm. Lossy compression maps

the input data into a different representation with a smaller

memory footprint through a series of computations that decor-

relate and then encode common patterns in the data leaving a

smaller representation. However, the compression has to hap-

pen in processor registers and needs to be extremely fast to not

incur measurable overhead to the Krylov solver. In particular,

all compression and decompression have to be hidden behind

the memory access. A quick pen-and-paper calculation reveals

this strategy to be viable: The latest Nvidia server line GPU,

the Nvidia H100 GPU, has a memory bandwidth of roughly

2 TB/s and a peak double-precision performance of ≈ 25
TFLOP/s. That means an algorithm can execute up to 100

double-precision (64-bit) computations per double-precision

value retrieved from main memory before hitting the compute

peak. For a sparse linear algebra routine executing 4 operations

on each retrieved value, one could consider 96 operations to

be ºwastedº. Suppose some of these operations could be used

to compress the data to consume only 32 bits per value. In

that case, the compute-to-read ratio reduces to 50:1 and one

could use 46 operations for compression and decompression

of the double-precision values. While this sounds viable,

several critical aspects constrain the design of the compression

strategy. First, implementing compression and decompression

in only 46 operations is not straightforward and excludes many

sophisticated compression strategies. Second, the compressor

must support at least random access by block to support the

memory access patterns used within CB-GMRES. Third, the

data values to be compressed in CB-GMRES are generally

uncorrelated, presenting a challenge to effectively decorrelate.

This paper presents FRSZ2, a highly specialized compres-

sor designed to support CB-GMRES. Our key contributions

include:

1) We study the impacts of lossy compression error bounds

on this problem to demonstrate that this problem prefers

point-wise error bounds.

240979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00038

2) We identify the bottlenecks of using compression tech-

niques for this problem and accommodate these in the

compressor design.

3) We describe in detail the design of FRSZ2 and demon-

strate how it integrates into Ginkgo’s CB-GMRES.

4) We compare FRSZ2 to other compression techniques

and demonstrate that FRSZ2 is the fastest compressor,

achieving performance 99.6% of loading double preci-

sion from memory, which is 1.2 ∼ 3.1× faster than the

next fastest compressor cuSZp2 at the roofline.

5) We report that for selected problems, FRSZ2 compres-

sion can render performance advantages of up to 1.3×
over single-precision compression in CB-GMRES.

6) We discuss how lossy compression could be used in a

generic framework for accelerating CB-GMRES.

The remainder of the paper is organized as follows: In

Section II, we describe CB-GMRES and describe in detail

where compression can be applied. In Section III and Sec-

tion IV, we present the challenges and how we tackle them

in the design of FRSZ2. We then present our evaluation

methodology in Section V before presenting the experimental

results in Section VI. We provide an overview of related work

in Section VII and conclude in Section VIII with a summary

of the findings, challenges, and potential.

II. BACKGROUND

Krylov methods are an essential building block in scientific

high-performance computing for the rapid solution of large,

sparse linear systems. They approximate the solution in a sub-

space that is generated iteratively in the Krylov solver iteration.

Starting from an initial guess, each iteration adds a Krylov

basis vector by orthogonalizing a new search direction against

the already computed basis until the subspace spanned by the

basis is large enough to contain a solution approximation of

sufficient accuracy. For a problem of dimension n, the exact

solution is available after n iterations, as then the Krylov basis

spans the whole space. However, in practice, a much smaller

number of iterations is typically sufficient to find a suitable

solution approximation. Long recurrence Krylov methods, like

the popular GMRES solver we focus on in this paper, build

up the Krylov basis in main memory, and for each new

search direction, the pre-existing basis has to be retrieved from

main memory for the orthogonalization procedure such that it

can then be appended to the extended basis. This makes the

orthogonalization a memory-bound step that often dominates

the overall solver runtime. A strategy to accelerate the Krylov

solver can thus be to compress the data of the Krylov basis

to reduce the main memory access volume. In [1], the authors

realize this idea by storing the Krylov basis in low precision ±

a simple lossy compression technique. The GMRES algorithm

and the compression potential is shown in Figure 1. Reducing

the precision may incur perturbations in the Krylov basis,

thereby harming the convergence. The experimental results,

however, reveal that the slower convergence can typically be

compensated by faster execution. Hence, more Krylov basis

vectors can be generated in less time, thereby still accelerating

1. Compute r0 := b − Ax0 , β := ∥r0∥2 , and v := r0/β. Set V1 = [v]
2. for j := 1, 2, . . . ,m

3. Compute w := A(M−1v)
4. ω := ∥w∥2
5. Orthogonalize h1:j,j := V T

j w, w := w − Vjh1:j,j

6. hj+1,j := ∥w∥2
7. if (hj+1,j < η ω) then

8. Re-orthogonalize u := V T
j w, w := w − Vju

9. h1:j,j := h1:j,j + u
10. hj+1,j := ∥w∥2
11. endif

12. if (hj+1,j = 0) or (hj+1,j < η ω) then set m := j and go to step 17, endif

13. v := w/hj+1,j

14. Set Vj+1 :=
[

Vj , v
]

15. endfor

16. Define the (m + 1) × m Hessenberg matrix H̄m =
(

hij

)

1≤i≤m+1,1≤j≤m

17. Compute ym the minimizer of ∥βe1 − H̄my∥2 and xm := x0 + M−1(Vmym)
18. if satisfied then Stop, else set x0 := xm and go to step 1, endif

Fig. 1: Algorithmic formulation of the restarted GMRES

algorithm for solving sparse linear systems. Sections where

compression can be used are highlighted.

the solution process. In this paper, we replace the compression

of the vector entries based on casting to lower precision with a

more sophisticated block-based compression. The hope is that

higher compression ratios can be achieved while still hiding all

compression and decompression behind the memory access.

III. PROBLEM FORMULATION

Designing block compression inside of GMRES on the GPU

presents several critical requirements on the compressor to

produce a usable solution: 1) Quality: the compression error

must not affect the solution accuracy, 2) Decorrelation: the

compression needs to succeed in reducing the data volume

without sacrificing too much information, and 3) Performance:

The compression and decompression needs to be hidden

behind the memory access to not incur any overhead to the

CB-GMRES algorithm.

In the following subsections, we expand on the definition

of the critical requirements of decorrelation and performance

and how they impact the design of a compressor. We discuss

quality later in Section VI.

A. Decorrelation

The Krylov vectors compressed in GMRES are difficult

to decorrelate. Krylov vectors are normalized, which means

all values are in [−1, 1]. Figure 2a-2d show the values and

distribution of the values. While the first iteration of a solver

may show some patterns in the data to be compressed1, the

values become uncorrelated in the subsequent iterations. There

is no particular pattern to their ordering or values with both

uniformly distributed over the domain.

To understand why these vectors are hard to decorrelate

and the impact that has on the compressor design, it is

helpful to consider how lossy compressors work. Modern

lossy compressors feature three key stages to achieve high

compression ratios: decorrelation, quantization, and encoding

[2]. Decorrelation is a class of techniques that reduces autocor-

relation in data and produces a new version with a distribution

1For example, the solver might initialize the vectors using values from a
sin function.

241

significand of the represented numbers has to be stored. For

each number in a block that has a smaller exponent e < emax,

we need to prefix the significand with k = emax − e zeros in

order to represent the same value. We limit the number of bits

per value, which includes the sign and significand, to a fixed

length l. l adjusts the compression ratio and the maximum

precision retained per value. We evaluate and advocate for

different l in Section IV-C.

We represent the compressed value, consisting of the sign

bit and the significand, with the symbol c. For l bits, the com-

pressed value cl−1 . . . c1c0 represents the following number:

value = (−1)cl−1 · (cl−2.cl−3 . . . c1c0)2 · 2
emax (2)

To summarize, the sign bit is stored as the most significant

bit of c, followed by the significand’s integer part and then the

significand’s fractional part. BS and l are the two optimization

parameters of FRSZ2. For increased memory access speed,

we read and write our memory as integers with at least l
bits, which requires the beginning of a block to be aligned to

that value. The exponent is stored in integer representation.

For 16 < l ≤ 32, we use an integer type with 32 bits,

so the memory needs to be aligned to 4 bytes. The storage

requirement in bytes for n elements and an assumed integer

representation with 4 bytes is:

⌈ n

BS

⌉

·

⌈
BS · l

4

⌉

· 4

︸ ︷︷ ︸

compressed values

+
⌈ n

BS

⌉

· 4

︸ ︷︷ ︸

exponents

(3)

A. Compression

s0 emax b0

s1 emax-k b1

emax

s0

s1

1

b1

b0

1

s0

s1

1

b1

b0

100...

k

s0

s1

1

10

l

1.

2.

3.

4.

5.

Fig. 3: FRSZ2 compression steps (BS = 2 and arbitrary l > 2).

The compression algorithm performs the following 6 steps:

1) Extract the exponent e and find the maximum exponent

emax from all values in the block;

2) Extract the sign s and significand; add the usually

implicit 1 bit to the significand representation;

3) Normalize the significand to the maximum exponent

emax by prefixing the significand with k = emax − e 0
bits;

4) Put the sign bit to the left of the normalized significand;

5) Cut the new representation to the appropriate length l.
Now, we have c;

6) Store emax and all c of the block.

An illustration of this process is provided in Figure 3. If l does

not match the size of the integer representation type exactly

(e.g. l = 21), step 6 needs to merge neighboring values before

storing them since GPUs can only store values at a byte level.

The compression must be performed on all BS elements

simultaneously to efficiently utilize the GPU bandwidth. Up-

dating just a single element would require reading emax before

writing the compressed value. If emax changes as a result, all

values of the same block need to be read from memory, renor-

malized to this new exponent, and written back to memory.

B. Decompression

Decompression is an easier procedure and does not require

the full block to be read simultaneously. The following steps

retrieve a value at index i:

1) Read emax for the corresponding block and read the

correct compressed value c at index i;
2) Separate c into the sign bit s and the significand; Count

the number of inserted zeros k at the beginning of the

significand;

3) Remove the inserted zeros and the explicit 1 bit from the

significand; Compute the actual exponent e = emax − k;

4) Merge s, e, and the corrected significand back to an

IEEE double-precision value.

As not the complete block has to be decompressed to retrieve

one value, random access is possible. To decompress value

c at index i, the only overhead is that emax must also be

retrieved from the main memory. However, the most efficient

access is to read the whole block and reuse the cached emax

to decompress all values in the block.

C. Implementation and synthetic performance

To ensure good performance on the Nvidia H100 GPU, we

perform the following optimizations: (1) We utilize intrinsic

functions to convert between the IEEE format and the ap-

propriate integer type so we can analyze it bit-by-bit. The

intrinsic function to count the leading zeros of an integer:

count zero is also mandatory for good performance. (2) We

mandate a block size BS = 32 for Nvidia GPUs. This allows

us to use warp-shuffles, the fastest communication between

threads, to determine emax during compression. Additionally,

243

Matrix Size Non-zeros target RRN

atmosmodd 1,270,432 8,814,880 4.0 · 10−16

atmosmodj 1,270,432 8,814,880 4.0 · 10−16

atmosmodl 1,489,752 10,319,760 4.0 · 10−16

atmosmodm 1,489,752 10,319,760 4.0 · 10−16

cfd2 123,440 3,085,406 1.8 · 10−10

HV15R 2,017,169 283,073,458 1.6 · 10−02

lung2 109,460 492,564 1.8 · 10−08

parabolic fem 525,825 3,674,625 4.0 · 10−16

PR02R 161,070 8,185,136 4.0 · 10−03

RM07R 381,689 37,464,962 8.0 · 10−03

StocF-1465 1,465,137 21,005,389 4.0 · 10−06

TABLE I: Details of the computational fluid dynamic matrices

used from SuiteSparse

other GPUs are not meaningfully different in conclusion. The

Nvidia H100 is the PCIe variant with 80 GB of RAM, 50

MB of L2 cache, 25.6 TFLOP/s double-precision, and 51.2

TFLOP/s single-precision performance. The peak memory

bandwidth is 2000 GB/s. The host system is a server with

two Intel Xeon Silver 4309 processors.

We use the default compilers on the system: CUDA 12.1

and GCC 11.4. We choose the default (latest) packages from

spack. We utilize LibPressio [10] version 0.98.0 to manage

and interact with the other compression algorithms we use: sz

version 2.1.12.5, sz3 version 3.1.7 and zfp version 1.0.0.

Our CB-GMRES implementation with FRSZ2 and the

benchmark code is open-source and can be accessed in the

Ginkgo branch 2024-drbsd-paper4.

B. Problem Selection

The matrices we use are from the SuiteSparse matrix

collection [11]. It is widely used for various sparse benchmarks

because of its vast size (2,893 matrices) and diversity in

domains (48). We focus on matrices that solve computational

fluid dynamics problems because they worked poorly in [1]

and aim to improve the convergence rate with our FRSZ2

compression. As an additional restriction, they need to have

a matrix size of more than 100, 000 rows to avoid caching

mechanisms blurring the understanding of the performance

analysis. The most important properties of the matrices we

use can be seen in table I.

For each matrix A, we generate the right hand side b
deterministically and identical to [1] to ensure fair compar-

isons: First, we take a vector s and set the i-th entry to

its sin value: s[i] = sin(i) for i ∈ {0, 1, . . . , n− 1}. The

expected solution xsol is gained by normalizing s with its unit

norm: xsol = s/∥s∥2. The right-hand side b is computed by

multiplying the expected result with the matrix A: b = A · x.

All GMRES algorithms are started with the initial guess

x0 = 0⃗, using a restart parameter m = 1005, and are stopped

when the solution approximation x fulfills the relative residual

norm specified in Table I: ∥A · x− b∥2 ≤ RRN · ∥b∥2.

4https://github.com/ginkgo-project/ginkgo/tree/2024-drbsd-paper
5To limit the memory requirements, GMRES is restarted after a Krylov

basis of 100 vectors has been built up. The restart uses the latest solution
approximation as initial guess, and starts building up a new Krylov search
space.

C. Solver Configuration

GMRES is an iterative solver that tries to solve the equation

A·x = b to a predefined accuracy. The sparse matrix A and the

right-hand-side vector b are problem-dependent and immutable

inputs to the solver. GMRES also needs an initial guess x0 as

a starting vector, which is then iteratively improved to get

closer and closer to the solution xsol. The residual r is the

difference vector between the targeted result b and the result

achieved with the current approximation of x. To quantify the

quality of the current approximation of x in a single number,

we compute the relative residual norm (RRN):

RRN =
∥r∥2
∥b∥2

=
∥b−A · x∥2

∥b∥2
(4)

This value is given to the GMRES algorithm to determine

when the computed solution approximation is sufficiently ac-

curate. The lower RRN, the closer we are to the exact solution.

The ideal case is RRN = 0. However, we compute with finite

IEEE double-precision, with a unit roundoff of u ≈ 10−16,

thus RRN = 0 may not be achievable. Additionally, some

problems are inherently difficult to solve, so we adjust our

target accuracy for each problem. For this, we solve each

problem with 20, 000 iterations of a standard double-precision

GMRES. The solution accuracy achieved is then used with

some wiggle room as the stopping criterion for the CB-

GMRES variants using different storage formats for the Krylov

basis.

Table I lists the obtained targeted relative residual norms

we use from this point forward.

We do not use any preconditioner to not blur the numerical

impact by the use of a sophisticated preconditioner.

D. Compression Configuration

Details about the FRSZ2 compression are outlined in Sec-

tion IV. Every decompression happens through the Accessor

interface, while the compression is called directly without an

intermediate interface. frsz2 XX corresponds to the FRSZ2

format with BS = 32 and l = XX . We also experimented

with different block sizes, but the end-to-end runtime worsens

with block sizes different than 32 elements, so we focus purely

on BS = 32.

We also run all experiments with the original CB-GMRES

storage formats: float64, which stores the values in IEEE

double-precision storage format; float32, which stores values

in single-precision; and float16, which store values in half-

precision. All these options use the Accessor to have varying

storage formats, but all arithmetic calculations are still done

in IEEE 754 double precision.

While we also want to evaluate the compression efficiency

of other compression schemes, implementing these in the

Accessor interface would require a substantial amount of work.

Thus, we decided to simulate the effect of other compression

schemes on the CB-GMRES convergence by using them via

LibPressio [10]. We do this by compressing and immediately

decompressing the Krylov vectors through the LibPressio

interface. This helps us to analyze the loss of information

245

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present FRSZ2, a highly specialized

compressor for GMRES, that provides unparalleled perfor-

mance among modern compressors and is uniquely capable of

accelerating end-to-end performance of GMRES for a class of

applications up to 1.3× compared to uncompressed methods as

well as 1.2 ∼ 3.1× faster than existing compressors obtaining

99.6% of the peak bandwidth at the roofline.

However, more work is needed to realize FRSZ2 as a

generalizable solution for use in GMRES solvers in pack-

ages such as Ginkgo. Either 1) there needs to be continued

work to accelerate FRSZ2 even further ± this could come

in the form of additional hardware improvements for certain

assembly instructions (i.e., masked shuffle operations) used

in decompression routines or algorithmic improvements that

could eliminate the dependence on these slow instructions

or changes to the balance between memory and compute

bandwidth 2) we need an accurate, robust, and fast method

to predict when an application will benefit from FRSZ2

compared to mixed-precision methods.

Given the degree of optimization already applied to FRSZ2,

we believe these benefits are most likely to come from

predictions that can be applied just before the first restart.

We explored this briefly in our work prior to submission.

We considered features such as the condition number, value

distribution, exponent distribution, and even autotuned meth-

ods that detect and observe the convergence per unit time of

several candidate methods and then speculatively execute that

the best initial method will continue to dominate. We have only

scratched the surface of possible methods, and with further

work, an appropriate prediction method may be identified.

ACKNOWLEDGMENT

This work was performed on the NHR@KIT Future Tech-

nologies Partition testbed funded by the Ministry of Science,

Research and the Arts Baden-WÈurttemberg and by the Federal

Ministry of Education and Research. The authors thank the

Innovative Computing Lab for access to their NVIDIA H100

GPU.

This work was supported by the U.S. Department of Energy,

Office of Science, Advanced Scientific Computing Research

Program, under Contract DE-AC02-06CH11357. This research

was supported by the Exascale Computing Project (17-SC-

20-SC), a collaborative effort of the U.S. Department of

Energy Office of Science and the National Nuclear Security

Administration. This material is based upon work supported by

the National Science Foundation under Grant No. #2311875

and #2104203. This work has been conducted within the Joint

Laboratory for Extreme-Scale Computing (JLESC).

REFERENCES

[1] J. I. Aliaga, H. Anzt, T. GrÈutzmacher, E. S. Quintana-OrtÂı, and A. E.
TomÂas, ªCompressed basis GMRES on high-performance graphics pro-
cessing units,º The International Journal of High Performance Comput-

ing Applications, pp. 1±18, Aug. 2022.

[2] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, ªUse cases of lossy compression
for floating-point data in scientific data sets,º The International Journal

of High Performance Computing Applications, vol. 33, pp. 1201±1220,
Nov. 2019. Number: 6.

[3] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, ªSZ3: A
Modular Framework for Composing Prediction-Based Error-Bounded
Lossy Compressors,º IEEE Transactions on Big Data, vol. 9, pp. 485±
498, Apr. 2023. Conference Name: IEEE Transactions on Big Data.

[4] S. Di and F. Cappello, ªFast Error-Bounded Lossy HPC Data Com-
pression with SZ,º in 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pp. 730±739, May 2016.
[5] D. Tao, S. Di, Z. Chen, and F. Cappello, ªSignificantly Improving Lossy

Compression for Scientific Data Sets Based on Multidimensional Pre-
diction and Error-Controlled Quantization,º in 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pp. 1129±
1139, May 2017.

[6] P. Lindstrom, ªFixed-Rate Compressed Floating-Point Arrays,º IEEE

Transactions on Visualization and Computer Graphics, vol. 20,
pp. 2674±2683, Dec. 2014. Number: 12.

[7] Yafan Huang, Sheng Di, Guanpeng Li, and Franck Cappello, ªcuSZp2:
A GPU Lossy Compressor with Extreme Throughput and Optimized
Compression Ratio,º in roceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
(Atlanta, GA, USA), pp. 1±14, IEEE, Nov. 2024.

[8] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Prentice-Hall,
1964. Google-Books-ID: cBo1AAAAIAAJ.

[9] T. GrÈutzmacher, H. Anzt, and E. S. Quintana-OrtÂı, ªUsing Ginkgo’s
memory accessor for improving the accuracy of memory-bound low
precision BLAS,º Software - Practice and Experience, no. September,
pp. 1±18, 2021.

[10] R. Underwood, V. Malvoso, J. C. Calhoun, S. Di, and F. Cappello,
ªProductive and Performant Generic Lossy Data Compression with
LibPressio,º in 2021 7th International Workshop on Data Analysis and

Reduction for Big Scientific Data (DRBSD-7), (St. Louis, Missouri),
pp. 1±10, IEEE, Nov. 2021.

[11] T. A. Davis and Y. Hu, ªThe University of Florida Sparse Matrix
Collection,º ACM Transactions on Mathematical Software, vol. 38, Nov.
2011.

[12] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, ªAn Efficient
Transformation Scheme for Lossy Data Compression with Point-Wise
Relative Error Bound,º in 2018 IEEE International Conference on

Cluster Computing (CLUSTER), pp. 179±189, Sept. 2018.
[13] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and

F. Cappello, ªPaSTRI: Error-Bounded Lossy Compression for Two-
Electron Integrals in Quantum Chemistry,º in 2018 IEEE International

Conference on Cluster Computing (CLUSTER), pp. 1±11, Sept. 2018.
[14] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,

and F. T. Chong, ªFull-state quantum circuit simulation by using data
compression,º in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’19,
(New York, NY, USA), pp. 1±24, Association for Computing Machinery,
Nov. 2019.

[15] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-
OrtÂı, ªAdaptive precision in block-jacobi preconditioning for iterative
sparse linear system solvers,º Concurrency and Computation: Practice

and Experience, vol. 31, no. 6, p. e4460, 2019.
[16] F. GÈobel, T. GrÈutzmacher, T. Ribizel, and H. Anzt, ªMixed precision

incomplete and factorized sparse approximate inverse preconditioning
on gpus,º in Euro-Par 2021: Parallel Processing (L. Sousa, N. Roma,
and P. TomÂas, eds.), vol. 1, pp. 550±564, 2021.

[17] E. Agullo, F. Cappello, S. Di, L. Giraud, X. Liang, and N. Schenkels,
ªExploring variable accuracy storage through lossy compression tech-
niques in numerical linear algebra: a first application to flexible GM-
RES,º Research Report RR-9342, Inria Bordeaux Sud-Ouest, May 2020.

[18] F. Cappello, S. Di, R. Underwood, D. Tao, J. Calhoun, Y. Kazutomo,
K. Sato, A. Singh, L. Giraud, E. Agullo, X. Yepes, M. Acosta, S. Jin,
J. Tian, F. Vivien, B. Zhang, K. Sano, T. Ueno, T. GrÈutzmacher,
and H. Anzt, ªMultifacets of lossy compression for scientific data in
the Joint-Laboratory of Extreme Scale Computing,º Future Generation

Computer Systems, 2024.

249

