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eLife assessment
This fundamental study provides a modeling regime that provides new insight into the energy-
preservation parameters among schooling fish. The strength of the evidence supporting observa-
tions such as distilled dynamics between leading and lagging schooling fish which are derived from 
emergent properties is compelling. Overall, the study provides exciting insights into energetic 
coupling with respect to group swimming dynamics.

Abstract The coordinated motion of animal groups through fluids is thought to reduce the cost 
of locomotion to individuals in the group. However, the connection between the spatial patterns 
observed in collectively moving animals and the energetic benefits at each position within the group 
remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive 
formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show 
in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the 
reciprocal nature of flow coupling results in an equal distribution of energy requirements among all 
members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in 
cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal 
for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite 
number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We 
explain these findings mechanistically and we provide efficient diagnostic tools for identifying loca-
tions in the wake of single and multiple swimmers that offer opportunities for hydrodynamic bene-
fits to aspiring followers. Our results imply a connection between the resources generated by flow 
physics and social traits that influence greedy and cooperative group behavior.

Introduction
Flow interactions are thought to allow flying and swimming animals to derive energetic benefits when 
moving in groups (Weihs, 1973). However, direct assessment of such benefits is challenging, chiefly 
because animal groups do not generally conform to regular patterns – individuals in these groups 
dynamically change their position relative to their neighbors (Partridge and Pitcher, 1979; Svendsen 
et al., 2003; Marras et al., 2015; Ashraf et al., 2017; Mirzaeinia et al., 2020). Also, because direct 
energetic measurements in moving animals, flying or swimming, are notoriously difficult and often 
unreliable as proxy for hydrodynamic energy savings (Herskin and Steffensen, 1998; Killen et al., 
2012; Marras et al., 2015; Li et al., 2020; Zhang and Lauder, 2023a; Thandiackal and Lauder, 2023; 
Zhang and Lauder, 2023b; Marras and Porfiri, 2012). These difficulties hinder a direct mapping from 
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the spatial pattern of the group to the energetic benefits or costs incurred at each position within the 
group.

An understanding of how the spatial arrangement of individuals within a group influences their 
cost of locomotion can provide insights into the evolution of social structures, resource allocation, 
and overall fitness of each individual in cooperative activities such as foraging, mating, and evasion 
(Whitehead, 1997; Couzin et al., 2002; Couzin and Krause, 2003; Croft et al., 2008; Bajec and 
Heppner, 2009; Farine and Whitehead, 2015; Jiao et al., 2023). It could also guide the design of 
bio-inspired engineering systems and algorithms that steer groups of entities, such as swarms of 
autonomous robotic vehicles, underwater or in flight, that collaborate to achieve a desired task while 
minimizing energy consumption and improving the overall system efficiency (Leonard and Fiorelli, 
2001; Zhu et al., 2019; Coppola et al., 2020; Li et al., 2021; Berlinger et al., 2021).

To understand the potential energetic benefits of group movement, various direct and indirect 
approaches have been employed. Li et  al., 2020, associated energy savings in pairs of flapping 
robotic swimmers with a linear relationship between their flapping phase lag and relative distance. 
Based on this, a strategy, called vortex phase matching, was extrapolated for how fish should behave 
to maximize hydrodynamic benefits: a follower fish should match its tailbeat phase with the local 
vorticity created by a leader fish. Pairs of freely swimming fish seemed to follow this linear phase-
distance relationship even with impaired vision and lateral line sensing, i.e., in the absence of sensory 
cues about their relative position and neighbor-generated flows. Interestingly, the same linear phase-
distance relationship was uncovered independently in flapping hydrofoils and accredited solely to 
flow interactions (Zhu et  al., 2014; Newbolt et  al., 2019; Newbolt et  al., 2022). It is therefore 
unclear whether vortex phase matching is an active strategy, mediated by sensing and feedback 
control, that fish employ to minimize energy expenditure, or if it arises passively through flow interac-
tions between flapping swimmers. Importantly, active or passive, it is unclear if this strategy scales to 
groups larger than two.

In an effort to directly gauge the energetic benefits of schooling, metabolic energetic measure-
ments were recently performed in solitary and groups of eight fish, and impressive energetic savings 
were attributed to schooling compared to solitary swimming when the fish were challenged to swim 
at high speeds (Zhang and Lauder, 2023b). Lamentably, the study made no mention of the spatial 
patterns assumed by these physically thwarted individuals (Zhang and Lauder, 2023b). In an inde-
pendent previous study (Ashraf et al., 2017), changes in spatial patterns and tailbeat frequencies 
were reported in similar experiments, albeit with no energetic measurements. Specifically, Ashraf 
et al., 2017, showed that, when challenged to sustain higher swimming speeds, the fish in a group 
rearranged themselves in a side-by-side pattern as the speed increased, presumably to save energy.

Taking together the results of Zhang and Lauder, 2023b; Ashraf et al., 2017, are we to conclude 
that side-by-side formations are more energetically beneficial than, say, inline or diagonal formations? 
The answer is not simple! The metabolic measurements of Marras et al., 2015, in a school of eight fish 
report that side-by-side formations, though beneficial, produce the least energetic savings compared 
to diagonal formations (Weihs, 1973). In an experimental study of a single fish interacting with a 
robotic flapping foil, the freely swimming fish positioned itself in an inline formation in the wake of the 
flapping foil, supporting the hypothesis that swimming in the wake of one another is an advantageous 
strategy to save energy in a school (Thandiackal and Lauder, 2023). Why did the fish in the experi-
ments of Ashraf et al., 2017, self-organize in a side-by-side formation when challenged to swim at 
higher swimming speeds?

The answer is not simple because ample hydrodynamic mechanisms for energy savings in fish 
schools have been stipulated for each possible configuration – side-by-side, inline, and diagonal (see, 
e.g., Figure 1 of Zhang and Lauder, 2023b) – but no assessment is provided of the relative advan-
tage of these configurations. For example, side-by-side formations, where fish mirror each other by 
flapping antiphase, are thought to create a wall-like effect that reduces swimming cost (Zhang and 
Lauder, 2023b; Fish and Hui, 1991). A fish swimming in the wake between two leading fish encoun-
ters a reduced oncoming velocity, leading to reduced drag and thrust production (Weihs, 1973). 
Inline formations, where fish swim in tandem, are thought to provide benefits to both leader and 
follower, by an added mass push from follower to leader (Fish and Hui, 1991; Usherwood et al., 
2011) and a reduced pressure on the follower (Kurt and Moored, 2018). All of these mechanisms 
can in principle be exploited by schooling fish as they dynamically change their relative spacing in 
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the group. But are these mechanisms equally advantageous? Or is there a hierarchy of hydrodynamic 
benefits depending on the relative position within the school? The literature offers no comparative 
analysis of the energetic savings afforded by each of these configurations.

The study of Marras et  al., 2015, is arguably the closest to addressing this question, but, to 
map the energetic benefits for pairwise configurations, the authors employed statistical averages in 
a school of eight fish, thus inevitably combining the various hydrodynamic mechanisms at play and 
cross-polluting the estimated benefits of each configuration. A cleaner analysis in pairs of flapping 
foils shows that these relative positions – side-by-side, inline, and diagonal – all emerge spontaneously 
and stably due to flow interactions (Newbolt et al., 2022), but provides no method for estimating 
the energetic requirements of these formations, let alone comparing them energetically. Even vortex 
phase matching makes no distinction between side-by-side, inline, or diagonal pairs of fish (Li et al., 
2020). It simply postulates that an unknown amount of energetic benefit is acquired when the linear 
phase-distance relationship is satisfied. Thus, to date, despite the widespread notion that group 
movement saves energy, a direct comparison of the energetic savings afforded by different spatial 
formations remains lacking. Importantly, it is unknown whether and how the postulated benefits scale 
with increasing group size.

Here, to circumvent the challenges of addressing these questions in biological systems, we formu-
late computational models that capture the salient hydrodynamic features of single and pairs of 
swimming fish. Namely, we represent each fish as a freely swimming hydrofoil undergoing pitching 
oscillations about its leading edge. A single flapping hydrofoil shares many hydrodynamic aspects 
with its biological counterpart, including an alternating, long-lived pattern of vorticity in its wake 
(Triantafyllou et al., 1993; Triantafyllou et al., 2000; Lauder et al., 2011; Verma et al., 2017; Smits, 
2019). These similarities have been demonstrated repeatedly, within biologically relevant ranges of 
flapping parameters (Triantafyllou et al., 1993; Taylor et al., 2003), for different geometries (Von 
Ellenrieder et al., 2003; Taira and Colonius, 2009; Green et al., 2011; Ayancik et al., 2019), mate-
rial properties (Moored et al., 2014; Quinn et al., 2014; Ayancik et al., 2019), and flapping kine-
matics (Tytell and Lauder, 2004; Kern and Koumoutsakos, 2006; Hultmark et al., 2007). In this 
study, we show, based on our own simulations and by conducting a thorough literature survey, that 
flow interactions, with no sensing and feedback control, lead to emergent formations that preserve 
the linear phase-distance relationship uncovered independently in live and robotic fish (Li et al., 2020; 
Thandiackal and Lauder, 2023) and in flapping hydrofoils (Zhu et al., 2014; Newbolt et al., 2019; 
Newbolt et al., 2022). This relationship is preserved irrespective of geometry (Ramananarivo et al., 
2016; Newbolt et al., 2019; Newbolt et al., 2022), material properties (Kim et al., 2010; Zhu et al., 
2014; Peng et al., 2018; Arranz et al., 2022), and flapping kinematics (Heydari and Kanso, 2021; 
Kurt et al., 2021). The universality of this relationship serves as strong validation of our models and 
anchors our subsequent exploration of the opportunities for hydrodynamic benefits available in a 
given flow field.

Importantly, we go beyond two swimmers to investigate flow interactions in larger groups and find 
that inline formations differentially distribute hydrodynamic savings to members within the school, 
favoring trailing swimmers, but only up to a certain school size, while side-by-side formations equally 
distribute hydrodynamic savings and scale to arbitrary number of swimmers without loss of cohesion. 
Our findings provide a direct mapping from the school’s spatial pattern to the energetic savings 
experienced by its members. Importantly, our results raise an interesting hypothesis that the dynamic 
repositioning of members within a fish school could be driven by greed and competition to occupy 
hydrodynamically advantageous positions and open up opportunities for analyzing the role of flow 
physics in the evolution of cooperative versus greedy behavior in animal groups.

Results
Mathematical models of flow-coupled flapping swimmers
Inspired by the experiments of Newbolt et al., 2019; Li et al., 2020, we study self-organization in 
the context of flapping swimmers, coupled passively via the fluid medium, with no mechanisms for 
visual (McKee et al., 2020; Guthrie, 1986; Fernald, 1989; Douglas and Djamgoz, 2012; Lombana 
and Porfiri, 2022), flow sensing (Engelmann et al., 2000; Ristroph et al., 2015; Colvert and Kanso, 
2016; Hang et al., 2023), or feedback control (Verma et al., 2018; Jiao et al., 2021; Li et al., 2021; 
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Figure 1). The swimmers are rigid, of finite body length ‍L‍ and mass per unit depth ‍m‍, and undergo 
pitching oscillations of identical amplitude ‍A‍ and frequency ‍f ‍ in the ‍(x, y)‍-plane of motion, such that 
the pitching angle for swimmer ‍j‍ is given by ‍θj = A sin(2πft + ϕj)‍, ‍j = 1, 2, . . . , N ‍, where ‍N ‍ is the total 
number of swimmers. In pairwise interaction, we set ‍ϕ1 = 0‍ and ‍ϕ2 = −ϕ‍, with ‍ϕ‍ being the phase 
lag between the oscillating pair. We fixed the lateral distance ‍ℓ‍ between the swimmers to lie in the 
range ‍ℓ ∈ [−L, L]‍, and allowed the swimmers to move freely in the ‍x‍-direction in an unbounded two-
dimensional fluid domain of density ‍ρ‍ and viscosity μ.
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Figure 1. Flow-coupled swimmers self-organize into stable pairwise formations. (A) Inline (‍ℓ = 0,ϕ = π/2‍), (B) diagonal (‍ℓ = L/2,ϕ = 0‍), (C) inphase 
side-by-side (‍ℓ = L/2,ϕ = 0‍), and (D) antiphase side-by-side (‍ℓ = L/2,ϕ = π‍) in computational fluid dynamics (CFD) (left) and vortex sheet (VS) (right) 
simulations. Power savings at steady state relative to respective solitary swimmers are reported in Figure 3. Parameter values are ‍A = 15◦‍, Re = 

‍2πρAfL/µ = 1645‍ in CFD, and ‍fτdiss = 2.45‍ in VS simulations. Corresponding hydrodynamic moments are given in Figure 1—figure supplement 4. 
Simulations at different Reynolds numbers and dissipation times are given in Figure 1—figure supplements 1–3.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Computational fluid dynamics (CFD) simulations of pairwise formations.

Figure supplement 2. Vortex sheet (VS) simulations of pairwise formations.

Figure supplement 3. Computational fluid dynamics (CFD) and vortex sheet (VS) simulations at various flow properties.

Figure supplement 4. Hydrodynamic moment acting on pairs of flapping swimmers.

https://doi.org/10.7554/eLife.96129
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When unconstrained, the swimmers may drift 
laterally relative to each other, as illustrated in 
dipole models (Tsang and Kanso, 2013; Kanso 
and Cheng Hou Tsang, 2014) and high-fidelity 
simulations of undulating swimmers (Gazzola 
et al., 2014; Verma et al., 2018). However, this 
drift occurs at a slower time scale than the swim-
ming motion, and can, in principle, be corrected 
by separate feedback control mechanisms (Zhu 
et al., 2022). Here, we focus on the dynamics in 
the swimming direction.

Hereafter, all parameters are scaled using the 
body length ‍L‍ as the characteristic length scale, 
flapping period ‍T = 1/f ‍ as the characteristic time 
scale, and ‍ρL2

‍ as the characteristic mass per unit 
depth. Accordingly, velocities are scaled by ‍Lf ‍, 
forces by ‍ρf 2L3

‍, moments by ‍ρf 2L4
‍, and power 

by ‍ρf 3L4
‍.

The equations governing the free motion ‍xj(t)‍ 
of swimmer ‍j‍ are given by Newton’s second law 
(here, the downstream direction is positive),

	﻿‍ mẍj = −Fj sin θj + Dj cos θj.‍� (1)

The hydrodynamic forces on swimmer ‍j‍ are decomposed into a pressure force ‍Fj‍ acting in the 
direction normal to the swimmer and a viscous drag force ‍Dj‍ acting tangentially to the swimmer. 
These forces depend on the fluid motion, which, in turn, depends on the time history of the states of 
the swimmers.

To maintain their pitching motions, swimmers exert an active moment ‍Ma‍ about the leading 
edge, whose value is obtained from the balance of angular momentum. The hydrodynamic power ‍P‍ 
expended by a flapping swimmer is given by ‍P = Maθ̇‍.

To compute the hydrodynamic forces and swimmers’ motion, we used two fluid models (Figure 1—
figure supplements 1–3). First, we employed a computational fluid dynamics (CFD) solver of the 
Navier-Stokes equations tailored to resolving fluid-structure interactions (FSI) based on an adaptive 
mesh implementation of the immersed boundary method (IBM) (IBAMR, 2024; Griffith et al., 2007; 
Bhalla et al., 2013). Then, we solved the same FSI problem, in the limit of thin swimmers, using the 
more computationally efficient inviscid vortex sheet (VS) model (Nitsche and Krasny, 1994; Huang 
et al., 2016; Huang et al., 2018; Heydari and Kanso, 2021; Hang et al., 2022). To emulate the effect 
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Figure 2. Emergent equilibria in pairwise formations. (A) Time evolution of scaled streamwise separation distance ‍d/UT ‍ for a pair of inline swimmers at 

‍ϕ = 0‍. Depending on initial conditions, the swimmers converge to one of two equilibria at distinct separation distance. (B) At ‍ℓ = L/2‍, ‍d/UT ‍ changes 
slightly compared to inline swimming in (A). Importantly, a new side-by-side inphase equilibrium is now possible where the swimmers flap together at a 
slight shift in the streamwise direction. (C) Starting from the first equilibrium in (A), ‍d/UT ‍ increases linearly as we increase the phase lag ‍ϕ‍ between the 
swimmers.

Video 1. Pairs of flow-coupled swimmers self-organize 
into stable inline, staggered, or side-by-side formation. 
Energetic benefits depend on the spatial pattern. 
Results based on flapping foils in computational fluid 
dynamics (CFD) simulations.

https://elifesciences.org/articles/96129/figures#video1
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of viscosity in the VS model, we allowed shed vorticity to decay after a dissipation time ‍τdiss‍; larger ‍τdiss‍ 
correlates with larger Reynolds number Re in the Navier-Stokes model; see SI for a brief overview of 
the numerical implementation and validation of both methods.

Flow coupling leads to stable emergent formations
We found, in both CFD and VS models, that pairs of swimmers self-organize into relative equilibria at 
a streamwise separation distance ‍d‍ that is constant on average, and swim together as a single forma-
tion at an average free-swimming speed ‍U ‍ (Figures 1 and 2). We distinguished four types of relative 
equilibria: inline, diagonal, side-by-side inphase, and side-by-side antiphase (Figure 1, Video 1).

Inline formations at ‍ℓ = 0‍ arise when the follower positions itself, depending on its initial distance 
from the leader, at one of many inline equilibria, each with its own basin of attraction (Figure 2A). 
These inline equilibria occur at average spacing ‍d‍ that is approximately an integer multiple of ‍UT ‍, 
consistent with previous experimental (Becker et al., 2015; Ramananarivo et al., 2016; Newbolt 
et al., 2019) and numerical (Zhu et al., 2014; Park and Sung, 2018; Peng et al., 2018; Dai et al., 
2018; Heydari and Kanso, 2021; Arranz et al., 2022) findings.

When offsetting the swimmers laterally at ‍ℓ ̸= 0‍ (Figure  2B), the leader-follower equilibria that 
arise at ‍ℓ = 0‍ shift slightly but persist, giving rise to diagonal leader-follower equilibria (Newbolt 
et al., 2022). Importantly, at a lateral offset ‍ℓ‍, inphase swimmers (‍ϕ = 0‍) that are initially placed side-
by-side reach a relative equilibrium where they travel together at a close, but non-zero, average 
spacing ‍d ≤ L‍. That is, a perfect side-by-side configuration of inphase flapping swimmers is unstable 
but the more commonly observed configuration (Li et al., 2020) where the two swimmers are slightly 
shifted relative to each other is stable. This configuration is fundamentally distinct in terms of cost of 
transport from the mirror-symmetric side-by-side configuration that arises when flapping antiphase at 

‍ϕ = π‍ (Figure 3A). Both side-by-side equilibria were observed experimentally in heaving hydrofoils 
(Newbolt et al., 2022), albeit with no assessment of the associated hydrodynamic power and cost of 
transport.

We next examined the effect of varying the phase ‍ϕ‍ on the emergent traveling formations. Starting 
from initial conditions so as to settle on the first equilibrium ‍d/UT ≈ 1‍ when ‍ϕ = 0‍, and increasing ‍ϕ‍, we 
found, in both CFD and VS simulations, that the spacing ‍d/UT ‍ at equilibrium increased with increasing 

‍ϕ‍ (Figure 2C). This increase is linear, as evident when plotting ‍d/UT ‍ as a function of ‍ϕ‍ (Figure 3B). 
Indeed, in Figure 3B, we plotted the emergent average separation distance ‍d/UT ‍ as a function of 
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Figure 3. Hydrodynamic benefits and linear phase-distance relationship in pairwise formations. (A) Change in cost of transport compared to solitary 
swimmers for the inline, diagonal, side-by-side inphase, and side-by-side antiphase formations shown in Figure 1. (B) Emergent formations in pairs of 
swimmers in computational fluid dynamics (CFD) and vortex sheet (VS) models satisfy a linear phase-distance relationship, consistent with experimental 
(Ramananarivo et al., 2016; Newbolt et al., 2019; Li et al., 2020; Kurt et al., 2021; Thandiackal and Lauder, 2023) and numerical (Kim et al., 
2010; Peng et al., 2018; Heydari and Kanso, 2021; Arranz et al., 2022) studies. With the exception of the antiphase side-by-side formation, 
swimmers in these formations have a reduced average cost of transport compared to solitary swimming.
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‍ϕ‍ for various values of ‍ℓ‍. Except for the antiphase side-by-side formation, the linear phase-distance 
relationship ‍ϕ/2π ∝ d/UT ‍ persisted for ‍ℓ ̸= 0‍.

The key observation, that pairs of flapping swimmers passively self-organize into equilibrium 
formations, is independent of both scale and fluid model. In our CFD simulations (Figure 1—figure 
supplements 1 and 3), we tested a range of Reynolds number ‍Re = ρUL/µ‍ from 200 to 2000, which 
covers the entire range of existing CFD simulations (Becker et al., 2015; Arranz et al., 2022), where 
Re ∼O(102), and experiments (Becker et al., 2015; Newbolt et al., 2019; Newbolt et al., 2022), 
where Re ∼O(103). In our VS simulations, we varied ‍τdiss‍ from ‍2.45T ‍ to ‍∞‍ (Figure 1—figure supple-
ments 2 and 3). Note that the separation distance ‍d‍ is scale-specific and increases with Re; at low Re, 
a compact inline formation is reached where the two swimmers ‘tailgate’ each other, as observed in 
Peng et al., 2018. However, the scaled separation distance ‍d/UT ‍ remains nearly constant for all Re 
and ‍τdiss‍ (Figure 1—figure supplement 3).

The fact that these equilibria emerge in time-forward simulations is indicative of stability (Strogatz, 
1994). A more quantitative measure of linear stability can be obtained numerically by perturbing each 
equilibrium, either by applying a small impulsive or step force after steady state is reached (Newbolt 
et al., 2022) or by directly applying a small perturbation to the relative equilibrium distance between 
the two swimmers and examining the time evolution of ‍d‍ and ‍F‍ to quantify variations in hydrody-
namic force ‍δF‍ as a function of signed variations in distance ‍δd‍ from the equilibrium (Heydari and 
Kanso, 2021). In either case, we found that the force-displacement response to small perturbations at 
each equilibrium exhibited the basic features of a linear spring-mass system, where ‍δF/δd‍ is negative, 
indicating that the hydrodynamic force acts locally as a restoring spring force that causes the initial 
perturbation to decay and that stabilizes the two swimmers together at their equilibrium relative 
position. Larger values of ‍|δF/δd|‍ imply faster linear convergence to the stable equilibrium and thus 
stronger cohesion of the pairwise formation. Results of this quantitative stability analysis are discussed 
in subsequent sections.

Emergent formations save energy compared to solitary swimming
We evaluated the hydrodynamic advantages associated with these emergent formations by 
computing the hydrodynamic power ‍Psingle‍ of a solitary swimmer and ‍Pj‍ of swimmer ‍j‍ in a formation 
of ‍N ‍ swimmers.

We calculated the cost of transport ‍COTj = Pj/mU ‍, of swimmer ‍j‍ and the change in COT compared 
to solitary swimming ‍∆COTj = (COTsingle − COTj)/COTsingle‍ (Figure 3A). We also calculated the average 

change in cost of transport ‍∆COT =
∑N

j ∆COTj/N ‍ for each formation (Figure 3B). In all cases, except 
for the antiphase side-by-side formation, in both CFD and VS simulations, the swimmers traveling in 
equilibrium formations save power and cost of transport compared to solitary swimming. The savings 
are larger at tighter lateral spacing ‍ℓ‍.

For inline and diagonal formations, these hydrodynamic benefits are granted entirely to the follower, 
whose hydrodynamic savings can be as high as 60% compared to solitary swimming (Figure  3A; 
Heydari and Kanso, 2021). Intuitively, because in 2D flows, vortex-induced forces decay with the 
inverse of the square of the distance from the vortex location, flow coupling between the two inline or 
diagonal swimmers is non-reciprocal; the follower positioned in or close to the leader’s wake interacts 
more strongly with that wake than the leader interaction with the follower’s wake (Figure 1—figure 
supplements 1A, B and 4A, B).

In side-by-side formations, by symmetry, flow coupling between the two swimmers is reciprocal, 
or nearly reciprocal in inphase flapping (Figure  1—figure supplements 1C, D and 4C, D). Thus, 
hydrodynamics benefits or costs are expected to be distributed equally between the two swimmers. 
Indeed, for inphase flapping, the hydrodynamic benefits are shared equally between both swimmers. 
For antiphase flapping the cost is also shared equally (Figure 3A).

The biased distribution of benefits in favor of the follower in inline and diagonal formations could 
be a contributing factor to the dynamic nature of fish schools (Svendsen et al., 2003; Mirzaeinia 
et  al., 2020). The egalitarian distribution of benefits in the inphase side-by-side formation could 
explain the abundance of this pairwise configuration in natural fish populations (Li et al., 2020) and 
why groups of fish favor this configuration when challenged to swim at higher speeds (Ashraf et al., 
2017; Lombana and Porfiri, 2022).

https://doi.org/10.7554/eLife.96129
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Linear phase-distance relationship in emergent formations is universal
To probe the universality of the linear phase-distance relationship, we compiled, in addition to our 
CFD and VS results, a set of experimental (Ramananarivo et al., 2016; Newbolt et al., 2019; Li 
et al., 2020) and numerical (Kim et al., 2010; Peng et al., 2018; Heydari and Kanso, 2021; Kurt 
et al., 2021; Arranz et al., 2022) data from the literature (Table 1). Data including CFD simulations 
of deformable flapping flags (✩) (Kim et al., 2010), (❏) (Zhu et al., 2014) and flexible airfoil with low 
aspect ratio (‍▷‍) (Arranz et al., 2022), physical experiments with heaving (‍⃝‍) (Ramananarivo et al., 
2016; Newbolt et al., 2019) and pitching (‍

�
‍) (Kurt et al., 2021) rigid hydrofoils, fish-foil interactions 

(‍∗‍) (Thandiackal and Lauder, 2023), and fish-fish interactions (‍
�

‍) measured in pairs of both intact and 
visually and/or lateral line-impaired live fish (Li et al., 2020) are superimposed on Figure 3B. All data 
collapsed onto the linear phase-distance relationship ‍ϕ/2π ∝ d/UT ‍, with the largest variability exhib-
ited by live fish with close streamwise distance, where the interaction between fish bodies may play 
a role. The side-by-side inphase formations trivially satisfy this linearity because ‍d/UT ≈ ϕ/2π = 0‍, but 
the side-by-side antiphase formations don’t satisfy; in the latter, ‍d/UT = 0‍ while ‍ϕ/2π = 1‍.

These findings strongly indicate that flow-coupled flapping swimmers passively organize into 
stable traveling equilibrium formations with linear phase-distance relationship. This relationship is 
independent of the geometric layout (inline versus laterally offset swimmers), flapping kinematics 
(heaving versus pitching), material properties (rigid versus flexible), tank geometry (rotational versus 
translational), fidelity of the fluid model (CFD versus VS versus particle model), and system (biological 
versus robotic, 2D versus 3D). Observations that are robust across such a broad range of systems 

Table 1. Data collection from published literature.
We calculated the Reynolds numbers based on swimming speed (‍ReU = ρUL/µ‍) and flapping velocity (‍ReA = 2πρAfL/µ‍), where ‍f = 1/T ‍ 
is the flapping frequency. Missing values are either not applicable or not available.

Reference Study type System Distance Phase ReU ReA

Kim et al., 2010 Numerical Flapping flags Head-to-head ‍ϕ ∈ [0, 2π]‍
200
 –400 –

Zhu et al., 2014 Numerical Heaving flexible foils – ‍ϕ ∈ [0,π]‍ 500 200

Ramananarivo et al., 2016 Experimental Heaving foils Tail-to-head ‍ϕ = 0‍
103

–104
102

–103

Peng et al., 2018 Numerical Heaving flexible foils Tail-to-head ‍ϕ = 0‍ 509 200

Newbolt et al., 2019 Experimental Heaving foils Tail-to-head ‍ϕ ∈ [0, 2π]‍
103

 –104
102

 –103

Li et al., 2020 Experimental Goldfish Head-to-head ‍ϕ ∈ [0, 2π]‍ 105 104

Kurt et al., 2021 Experimental Pitching foils Tail-to-head ‍ϕ ∈ [0, 2π]‍ 9950 18,850

Heydari and Kanso, 2021 Numerical Heaving plates Tail-to-head ‍ϕ = 0‍ – –

Pitching plates Head-to-head ‍ϕ = 0‍ – –

Arranz et al., 2022 Numerical Heaving flexible foils (3D) Tail-to-head ‍ϕ ∈ [0, 2π]‍ 176 200

Thandiackal and Lauder, 2023 Experimental Fish-foil interactions Tail-to-head ‍ϕ ∈ [0, 2π]‍ 20·103 (foil) 50·103 (foil)

40·103 (fish)

Becker et al., 2015* Experimental Heaving foils Tail-to-head
‍ϕ = 0‍
,‍π‍ –

102

 –104

Park and Sung, 2018* Numerical Heaving flexible foils – ‍ϕ ∈ [0, 2π]‍
60
 –1100

100
 –1200

Dai et al., 2018* Numerical Pitching + heaving foils –
‍ϕ = 0‍
,‍π‍ 440 600

*Data not included in Figure 3.

https://doi.org/10.7554/eLife.96129
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are expected to have common physical and mechanistic roots that transcend the particular set-up or 
system realization.

Importantly, this universal relationship indicates that flow physics passively positions a swimmer at 
locations ‍d‍ where the swimmer’s flapping phase ‍ϕ‍ matches the local phase of the wake ‍ϕwake = 2πd/UT ‍, 
such that the effective phase ‍ϕeff = ϕ− ϕwake‍ is zero. Importantly, because the quantity ‍UT ‍ is nearly 
equal to the wavelength of the wake of a solitary swimmer, the phase ‍ϕwake = 2πd/UT ‍ is practically 
equal to the phase of a solitary leader. These observations have two major implications. First, they are 
consistent with the vortex phase matching introduced in Li et al., 2020, as a strategy by which fish 
maximize hydrodynamic benefits. However, they proffer that vortex phase matching is an outcome 
of passive flow interactions among flapping swimmers, and not necessarily an active strategy imple-
mented by fish via sensing and feedback mechanisms. Second, they led us to hypothesize that emer-
gent side-by-side formations can be predicted from symmetry arguments, while emergent inline and 
diagonal formations can be predicted entirely from kinematic considerations of the leader’s wake 
without considering two-way flow coupling between the two swimmers.

Leader’s wake unveils opportunities for stable emergent formations
To challenge our hypothesis that the leader’s wake contains information about the emergent pairwise 
equilibria, we examined the wake of a solitary swimmer in CFD and VS simulations (Figure 4A and 
B). By analyzing the wake of a solitary swimmer, without consideration of two-way coupling with a 
trailing swimmer, we aimed to assess the opportunities available in that wake for a potential swimmer, 
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Figure 4. Prediction of relative equilibria in the wake of a solitary swimmer. (A, B) Snapshots of vorticity and fluid velocity fields created by a solitary 
swimmer in computational fluid dynamics (CFD) and vortex sheet (VS) simulations and corresponding flow agreement parameter ‍V‍ fields for a virtual 
follower at ‍ϕ = 0‍. Locations of maximum ‍V‍ values (i.e. peaks in the flow agreement parameter field) coincide with the emergent equilibria in inphase 
pairwise formations (indicated by black circles). Contour lines represent flow agreement parameter at ±0.25, ±0.5. Thrust parameter ‍T‍ is shown at ‍ℓ = 0‍ 
and ‍ℓ = 0.5L‍. A negative slope ‍∂T/∂d ‍ indicates stability of the predicted equilibria. See also Figure 1—figure supplements 1 and 2.
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undergoing flapping motions, to position itself passively in the oncoming wake and extract hydrody-
namic benefit.

Therefore, in the following analysis, we treated the potential swimmer as a ‘virtual’ particle located 
at a point ‍(x, y)‍ in the oncoming wake and undergoing prescribed transverse oscillations ‍A sin(2πft − ϕ)‍ 
in the ‍y‍-direction, at velocity ‍v(t;ϕ) = 2πAf cos(2πft − ϕ)ey‍, where ‍ey‍ is a unit vector in the ‍y‍-direction. 
The oncoming wake is blind to the existence of the virtual particle. Guided by our previous findings that 
stable equilibrium formations in pairwise interactions occur at zero effective phase ‍ϕeff = ϕ− ϕwake = 0‍, 
where the net hydrodynamic force on the trailing swimmer is zero and where small perturbations lead 
to negative force gradients, we introduced two assessment tools: a flow agreement parameter field 

‍V(x, y;ϕ)‍ that measures the degree of alignment, or matching, between the flapping motion of the 
virtual particle and the transverse flow of the oncoming wake, and a thrust parameter field ‍T(x, y;ϕ)‍ 
that estimates the potential thrust force required to undergo such flapping motions.

Specifically, inspired by Arranz et al., 2022, and following Heydari and Kanso, 2021, we defined 
the flow agreement parameter‍V(x, y;ϕ)‍ using ‍

1
T
´ t+T

t v · u dt′‍, where ‍t‍ is chosen after the oncoming 

wake has reached steady state, normalized by ‍
1
T
´ t+T

t v · v dt′‍ (Appendix E). The normalized ‍V(x, y;ϕ)‍ 
describes how well the oscillatory motion ‍v(t;ϕ)‍ of the virtual particle matches the local transverse 
velocity ‍u(x, y, t)‍ of the oncoming wake (Heydari and Kanso, 2021). Positive (negative) values of ‍V‍ 
indicate that the flow at ‍(x, y)‍ is favorable (unfavorable) to the flapping motion of the virtual follower.

In Figure 4A and B, we show ‍V(x, y;ϕ = 0)‍ as a field over the physical space ‍(x, y)‍ for ‍ϕ = 0‍. Blue 
regions indicate where the local flow favors the follower’s flapping motion. In both CFD and VS 
simulations, the locations with the maximum flow agreement parameter closely coincide with the 
stable equilibria (black circles) obtained from solving pairwise interactions. These findings imply that 
hydrodynamic coupling in pairs of flapping swimmers is primarily non-reciprocal – captured solely by 
consideration of the effects of the leader’s wake on the follower. This non-reciprocity allows one, in 
principle, to efficiently and quickly identify opportunities for hydrodynamic benefits in the leader’s 
wake, without the need to perform costly two-way coupled simulations and experiments.
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Figure 5. Prediction of energetically beneficial, stable equilibria in the wake of a solitary swimmer at various phase lags and lateral offsets. (A) Location 
of maximum ‍V‍ as a function of phase lag ‍ϕ‍ in the wake of solitary leaders in computational fluid dynamics (CFD) and vortex sheet (VS) simulations. 
For comparison, equilibrium distances of pairwise simulations in CFD, VS, and time-delay particle models (Figure 5—figure supplement 1) are 
superimposed. Agreement between ‍V‍-based predictions and actual pairwise equilibria is remarkable. (B) ‍V‍ values also indicate the potential benefits 
of these equilibria, here shown as a function of lateral distance ‍ℓ‍ for a virtual inphase follower in the wake of a solitary leader in CFD and VS simulations. 
The power savings of an actual follower in pairwise formations in CFD and VS simulations are superimposed. (C) A negative slope ‍∂T/∂d ‍ of the thrust 
parameter ‍T‍ indicates stability and ‍|∂T/∂d|‍ expresses the degree of cohesion of the predicted formations, here, shown as a function of ‍ℓ‍ for an inphase 
virtual follower. ‍|∂F/∂d|‍ obtained from pairwise formations in VS and time-delay particle models are superimposed (Figure 5—figure supplement 1). 
Results in (B and C) are normalized by the corresponding maximum values to facilitate comparison.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Time-delay particle model.

https://doi.org/10.7554/eLife.96129
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Importantly, our findings suggest a simple rule for identifying the locations of stable equilibria 
in any oncoming wake from considerations of the flow field of the wake itself: a potential swimmer 
undergoing a flapping motion at phase ‍ϕ‍ tends to position itself at locations ‍(x∗, y∗)‍ of maximum flow 
agreement ‍V(x, y;ϕ)‍ between its flapping motion and the oncoming wake.

To verify this proposition, we show in Figure 5A, as a function of phase ‍ϕ‍, the streamwise locations 
of the local maxima of ‍V(x, y;ϕ)‍ computed based on the CFD and VS models, and scaled by ‍UT ‍, where 
‍U ‍ is the speed of the solitary swimmer. We superimpose onto these results the equilibrium configura-
tions obtained from pairwise interactions in the context of the CFD (‍♦‍), VS (‍■‍), and time-delay particle 
(‍⃝‍) models, where we modified the latter to account for non-zero lateral offset ‍ℓ‍ (Appendix D and 
Figure 5—figure supplement 1). Predictions of the equilibrium configurations based on maximal flow 
agreement parameter agree remarkably well with actual equilibria based on pairwise interactions, and 
they all follow the universal linear phase-distance relationship shown in Figure 2B.

The wake of a solitary swimmer contains additional information that allows us to evaluate the 
relative power savings of a potential follower and relative stability of the pairwise formation directly 
from the leader’s wake, without accounting for pairwise interactions. Assessment of the relative 
power savings follows directly from the maximal value of the flow agreement parameter: larger 
values imply more power savings and reduced cost of transport. To verify this, we calculated the 
maximal ‍V(x∗, y∗;ϕ)‍ in the wake of the solitary swimmer, where we expected the follower to posi-
tion itself in pairwise interactions. In Figure 5B, we plotted these ‍V‍ values as a function of lateral 
distance ‍ℓ‍ for ‍ϕ = 0‍. We superimposed the power savings ‍∆P‍ based on pairwise interactions of 
inphase swimmers using the CFD and VS simulations and normalized all quantities by the maximal 
value of the corresponding model to highlight variations in these quantities as opposed to absolute 
values. Power savings are almost constant for ‍ℓ < 0.25L‍, but decrease sharply as ‍ℓ‍ increases. This 
trend is consistent across all models, with the most pronounced drop in the CFD-based simulations 
because the corresponding velocity field ‍u‍ decays more sharply when moving laterally away from 
the swimmer.

Next, to assess the stability of the virtual particle based only on information in the oncoming wake 
of a solitary swimmer, we estimated the thrust force based on the fact that the thrust magnitude 
scales with the square of the swimmer’s lateral velocity relative to the surrounding fluid’s velocity 
(Triantafyllou et al., 1993; Floryan et al., 2017; Newbolt et al., 2019). We defined the thrust param-
eter field ‍T(x, y;ϕ) = − 1

T
´ t+T

t
∣∣(v − u).ey

∣∣2 dt′‍, normalized using ‍
1
T
´ t+T

t
∣∣v.ey

∣∣2 dt′‍. At the locations of the 
maxima of ‍V(x∗, y∗;ϕ)‍, a negative slope ‍∂T/∂d‍ of the thrust parameter is an indicator of linear stability 
or cohesion of the potential equilibria, i.e., emergent pairwise formations are expected to be stable 
if a small perturbation in distance about the locations ‍(x∗, y∗)‍ of maximal ‍V‍ is accompanied by an 
opposite, restorative change in ‍T‍. Indeed, in both CFD and VS wakes, ‍∂T/∂d‍ at ‍(x∗, y∗)‍ is negative 
(Figure 4).

In Figure 5C, we plotted ‍|∂T/∂d|‍ as a function of lateral distance ‍ℓ‍ for ‍ϕ = 0‍. We superimposed the 
magnitude of the eigenvalues ‍|δF/δd|‍ obtained from the linear stability analysis of pairwise interactions 
in inphase swimmers using the VS and time-delay particle models. As in Figure 5B, all quantities are 
normalized by the maximal value of the corresponding model to highlight variations in these quantities 
as opposed to absolute values. Also, as in Figure 5B, all models produce consistent results: pairwise 
cohesion is strongest for ‍ℓ < 0.25L‍, but weakens sharply as ‍ℓ‍ increases, with the most pronounced 
drop in the CFD-based simulations.

A few comments on our virtual particle model and diagnostic tools in terms of the flow agreement 
and thrust parameters are in order. Our model differs from the minimal particle model used in Becker 
et al., 2015; Newbolt et al., 2019, which treated both swimmers as particles with minimal ‘wakes’ 
and considered two-way coupling between them (see Appendix D).

In our analysis, the oncoming wake can be described to any desired degree of fidelity of the fluid 
model, including using experimentally constructed flows when available. Indeed, our flow agreement 
and thrust parameters are agnostic to how the flow field of the oncoming wake is constructed. Addi-
tionally, these diagnostic tools are equally applicable to any oncoming wake, not necessarily produced 
by a single swimmer, but say by multiple swimmers (as discussed later) or even non-swimming flow 
sources. Thus, the approach we developed here could be applied broadly to analyze, predict, and test 
opportunities for schooling and hydrodynamic benefits for live and robotic fish whenever measure-
ments of an oncoming flow field are available.

https://doi.org/10.7554/eLife.96129
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Parametric analysis over the entire space of phase lags and lateral 
offsets
Having demonstrated consistency in the emergence of flow-mediated equilibria in both CFD and VS 
simulations, we next exploited the computational efficiency of the VS model to systematically inves-
tigate emergent pairwise formations over the entire space of phase lag ‍ϕ ∈ [0, 2π)‍ and lateral offset 

‍ℓ ∈ [−L, L]‍, excluding side-by-side antiphase formations. Equilibrium configurations are dense over 
the entire range of parameters: for any combination of phase lag ‍ϕ‍ and lateral offset ‍ℓ‍, there exists 
an emergent equilibrium configuration where the pair of swimmers travel together at a separation 
distance ‍d/UT ‍ (Figure 6A). Perturbing one or both parameters, beyond the limits of linear stability, 
causes the swimmers to stably and smoothly transition to another equilibrium at different spacing 
‍d/UT ‍. Importantly, increasing the phase lag ‍ϕ‍ shifts the equilibrium positions in the streamwise direc-
tion such that ‍d/UT ‍ depends linearly on ‍ϕ‍, but the effect of lateral distance for ‍ℓ ≤ L‍ is nonlinear and 
nearly negligible for small ‍ℓ‍: increasing the lateral offset ‍ℓ‍ by an entire body length ‍L‍ changes the 
pairwise distance ‍d/UT ‍ by about 15%. Our results explored emergent equilibria up to ‍d/UT ≤ 2.5‍ and 
are consistent with the experimental findings in Newbolt et al., 2022, which explored up to nine 
downstream equilibria.

To assess the hydrodynamic advantages of these emergent formations, we calculated the average 
change in hydrodynamic power per swimmer. The pair saves power compared to solitary swimming 
(Figure 6B). Power savings vary depending on phase lag ‍ϕ‍ and lateral distance ‍ℓ‍: for the entire range 

Figure 6. Equilibria are dense over the parameter space of phase lags and lateral offsets. For any given phase lag ‍ϕ‍ and at any lateral offset ‍ℓ‍ inside 
the wake, the pair reach equilibrium formations that are stable and power saving relative to a solitary swimmer. (A) Equilibrium separation distances, 
(B) average power saving, and (C) stability as a function of phase lag and lateral distance in a pair of swimmers. Predictions of (D) equilibrium locations, 
(E) hydrodynamic benefits, and (F) cohesion based on the wake of a solitary swimmer following the approach in Figures 4 and 5. For comparison, the 
contour lines from (B and C) based on pairwise interactions are superimposed onto panels (E and F) (white lines). Simulations in (A–C) are based on 
pairwise interactions and simulations in (D–F) are based on the wake of a single swimmer, all in the context of the vortex sheet model with ‍A = 15◦‍, 

‍f = 1‍, and ‍τdiss = 2.45T ‍.

https://doi.org/10.7554/eLife.96129
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of ‍ϕ‍ from 0 to ‍2π‍, the school consistently achieves over 20% power reduction, as long as the lateral 
offset is ‍ℓ ≤ 0.25L‍. However, increasing ‍ℓ‍ from ‍0.25L‍ to ‍L‍ reduces significantly the hydrodynamic 
benefit. That is, swimmers can take great liberty in changing their phase without compromising much 
the average energy savings of the school, as long as they maintain close lateral distance to their 
neighbor.

A calculation of the linear stability of each equilibrium in Figure 6A shows that these emergent 
formations are linearly stable (Figure 6C), and the degree of stability is largely insensitive to phase 
lag, with strongest cohesion achieved at lateral offset ‍ℓ ≤ 0.25L‍. The results in Figure  6A–C are 
constructed using pairwise interactions in VS simulations, but can be inferred directly from the wake 
of a solitary leader, as discussed in the previous section and shown in Figure 6D–F.

Analysis of larger groups of inline and side-by-side swimmers
How do these insights scale to larger groups? To address this question, we systematically increased 
the number of swimmers and computed the emergent behavior in larger groups based on flow-
coupled VS simulations.

In a group of six swimmers, all free to move in the streamwise ‍x‍-direction, we found that the last 
three swimmers split and form a separate subgroup (Figure 7A). In each subgroup, swimmer 3 expe-
riences the largest hydrodynamic advantage (up to 120% power saving!), swimmer 2 receives benefits 
comparable to those it received in pairwise formation (65% power saving), and swimmer 1 no benefit 
at all (Figure 7C).

We asked if loss of cohesion is dependent on the number of inline swimmers. To address this ques-
tion, we gradually increased the number of swimmers from two to six (Figure 7—figure supplement 
1). We found that in a school of three inline swimmers, flow interactions led to a stable emergent 
formation with hydrodynamic benefits similar to those experienced by the three swimmers in each 
subgroup of Figure 7A and C. When computing the motion of four inline swimmers (Figure 8A), we 
found that the leading three swimmers maintained cohesion, at hydrodynamic benefits similar to a 
formation of three, but swimmer 4 separated and lagged behind, receiving no advantage in terms 
of power savings because it split from the formation (Figure 8D, Figure 7—figure supplement 1). 
In a group of five, the last two swimmers split and formed their own subgroup. That is, in all exam-
ples, swimmer 4 consistently lost hydrodynamic advantage and served as local leader of the trailing 
subgroup. These observations are consistent with Peng et al., 2018, and demonstrate that flow inter-
actions alone are insufficient to maintain inline formations as the group size increases.
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Figure 7. Larger inline and side-by-side formations. (A) Inline formations lose cohesion and split into two subgroups as depicted here for a group 
of six swimmers. (B) Side-by-side formations remain cohesive. (C) Power saving of each swimmer in inline and side-by-side formations. Dissipation 
time ‍τdiss = 2.45T ‍. Simulations of inline formations and side-by-side formations ranging from two to six swimmers are shown in Figure 7—figure 
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The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Inline formations of multiple flapping swimmers.

Figure supplement 2. Side-by-side formations of multiple flapping swimmers.
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We next explored the robustness of the side-by-side pattern to larger number of swimmers starting 
from side-by-side initial conditions (Figure 7B). The swimmers reached stable side-by-side formations 
reminiscent of the configurations observed experimentally when fish were challenged to swim at higher 
swimming speeds (Ashraf et al., 2017). The swimmers in this configuration saved power compared to 
solitary swimming (Figure 7C): swimmers gained equally in terms of hydrodynamic advantage (up to 
55% power saving for the middle swimmers in a school of six), except the two edge swimmers which 
benefited less. We tested these results by gradually increasing the number of swimmers from two to 
six (Figure 7—figure supplement 2). The robustness and overall trend of power saving among group 
members is robust to the total number of swimmers in these side-by-side formations.

Mechanisms leading to loss of cohesion in larger inline formations
To understand why three swimmers form a stable inline formation but four don’t, we extended the 
analysis in Figure 4 to analyze the wake created behind two-swimmer (Figure 9A) and three-swimmer 
(Figure  9B) groups. Specifically, we computed pairwise interactions in a two-swimmer school and 
considered the combined wake of both swimmers after they had settled onto an equilibrium state. 
Similarly, we computed the behavior of a three-swimmer school and analyzed the combined wake at 
steady state. Compared to the single leader wake in Figure 4B, in the wake of a two-swimmer school, 
positive flow agreement in the (blue) region is enlarged and enhanced, corresponding to swimmer 3 
receiving the largest power savings. On the other hand, behind three inline swimmers, the region of 
positive flow agreement is weakened and shrunk, indicating weaker potential for energy saving by a 
fourth swimmer.

Importantly, in the wake of the pairwise formation, the downstream jet is modest at the location of 
maximum ‍V‍, where swimmer 3 is expected to position itself for hydrodynamic benefit, thus allowing 
swimmer 3 to reach this position and stay in formation (Figure 9E). Also, at this location, the wake 
has a substantial transverse velocity ‍u · ey‍ (Figure 9G), which aids thrust production at a diminished 
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cost. In contrast, three inline swimmers generate a much stronger downstream jet at the location of 
maximum ‍V‍ where swimmer 4 is expected to position itself (Figure 9F). This jet prevents swimmer 
4 from stably staying in formation, and the transverse flow velocity ‍u · ey‍ is nearly zero for the entire 
flapping period (Figure 9H), indicating little opportunity for exploiting the flow generated by the 
three upstream swimmers for thrust generation. This limitation is fundamental; it results from the flow 
physics that govern the wake generated by the upstream swimmers. There is not much that a trailing 
swimmer can do to extract hydrodynamic benefits from an oncoming flow field that does not offer any.

Critical size of inline formations beyond which cohesion is lost
We sought to understand what determines the critical group size, here three, beyond which inline 
formations lose cohesion and split into subgroups. Because we have established that the flow 
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location of a fourth swimmer based on the maximum flow agreement parameter. In two-way coupled simulation, swimmer 4 actually separates from 
the leading three swimmers as illustrated in Figure 8A. Computational fluid dynamics (CFD) simulation shows swimmer 4 will collide with swimmer 3 
as in Figure 9—figure supplement 1. (G, H) show the transverse flow velocity in a period at the location predicted by the maximum flow agreement 
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The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Inline formations of multiple flapping swimmers in computational fluid dynamics (CFD) simulations.
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agreement parameter ‍V‍ plays an important role in predicting emergent formations, we first exam-
ined ‍V‍ in the wake of a pair of flapping swimmers in CFD (Figure  1—figure supplement 1) and 
VS (Figure 1—figure supplement 2) simulations. These results show that at lower Re and smaller 
dissipation time ‍τdiss‍, the flow agreement parameter ‍V‍ decays rapidly downstream of the flapping 
swimmers, thus diminishing the opportunities for downstream swimmers to passively stay in cohesive 
formation and achieve hydrodynamic benefits. We thus hypothesized that the number of swimmers 
that passively maintain a cohesive inline formation is not a universal property of the flow physics, but 
depends on the flow regime.

We tested this hypothesis in VS simulations with increasing number of swimmers and increasing 

‍τdiss‍. As we increased ‍τdiss‍, the number of swimmers that stayed in cohesive inline formation increased 
(Figure 8B and C). These findings confirm that this aspect of schooling – the maximal number of swim-
mers that passively maintain a cohesive inline formation – is indeed scale-dependent. Interestingly, 
an analysis of the power savings in these formations shows that, although swimmers 4 and 5 stay in 
formation at increased ‍τdiss‍, swimmer 3 always receives the most hydrodynamic benefit (Figure 8D).

We additionally tested the stability of inline formations in CFD simulations at Re=1645 (Figure 9—
figure supplement 1) and observed the same trend: an inline school of three swimmers remains 
cohesive, but a fourth swimmer collides with the upstream swimmer. These observations imply that 
the loss of cohesion does not depend on the specific fluid model. This is consistent qualitatively with 
existing results (Peng et al., 2018). In Peng et al., 2018, the authors employed flexible heaving foils 
at Re = 200 and observed stable inline formations with larger number of swimmers. The flexible foil 
model and smaller Re make the swimmer more adaptive to changes in the flow field, by passively 
modulating the amplitude and phase along its body, thus diverting some of the hydrodynamic energy 
into elastic energy and stabilizing the larger inline formation. This, again, emphasizes that the number 
of swimmers in a stable inline group is not a universal property of the formation, rather it is model and 
scale-dependent.

Mapping emergent spatial patterns to energetic benefits
We next returned to the school of four swimmers, which, when positioned inline and flapped inphase, 
lost cohesion as the trailing swimmer separated from the school. We aimed to investigate strategies 
for stabilizing the emergent school formation and mapping the location of each member in the school 
to the potential benefit or cost it experiences compared to solitary swimming.

Inspired by vortex phase matching as an active strategy for schooling (Li et al., 2020; Li et al., 
2021), we tested whether phase control is a viable approach to maintain cohesion and gain hydro-
dynamic benefits. We devised an active feedback control strategy, where the swimmer senses the 
oncoming transverse flow velocity at its location and adjusts its flapping phase to maximize the agree-
ment ‍V‍ between its flapping motion and the local flow (see Appendix F for more details). When 
applied to swimmer 4 (Figure 10A), this phase controller led to a stable formation, albeit at no benefit 
to swimmer 4; in fact, swimmer 4 spent 100% more power compared to solitary swimming, whereas 
the power savings of swimmers 2 and 3 remained robustly at the same values as in the formation 
without swimmer 4. The inability of swimmer 4 to extract hydrodynamic benefits from the oncoming 
flow is due to a fundamental physical limitations, as explained in Figure 9; by the non-reciprocal nature 
of flow interactions, changing the phase of the trailing swimmer has little effect on the oncoming flow 
field generated by the upstream swimmers. If the oncoming wake itself presents no opportunity for 
hydrodynamic benefit, phase control cannot generate such benefit.

We next investigated whether collaborative phase modulation could aid in maintaining school 
cohesion by imposing that each swimmer flaps at a phase lag ‍∆ϕ‍ relative to the swimmer ahead 
(Figure 10B and C). We found a range of values of ‍∆ϕ‍ at which the school became passively stable, 
but without providing much hydrodynamic benefit to the trailing swimmer; in fact, at certain ‍∆ϕ‍, 
cohesion came at a hydrodynamic cost to swimmer 4, much like the active phase control strategy.

Lastly, we investigated whether lateral offset of some of the swimmers could passively stabilize 
the emergent formation. The choice of which swimmers to displace laterally and by how much is not 
unique. Thus, we probed different scenarios and obtained multiple stable formations (Figure 10D 
and Figure 10—figure supplement 1, Video 2). For example, pairing any two of the four swimmers 
side-by-side, say at the leading, middle, or trailing end of the school, led to cohesive formations. The 
distribution of hydrodynamic cost or benefit varied depending on the spatial pattern of the school and 

https://doi.org/10.7554/eLife.96129
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the individual position within the school. Staggering the swimmers in a zigzag pattern also stabilized 
the school, but did not always allow the trailing swimmer to improve its cost of transport. Staggering 
the swimmers in a ‘diamond’ formation stabilized the school and, of all the stable formations we 
tested, led to the highest savings in cost of transport for the entire school (Figure 10D). These results 
are consistent with existing evidence that diamond formations are both stable (Tsang and Kanso, 
2013) and energetically optimal (Weihs, 1973; Dai et al., 2018). But unlike individuals in an infinite 
diamond lattice (Weihs, 1973), individuals in a finite diamond formation do not receive equal ener-
getic benefits.

Our findings highlight the versatility and fluidity of the emergent spatial patterns in groups of 
flapping swimmers and emphasize that energetic benefits vary depending on the position of the indi-
vidual within the school. Importantly, these findings imply that, although many emergent formations 
do not globally optimize the savings of the entire school, hydrodynamic interactions within these 
formations offer individuals numerous opportunities to achieve varying levels of energetic savings 
(Marras and Porfiri, 2012), potentially creating competition among school members over advanta-
geous positions in the school.
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Figure 10. Passive and active methods for stabilizing an emergent formation of four swimmers. (A) In an inline school of four swimmers, the leading 
three swimmers flap inphase, but swimmer 4 actively controls its phase in response to the flow it perceives locally to match its phase to that of the local 
flow as proposed in Li et al., 2020. The phase controller stabilizes swimmer 4 in formation but at no hydrodynamic benefit. (B) Sequentially increasing 
the phase lag by a fixed amount ‍∆ϕ = −30o

‍ in an inline school of four swimmers stabilizes the trailing swimmer but at no hydrodynamic benefit. 
(C) Gradually tuning the phase lag ‍∆ϕ‍ in a school of four swimmers as done in (B). At moderate phase lags, the school stays cohesive (top plot) but 
swimmer 4 barely gets any power savings (bottom plot). (D) By laterally offsetting the swimmers, four swimmers, all flapping inphase, form cohesive 
schools with different patterns, e.g., with side-by-side pairing of two swimmers, staggered, and diamond patterns. The time evolution of separation 
distances is shown in Figure 10—figure supplement 1. Individual in each pattern receive a different amount of hydrodynamic benefit. Diamond 
formation provides the most power saving for the school as anticipated in Weihs, 1973, for a school in a regular infinite lattice. In (A, B, and D), %values 
indicate the additional saving or expenditure in cost of transport relative to solitary swimming.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Alternative formations of four flapping swimmers.

https://doi.org/10.7554/eLife.96129
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Discussion
We analyzed how passive flow interactions 
mediate self-organization in groups of flap-
ping swimmers, all heading in the same direc-
tion. Our approach relied on a hierarchy of FSI 
models and aimed to distill which aspects of self-
organization are universal and those which are 
scale-dependent.

We found that a pair of flapping swimmers 
self-organize into inline, diagonal, or side-by-side 
formations (Figure  1). The emergent formation 
depends on the swimmers’ flapping phase and 
initial conditions. In fact, the distinction between 
these types of formation is somewhat arbitrary 
because, as phase varies, the emergent equilibria 
are dense over the space of lateral offset and 
separation distance (Figure  6). These findings 
are consistent with experimental observations 
(Li et al., 2020; Thandiackal and Lauder, 2023; 
Newbolt et al., 2019; Newbolt et al., 2022), but 

go beyond these observations to quantify the hydrodynamic benefits to each member in these forma-
tions. Two side-by-side swimmers flapping inphase save energy, compared to solitary swimming, and 
share the hydrodynamic benefits nearly equally. When flapping antiphase, the side-by-side swimmers 
exert extra effort compared to solitary swimming, contrary to a common misconception that this 
configuration saves hydrodynamic energy (Zhang and Lauder, 2023b). In leader-follower formations, 
whether inline or diagonal, hydrodynamic benefits are bestowed entirely on the follower (Figure 3A).

Importantly, we showed that the wake of a solitary leader contains information that unveils oppor-
tunities for the emergence of stable and energetically favorable formations in pairs of swimmers. Equi-
librium locations and trends in power savings and school cohesion can all be predicted entirely from 
kinematic considerations of the leader’s wake with no consideration of the two-way coupling between 
the two swimmers (Figure 5). These results are important because they highlight the non-reciprocal 
or asymmetric nature of flow coupling in leader-follower configurations, inline or diagonal, at finite Re 
and open new avenues for future studies of non-reciprocal flow-coupled oscillators. These oscillators 
have distinct properties from classic mechanical and biological oscillators, such as Huygens pendula 
or viscosity-dominant oscillators, where the coupling between the oscillators is reciprocal; see, e.g., 
Strogatz and Stewart, 1993; Lushi et al., 2014; Oliveira and Melo, 2015; Wan and Goldstein, 
2016; Guo et al., 2018.

Our analysis has practical importance in that it provides efficient diagnostics and predictive tools 
that are equally applicable to computational models and experimental data and could, therefore, be 
applied broadly to analyze, predict, and test opportunities for schooling and hydrodynamic benefits 
in live and robotic fish when flow measurements are available.

Case in point, we used these diagnostic tools to explain the mechanisms leading to scattering in 
larger groups of inline swimmers and to predict when the wake of a leading group of swimmers offers 
no opportunities for a follower to benefit from passive hydrodynamics (Figure 9). At an increasing 
number of flow-coupled swimmers, side-by-side formations remain robust, but inline formations 
become unstable beyond a critical number of swimmers (Figures  7 and 8). The critical number 
depends on the fluid properties and can be predicted by analyzing the wake of the leading group 
of swimmers. Future work will focus on testing these findings experimentally and in CFD simulations 
with increasing number of swimmers, together with accounting for body deformations (Hang et al., 
2022), lateral dynamics (Kurt et al., 2021; Das et al., 2023), and variable flapping amplitudes and 
frequencies (Newbolt et al., 2019; Hang et al., 2024).

Our findings could have far-reaching consequences on our understanding of biological fish schools. 
Field and laboratory experiments (Partridge and Pitcher, 1979; Marras et al., 2015; Ashraf et al., 
2017; Lombana and Porfiri, 2022) have shown that actual fish schools do not generally conform 
to highly regularized patterns, and schooling fish dynamically change their position in the school. 

Video 2. Groups of flow-coupled swimmers self-
organize into inline, side-by-side, or staggered patterns 
of distinct cohesion and energy-saving properties. 
Results based on flapping plates in vortex sheet 
simulations.

https://elifesciences.org/articles/96129/figures#video2
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Neighboring fish vary from side-by-side to inline and diagonal configurations. Importantly, in labora-
tory experiments that challenged groups of fish to sustain high swimming speeds, the fish rearranged 
themselves in a side-by-side pattern as the speed increased, much like the pattern in Figure  7B, 
presumably to save energy (Ashraf et al., 2017). These empirical observations, together with our 
findings that side-by-side formations provide the fairest distribution of efforts among school members 
(Figure 7B and C), offer intriguing interpretations of the results in Ashraf et al., 2017; Lombana and 
Porfiri, 2022: when the fish are not challenged by a strong background current to sustain high swim-
ming speeds, they position themselves as they please spatially, without much consideration to equal 
sharing of hydrodynamic benefits. But when challenged to swim at much higher speeds than their 
average swimming speed, fish are forced to cooperate.

To expand on this, our results suggest a connection between flow physics and what is tradi-
tionally thought of as social traits: greed versus cooperation. We posit that there is a connection 
between the resources that arise from flow physics – in the form of energetic content of the wake 
of other swimmers – and greedy versus cooperative group behavior. In cohesive inline formations, 
the leader is always disadvantaged and hydrodynamic benefits are accorded entirely to trailing 
swimmers (Figures 3A and 7C). Importantly, flows generated by these inline formations present 
serious impediments for additional swimmers to join the line downstream (Figures 7 and 8). Thus, 
we could call these formations greedy, leaving no resources in the environment for trailing swim-
mers. This thought, together with our interpretation of the observations in Ashraf et al., 2017, 
that cooperation to achieve an egalitarian distribution of hydrodynamic benefits is forced, not 
innate, raise an interesting hypothesis. The dynamic repositioning of members within the school 
(e.g. Figure 10) could be driven by greed and competition to occupy hydrodynamically advanta-
geous positions, much like in peloton of racing cyclists (Blocken et al., 2018). On a behavioral time 
scale, these ideas, besides their relevance to schooling fish, open up opportunities for analyzing 
and comparing the collective flow physics in cooperative versus greedy behavior in animal groups 
from formations of swimming ducklings (Yuan et al., 2021) and flying birds (Bialek et al., 2012; 
Portugal et al., 2014) to peloton of racing cyclists (Blocken et al., 2018). From an evolutionary 
perspective, it is particularly exciting to explore the prospect that flow physics could have acted 
as a selective pressure in the evolution of social traits such as cooperation and greed in aquatic 
animal groups.
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Appendix 1
Computational Fluid Dynamics (CFD) model
In our CFD simulations, a swimmer is modeled as a symmetric 2D Joukowsky airfoil (Tsien, 1943). 
The chord length of the airfoil is the characteristic length ‍L‍, and the maximum thickness is ‍0.12L‍. The 
airfoil undergoes pitching motion around its leading edge. FSI are governed by the incompressible 
Navier-Stokes equations,

	﻿‍
∂u
∂t

+ u · ∇u = −∇p + 1
Re

∆u, ∇ · u = 0,
‍�

(2)

where ‍u(x, t)‍ and ‍p(x, t)‍ are the velocity and pressure field, respectively. We solved for these fields 
numerically using IBM that handles the two-way coupled fluid structure interaction (Peskin, 1977; 
Griffith et al., 2007; Griffith and Peskin, 2005; Bhalla et al., 2013; Griffith and Patankar, 2020; 
Mittal et al., 2008).

The immersed boundary formulation involves an Eulerian descriptions of the flow field and a 
Lagrangian description of the immersed swimmers, modeled as Joukowsky airfoils. The boundary 
condition is mapped to a body force exerted on the fluid. The Lagrangian and Eulerian variables 
are correlated by the Dirac delta function, which is smoothed during discretization. Here, we used 
the implementation developed by the group of Prof. Boyce Griffith, IBAMR, 2024, which has long 
been used to solve problems such as blood flow in heart (Peskin, 1977; Lee et al., 2020), water 
entry/exit problems (Bhalla et al., 2020), fish’s swimming (Hoover and Tytell, 2020; Tytell et al., 
2014; Voesenek et  al., 2020), insect’s flight (Van Buren et  al., 2019; van Veen et  al., 2020), 
flexible propulsors (Hoover et al., 2021; Tytell et al., 2016; Hoover et al., 2018), self propulsion 
of pitching/heaving airfoil (Hoover et al., 2018; Yang and Wu, 2022), and fish schooling (Yang and 
Wu, 2022; Lin et al., 2022). This implementation is based on an adaptive mesh, which enables us 
to accurately simulate self propulsion and reach steady state in a large computational domain with a 
reasonable computational cost. The computational domain is a rectangle of dimensions ‍80L × 20L‍, 
with periodic boundary conditions on the computational domain and no-slip boundary condition on 
the surface of airfoils. The initial location of the first swimmer is ‍12L‍ away from the right boundary 
in streamwise direction. The initial distance between the two swimmers ‍d(t = 0)‍ ranges from ‍1.5L‍ to 
‍4L‍ to ensure we access different equilibria that emerge in these pairwise formations. The coarsest 
Eulerian mesh is a uniform 500×125 Cartesian grid. The computational domain close to the airfoils 
and their wake are refined. There are three layers of refinement mesh, and the refinement ratio for 
each layer is 4. The simulation timestep is adaptive, with the maximum timestep ‍∆tmax = 2.5 × 10−3‍.

The hydrodynamic forces ‍Fx‍, ‍Fy‍, and moment ‍M ‍ acting on each swimmer are calculated by 
integrating over the surface of that swimmer, the traction force ‍σ · n‍ and moment ‍x × (σ · n)‍, where 

‍σ = −pI + µ(∇u + ∇uT)‍ is the fluid stress tensor, ‍x‍ denotes positions on the surface of that swimmer, 
and ‍n‍ the unit normal to that airfoil into the fluid. The hydrodynamic forces and moment are used 
to solve the equations of motion (Equation 1) for each swimmer and obtain the active moment ‍Ma‍ 
in Equation 7 needed to evaluate the hydrodynamic power in Equation 8 that is expended by each 
swimmer.

https://doi.org/10.7554/eLife.96129
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Appendix 2
Vortex sheet (VS) model
In the VS model, each swimmer is modeled as a rigid plate of length ‍L‍, and it is approximated by a bound 
vortex sheet, denoted by ‍lb‍, whose strength ensures that no fluid flows through the rigid plate, and the 
separated shear layer is approximated by a free regularized vortex sheet ‍lw‍ at the trailing edge of the 
swimmer. The total shed circulation ‍Γ‍ in the vortex sheet is determined so as to satisfy the Kutta condition 
at the trailing edge, which is given in terms of the tangential velocity components above and below the 
bound sheet and ensures that the pressure jump across the sheet vanishes at the trailing edge. To express 
these concepts mathematically, it is convenient to introduce the complex notation, such that ‍z = x + iy‍, 
where ‍i =

√
−1‍. For more details on the VS model and our implementation of it, we refer the readers to 

appendix A of Heydari and Kanso, 2021, as well as to Nitsche and Krasny, 1994; Jones, 2003; Sheng 
et al., 2012; Jones and Shelley, 2005; Alben and Shelley, 2008; Alben, 2009; Huang et al., 2016; 
Huang et al., 2018; Hang et al., 2022.

The pressure difference across the infinitely thin swimmers ‍n[p]∓‍ is given by integrating the 
balance of momentum equation for inviscid planar flow along a closed contour containing the vortex 
sheet and trailing edge. Here, ‍n = nx + iny‍ is the unit normal, in complex notation, and ‍[p]∓‍ is the 
jump in pressure across the swimmer. The hydrodynamic force ‍F =

´
lb n[p]∓ds‍ acting on the swimmer 

is given by

	﻿‍

ˆ

lb
n[p]∓ds = Fx + iFy = −F sin θ + iF cos θ.

‍�
(3)

The hydrodynamic moment ‍M ‍ acting on the swimmer about its leading edge is given by

	﻿‍
M = Re

[ˆ

lb
in(zl.e. − zb)[p]∓ds

]
,
‍�

(4)

where ‍zl.e.‍ is position of the leading edge ‍s = 0‍. We introduce a drag force ‍D‍ that emulates the 
effect of skin friction due to fluid viscosity in the context of the VS model (Fang, 2016; Heydari and 
Kanso, 2021). Namely, following Fang, 2016; Heydari and Kanso, 2021, we write the drag force 
for a swimming plate

	﻿‍ D = −Cd(U3/2
+ + U3/2

− ),‍� (5)

where ‍Cd‍ is a drag coefficient and ‍U±‍ are the spatially averaged tangential fluid velocities on the 
upper and lower side of the plate, respectively, relative to the swimming velocity ‍U ‍,

	﻿‍
U±(t) = 1

2l

ˆ l

−l
u±(s, t)ds − U,

‍�
(6)

where ‍u∓(s, t)‍ denotes the tangential slip velocities on both sides of the plate. We estimate ‍Cd‍ to 
be approximately 0.05 in the experiments of Ramananarivo et al., 2016. Additionally, following 
Huang et al., 2016; Huang et al., 2018; Hang et al., 2022; Heydari and Kanso, 2021, we emulate 
the effect of viscosity on the wake itself by allowing the shed vortex sheets to decay gradually by 
dissipating each incremental point vortex after a finite time ‍τdiss‍ from the time it is shed into the fluid. 
Larger ‍τdiss‍ implies that the incrementally shed vorticity along the vortex sheet stays in the fluid for 
longer times, mimicking the effect of lower fluid viscosity. We studied the effect of dissipation time 
in Figure 1—figure supplements 2 and 3, and used ‍τdiss = 2.45T ‍ in the rest of this paper for the 
sake of computational cost. Pitching motions are produced by an active moment ‍Ma‍ imposed by 
the swimmer on the surrounding fluid about the leading edge. The value of ‍Ma‍ is obtained from the 
balance of angular momentum about the swimmer’s leading edge (l.e.),

	﻿‍ Iθ̈ − Im[m(ẋ + iẏ)wl.e.] = M + Ma,‍� (7)

https://doi.org/10.7554/eLife.96129
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In the VS model, ‍I = mL2/3‍ is the swimmer’s moment of inertia about the leading edge, ‍wl.e.‍ is the 
swimmer’s velocity at the leading edge (in complex form), and ‍M‍ is the hydrodynamic moment about 
the leading edge given in Equation 4. The hydrodynamic power ‍P‍ expended by the flapping swimmer 
to maintain its pitching motion is given by

	﻿‍ P = Maθ̇.‍� (8)

https://doi.org/10.7554/eLife.96129
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Appendix 3
Time-delay particle model
We supplemented these CFD and VS models by studying pairwise interactions in the context of the 
minimal particle model used in Becker et al., 2015; Newbolt et al., 2019. This particle model was 
designed for inline swimmers. Here, we modify it slightly to account for lateral offset ‍ℓ‍ between 
the swimmers as shown in Figure 5—figure supplement 1. In a nutshell, the model assumes that 
the leader leaves behind a vertical wake speed equal to the leader’s flapping speed at the tail. The 
speed of the ‘wake’ that is left behind decays exponentially in time, as an approximation for viscous 
dissipation. Details of the model can be found in the Supplementary Information of Newbolt et al., 
2019.

In this model, each swimmer is a particle of mass per unit depth ‍m‍ undergoing vertical oscillations 
such that ‍y1 = a sin(2πft)‍ and ‍y = a sin(2πft − ϕ)‍, where ‍a = L sin A‍ is the tailbeat amplitude of the 
pitching airfoil. In this model, each particle is assumed to experience a thrust force ‍Fj‍ that is 
proportional to the square of its vertical velocity relative to the surrounding fluid, and a drag force 

‍Dj‍ relative to its relative horizontal speed. Namely,

	﻿‍ mẍj = −Fj + Dj, j = 1, 2,‍� (9)

where

	﻿‍ Fj = ρLCT(ẏj − uy(xj, yj))2, Dj = ρLCD(ẋj − ux(xj, yj))2.‍� (10)

Here, ‍ux‍ and ‍uy‍ are the ‍x‍- and ‍y‍-components of the fluid velocity, ‍CT, CD‍ are constant thrust and 
drag coefficients. Since the leader swims into quiescent fluid, we assume that ‍uy(x1, y1) = 0‍. The 
follower swims into the wake of the leader, which we assume to have zero horizontal velocity (‍ux = 0‍) 
and vertical velocity that decays exponentially both in time and in the lateral direction,

	﻿‍ uy(x2, y2) = ẏ1(t −∆t)e−∆t/τ e−|ℓ/h|p ,‍� (11)

where ‍∆t‍ is the delay time between the leader and follower, i.e., the time past since the leader 
passed by the follower’s current location: ‍x1(t −∆t) = x2(t)‍. We added the last term in Equation 
11 to consider decay in the lateral direction ‍ℓ‍; to estimate the parameters ‍p‍ and ‍h‍, we used a best 
curve fit to the data of period-average velocity magnitude versus lateral distance in the wake of 
a single swimmer in the VS model (Figure 5—figure supplement 1). We numerically integrated 
(Equation 10) and solved for the motion of the follower. At steady state, we computed the 
separation distance ‍d = x2 − x1‍ between the pair acting on the follower for a range of ‍ϕ ∈ [0, 2π]‍ and 
‍ℓ ∈ [−L, L]‍ (Figure 5—figure supplement 1). The parameter values are chosen to be consistent with 
the experiments of Newbolt et al. (provided in Table S1 of SI in Newbolt et al., 2019). Specifically, 
‍ρ = 1 g/cm 3

‍, ‍L = 4 cm‍, ‍m = 5.3 g/cm‍, ‍CD = 0.25‍, ‍CT = 0.96‍, ‍τ = 0.5 s‍.

https://doi.org/10.7554/eLife.96129
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Appendix 4
Flow agreement and thrust parameters
The flow agreement parameter field is defined

	﻿‍
V(x, y;ϕ) = 1´ t+T

t v · v dt′

[ˆ t+T

t
v · u dt′

]
,
‍�

(12)

where ‍u(x, y, t)‍ is the flow field of an oncoming wake and ‍v(t;ϕ)‍ is flapping velocity of a virtual particle 
located at a location ‍(x, y)‍ in the oncoming wake. The thrust parameter field is defined as

	﻿‍
T(x, y,ϕ) = − 1´ t+T

t
��v · ey

��2 dt′

[ˆ t+T

t

��(v − u) · ey
��2 dt′

]
.
‍�

(13)

To further illustrate the meaning of these parameters, we considered an ideal scenario, where the 
flow velocity is simply of the form of

	﻿‍ u = uxex + uyey = −Uex + 2πfAu cos(2πft)ey,‍� (14)

where ‍uy(t) = 2πfAu cos(2πft)‍ is the transverse fluid velocity. We placed a virtual or ‘ghost’ swimmer 
heaving at a velocity ‍v(t;ϕ) = 2πfAv cos(2πft − ϕ)‍. Under this scenario, flow agreement parameter is

	﻿‍
V = Au

Av
cosϕ

‍�
(15)

and thrust parameter is

	﻿‍ T = A2
u + A2

v − 2AvAu cosϕ‍� (16)

Let’s now consider a balance of forces on the ‘ghost swimmer’. The ghost swimmer is in relative 
equilibrium if the sum of drag forces ‍D‍ and thrust forces ‍T‍ are zero,

	﻿‍
D + T = 0 ⇒ cosϕ = A2

u + A2
v − D

2AvAu
⇒ ϕ = ± cos−1 A2

u + A2
v − D

2AvAu
.
‍�

(17)

Substituting back into Equation 15, we get

	﻿‍
V = A2

u + A2
v − D

2A2
v ‍�

(18)

According to our prediction based on the flow agreement parameter, equilibria are located at 
maximal flow agreement parameter, for which ‍ϕ = 0‍ and ‍V = Au/Av‍. This is close to the calculated 
values of ‍ϕ‍ and ‍V‍ when ‍Au ≈ Av‍ and ‍D ≈ 0‍, i.e., assuming the ghost swimmer is getting a free ride 
with the local flow at zero thrust and drag.

To consider stability at the calculated equilibria in Equation 17, we calculate the derivative of 
thrust parameter in Equation 16 with respect to phase ‍ϕ‍ and evaluate it at the equilibrium points

	﻿‍

∂T
∂ϕ

= −2AvAu sinϕ = ∓2AvAu

√
1 − A2

u + A2
v − D2

2AvAu ‍�
(19)

Thus, there is always a stable equilibrium and an unstable equilibrium, both of them are close to 
the local maximum of flow agreement parameter ‍V = Au/Av‍, which is consistent with Figure 4 of the 
main text.

https://doi.org/10.7554/eLife.96129
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Appendix 5
Phase control
Consider a swimmer flapping at a phase ‍ϕ‍ can ‘sense’ or measure the agreement of its flapping 
motion with the local fluid velocity ‍u‍ (generated by sources other than itself) at its location (say at its 
midpoint), over a time span of ‍m‍ flapping periods. The goal of the swimmer would be to adjust its 
current flapping phase ‍ϕ‍ to a desired phase ‍Φ‍ that maximizes its agreement with the local velocity

	﻿‍

Φ(t) = argmax
ϕ

1
mT

´ t
min (t−mT,0) v(t′,ϕ) · u(t′) dt′

1
mT

´ t
min (t−mT,0) v(t′,ϕ) · v(t′,ϕ) dt′

,

‍�

(20)

using a proportional phase controller inspired from Li et al., 2021; Li et al., 2020,

	﻿‍ ϕ̈(t) = −γ2 [ϕ(t) − Φ(t)
]
− 2γϕ̇(t);‍� (21)

Here, ‍Φ(t)‍ is the desired phase and ‍γ‍ is a constant that determines the speed of convergence. We 
chose the parameters as follows: we set the number of periods ‍m = 2‍ that describes the memory of 
the swimmer of the ambient fluid ‍u‍, such that the time history is two times the pitching period ‍2T ‍. 
We set the control gain ‍γ = 3‍ to ensure that the actual phase ‍ϕ(t)‍ can reach the desired phase ‍Φ(t)‍ 
at 1% of relative error within ‍1.5T ‍.

By implementing this phase controller in swimmer 4 in a group of four inline swimmers, the 
swimmer is able to stabilize itself in the formation as shown in Figure 10. However, this stabilization 
is expensive: by actively controlling its phase to stay in formation, swimmer 4 spends 100% more 
hydrodynamic power than swimming alone.

https://doi.org/10.7554/eLife.96129
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Appendix 6
Data collection from published literature
To probe the relationship between the scaled separation distance ‍d/UT ‍ in pairs of swimmers and their 
flapping phase lag ‍ϕ‍, we collected data from published literature on pairs of interacting swimmers 
(Kim et al., 2010; Newbolt et al., 2019; Li et al., 2020; Kurt et al., 2021; Heydari and Kanso, 
2021); see Table 1 and the Supplemental Excel Sheet. We excluded a few studies from this literature 
survey (Park and Sung, 2018; Dai et al., 2018), because we were unable to extract ‍d/UT ‍ from the 
data they provided. We also excluded (Becker et al., 2015) because their study involved fixed inter-
swimmer distances. We found that the relationship between phase lag ‍ϕ‍ and separation distance 
‍d/UT ‍ is approximately linear ‍ϕ/2π = d/UT + β‍. The value of ‍β‍ depends on how one defines the inter-
swimmer separation distance. The two definitions that are commonly used in the literature are tail-
to-tail or tail-to-head (gap) distance. These definitions do not change the linear scaling between 
‍d/UT ‍ and ‍ϕ/2π‍; they only change the value of ‍β‍. For the data provided in Figure 3 of the main text, 
we used the definition of separation distance ‍d‍ that results in ‍β = 0‍. Not all literature provided values 
for ‍U ‍ or ‍T ‍. In the very few cases when this information were missing, we estimated ‍UT ‍ from the linear 
relationship ‍ϕ/2π = d/UT ‍ (Kim et al., 2010).

https://doi.org/10.7554/eLife.96129
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