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The collective patterns that emerge in schooling fish are often analyzed using
models of self-propelled particles in unbounded domains. However, while schooling
fish in both field and laboratory settings interact with domain boundaries, these
effects are typically ignored. Here, we propose a model that incorporates geometric
confinement, by accounting for both flow and wall interactions, into existing data-
driven behavioral rules. We show that new collective phases emerge where the school
of fish “follows the tank wall” or “double mills.” Importantly, confinement induces
repeated switching between two collective states, schooling and milling. We describe
the group dynamics probabilistically, uncovering bistable collective states along with
unintuitive bifurcations driving phase transitions. Our findings support the hypothesis
that collective transitions in fish schools could occur spontaneously, with no adjustment
at the individual level, and opens venues to control and engineer emergent collective
patterns in biological and synthetic systems that operate far from equilibrium.

intermittency | coarse-grained dynamics | collective behavior | fish schools | confinement

Patterns in biology are dynamic. Biological systems at all length and time scales—
from chromosome segregation during cell division (1) and tissue remodeling during
morphogenesis and cell renewal (2) to animal groups on the move (3, 4)—exhibit dynamic
collective patterns that are intertwined with, and integral to, biological function. Fish
schooling, a widespread phenomenon across species and marine habitats with ecological
and ethological relevance (5), serves as a model system for studying self-organization and
collective intelligence in social animals, in the absence of obvious leaders (3, 6, 7). The
variety of the spatial patterns exhibited by fish schools are thought to confer functional
advantages to the group’s ability to migrate, forage, and respond to threats (8, 9) and
are likely to have shaped the selection pressures experienced by individuals living in
groups (10, 11).

Although schooling fish in the field and in laboratory settings interact with boundaries,
most models ignore boundary effects. Phenomenological models of self-propelled
particles following simple rules of avoidance, alignment, and attraction in unbounded
domains were able to reproduce many of the collective patterns observed in fish schools,
including disordered swarming, rotational milling, and polarized schooling (6, 12, 13).
These early models were pivotal to the field of active matter physics because of their
simplicity (14), universality (15), and suitability for continuum formulation (16, 17),
but lacked a quantitative connection to biological observations. Later models inferred
individual behavior directly from empirical data of fish in shallow water tanks (18, 19).
However, although based on data collected under confinement, the collective behavior
emerging from these models was analyzed in unbounded domains (20, 21). These studies
reported, in addition to swarming, milling, and schooling, new global patterns. In ref. 20,
an elongated milling pattern and dynamic transitions between milling and schooling
were reported in very narrow ranges of alignment and attraction parameters. Transitions
between schooling and milling also appeared in the simpler particle model (6) but under
rare injections of large rotational noise (22, SI Appendix, Fig. 7). In ref. 21, far-field flow
interactions were incorporated into the data-inferred models (18), leading to a novel
collective turning pattern, but no spontaneous phase transitions.

Environmental factors, such as geometric confinement (9) and light intensity (23),
affect the collective patterns obtained in experiments of schooling fish, giving rise to
back-and-forth transitions between milling and polarized schooling (9, 23). However,
the mechanisms that trigger these transitions are unclear. Do individual fish adjust
their response with confinement (9) or with changes in illumination levels (23), thereby
inducing collective transitions? Or do collective transitions emerge at the group level,
without necessary adjustments at the individual level? Distinguishing between these
two hypotheses is challenging experimentally. Mathematical models provide a powerful
tool to probe these hypotheses. However, studies in unbounded domains (6, 9, 20–
22)—even those where schooling-to-milling transitions emerged at curated choices of
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parameters (20, 22)—are inherently unable, by model design, to
examine the effects of interactions with boundaries (9). To date,
and with an abundance of particle-based models describing the
collective behavior of fish schools, we lack a rigorous framework
for analyzing their emergent dynamics under confinement.

In this work, we establish a mathematical model of schooling
fish that incorporates boundaries into data-inferred rules of
self-propelled swimmers (18) and flow interactions (21). We
demonstrate that geometric confinement triggers surprising
changes in the collective patterns of the group, including the
emergence of new phases unseen in unbounded domains and
back-and-forth switching between schooling and milling. While
the mechanisms driving these transitions are novel, we leverage
previously proposed tools for analyzing intermittent behavior
in one-dimensional schools of fish (22). Particularly, following
refs. 22 and 24, we use a probabilistic data-driven approach to
model the group dynamics using a Fokker–Planck equation, thus
mapping the time evolution of individual-level variables to the
time evolution of group-level variables. We construct effective
potential landscapes at the collective level. This formulation
allows us to distinguish between collective transitions that occur
when changing individual-level parameters and transitions that
arise from the existence of multiple metastable states at the group
level.

Results

Mathematical Modeling. We modeled individual fish as self-
propelled particles moving in a planar circularly confined domain
at a constant speed U (units m·s−1) relative to the flow. Each
swimmer followed behavioral rules derived empirically from
shallow-water experiments in a circular tank (18), where it gets
attracted to its Voronoi neighbors with intensity kp (m−1

·s−1),
aligns with the same neighbors with intensity kv (m−1), reorients
to avoid collision with the tank wall with intensity kw (m·s−1),
and is subject to a rotational white noise of SD � (rad·s−1/2).

Additionally, each swimmer is passively influenced by the
far-field flow created by all other swimmers (21, 25). The far-
field flow of an individual is approximated by a dipolar field of
intensity kf = UA (units m3

· s−1) that depends on the swimmer’s
speed U and surface area A = �`2/4, where ` is the body length
of a typical swimmer (26–28). Except for estimating this flow
disturbance, we considered all swimmers as pointlike particles. In
circular confinement, to ensure no flux at the circular boundary,
we introduced a system of image dipoles based on the Milne-
Thomson circle theorem (28, 29).

Following ref. 21, we usedU and kp to define the characteristic
length U 1/2k−1/2

p and time (Ukp)−1/2 scales and arrived at
nondimensional counterparts of the alignment intensity Ia =
kvU 1/2k−1/2

p , noise intensity In = �(Ukp)−1/4, intensity of
wall-induced reorientation Iw = kwU−1, and dipole strength
If = kf kpU−2. The dimensionless tank radius is denoted by R.
In nondimensional form, the motion of swimmer j, where j =
1, . . . , N andN is the school size, follows the set of stochastic dif-
ferential equations (SI Appendix, sections S.1–S.3 and Fig. S.1),

ṙj = pj+U j, d�j =
[
Ωj + (pj · ∇)U j · p⊥j

]
dt+IndW . [1]

Here, rj ≡ (xj, yj) and pj ≡ (cos �j, sin �j) represent the position
and heading direction of swimmer j. The vector U j denotes the
fluid velocity created by all other swimmers at the location of

swimmer j, Ωj denotes a vision-based alignment and attraction
response modulated by an anisotropic visual field modeling
continuously a rear blind angle, and W (t) a standard Wiener
process describing the spontaneous motion of the fish and
modeling its “free will.”

Emergent Collective Phases. We solved Eq. 1 numerically,
starting from random initial conditions, to obtain the dynamical
evolution of a school of N = 100 swimmers in a circular tank
of radius R = 10. To analyze schools of comparable fish size and
wall avoidance response, we fixed the values of If = 0.01 and
Iw = 0.94 (SI Appendix, Table S.1) and we varied the alignment
Ia and noise In intensities (Fig. 1 and SI Appendix, Figs. S.2 and
S.3 and Movies S.1–S.3). We observed the four characteristic
phases of collective swimming: swarming, where swimmers form
a disordered group with no preferential orientation; highly polar-
ized schooling; milling, where all swimmers circulated in a vortex
pattern in the same direction; and turning, where swimmers
aligned along a preferential orientation while following a curved
trajectory. The first three phases—swarming, schooling, and
milling—have been observed in models with no hydrodynamic
interactions or geometric confinement (6, 20). Turning emerges
when hydrodynamic interactions are considered, independent of
geometric confinement (21).

Under geometric confinement, the school exhibited two new
phases not observed in unbounded domains: following the tank
wall, where the school moved in the same direction, in a polarized
manner that adhered to the tank wall, and double milling, where
the swimmers split into two distinct subgroups, not necessarily
of equal size, that milled in opposite directions, with individuals
in each subgroup remaining in that subgroup, without switching
direction. This double milling phase is topologically distinct from
the elongated milling phase reported in ref. 20 in unbounded
domains, where the swimmers organized themselves in two
elongated, nearly parallel columns that crossed at both ends
where swimmers did U-turns and reversed direction (SI Appendix,
Fig. S.4).

In all ordered phases—schooling, milling, turning, and
following the tank wall—flow interactions caused the average fish
speed

∑N
j=1 ‖ṙj‖/N to increase compared to solitary swimming,

which we normalized to U = 1 in Eq. 1 (Movies S1–S3);
this is consistent with the increase in speed noted in ref. 21.
Importantly, in these states, the average speed also increased
with increasing group size N (Movie S.4 and SI Appendix,
Fig. S.6), thus recapitulating the experimental observations that
average group speed positively correlates with local order (30)
and school size (9). In our model, the increase in speed arises
passively through hydrodynamics alone, without requiring active
adjustment of the swimmer’s speed in response to its perception
of local order as proposed in ref. 9.

Statistical Order Parameters. To distinguish between these
emergent collective phases, we used the global statistical order
parameters P and Π ∈ [0, 1],

P =
1
N

∥∥∥ N∑
j=1

pj
∥∥∥, Π =

1
N

∥∥∥ N∑
j=1

(rj − rc)× ṙj
‖rj − rc‖‖ṙj‖

∥∥∥, [2]

that represent, respectively, the degree of polarization and
normalized angular momentum of the school relative to its
center rc (SI Appendix, Fig. S.2). Highly polarized schools are
characterized by P close to unity and Π close to zero. Milling
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Swarming Schooling Milling

Double milling

Turning

Following tank wall      Elongated milling 

Fig. 1. Emergent collective phases in circularly confined swimmers. Swimmers are represented as airfoils of unit length to illustrate both their position and
heading direction; scale bars correspond to unit length. Distinct dynamical phases emerge depending on parameter values: Swarming Ia = 0.5, In = 0.9;
Schooling Ia = 5, In = 0.6; Milling Ia = 1, In = 0.3; Turning Ia = 4, In = 0.1; and Following the tank wall Ia = 0.5, In = 0.15. Double milling Ia = 0.5, In = 0.1.
Elongated milling Ia = 0.4, In = 0.1, where swimmers organize in two columns that cross at both ends allowing swimmers to undergo U-turns. In all cases,
If = 0.01, Iw = 0.94, and R = 10, except in double milling where R = 4 and N = 100, expect in elongated milling where N = 20; Gray lines indicate flow
streamlines. For associated statistical order parameters, swimmer’s speed and long-time dynamics, see SI Appendix, Figs. S.2 and S.3 and Movies S.1–S.3.

motions have Π close to unity and low values of P. The swarming
phase is characterized by both P and Π close to zero, and the
turning phase by intermediate to high values of both P and Π.
These observations are consistent with (21); we thus used the
same threshold values of P and Π used in ref. 21 to characterize
these four phases (SI Appendix, Algorithm S.1).

However, P and Π cannot distinguish between schooling
and following the tank wall, both have values of P close
to unity and low values of Π, nor between swarming and
double milling, both have low values of P and Π. To resolve
this ambiguity, we introduced two additional order parameters
Pwall and Πmill ∈ [0, 1] (SI Appendix, Figs. S.3 and S.4).
The order parameter Pwall =

∣∣∣∑N
j=1 pj · tj

∣∣∣/N measures the
degree of agreement between the swimmer’s heading pj and
the local tangent tj to the wall. The order parameter Πmill =∑N

j=1
∥∥(rj − rc)× ṙj

∥∥/N‖rj − rc‖‖ṙj‖ measures the average
magnitude of the angular momenta of individual swimmers; in
contrast to Π, which is nearly zero when double milling, Πmill is
close to unity. In elongated milling, Π and Πmill are both nearly
zero (SI Appendix, Fig. S.4).

Bistable and Intermittent Collective Behavior. In addition to
the two new phases—following the tank wall and double
milling—the confined school exhibited bistable global modes
of two distinct flavors: Depending on initial conditions but
same parameter values, the school reached either schooling
or milling and maintained it for the entire duration of the
simulation (Fig. 2A); or, for the same initial conditions and
parameter values, the school alternated at apparently random
times between schooling and milling (Fig. 2B). While both
behaviors indicate bistability, the latter is intermittent bistability
or simply intermittency (Movie S.5).

The distinction between bistability and intermittent bistability
is reflected in the time evolution of P and Π and is ensured
only during the time integration period. In the bistable case, P
remained consistently small and Π consistently near unity for all
time when milling, and vice versa when schooling (Fig. 2C ). In
the intermittent case, P and Π dynamically switched from nearly
zero to nearly unity as the school randomly alternated between
schooling and milling. These dynamic transitions arise from
random fluctuations in the directions of individuals imposed
by the white noise in Eq. 1.

Confinement drove the switching between schooling and
milling, as demonstrated through three types of parameter
manipulations: increasing group size N (SI Appendix, Fig. S.7),
aversion to boundary Iw (SI Appendix, Fig. S.8), and domain
size R (SI Appendix, Fig. S.9). The switching rate decreased with
increased school size (SI Appendix, Fig. S.7), consistent with
experimental observations (9). It also decreased with increasing
intensity of response to domain wall Iw and with increasing
domain size R. That is, stronger interactions with boundaries
resulted in higher switching rates. Meanwhile, changing the shape
from circular to square domain had little effect on the switching
rate (SI Appendix, Fig. S.10).

Histograms of Order Parameters and Dimensionality Reduc-
tion. We used Monte Carlo simulations with 100 realizations
for each of the bistable and intermittent states and, in each
simulation, discounted the first 20% of the total simulation
time period T = 1,000 to get rid of transient dynamics and
form a multivariate histogram over the (P,Π) space (Fig. 2D
and SI Appendix, Fig. S.5). This normalized histogram is a
proxy for the steady-state probability density function (p.d.f.)
of obtaining a collective pattern characterized by P and Π. The
steady-state p.d.f.s of the bistable and intermittent behaviors are
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Fig. 2. Bistability and intermittency in the emergent collective behavior. (A) Bistable behavior for Ia = 3, In = 0.1. Depending on initial conditions, the
swimmers self-organize in either a schooling or milling collective motion and maintain it for the entire duration of the simulation. (B) Intermittent bistability
for Ia = 3, In = 0.5, where the group alternates between schooling and milling at random times, see Movie S.5. Switching rate depends on the school size (SI
Appendix, Fig. S.7). (C) Time evolution of P and Π distinguishes between the bistable and intermittent behaviors. (D) Bimodal probability distribution function
(p.d.f.) of polar and rotational order parameters P and Π based on Monte Carlo simulations with 100 trials for the parameter values in (A). Similar bimodal
p.d.f. (not shown) is obtained for the parameter values in (B). (E) Projection of the p.d.f. onto the (P,Π) space shows that P and Π are correlated and occupy
nearly a one-dimensional curved subspace of the (P,Π) space. A nonlinear principal component kernel is used to project P and Π onto this lower dimensional
subspace, giving rise to a single projected order parameter K . (F ) Time evolution of K distinguishes between the bistable and intermittent behaviors. (G) Bistable
and (H) intermittent bimodal p.d.f.’s of the projected order parameters K and effective potentials Φ(K) constructed using Φ(K) = − log(ps(K)) and from Eq. 4.
The former shows no distinction between bistability and intermittent bistability. This ambiguity is structural in the construction of ps(K) from data. Instead, Φ
should be computed from Eq. 4, where V(K) and D(K) are based on time-series data of the order parameter K(t).

nearly indistinguishable; we thus show only one in Fig. 2D.
Both p.d.f.s are bimodal, with two peaks located at P near
unity, corresponding to the schooling phase, and Π near unity,
corresponding to the milling phase. But they represent different
dynamics. In the bistable case, we observed no crossing from
one peak to the other. The bimodal distribution arises from
the superposition of two unimodel distributions with long tails,
corresponding to either schooling or milling. In the intermittent
case, the dynamics switched back and forth between the two
peaks. Bimodality is inherent to the time evolution of the group.

A closer examination of the group dynamics showed that
the domain of the bimodal p.d.f. is mostly confined to a
nonlinear subspace of the (P,Π) plane (Fig. 2E). We thus
used a nonlinear principal component analysis to identify and
remove the nonlinear correlations between (P,Π), reducing
the dimensionality of (P,Π) to a one-dimensional subspace
where the dynamics resides. We parameterized this subspace
by K , where K = 0 corresponds to milling and K = 1 to
schooling. Projecting the time evolution of P and Π onto the
K -subspace preserves the dynamic characteristics of the bistable
and intermittent behaviors (Fig. 2F ): In the bistable case where
distinct steady states are reached depending on initial conditions,
K remained near unity at all time when schooling and near zero
at all time when milling; in the intermittent case, K alternated
dynamically between zero and one.

Phase Diagrams. To assess the relative importance of geometric
confinement on the emergent collective phases, and transitions

among them, we performed a systematic parametric study over
the phase space (In, Ia) in three limits of the model in Eq. 1
(Fig. 3 and SI Appendix, Fig. S.11): swimmers with vision-based
and flow interactions in unbounded domain (21); circularly
confined swimmers with vision-based but no flow interactions;
and circularly confined swimmers with vision-based and flow
interactions. To identify the emergent collective phase at each
point (In, Ia) of the phase space, we run Monte-Carlo simulations
with 100 realizations at each (In, Ia), constructed the associated
steady-state p.d.f.s of P, Π, Pwall and Πmill by discarding the
transient dynamics, and employed the classification SI Appendix,
Algorithm S.1 to differentiate each of the emergent states reported
in Figs. 1 and 2.

In unconfined domains, we recovered the results of ref. 21
for N = 100 swimmers (Fig. 3A) with the four phases—
swarming, milling, schooling, and turning—all appearing in
the same regions of the phase space (In, Ia) as in ref. 21.
In circularly confined domains with no flow interactions, the
turning phase faded (Fig. 3B and SIAppendix, Fig. S.11), asserting
that this phase relies on hydrodynamic interactions (21). Fish
followed the tank wall in a significant region in the (In, Ia)
space. Interestingly, confinement alone was sufficient to induce
bistability and intermittent bistability. When the full model with
flow interactions was considered (Fig. 3C ), the two bistable
phases persisted and the turning phase reappeared.

At smaller school size N = 10, the collective phases shifted
in the phase space and only intermittent bistability was observed
(Fig. 3D). Direct comparison of the phase spaces at N = 100
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Classification at each point (In , Ia) is based on Monte-Carlo simulations of 100 trials and SI Appendix, Algorithm S.1. In all simulations, If = 10−2, Iw = 0.94,
R = 10, N = 100 in panels (A–C), and N = 10 in panel (D).

and N = 10 shows that the group size affects the emergent
phases in a nontrivial manner beyond what can be explained by
a mere rescaling of parameters. At N = 10, double milling
and elongated milling appeared at low noise and alignment
intensities. To probe the mechanisms leading to these phases,
we repeated the computations for N = 10 in the unbounded
domain with flow interactions and in circular confinement
without flow interactions (SI Appendix, Fig. S.11). We found that
elongated milling appeared under no confinement, consistent
with (20), but double milling required confinement, emphasizing
the distinction between these two phases and that double milling
is a confinement-induced collective phase.

To examine how school density � = N/�R2 affected emergent
behavior, we fixed the parameter values (In, Ia) and varied R and
N independently. In Fig. 4A, we observed a transition from
milling to intermittent milling-schooling that seemed to depend
only on �. However, in Fig. 4B, transitions from milling to
double milling and from milling to elongated milling occurred
at the same density levels. In Fig. 4C, we show the histograms of
statistical order parameters corresponding to two schools of fish
at the same density value; the results recapitulate experimental
observations (9, Fig. 2): The larger school in the larger domain
exhibited high rotational order, characteristic of the milling state,
while the smaller school in the smaller domain, despite having
the same density, displayed low polarization and rotational order.
These findings indicate that, in the presence of boundaries, the
collective states depend explicitly on the number of fish N and
tank size R, not only through their influence on the group density
� = N/�R2, because of the nontrivial interplay of boundary
interactions and individual level noise.

Probabilistic Description of Collective Dynamics. To character-
ize the collective dynamics, we applied a general probabilistic
approach considering the probability density function p(P,Π, t)
is governed by a Fokker–Planck equation (31). Because we are
interested in the bistable states where the dynamics lies on a
one-dimensional subspace of the (P,Π) space (Fig. 2), we set
out to describe the group dynamics in terms of the single coarse-
grained order parameter K (t) and associated probability density
function p(K, t). Starting from the assumption that the time
evolution of K is governed by an Itô stochastic differential

equation dK = V (K )dt +
√

2D(K )dW , with white Gaussian
noise (which we justify a posteriori), it follows immediately that
the time evolution of p(K, t) is governed by an effective Fokker–
Planck equation (32)

∂p(K, t)
∂t

= −
∂

∂K
[V (K )p(K, t)] +

∂2

∂K 2 [D(K )p(K, t)] , [3]

where the drift V (K ) and diffusion D(K ) > 0 coefficients (both
scalars) are related, respectively, to the time evolution of the first
two moments of K (t) (SI Appendix, section S.4). The solution
to the steady-state Fokker–Planck equation (∂p/∂t = 0) is a
stationary probability density function ps(K ) that defines an
effective potential Φ(K ) such that ps(K ) ∼ exp(−Φ(K )). The
effective potential Φ(K ) also satisfies

Φ(K ) = log(D(K ))−
∫ K

−∞

V (K ′)
D(K ′)

dK ′ + constant. [4]

Effective Potential of Stationary Probability Density Function.
We constructed the stationary p.d.f. ps(K ) from Monte Carlo
simulations for the bistable and intermittent states of Fig. 2.
In Fig. 2 G and H, we show ps(K ) and the corresponding
Φ(K ) constructed using Φ(K ) = − log(ps(K )). Additionally,
we constructed the effective potential Φ(K ) from Eq. 4 by
estimating V (K ) and D(K ) using ensembles of long-time
simulations (22, 24) (SI Appendix, section S.4).

In the bistable state, the effective potential Φ estimated
from Eq.4 is characterized by an infinite potential barrier between
the two wells corresponding to stable milling and stable schooling
(Fig. 2G). This is consistent with the corresponding collective
dynamics in Fig. 2A, where the school reached, depending on
initial conditions, one of these states but did not cross between
them. The effective potential Φ(K ) calculated from ps(K )
missed this important feature, erroneously predicting a finite
potential barrier between the two states. This error is inherent
to constructing a single steady-state distribution ps(K ) that can,
in principle, converge to either state. If initial conditions were
within the basin of attraction of one of the two states, the result
would be a unimodal steady-state distribution with a long tail.
However, because initial conditions are randomly sampled from
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Fig. 4. Phase diagrams over the space (N, R) for swimmers following vision-based rules and flow interactions in geometric confinement. Solid lines indicate
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both basins of attraction, the outcome is a bimodal steady-state
distribution ps(K ) with connected peaks. But this connection is
not dynamic. In the intermittent state, the effective potential Φ
estimated from Eq. 4 and that calculated directly from ps(K )
exhibited a finite potential barrier between the two states that
can be overcome by white noise (Fig. 2H ). Therefore, evaluating
Φ directly from steady-state distribution of ps(K ) is structurally
ambiguous in that it does not distinguish between bistability
and intermittent bistability; instead, Φ should be evaluated
dynamically using Eq. 4, where V (K ) and D(K ) are based on
time-series data of the order parameter K (t).

Bifurcations in the Collective Dynamics. We next used the
coarse-grained dynamics to analyze the transitions highlighted by
black markers “•” in Figs. 3C and 4A. At each of these parameter
values, we constructed the corresponding bivariate p.d.f.s on
the (P,Π) space (colormap, Left) and computed the effective
potential Φ(K ) on the reduced K -space (black lines, Right); see
Fig. 5 A and C. Values of K at the local minima of Φ(K ) and the
corresponding probability flux ∂Φ/∂K are superimposed onto
the p.d.f.s in the (P,Π) space (Left). The excellent agreement
between data and ∂Φ/∂K verifies a posteriori the validity of the
built-in assumption in the Fokker–Planck description that the
time evolution of K follows a stochastic differential equation
with additive white noise.

Fig. 5A analyzes the transition from bistable schooling and
milling to monostable schooling with increasing In. At small In,
the effective potential has two potential wells separated by an
infinite potential barrier, reflecting either schooling or milling
but no transition between the two phases. As noise increased, the
infinite barrier became finite, leading to a double-well potential
Φ with finite potential barrier surmountable by noise at the indi-
vidual swimmer level. This reflects a transition to intermittency
between schooling and milling. As noise increased further, the
potential well corresponding to stable milling disappeared leaving
only one potential well for schooling. This is counterintuitive
because, while noise is necessary to transition between milling
and schooling, too much noise completely destroys the milling
state, leaving only one potential well corresponding to schooling.

Borrowing tools from deterministic bifurcation theory (22),
we followed the critical points of the effective potential as In
increased (Fig. 5B). Values of K corresponding to local minima
of Φ indicate points on the stable branch of the bifurcation
diagram, and values of K corresponding to local maxima of

Φ indicate points on the unstable branch. In determining the
maxima, we performed a quadratic fit of the effective potential
between the two prominent wells to filter out spurious high-
frequency numerical errors. The bifurcation diagram in Fig. 5B
indicates that the transition from bistable to intermittent behavior
is a smooth cross-over, whereas the transition from intermittency
to schooling is a sudden phase transition typical of a saddle-node
bifurcation at In = 0.75.

Additionally, we calculated the fraction of residence time
Tmilling/T in the milling state (Fig. 5B). By definition, the escape
rate from the milling state is equal to 1− Tmilling/T . We found
that, in the bistable regime, the escape rate is either zero (when
milling is stable) or one (when schooling is stable), while in the
intermittent regime, the residence time decays quasi-linearly with
increasing noise intensity In.

Fig. 5C analyzes the transition from bistable schooling and
milling to monostable milling with increasing N . For a relatively
small school of size N = 20, the double-well potential Φ
is characterized by a finite potential barrier surmountable by
noise, reflecting that the group intermittency between schooling
and milling. As N increased, the potential well corresponding
to schooling became more shallow, and at even larger N , it
suddenly disappeared altogether, leaving only stable milling. The
corresponding bifurcation diagram in Fig. 5D indicates two
transitions from monostable to bistable and back to monostable
behavior as N increased from N = 2 to N = 100, both typical
of abrupt phase transitions as those observed in saddle-node
bifurcations. The residence time in the milling state increased
quasi-linearly with larger school size, consistent with empirical
observations (SI Appendix, Fig. S.7).

Discussion

We developed a mathematical model of fish schools that
integrated geometric confinement into existing data-inferred
behavioral rules (18) and flow interactions (21). We analyzed
the model extensively, demonstrating the emergence of new
collective patterns and spontaneous transitions between milling
and schooling driven by geometric confinement and interactions
with domain boundaries. These transitions and the mechanisms
driving them are fundamentally different from transitions in
unbounded domains through fine adjustments of alignment and
attraction parameters (20) or through rare injection of large
rotational noise (22).
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A

B

C

D

Fig. 5. Bifurcations and phase transitions in the emergent collective patterns. (A) P.d.f’s of P and Π (Left) and corresponding effective potential (Right) for
three distinct noise levels In = 0.1,0.5,0.85 and constant Ia = 3, corresponding to the black markers “•” in Fig. 3C. Probability flux ∂Φ/∂K (black arrows) and
K -values at the minima and maxima of Φ (round markers) are superimposed onto the p.d.f.’s of P and Π (Left). As In increases, the school transitions from
bistable to intermittent and finally to schooling. (B) Bifurcation diagram of K versus In: stable (black markers)/unstable (gray markers) stationary solutions
of the Fokker–Planck equations correspond to minima/maxima of Φ. The two stable branches transition smoothly from bistability to intermittent bistability.
Stable milling disappears suddenly at In = 0.75, presumably by colliding with the unstable branch in a saddle-node bifurcation leading to only a single stable
branch corresponding to schooling. Fraction of residence time in the milling state decays quasi-linearly in the intermittent regime with increasing noise. (C)
P.d.f’s of P and Π (Left) and corresponding effective potential for three distinct school size N = 20,50,90 and R = 10, corresponding to the black markers “•” in
Fig. 4A. ∂Φ/∂K (black arrows) and K -values at the minima and maxima of Φ (round markers) are superimposed onto the p.d.f.’s of P and Π (Left). As school size
increases, the school transitions from intermittent behavior to milling. (D) Bifurcation diagram indicates the existence of two saddle-node bifurcations. Fraction
of residence time in the milling state increases quasi-linearly in the intermittent regime with increasing school size.

A key feature of our work is that, instead of using smart but ad
hoc manipulations of statistical order parameters to characterize
the transitions between milling and schooling (9, 20, 22),
we went beyond mere statistics to provide a probabilistic
description of the time evolution of the group. Our two-step
approach for mapping microscopic (individual) to macroscopic
(group) dynamics first eliminated correlations between statistical
order parameters through a nonlinear projection onto a one-
dimensional subspace with a single coarse-grained variable;
then, inspired by refs. 22 and 24, we formulated a Fokker–
Planck equation and constructed effective potential landscapes
that governed the emergent collective states (Figs. 2 and 5).
Confinement-driven dynamic transitions between milling and
schooling corresponded to a double-well potential with bistable
states separated by a finite potential barrier (Fig. 5), allowing
transitions to be triggered entirely by individual-level noise
with no change in individual rules or parameters. Double-well
potentials with infinite potential barrier led to either stable
milling or stable schooling but no dynamic switching between
the two, at least not during the time period of the numerical
integration. These two flavors of bistability are indistinguishable
by a mere examination of p.d.f.s of the coarse-grained variables
(Fig. 2). The distinction is dynamic. Constructing effective
potentials from time evolution data of the coarse-grained variable
was thus essential for the classification of group dynamics and
phase transitions and for uncovering that the transition from
bistable to intermittent behavior is a smooth cross-over, while the

transition from bistable to monostable states is a phase transition
where one stable state suddenly disappeared, likely following
collision with an unstable state (Fig. 5).

Predictions from our model displayed notable parallels to
empirical observations in groups of golden shiners (Notemigonus
crysoleucas) confined in shallow water tanks (9), including
correctly predicting the spontaneous switching between milling
and schooling (9, Figs.1 and 2), with increased average speed and
decreased rate of switching as group size increased and transition
to only milling in larger groups (Figs. 2 and 5C and SI Appendix,
Figs. S.6 and S.7). We also found that maintaining the same
group density but proportionally decreasing the number of fish
and tank size induced a transition from milling to swarming
(Fig. 4B) consistent with experimental findings (9, Fig. 2).
That is, in contrast to classic self-propelled particle models
in unbounded or periodic domains (14), in the presence of
confinement and interactions with external boundaries, group
density alone does not control the collective behavior.

Our analysis provides insights and testable hypotheses into
how geometric confinement affects collective patterns and
triggers phase transitions between different collective states in
schooling fish. The new collective patterns—following the do-
main wall and double milling—could offer functional advantages
to the group. Schooling fish might stay near and move along
boundaries because these areas are often nutrient-rich and offer
a strategic advantage for detecting and evading potential threats.
From a synchronization perspective, milling is akin to in-phase
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synchronization of coupled oscillators, whereas double milling
resembles antiphase synchronization (33). Double milling, while
not documented in prior studies of schooling fish, appears to
occur in groups of fish confined in shallow water and within tank
boundaries, such as in fish farms. This behavior might help in
mixing nutrients and oxygen more effectively within confined
crowded groups (34).

In natural conditions, schools of fish inhabiting large enclo-
sures might benefit from the ability to spontaneously switch
between milling and schooling; in the milling phase, the school
remains within a limited space while in the schooling phase,
it explores a larger domain. Repeated switching between milling
and schooling could provide a functional advantage by allowing a
school of fish to regularly explore its environment, for surveillance
or foraging, without incurring additional costs or requiring
changes in sensing and behavior at the individual level. Yet, even a
subtle adjustment in individual behavior, such as increased noise
in response to environmental perturbations or increased group
size, could enable the school to transition to a monostable state of
schooling or milling through the sudden collapse of global stable
states, potentially providing unique advantages such as evading
or confusing predators.

Beyond fish schools, our work paves the way toward cre-
ating a general data-driven framework for understanding how
environmental factors influence self-organization and collective

dynamics and for designing control strategies that induce or
suppress phase transitions in out-of-equilibrium active systems
by tuning environmental parameters, such as geometric confine-
ment (28, 35, 36), intensity or pattern of illumination (23, 37),
and electric field intensity (38).

Materials and Methods

Fish in circular confinement are modeled as self-propelled dipolar particles
following vision-based behavioral rules and interacting with domain boundaries.
Mapping from individual to group dynamics obeys a Fokker–Planck equation,
where the drift and diffusion coefficients are constructed directly from time-
evolution of the coarse-grained variables. Detailed derivation of equations of
motion, both at the individual and collective levels, can be found in SI Appendix,
together with eleven supporting figures.

Data, Materials, and Software Availability. All study data are included
in the article and/or supporting information. Data have been deposited to
Github (39).
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