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Permutation-Invariant Quantum Codes With
Transversal Generalized Phase Gates

Eric Kubischta and Ian Teixeira

Abstract— With respect to the transversal gate group (an
invariant of quantum codes), we demonstrate that non-additive
codes can outperform stabilizer codes. We do this by constructing
spin codes that correspond to permutation-invariant multiqubit
codes that can implement generalized phase gates transversally.
Of particular note, we construct permutation-invariant quantum
codes that implement a transversal T gate using fewer qubits
and with a better minimum distance than is possible with the
best known stabilizer codes.

Index Terms— Quantum codes, permutation-invariant codes,
non-additive quantum codes, quantum error correction, transver-
sal gates.

I. INTRODUCTION

AQUANTUM code is usually referred to using three
parameters: the number of physical qubits n, the

dimension of the codespace K, and the distance of the code
d. Stabilizer codes are denoted [[n, k, d]], where K = 2k

is the dimension of the codespace. More generally, non-
stabilizer codes, usually called non-additive codes, are denoted
((n,K, d)).

To our knowledge, the best non-additive codes have distance
that is at most 1 greater than the best stabilizer codes, for
the same n and K. An example is the non-additive quantum
Goethals-Preparata code [1] that encodes 217 logical qubits
into 256 physical qubits with distance 8, whereas the best
known stabilizer code encodes 217 logical qubits into 256
physical qubits with distance 7 [2]. This is also supported by
the result from [3], [4] that the linear programming bound on
distance d for non-additive codes is at most 1 greater than
the linear programming bound on distance d for stabilizer
codes for all n ≤ 30 and all k ≤ 23. The limited nature
of these improvements has, for the most part, relegated non-
additive codes to the sidelines of quantum error correction.
But these three parameters are not the only invariants of a
quantum code. Although transversal gates may be conjugated
by non-entangling gates, the group of logical gates G they
form is a code invariant. This fact isn’t completely unknown,
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but few techniques exist that can build codes with a specific
transversal gate group G.

This brings us to the Dicke bootstrap (Lemma 2 below).
It was noticed in [5] that the spin codes constructed in [6]
could be mapped to permutation-invariant multiqubit codes
with similar error correction and transversality properties. The
Dicke bootstrap transforms a spin code with logical gate group
G and spin distance d into a permutation-invariant multiqubit
code with transversal gate group G and distance d. Thus,
instead of studying multiqubit codes, we can study spin codes.
Spin codes are easier to work with because they transform
in a single irrep (irreducible representation) of SU(2) instead
of a tensor product of irreps and thus spin codes live in an
exponentially smaller Hilbert space than multiqubit codes -
they populate only a tiny n+1 dimensional corner of the full
2n dimensional space.

We construct new families of spin codes by studying the
relationship between symmetry and the error correction condi-
tions. It is illustrative to focus on the case when the symmetry
is given by the order 2r+2 generalized quaternion group Q(r),
which is the maximal group in the r-th level of the single
qubit Clifford hierarchy (Appendix B of [7]). We also address
a generalization of this group for non powers of two, called the
binary dihedral group of even degree, denoted by BD2b where
2b is the degree. Each group BD2b is generated by the (deter-
minant 1) Pauli gate X and the generalized phase gate b

√
Z.

The resulting spin codes map to permutation-invariant
multiqubit codes [8], [9], [10] under the Dicke bootstrap.
We find permutation-invariant multiqubit codes constructed
this way that outperform the best known stabilizer codes,
either in terms of using less physical qubits n, having larger
distance d, or having more transversal gates. Of all the codes
we find, perhaps the most striking is an ((11, 2, 3)) code that
implements the T gate transversally. There is a great deal of
interest in codes with transversal T [11], [12], [13], [14], [15],
[16], [17], [18] and the ((11, 2, 3)) code we find is likely the
smallest possible code with transversal T , belying past claims
that the [[15, 1, 3]] code, which was proven to be the smallest
stabilizer code with transversal T [16], [17], [18], is minimal.
Beyond this, we find transversal T codes, numerically, with
distance d = 5, 7, 9, 11, 13 in n = 27, 49, 73, 107, 147 qubits
respectively. Our codes outperform the best known stabilizer
codes with transversal T [19], using fewer qubits to achieve
a better distance.

II. BACKGROUND

The Hilbert space of a single qubit is C2, while the Hilbert
space of n qubits is (C2)⊗n ∼= C2n

. So a single qubit gate
is an element of the unitary group U(2), while an n-qubit
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gate is an element of the unitary group U(2n). An n-qubit
gate is called local if it can be written as a tensor product
of n single qubit gates. The weight of a local gate

⊗n
i=1 Ui

is the number of Ui that are not (multiples of) the identity
matrix. Local gates do not create entanglement, since they act
on each qubit separately. Another operation that doesn’t create
entanglement is swapping qubits (i.e. permuting the factors of
C2 in the n-fold tensor product). Thus an n-qubit gate is called
non-entangling if it can be written as a product of local gates
and qubit permutations.

A multiqubit quantum error-correcting code is a K
dimensional subspace, called the codespace, of the n-qubit
Hilbert space (C2)⊗n. A code is said to have distance d if
the action on the codespace of any local gate E of weight
wt(E) < d can be detected. This is formalized by the Knill-
Laflamme error correction conditions [20]; a code has distance
d if for all vectors |u⟩ and |v⟩ in the codespace we have

⟨u|E |v⟩ = cE ⟨u|v⟩ for wt(E) < d. (1)

The constant cE is allowed to depend on E but not on |u⟩
and |v⟩. An encoding into n qubits of a K dimensional
subspace with distance d is called an ((n,K, d)) quantum
error-correcting code. Since these equations are linear in E
it is equivalent to only check on a basis of Pauli errors of
weight less than d (see Theorem 2 of [21]).

All unitary gates preserve vector space dimension and
thus preserve the parameters n and K. However only non-
entangling gates preserve the weight of a local gate. Thus only
non-entangling gates preserve distance d. For this reason, two
codes are said to be equivalent if they are related by a non-
entangling gate [22].

A local gate that preserves the codespace is called a
transversal gate. Let g ∈ U(2) be a logical gate for an
((n, 2, d)) code. We say that g is exactly transversal if the
physical gate g⊗n implements logical g on the codespace.
We say g is h-strongly transversal if there exists some
h ∈ U(2), not necessarily equal to g, such that the physical
gate h⊗n implements logical g on the codespace. All the codes
in this paper have the Pauli gates X and Z exactly transversal.
And many of the codes, including the ((11, 2, 3)) code, have
the logical T gate T 3-strongly transversal.

A. The Transversal Gate Group

The group of all logical operations that can be implemented
on the codespace using transversal gates is called the
transversal gate group G of the code. In addition to n,K, d, the
transversal gate group G is also a well defined code parameter
under code equivalence.

Lemma 1: Equivalent codes have isomorphic transversal
gate groups.

Proof: Indeed, we prove something even stronger,
constructing compatible bases for the two codes, the columns
of the encoding maps V and V ′, with respect to which the
two transversal gate groups are realized as the exact same
matrix group. This result is of course stronger and more
constructive than merely proving that the transversal gate
groups are isomorphic. Let V be the encoding map, a 2n ×K

matrix whose K columns correspond to an orthonormal basis
of logical states for the codespace. Let UL be a logical gate
(a K × K matrix) that is implemented transversally on the
code by U1 ⊗ · · · ⊗ Un (a 2n × 2n matrix). As an equation
this means (⊗

i

Ui

)
V = V UL. (2)

The encoding map for an equivalent code is V ′ = WV where
W is some non-entangling gate (a 2n×2n matrix). Then V =
W †V ′ and we have(⊗

i

U ′
i

)
V ′ = V ′UL. (3)

Here we have defined
⊗

i U
′
i := W (

⊗
i Ui)W † which is

indeed still a local gate since we are conjugating by the non-
entangling gate W .

Eq. (3) says that an equivalent code still has the same logical
gates, they are just implemented by different transversal gates.
The claim follows. □

B. Spin Codes

The unique 2j + 1 dimensional irrep of SU(2) is known in
physics as a spin j system (where j is either a non-negative
integer or positive half-integer). A basis for the Hilbert space
of a spin j system is given by the kets |j,m⟩, for m ∈
{−j, 1 − j, . . . , j − 1, j}. The kets |j,m⟩ are an eigenbasis
for the action of the diagonal subgroup of SU(2) on a spin
j system (in physics, the |j,m⟩ are commonly referred to as
the eigenkets for Jz , the z-component of angular momentum).
For an introduction to the “bra” and “ket” notation for vectors,
as well as an introduction to spin, see Chapter 1 of [23].

A spin code [6] is simply a K dimensional subspace of a
spin j system. The performance of the spin code is measured
by how well the subspace protects against products of angular
momentum errors Jx, Jy, Jz , which are a basis for the 2j + 1
dimensional irrep of the Lie algebra su(2). Thus we say that
a spin code has spin distance d if for all |u⟩ and |v⟩ in the
codespace we have

⟨u| Jα1 · · · Jαp
|v⟩ = c ⟨u|v⟩ for 0 ≤ p < d. (4)

The constant c is allowed to depend on α1, · · · , αp (here each
αi takes on the values x, y, z) but not on |u⟩ and |v⟩.

The p-fold products Jα1 · · · Jαp are Cartesian tensors, and
they span a reducible representation of SU(2), in particular a
quotient of the pth tensor power of the adjoint representation of
SU(2). Naturally we split these representations into irreducible
pieces, the spherical tensors T k

q which can be written using
the Wigner-Eckart theorem as

T k
q =

√
2k+1
2j+1

j∑
m=−j

Cj m+q
k q,j m |j,m+ q⟩⟨j,m| , (5)

where 0 ≤ |q| ≤ k ≤ 2j, and the Cj m+q
k q,j m are Clebsch-Gordan

coefficients. There are (2j + 1)2 spherical tensors T k
q and

they are an orthonormal basis for all linear operators on a
spin j Hilbert space, with respect to the trace inner product.
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More information on spherical tensors can be found in section
3.11 of [23] (and an older reference with different conventions
is [24]).

For any fixed k, the spherical tensors T k
q with 0 ≤ |q| ≤ k

transform in the irreducible 2k+1 dimensional irrep of SU(2).
The T k

q for 0 ≤ |q| ≤ k < d and the Jα1 · · · Jαp
for 0 ≤ p < d

span the same d2 dimensional subspace of the operators on a
spin j Hilbert space. The T k

q for 0 ≤ |q| ≤ k < d are linearly
independent and thus a basis for this subspace. However, there
are 3d−1

2 of the products Jα1 · · · Jαp
for 0 ≤ p < d. Since the

inequality d2 ≤ 3d−1
2 is strict for d ≥ 3 , these products are

in general not linearly independent. So to verify that a spin
code has spin distance d, as in Eq. (4), it is equivalent, and
requires far fewer conditions, to check that for all |u⟩ and |v⟩
in the codespace

⟨u|T k
q |v⟩ = c ⟨u|v⟩ for 0 ≤ |q| ≤ k < d, (6)

where the constant c is allowed to depend on k and q but not
on |u⟩ and |v⟩.

C. Dicke Bootstrap

A spin j system is isomorphic as an SU(2) representation
to the permutation-invariant subspace of the tensor product of
n = 2j spin 1/2 systems [23]. An explicit isomorphism is the
Dicke state mapping

|j,m⟩ D7−→ |D2j
j−m⟩ . (7)

Here |Dn
w⟩ is a Dicke state [25], [26], [27], [28], [29] defined

as the (normalized) uniform superposition

|Dn
w⟩ = 1√

(n
w)

∑
wt(s)=w

|s⟩ . (8)

where the sum is over all
(

n
w

)
of the length n bit strings of

Hamming weight w. For example,

|D3
2⟩ = 1√

3
(|011⟩ + |101⟩ + |110⟩). (9)

Each g ∈ SU(2) has a natural action on spin j via the
Wigner D rotation operators Dj(g). If Dj(g) preserves the
codespace then it will implement a logical gate. A spin code
is called (G,λ) covariant if Dj(g) implements the logical gate
λ(g) where λ is a representation of G [30], [31].

Lemma 2 (Dicke Bootstrap): A G-covariant spin j code
with a codespace of dimension K and a spin distance
of d corresponds under D to a G-transversal ((n,K, d))
permutation-invariant multiqubit code, where n = 2j.

Proof: First we show that a G-covariant spin j code
corresponds to a G-transversal n-qubit code. In other words,
we need to show that the Dicke state mapping D behaves as
an intertwiner between the natural action of SU(2) on a spin
j irrep and the natural action of SU(2) on an n = 2j qubit
system via the tensor product [32]:

D
[
Dj(g) |j,m⟩

]
= g⊗nD |j,m⟩ . (10)

It is actually easier to prove this intertwining equation for
g ∈ SL(2,C) which implies that it is also true for g ∈ SU(2)
because SU(2) is a subgroup of SL(2,C). Moreover, if we can

show this equation is true at the Lie algebra level, then it will
automatically be true at the Lie group level via exponentiation.

The group action on the left hand side of Eq. (10) can
be generated by exponentiating the span of the basis for
the 2j + 1 dimensional irrep of sl(2,C), the Lie algebra of
SL(2,C), where the basis is given by J+, J−, Jz where Jz is
the z-component of angular momentum and J± = Jx ± iJy

are ladder operators. The group action on the right hand
side of Eq. (10) can be generated in a corresponding way
by exponentiating the span of the collective spin operators∑n

i=1 σ
(i)
α where σ(i)

α is σα on the i-th qubit, and σα is either
σ± = σx ± iσy = 1

2 (X ± iY ), or σz = 1
2Z. Notice that when

j = 1
2 then D is the identity operator and Jα = σα.

Thus in order to show Eq. (10), it suffices to show

D [Jα |j,m⟩] =
n∑

i=1

σ(i)
α D |j,m⟩ . (11)

Let’s start with the α = z condition. On the left side of
Eq. (11) we have

D [Jz |j,m⟩] = mD |j,m⟩ = m |D2j
j−m⟩ . (12)

Here we have used the fact that Jz |j,m⟩ = m |j,m⟩ since
|j,m⟩ is by definition an eigenvector of Jz with eigenvalue
m. Then we have used the Dicke mapping Eq. (7).

On the right hand side of Eq. (11) we have
n∑

i=1

σ(i)
z D |j,m⟩ = 1

2

n∑
i=1

Z(i) |D2j
j−m⟩ (13a)

= 1
2

n∑
i=1

Z(i) 1√
( 2j

j−m)

∑
wt(s)=j−m

|s⟩ (13b)

= 1√
( 2j

j−m)

∑
wt(s)=j−m

1
2

n∑
i=1

Z(i) |s⟩ (13c)

= 1√
( 2j

j−m)

∑
wt(s)=j−m

(j+m)−(j−m)
2 |s⟩

(13d)

= 1√
( 2j

j−m)

∑
wt(s)=j−m

m |s⟩ (13e)

= m |D2j
j−m⟩ . (13f)

In Eq. (13b) we use the definition of the Dicke state.
In Eq. (13d) we use the fact that, since Z |0⟩ = |0⟩, there are
2j−(j−m) = j+m many values of i such that Z(i) |s⟩ = |s⟩
and, since Z |1⟩ = − |1⟩, there are (j −m) values of i such
that Z(i) |s⟩ = − |s⟩. This calculation, together with Eq. (12),
proves Eq. (11) for Jz .

Now let’s move on to α = ±. To start, recall [23]

J± |j,m⟩ =
√

(j ∓m)(j ±m+ 1) |j,m± 1⟩ . (14)

Then the left hand side of Eq. (11) is

D [J± |j,m⟩] =
√

(j ∓m)(j ±m+ 1)D |j,m± 1⟩ (15a)

=
√

(j ∓m)(j ±m+ 1) |D2j
j−m∓1⟩ . (15b)

Now let’s consider the right hand side of Eq. (11). Recall
that σ+ = ( 0 1

0 0 ) and σ− = ( 0 0
1 0 ). Using the standard
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convention |0⟩ = | 12 ,
1
2 ⟩ and |1⟩ = | 12 ,−

1
2 ⟩, we have σ+ |0⟩ =

0, σ+ |1⟩ = |0⟩, σ− |0⟩ = |1⟩, and σ− |1⟩ = 0. To compute
the right hand side of Eq. (11) we need the following lemma.

Lemma 3:∑
i

σ
(i)
+ |Dn

w⟩ =
√

(n− w + 1)w |Dn
w−1⟩ , (16a)∑

i

σ
(i)
− |Dn

w⟩ =
√

(w + 1)(n− w) |Dn
w+1⟩ . (16b)

Proof: Recall that a Dicke state can be expanded as

|Dn
w⟩ = 1√

(n
w)

∑
wt(s)=w

|s⟩ , (17)

where the sum is over all length n bit strings of Hamming
weight w. Then

n∑
i=1

σ
(i)
+ |Dn

w⟩ = 1√
(n

w)

n∑
i=1

∑
wt(s)=w

σ
(i)
+ |s⟩ (18a)

= 1√
(n

w)

n∑
i=1

∑
wt(s′)=w−1

s′
i=0

|s′⟩ (18b)

= (n−w+1)√
(n

w)

∑
wt(s′)=w−1

|s′⟩ (18c)

=
√

(n− w + 1)w |Dn
w−1⟩ . (18d)

Equation (18b) follows from the fact that σ(i)
+ annihilates any

|s⟩ with si = 0, while if si = 1, then σ(i)
+ just changes si to

a 0. In Eq. (18c), note that the sum
∑n

i=1

∑
wt(s′)=w−1,s′

i=0

is over exactly n
(

n−1
w−1

)
terms, and every weight w − 1 bit

string s′ appears in the sum the same number of times. Since
there are exactly

(
n

w−1

)
many weight w − 1 bit strings, and

n
(

n−1
w−1

)
= (n − w + 1)

(
n

w−1

)
, that accounts for the factor of

(n − w + 1) in Eq. (18c). The final line, Eq. (18d), uses the
identity

(
n

w−1

)
/
(

n
w

)
= w

n−w+1 .
Similarly,

n∑
i=1

σ
(i)
− |Dn

w⟩ = 1√
(n

w)

n∑
i=1

∑
wt(s)=w

σ
(i)
− |s⟩ (19a)

= 1√
(n

w)

n∑
i=1

∑
wt(s′)=w+1

s′
i=1

|s′⟩ (19b)

= (w+1)√
(n

w)

∑
wt(s′)=w+1

|s′⟩ (19c)

=
√

(w + 1)(n− w) |Dn
w+1⟩ . (19d)

Equation (19b) follows from the fact that σ(i)
− annihilates any

|s⟩ with si = 1, while if si = 0, then σ(i)
− just changes si to a

1. For Eq. (19c), note that the sum
∑n

i=1

∑
wt(s′)=w+1,s′

i=1 is
over exactly n

(
n−1
w

)
terms, and every weight w+1 bit string s′

appears in the sum the same number of times. Since there are
exactly

(
n

w+1

)
many weight w + 1 bit strings, and n

(
n−1
w

)
=

(w+1)
(

n
w+1

)
, that accounts for the factor of w+1 in Eq. (19c).

The final line, Eq. (19d), uses the identity
(

n
w+1

)
/
(

n
w

)
= n−w

w+1 .
□

Plugging in n = 2j and w = j −m to Lemma 3 then we
can compute the right hand side of Eq. (11) and see it agrees
with Eq. (15b) as desired. This concludes the proof that logical
gates are preserved under D .

We now prove that a spin code with (spin) distance d
maps under the Dicke mapping D to a multiqubit code with
distance d. Let |u⟩ be a spin state and let |ũ⟩ := D |u⟩ be the
corresponding permutationally invariant multiqubit state. Then
we can rewrite Eq. (11) suggestively as

D [Jα |u⟩] = J̃α |ũ⟩ , (20)

where J̃α := DJαD† =
∑n

i=1 σ
(i)
α are the collective spin

operators. Assume we have a spin j code with (spin) distance
d and recall that the spin distance conditions for spherical
tensors given in Eq. (6) are equivalent to the spin distance
conditions for products of angular momentum given in Eq.
(4). Then for 0 ≤ p < d we have

⟨ũ| J̃α1 · · · J̃αp |ṽ⟩ = ⟨u|D†DJα1D
†D · · ·D†DJαpD†D |v⟩

(21a)
= ⟨u| Jα1 · · · Jαp |v⟩ (21b)
= c ⟨u|v⟩ (21c)

= c ⟨u|D†D |v⟩ (21d)
= c ⟨ũ|ṽ⟩ . (21e)

Now we need to show that ⟨ũ| J̃α1 · · · J̃αp |ṽ⟩ = c ⟨ũ|ṽ⟩ for
0 ≤ p < d implies ⟨ũ|E |ṽ⟩ = cE ⟨ũ|ṽ⟩ for all Pauli errors of
weight wt(E) < d, since the latter condition is equivalent to
showing that the multiqubit code has distance d (see Theorem
2 of [21]).

We proceed by induction. The base case follows from
the permutation invariance of the multiqubit states |ũ⟩ , |ṽ⟩
(see [5]), we have

c ⟨ũ|ṽ⟩ = ⟨ũ| J̃α |ṽ⟩ (22a)

= ⟨ũ|
n∑

i=1

σ(i)
α |ṽ⟩ (22b)

=
n∑

i=1

⟨ũ|σ(i)
α |ṽ⟩ (22c)

=
n∑

i=1

⟨ũ|σ(i∗)
α |ṽ⟩ (22d)

= n ⟨ũ|σ(i∗)
α |ṽ⟩ . (22e)

The first line follows from the spin distance condition for the
original spin code, and is just a restatement of Eq. (21) for the
p = 1 case. In Eq. (22d) we use the permutation invariance of
the codewords to permute each index i to the particular fixed
index i∗, using equation (25) from [5]. This proves the base
case of p = 1.

Now for the inductive step. Suppose that ⟨ũ|E |ṽ⟩ =
cE ⟨ũ|ṽ⟩ for all Pauli errors E of weight wt(E) < p. Then we
need to show that ⟨ũ|E |ṽ⟩ = cE ⟨ũ|ṽ⟩ for all Pauli errors of
weight wt(E) = p. The key is to separate the terms with Pauli
errors of weight p and the terms with Pauli errors of weight
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less than p. We have

c ⟨ũ|ṽ⟩ = ⟨ũ| J̃α1 · · · J̃αp
|ṽ⟩ (23a)

= ⟨ũ|

(
n∑

i1=1

σ(i1)
α1

)
· · ·

(
n∑

ip=1

σ(ip)
αp

)
|ṽ⟩ (23b)

=
∑

1≤i1,...,ip≤n

⟨ũ|σ(i1)
α1

· · ·σ(ip)
αp

|ṽ⟩ (23c)

=
∑

some wt(E)<p

⟨ũ|E |ṽ⟩ (23d)

+
∑

1≤i1 ̸=...̸=ip≤n

⟨ũ|σ(i1)
α1

· · ·σ(ip)
αp

|ṽ⟩

=
∑

some wt(E)<p

cE ⟨ũ|ṽ⟩ (23e)

+
∑

1≤i1 ̸=...̸=ip≤n

⟨ũ|σ(i∗1)
α1 · · ·σ(i∗p)

αp |ṽ⟩ .

This holds true for all choices of distinct qubits i∗1, . . . i
∗
p

with 0 ≤ p < d. In Eq. (23e) we use induction on p to
simplify the terms in the first sum and we use the permutation
invariance of the codewords to permute each list of distinct
qubits i1, . . . ip to the particular list of distinct qubits i∗1, . . . i

∗
p,

using exactly equation (25) from [5]. Now we can subtract
terms over to the other side, yielding

(
c−

∑
some wt(E)<p

cE

)
⟨ũ|ṽ⟩ =

n!
(n− p)!

⟨ũ|σ(i∗1)
α1 · · ·σ(i∗p)

αp |ṽ⟩

(24a)
(n− p)!
n!

(
c−

∑
some wt(E)<p

cE

)
⟨ũ|ṽ⟩ = ⟨ũ|σ(i∗1)

α1 · · ·σ(i∗p)
αp |ṽ⟩ .

(24b)

The term multiplying ⟨ũ|ṽ⟩ on the left hand side is some
constant independent of |ũ⟩ and |ṽ⟩ and so we can conclude
that a spin code with (spin) distance d is indeed mapped by
D to a distance d multiqubit code.

This conclude the proof of the Dicke bootstrap. □
Theorem 3.1 of [33], and its subsequent proof, shows that

the only permutation-invariant stabilizer codes are the [[k +
2, k, 2]] quantum repetition codes with stabilizer generators
X⊗(k+2) and Z⊗(k+2), for even k. Thus the permutation-
invariant multiqubit codes obtained using Lemma 2 will be
non-additive in nearly all cases.

D. Binary Dihedral Groups

We are primarily interested in codes that implement a
generalized phase gate b

√
Z transversally, so we will restrict

to the K = 2 case, i.e., the case of encoding a single logical
qubit. This means the logical gates come from U(2). But
U(2) = eiθSU(2), so it suffices to consider gates solely from
SU(2). We will always denote matrices from SU(2) by sans
serif font, see Table I for our chosen correspondence.

The binary dihedral (or “dicyclic”) groups of even degree,
BD2b, have order 8b and are given by (see Chapter 12 of [34]):

BD2b = ⟨X,Ph
(

2π
2b

)
⟩ . (25)

TABLE I
TRADITIONAL GATES IN SU(2)

There are also odd degree binary dihedral groups, but we won’t
consider them here since they don’t contain Z and so there is
no good way to pick the codewords to be real, required for
Lemma 7 below.

The group BD2b is a lift through the double cover SU(2) ↠
SO(3) of the order 4b dihedral subgroup Dih2b ⊂ SO(3). For
example, the order 8 group BD2 is equal to the (determinant
1) single qubit Pauli group P = ⟨X,Z⟩, and is the lift of the
Klein four-group, Dih2.

In the special case that the degree of BD2b is a power of
two, 2b = 2r, the binary dihedral groups are instead referred
to as the generalized quaternion groups (again see Chapter
12 of [34]). We will denote these as

Q(r) := BD2r . (26)

The advantage of this notation is that Q(r) ⊂ C(r), where C(r)

is the r-th level of the (determinant 1) single qubit Clifford
hierarchy. Recall that the single qubit Clifford hierarchy is
defined recursively by

C(r) := {U ∈ SU(2) : UPU† ⊂ C(r−1)}, (27)

starting from C(1) := P, the 1-qubit Pauli group [35]. In fact,
Q(r) is exactly the X gate together with the diagonal part of
C(r). In general, C(r) is not a group, but it was shown in [7]
that, for r ̸= 2 , Q(r) is the maximal group contained in C(r).

In [32] we called gates not in the Clifford hierarchy
exotic. All binary dihedral groups, except Q(r), contain exotic
gates. Since stabilizer codes cannot have exotic transversal
gates [36], [37], [38], we have the following result.

Proposition 1: Any code with transversal gate group G
isomorphic to BD2b, for b not a power of 2, must be non-
additive.

Proof: The faithful characters of BD2b all take the value
e-2πi/4b+e2πi/4b (for example, see [39]). In [32] it was shown
that a gate in the single qubit Clifford hierarchy must have
all its entries in the field Q(e2πi/2r+1

) for some r, and thus
have trace valued in the cyclotomic field Q(e2πi/2r+1

). When
b is not a power of 2, e-2πi/4b + e2πi/4b ̸∈ Q(e2πi/2r+1

) and
thus there cannot exist a faithful representation of BD2b whose
image lies in the Clifford hierarchy. □

For example, BD6 =
〈
X,Ph( 2π

6 )
〉

contains the exotic gate
Ph( 2π

6 ) and thus cannot be the transversal gate group of a
stabilizer code.
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In contrast, the transversal gate group of the [[5, 1, 3]] code
contains Q(1) = BD2 = ⟨X,Z⟩, the transversal gate group of
the [[7, 1, 3]] Steane code contains Q(2) = BD4 = ⟨X, S⟩, and
the transversal gate group of the [[15, 1, 3]] code is Q(3) =
BD8 = ⟨X,T⟩. In fact, the transversal gate group of the
[[2r+1 − 1, 1, 3]] code family, for r ≥ 3 , is Q(r) = BD2r ;
this follows from Theorem 5 and Example 6 of [37].

III. BD2b SYMMETRY AND THE ERROR CORRECTION
CONDITIONS

We begin by reviewing the relationship between Wigner-
D matrices and spherical tensors, mostly following the
conventions of [23]. The Wigner-D operator Dj(g) has matrix
elements Dj

mm′(g) := ⟨j,m|Dj(g) |j,m′⟩, where m and m′

are in the range {−j,−j + 1, · · · , j − 1, j} (and j is a half-
integer or an integer). The matrix elements for the gates of
interest in this work are

Dj
mm′(X) = e−iπjδm,−m′ , (28a)

Dj
mm′(Y) = e−iπ(j+m)δm,−m′ , (28b)

Dj
mm′(Z) = e−iπmδm,m′ , (28c)

Dj
mm′(Ph(α)) = e−iαmδm,m′ . (28d)

In general

Dj(g) |j,m′⟩ =
∑
m

Dj
mm′(g) |j,m⟩ , (29)

so we have

Dj(X) |j,m⟩ = e−iπj |j,−m⟩ , (30a)

Dj(Y) |j,m⟩ = e−iπ(j−m) |j,−m⟩ , (30b)

Dj(Z) |j,m⟩ = e−iπm |j,m⟩ , (30c)

Dj(Ph(α)) |j,m⟩ = e−iαm |j,m⟩ . (30d)

Spherical tensors are irreducible tensors for SU(2) and so
transform as

Dj(g)†T k
q D

j(g) =
k∑

q′=−k

[Dk
qq′(g)]∗T k

q′ (31)

where ∗ denotes complex conjugation and † denotes the
Hermitian conjugate of a matrix. Combining this fact with the
properties of the matrix elements yields the following lemma.

Lemma 4 (Spherical Tensor Symmetries [23]):

Dj(X)†T k
q D

j(X) = (−1)kT k
−q (32a)

Dj(Y)†T k
q D

j(Y) = (−1)k+qT k
−q (32b)

Dj(Z)†T k
q D

j(Z) = (−1)qT k
q (32c)

Dj(Ph(α))†T k
q D

j(Ph(α)) = eiqαT k
q (32d)

T k†
q = (−1)qT k

−q (32e)

T k∗
q = T k

q . (32f)

A. Support of Spin States

A spin j state |ψ⟩ can be written generically with respect
to the angular momentum basis as

|ψ⟩ =
j∑

m=−j

αm |j,m⟩ (33)

for some (complex) coefficients αm. The support of |ψ⟩,
denoted supp |ψ⟩, is the set of those m for which αm is non-
zero.

Consider the group

BD2b :=
〈
X,Ph( 2π

2b )
〉
. (34)

We define the irrep τ a of BD2b for 1 ≤ a ≤ b by

τ a(X) = X, (35a)

τ a(Ph
(

2π
2b

)
) =

(
Ph
(

2π
2b

))2a−1

. (35b)

For example, τ 1 is the fundamental representation of BD2b

where τ 1(Ph
(

2π
2b

)
) = Ph

(
2π
2b

)
. The representation τ a is

irreducible, which we can verify by taking the trace and then
checking that the character of the representation has norm
1. Note that the τ a are not the only irreps of BD2b but
they do exhaust the two dimensional irreps of BD2b with
Frobenius-Schur indicator −1 (also called quaternionic irreps)
[40]. Moreover, note that the irrep τ a is faithful if and only
if 2a − 1 is coprime to b (thus all the τ a are faithful for the
generalized quaternion groups Q(r)).

We choose a basis for a (BD2b, τ a) covariant spin code by
taking an eigenbasis of Dj(Z), and we call the elements of
this basis the codewords.

Lemma 5: Define s := 2a−1
2 . A (BD2b, τ a) covariant spin

code has codewords with support s+ 2bZ and −s+ 2bZ.
Proof: The action of Ph

(
2π
2b

)
on the 2j+ 1 dimensional

irrep of SU(2) is

Dj
(
Ph
(

2π
2b

))
|j,m⟩ = e−i2πm/2b |j,m⟩ . (36)

If the spin code is (BD2b, τ a) covariant, then the codewords
must also be eigenvectors of Dj(Ph

(
2π
2b

)
), so we must restrict

the support of each codeword to only those values of m such
that m

2b is of the form ± 2a−1
4b + Z. Additionally, we know

Dj(X) |j,m⟩ = e−iπj |j,−m⟩ which implies, with a slight
abuse of notation, supp

∣∣1〉 = −supp
∣∣0〉. This proves the

result. □

B. Branching Rules

We can restrict the 2j + 1 dimensional irrep of SU(2) to
the BD2b subgroup to get a BD2b representation which will
always be reducible for j > 1

2 . Let χj(g) := Tr
(
Dj(g)

)
be

the character of the 2j + 1 dimensional irrep of the element
g ∈ SU(2). Let τa denote the character of the BD2b irrep τ a.
The multiplicity of the irrep τ a in the restricted representation
is defined by the formula

⟨τa, χj⟩ :=
1

|BD2b|
∑

g∈BD2b

τa(g)∗χj(g). (37)

Colloquially, the multiplicity counts the number of copies
of the irrep τ a in spin j. The multiplicities of the BD2b
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TABLE II

BRANCHING RULES SU(2) ↓ Q(3) FOR HALF-INTEGRAL SPIN j .
HERE p ≥ 0 IS AN INTEGER

irreps occurring in the restriction of spin j representations are
referred to as the branching rules [41], denoted SU(2) ↓ BD2b.
For more information about character theory see Chapter
2 of [40].

For example, consider the branching rules SU(2) ↓ Q(3)

where Q(3) = BD8 = ⟨X,T⟩. One can check that the two-
dimensional irreps of Q(3) have multiplicity 0 unless j is
half-integral. The multiplicities in the half-integral cases are
tabulated in Table II. We observe that the irreps fill up in a
“snaking pattern” from left to right then right to left and back
again. Indeed, this snaking pattern is a generic feature for all
the τ a irreps of BD2b. Thus the table generalizes in a fairly
straightforward way: replace 8 by 2b and look at the pattern
between 1

2 to 2b− 1
2 .

The multiplicity ⟨τa, χj⟩ of the irrep τ a in spin j is the
number of degrees of freedom one has in choosing a BD2b

covariant code transforming in the irrep τ a. For example,
in spin j = 11/2 the τ 3 irrep of Q(3) has multiplicity 2.
Using Lemma 5 the codeword basis can be written as

|0⟩ = α1

∣∣ 11
2 ,

11
2

〉
+ α2

∣∣ 11
2 ,

−5
2

〉
, (38a)

|1⟩ = α1

∣∣ 11
2 ,

−11
2

〉
+ α2

∣∣ 11
2 ,

5
2

〉
. (38b)

Now consider the following lemma.
Lemma 6: The smallest spin j for a (BD2b, τ a) covariant

spin code with µ degrees of freedom is{
j = µb+ (s− b) if µ odd
j = µb−s if µ even,

(39)

where s = 2a−1
2 .

Proof: The smallest spin j (corresponding to the smallest
dimensional SU(2) irrep) that branches to BD2b irreps such
that τ a has odd multiplicity µ = 2p + 1 is spin j = p(2b) +
2a−1

2 (using the generalized version of Table II we alluded
to). Rewriting this in terms of µ and s yields the first claim.

The smallest spin j (corresponding to the smallest
dimensional SU(2) irrep) that branches to BD2b irreps such
that τ a has even multiplicity µ = 2p + p is spin j =
p(2b)+(2b− 2a−1

2 ). Rewriting this in terms of µ and s yields
the second claim. □

C. A Reduced Set of Error Correction Conditions

The spherical tensors T k
q display simple symmetries under

the action of the gates X and Ph( 2π
2b ), see Lemma 4. We can

leverage these symmetries to reduce the number of error
conditions we need to check for a (BD2b, τ a) covariant spin
code. To start we have a lemma that makes use of another
one of our crucial simplifying assumptions: realness of the
codewords.

Lemma 7: Suppose a spin code is X-covariant and the
codewords |0⟩ , |1⟩ are chosen to be real. Then

⟨0|T k
q |0⟩ = (−1)q+k ⟨1|T k

q |1⟩ , (40a)

⟨0|T k
q |1⟩ = (−1)q+k ⟨0|T k

q |1⟩ , (40b)

⟨1|T k
q |0⟩ = (−1)q+k ⟨1|T k

q |0⟩ . (40c)

Proof: Let u, v ∈ {0, 1}. Then

⟨u|T k
q |v⟩ = ⟨u+ 1|Dj(X)†T k

q D
j(X) |v + 1⟩ (41a)

= (−1)k ⟨u+ 1|T k
−q |v + 1⟩ (41b)

= (−1)q+k ⟨u+ 1|T k†
q |v + 1⟩ (41c)

= (−1)q+k ⟨v + 1|T k
q |u+ 1⟩∗ (41d)

= (−1)q+k ⟨v + 1|T k
q |u+ 1⟩ . (41e)

In Eq. (41a) we use the fact that X is covariant. In Eq. (41b)
and Eq. (41c) we use Lemma 4. In Eq. (41e) we use the
realness of the codewords. □

Theorem 1: Consider a (BD2b, τ a) covariant spin code
with real codewords. The error conditions of Eq. (6) are
equivalent to the following reduced set of conditions:

• On-diagonal:

⟨0|T k
q |0⟩= ⟨1|T k

q |1⟩ k < d odd, q≥0, q≡0 mod 2b,
(42)

• Off-diagonal:

⟨0|T k
q |1⟩ = 0 k < d odd, q ≡ 2a− 1 mod 2b. (43)

Proof: To see how symmetry reduces the number of error
correction conditions we need to check let’s start with the on-
diagonal condition; we need our code spanned by { |0⟩ , |1⟩}
to satisfy

⟨0|T k
q |0⟩ = ⟨1|T k

q |1⟩ . (44)

Lemma 7 shows that ⟨0|T k
q |0⟩ = (−1)q+k ⟨1|T k

q |1⟩ so when
q + k is even the on-diagonal condition Eq. (44) is satisfied.
Thus we only need to check the on-diagonal condition when
q + k is odd.

Furthermore, Lemma 5 shows that values of m within the
same codeword are separated by multiples of 2b. So if q is not
a multiple of 2b then, for example, T k

q |0⟩ won’t overlap |0⟩ (or
more technically, the inner product between these two vectors
will be 0). This means ⟨0|T k

q |0⟩ = 0 = ⟨1|T k
q |1⟩ and the

on-diagonal condition Eq. (44) is satisfied. So we only need
to check the on-diagonal conditions when q is a multiple of
2b. In particular this means q is even and so we only need to
check the on-diagonal conditions for odd k (since we are only
checking q + k odd and q even).

Lastly, suppose ⟨0|T k
q |0⟩ = ⟨1|T k

q |1⟩ for some q and
k. If we take the complex conjugate of both sides we have
⟨0|T k

−q |0⟩ = ⟨1|T k
−q |1⟩. Thus if T k

q satisfies the on-diagonal
conditions then so does T k

−q . This means it is sufficient to
check only q ≥ 0.
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In summary, to verify that the on-diagonal error conditions
Eq. (44) are satisfied it is sufficient to check only the case
where k is odd, q ≥ 0, and q ≡ 0 mod 2b.

Now consider the off-diagonal condition; we need our code
to satisfy

⟨0|T k
q |1⟩ = ⟨1|T k

q |0⟩ = 0. (45)

Lemma 7 shows that this condition is satisfied when q + k is
odd. Thus we only need to check the off-diagonal conditions
when q + k is even.

If ⟨0|T k
q |1⟩ = 0 and we take the conjugate of both sides

we get ⟨1|T k
−q |0⟩ = 0. It is thus sufficient to focus only on

the condition ⟨0|T k
q |1⟩ = 0.

Now recall that T k
q |j,m⟩ is proportional to |j,m+ q⟩.

Since Lemma 5 specifies that one codeword is supported on
s+(2b)Z and the other codeword is supported on −s+(2b)Z
then a shift of q will only make the supports overlap if q ≡ 2s
mod 2b. So ⟨0|T k

q |1⟩ necessarily vanishes unless q ≡ 2a− 1
mod 2b. Thus the only non-trivial off-diagonal errors occur
when q is odd. Since q + k is even, it only remains to check
the cases for which k is odd.

In summary, to verify the off-diagonal error conditions Eq.
(45) it is sufficient to check only the case where k is odd, and
q ≡ 2a− 1 mod 2b. □

An immediate implication of this theorem is that spherical
tensors T k

q with even k all automatically satisfy the Knill-
Laflamme spin code conditions. In fact this implies that we
can always take the distance d to be odd. This is analogous to
the multiqubit result we found in [42]. For example, all error
detecting d = 2 codes in this work are automatically error
correcting d = 3 codes.

IV. FINDING NEW CODES

A. A Family of Spin Codes

We will now construct a family of BD2b covariant d = 3
spin codes. For a d = 3 code we only need to satisfy
the error conditions for spherical tensors with k = 0, 1, 2.
Theorem 1 says that, assuming real codewords, the k = 0, 2
errors already satisfy the Knill-Laflamme spin code conditions.
The conditions ⟨0|T 1

q |1⟩ = 0, q = ±1, 0 also already satisfy
the Knill-Laflamme spin code conditions for the irreps τ a with
1 < a < b ( since 1 < 2a − 1 < 2b − 1). So to guarantee
minimum distance d = 3, for 1 < a < b, it is sufficient to
satisfy the condition

⟨0|T 1
0 |0⟩ = ⟨1|T 1

0 |1⟩ , (46)

where T 1
0 ∝

∑j
m=−j m |j,m⟩⟨j,m|.

When the codewords have only one degree of freedom
the system is over constrained and we will fail to solve the
equation because of insufficient variables. If the codewords
have 2 degrees of freedom then Lemma 5 allows us to write
the codewords as α1 |j, s⟩ + α2 |j, s− 2b⟩ and α1 |j,−s⟩ +
α2 |j, 2b− s⟩. Then Eq. (46) reduces to s|α1|2 + (s −
2b)|α2|2 = 0 which has a real solution α1 =

√
2b−s
2b , α2 =√

s
2b thus yielding a d = 3 spin code for each j ≥ 2b− s and

each 1 < a < b. Each code has logical group τ a(BD2b) =

BD2b′ where 2b′ is the order of the generator τ a(Ph
(

2π
2b

)
) =

Ph
(

2π
2b

)2a−1
, given explicitly by 2b′ = 2b/gcd(2b, 2a− 1).

Choosing the irrep τ b−1, we have s = 2b−3
2 which yields

the smallest value of j among all of the participating irreps.
Since µ = 2 then by Lemma 6 we can take j = 2b−s = 2b+3

2
and the codewords are

|0⟩ =
√

2b−3
4b

∣∣ 2b+3
2 , 2b+3

2

〉
+
√

2b+3
4b

∣∣ 2b+3
2 , −2b+3

2

〉
(47a)

|1⟩ =
√

2b−3
4b

∣∣ 2b+3
2 , −2b−3

2

〉
+
√

2b+3
4b

∣∣ 2b+3
2 , 2b−3

2

〉
(47b)

This is a spin j = 2b+3
2 code with a codespace of dimension

2 and a spin distance of 3 with logical group BD2b′ . Since
we picked a = b − 1, then 2b′ = 2b/gcd(2b, 2b − 3) and so
b′ = b/3 when 3 divides b and b′ = b otherwise.

B. A Family of Multiqubit Codes

Now we apply the Dicke bootstrap, yielding a permutation-
invariant ((2b+ 3, 2, 3)) multiqubit code with codewords∣∣0〉 =

√
2b−3
4b

∣∣D2b+3
0

〉
+
√

2b+3
4b

∣∣D2b+3
2b

〉
(48a)∣∣1〉 =

√
2b−3
4b

∣∣D2b+3
2b+3

〉
+
√

2b+3
4b

∣∣D2b+3
3

〉
. (48b)

If 3 does not divide b then the code implements BD2b

transversally, otherwise it implements BD2b/3 transversally.
So for all b not of the form 2r or 3(2r) these codes
transversally implement a binary dihedral group other than
Q(r) = BD2r , a feat which is impossible for any stabilizer
code by Proposition 1 (cf. [32]).

On the other hand, suppose 2b = 2r, then this construction
yields a family of codes whose transversal gate group G is the
generalized quaternion group Q(r) = BD2r .

Code Family 1: For each r ≥ 3, there is a Q(r)-transversal
((2r +3, 2, 3)) permutation-invariant multiqubit code given by

∣∣0〉 =
√

2r−3
2r+1

∣∣∣D2r+3
0

〉
+
√

2r+3
2r+1

∣∣∣D2r+3
2r

〉
(49a)∣∣1〉 =

√
2r−3
2r+1

∣∣∣D2r+3
2r+3

〉
+
√

2r+3
2r+1

∣∣∣D2r+3
3

〉
. (49b)

The [[2r+1−1, 1, 3]] family of stabilizer codes are also Q(r)-
transversal, and moreover are optimal among all stabilizer
codes, i.e., they are the smallest length n stabilizer codes
that have transversal gate group Q(r) [16]. For example,
the [[15, 1, 3]] code (r = 3) is the smallest stabilizer code
with transversal T and the [[31, 1, 3]] code (r = 4) is the
smallest stabilizer code with transversal

√
T . In contrast,

our code family produces a non-additive ((11, 2, 3)) code
with transversal T and a non-additive ((19, 2, 3)) code with
transversal

√
T . In general, for large r, our family cuts the

number of physical qubits needed approximately in half.

C. Higher Distance Codes

Finding a (BD2b, τ a) covariant real spin code with
distance d amounts to solving a system of N quadratic
equations (where N is the number of error conditions from
Theorem 1) using codewords that have µ degrees of freedom.
We conjecture that a solution always exists so long as µ > N .
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TABLE III
SMALLEST n FOR A (BD2b, τa) TRANSVERSAL PERMUTATION-INVARIANT REAL MULTIQUBIT CODE WITH DISTANCE d (WE HAVE CROSSED OUT THE

NON-FAITHFUL IRREPS). A CELL HIGHLIGHTED GREEN MEANS THE CODE IS SMALLEST AMONG ALL FAITHFUL IRREPS OF THE GIVEN GROUP.
WE HAVE ACTUALLY CONSTRUCTED THE CODES IN 1 ≤ d ≤ 13 USING MATHEMATICA 13.2 UP TO A NUMERIC THRESHOLD OF 10−12 .

THOSE CODES WITH A △ ARE CONJECTURED TO EXIST BUT WE HAVEN’T ATTEMPTED TO FIND THEM NUMERICALLY

We mark all results based on this conjecture with a triangle △.
This conjecture was used successfully in [5] to construct many
real spin codes covariant for the single qubit Clifford group.
For a digression on this conjecture (and why it is reasonable)
see the appendix. Thus we will proceed by assuming that a
covariant spin code exists whenever µ = N + 1.

Lemma 6 then says that the smallest (BD2b, τ a) covariant
code appears in spin j = (N + 1)b+ (s− b) if µ = N + 1 is
odd and j = (N + 1)b − s if µ = N + 1 is even. So the
smallest such spin j is{

j = Nb+ s if N even
j = (N + 1)b− s if N odd,

(50)

where as always s = 2a−1
2 . Then once we apply the Dicke

bootstrap we will have a (BD2b, τ a) transversal permutation-
invariant code in n = 2j qubits where{

n = 2Nb+ 2a− 1 if N even
n = 2(N + 1)b− 2a+ 1 if N odd.

(51)

Recall that N is the number of error conditions from
Theorem 1 and it depends on b, a, and d. We compute a closed
form expression for N in the appendix (Theorem 2). For
example, if b = 1 and a = 1 (i.e., if we want Q(1) = BD2 to
be covariant) then we find that there are N = 3

8 (d2 − 1) non-
trivial error correction conditions (quadratic equations). This
particular case reproduces a result found in [10]. Plugging this
into Eq. (51) we find that the smallest permutation-invariant
code with Q(1) transversal has

n =
1
4
(3d2 + 1). (52)

For example, this predicts that there will be a ((7, 2, 3)) code,
a ((19, 2, 5)) code, and ((37, 2, 7)) code: all permutation-
invariant and all implementing Q(1) transversally.

Using MATHEMATICA 13.2, we search for spin codes using
our predicted values of j from Eq. (50) by minimizing the
conditions in Theorem 1 up to a threshold of 10−12 (see [43]
for some of the Mathematica code). We have tabulated our
results for small values of b and small values of d in Table III.
In all cases we have tried, we find the relevant spin code in the
exact j given by our prediction (and if we try to find one in
a smaller j we fail). This corroborates conjecture △ for cases
with n as large as n = 169.

Using the Dicke bootstrap, these spin codes correspond
to a family of (BD2b, τ a)-transversal permutation-invariant
multiqubit codes with distance d and

n
△= 3

4d
2 + (b−1)

2 d+ O(1). (53)

Thus we have a conjectured family of codes that grows
quadratically n ∼ 3

4d
2 for each b and for each 1 ≤ a ≤ b.

The most interesting group to find higher distance codes for
is Q(3) = BD8, since this group contains the T gate (although
the same methods here could be used to postulate a family for
any BD2b group). In particular, we have the following code
family.

(Conjectured) Code Family 2 (△): Assuming the validity
of the conjecture △ stated at the beginning of this section, there
exists, for all odd d, an ((n, 2, d)) permutation-invariant multi-
qubit code with transversal gate group Q(3) = ⟨X,T⟩ and with
code length given by n = 1

4

(
3 d2 + 6d− 7 + 2(d mod 8)

)
.

We have numerically constructed these codes for small
distances d = 3, 5, 7, 9, 11, 13 (see Appendix C).
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All the codes here have transversal T . In particular, if the
code transforms in the irrep τ a then the logical T gate is
T (2a−1)(−1)a

-strongly transversal.
When d = 3, then Family 2 intersects Family 1, again

yielding an ((11, 2, 3)) code with transversal T (that has exact,
not numerical, coefficients). When d = 5 we get a ((27, 2, 5))
code with transversal T and when d = 7 we get a ((49, 2, 7))
code with transversal T . According to the recent paper [19],
the smallest known d = 5 stabilizer code with transversal T is
the [[49, 1, 5]] code [11], which has a lower distance than our
((49, 2, 7)) code and uses far more qubits than our ((27, 2, 5))
code.

Indeed, for distance d = 5, 7, 9, 11, 13, [19] lists
the smallest known stabilizer codes with transversal T
as [[49, 1, 5]], [[95, 1, 7]], [[189, 1, 9]], [[283, 1, 11]], and
[[441, 1, 13]]. We significantly outperform these parameters
by numerically constructing the following non-additive codes
with transversal T : ((27, 2, 5)), ((49, 2, 7)), ((73, 2, 9)),
((107, 2, 11)), and ((147, 2, 13)).

V. FUTURE DIRECTIONS

The Dicke bootstrap described in this work can be used to
translate between spin codes (SU(2) single-irrep codes) and
permutation-invariant multiqubit codes. It would be interesting
if this correspondence held for SU(q) as well. There is a well
known correspondence between single irreps of SU(q) and
certain subspaces of multi-qudit spaces of local dimension
q [44], but one would also need to check that the distance
conditions are compatible (meaning that an SU(q) irrep code
of distance d maps to a multi-qudit code also of distance
d). If this is true, then our approach could be useful towards
finding quantum qudit codes with generalized phase gates, like
the generalized T gate [45], [46]. It is not clear that these codes
would be smaller than the best known stabilizer codes but it
is at least plausible given the results here.

Another approach could be to generalize the Dicke bootstrap
to other symmetric subspaces, for example cyclic subspaces.
The cyclic subspace is not isomorphic to any single spin, but
rather a direct sum of many spins (with possible redundancy).
This would make the analysis much more complicated
but there would still be a significant reduction in search
complexity. The class of cyclic quantum codes is much richer
than the class of permutation-invariant quantum codes, for
example the only permutation-invariant stabilizer code is the
quantum repetition code [33], while many of the most famous
stabilizer codes, like the [[5, 1, 3]] code, are cyclic (also
see [47], [48]). So it is possible this approach could even
lead to a more thorough understanding of stabilizer codes with
transversal generalized phase gates.

VI. CONCLUSION

Non-additive quantum codes have been mostly overlooked
since they provide only meager improvements in the three
traditional code parameters n, K, and d. However, accounting
for the transversal gate group G, non-additive codes can
outperform the best known stabilizer analogs. For example,
we have constructed a Q(r)-transversal family of non-additive

codes with distance d = 3 in n = 2r + 3 qubits that is
smaller in length n than the best known analogous family
of stabilizer codes, which have length n = 2r+1 − 1.
We have also constructed BD2b-transversal non-additive codes
(for b not a power of 2) that cannot be realized as stabilizer
codes. Lastly, we have constructed non-additive codes with
transversal T that have parameters ((11, 2, 3)), ((27, 2, 5)),
((49, 2, 7)), ((73, 2, 9)), ((107, 2, 11), and ((147, 2, 13)), these
codes outperform the best known stabilizer codes with
transversal T , which have parameters [[15, 1, 3]], [[49, 1, 5]],
[[95, 1, 7]], [[189, 1, 9]], [[283, 1, 11]], and [[441, 1, 13]] [19].

All our codes are constructed from spin codes using
the Dicke bootstrap. The Dicke bootstrap holds significant
untapped promise (see the possible generalizations mentioned
in the future directions section) and is the first code construc-
tion method specifically designed around the transversal gate
group G, an important code parameter for fault tolerance.

APPENDIX A
COUNTING ERRORS

Let N be the size of the reduced set of error correction
conditions given in Theorem 1. In this appendix we compute
a closed form for N . Let N on-diag denote the number of on-
diagonal conditions and let N off-diag denote the number of off-
diagonal conditions.

Lemma 8:

N on-diag =
d−2∑
k=1
k odd

1 + ⌊ k
2b⌋, (A1)

N off-diag =
d−2∑
k=1
k odd

1 + ⌊k−2s
2b ⌋ + ⌊k+2s

2b ⌋. (A2)

Proof: Start with the on-diagonal piece. When k is even,
all on-diagonal errors are automatically satisfied. When k is
odd, the number of on-diagonal errors that need to be checked
is equal to the number of solutions of the modular equation

q ≡ 0 mod 2b for 0 ≤ q ≤ k. (A3)

There are 1 + ⌊k/2b⌋ such solutions.
To guarantee a code has distance d, we need to check all k

in the range 0 ≤ k ≤ d−1. Even k are automatically satisfied
so we can take d to be odd - meaning we only need to sum
to d− 2.

Now consider the off-diagonal piece. When k is even, all
off-diagonal errors are automatically satisfied. When k is odd,
the number of off-diagonal errors that need to be checked is
equal to the number of solutions to the modular equation

q ≡ 2s mod 2b for − k ≤ q ≤ k, (A4)

where 2s = 2a − 1 is odd. When q ≥ 2s, then there are
1 + ⌊(k − 2s)/2b⌋ solutions and when q ≤ 2s there are 1 +
⌊(k + 2s)/2b⌋ solutions. We can combine these and subtract
1 to account for the fact we double counted at 2s. Thus the
total number of non trivial off-diagonal errors for each value
of k is

1 + ⌊k−2s
2b ⌋ + ⌊k+2s

2b ⌋. (A5)
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To guarantee distance d, we must sum these terms for all odd
k between 1 and d− 1.

□
We can refine this more as follows. We will use the notation

[x]y := x mod y for brevity and clarity.
Lemma 9: Let d = 2t+ 1 then

N on-diag = t2

2b + t
2 + ζon-diag,

where ζon-diag = 1
2b [t]b([t]b − 2[t − 1

2 ]b + b − 1) is crudely
estimated as 0 ≤ ζon-diag ≤ b for any t.

Proof: Write d = 2t+ 1. We want to estimate

N on-diag =
2t−1∑
k=1
k odd

1 + ⌊ k
2b⌋ = t+

2t−1∑
k=1
k odd

⌊ k
2b⌋

. (A6)

In the sum write k = 2k′ + 1. Then

2t−1∑
k=1
k odd

⌊ k
2b⌋ =

t−1∑
k′=0

⌊ 2k′+1
2b ⌋ =

t−1∑
k′=0

⌊k′+
1
2

b ⌋. (A7)

Notice there are t many terms in the sum. If 0 ≤ k′ ≤ b −
1 then the summand is 0, if b ≤ k′ ≤ 2b−1 then the summand
is 1, if 2b ≤ k′ ≤ 3b− 1 then the summand is 2, etc. Each of
these groupings contains a sum over b elements.

If t was a multiple of b, say t = pb, then there would be p
groupings - labeled k′ = 0 to k′ = p−1 - with each grouping
containing exactly b elements that each evaluate to k′. In other
words, the sum would be

b

p−1∑
k′=0

k′ = bp(p−1)
2 . (A8)

More generally, t might not be a multiple of b, say t = pb+γ
where p = ⌊ t

b⌋ and γ = t mod b = [t]b. Then we get the
previous with p replaced by ⌊ t

b⌋. This main piece is

M =
b⌊ t

b ⌋
(
⌊ t

b ⌋−1
)

2 . (A9)

But we need to also add in the “tail” (which comes from the
fact that the t terms in the sum cannot be split evenly). The tail
has γ = [t]b terms in it all evaluated as the endpoint ⌊ 2t−1

2b ⌋,
i.e., the tail is

T = [t]b⌊ 2t−1
2b ⌋. (A10)

Thus the sum is

M + T = t2

2b − t
2 + 1

2b [t]b([t]b − 2[t− 1
2 ]b + b− 1). (A11)

In the last line we have used the fact that ⌊x
y ⌋ = x

y − 1
y [x]y .

This yields the form of N on-diag given in the claim. The crude
bound is found by noting that 0 ≤ [t]b < b. □

Lemma 10: Let d = 2t+ 1 then

N off-diag = t2

b + t
b + 2a(a−b−1)+b+1

2b + ζoff-diag

where ζoff-diag is given in Eq. (A23) and is crudely estimated
as 0 ≤ ζoff-diag ≤ 2b for all t and for all a.

Proof: Let h be an odd integer (representing either 2s =
2a − 1 or −2s = −2a + 1). Recall that 1 ≤ a ≤ b so that
|h| ≤ 2b− 1. Consider the sum

S =
2t−1∑
k=1
k odd

⌊k+h
2b ⌋ =

t−1∑
k′=0

⌊ 2k′+1+h
2b ⌋ =

t−1∑
k′=0

⌊k′+h′

b ⌋. (A12)

We have defined k′ = (k − 1)/2 and h′ = (1 + h)/2 to be
integral. Notice that −b+ 1 ≤ h′ ≤ b.

There are t many terms in the sum. If 0 ≤ k′ + h′ < b
the summand is 0, if b ≤ k′ + h′ < 2b the summand is 1,
if 2b ≤ k′ + h′ < 3b the summand 2, etc. We will break up
what is going on into cases.

(Case 1) When h′ = 0 we have the exact same results as
the previous lemma for M but now the tail is evaluated at
⌊ t−1

b ⌋ (but still contains [t]b terms). Thus the sum is

S =
b⌊ t

b ⌋
(
⌊ t

b ⌋−1
)

2 + [t]b⌊ t−1
b ⌋. (A13)

(Case 2) When h′ = b then the main piece from before starts
at 1 instead of 0, i.e., the main piece comes from b

∑p
k′=1 k

′ =
bp(p+ 1)/2 where p = ⌊ t

b⌋. The tail is evaluated to ⌊ t−1+b
b ⌋

so that the sum is

S =
b⌊ t

b ⌋
(
⌊ t

b ⌋+1
)

2 + [t]b⌊ t+b−1
b ⌋. (A14)

(Case 3) When 1 ≤ h′ ≤ b− 1 then the very first grouping
has only b−h′ elements in it (not b elements). The summand
for each of these is 0. Thus we really only have a sum of
t − (b − h′) elements. So the main piece is similar but with
b
∑p

k′=1 k
′ = bp(p + 1)/2 where p = ⌊ t−(b−h′)

b ⌋. The tail
will now have [t − (b − h′)]b terms in it all evaluated to the
endpoint ⌊ t−1+h′

b ⌋. Thus

S =
b⌊

t−(b−h′)
b ⌋

(
⌊

t−(b−h′)
b ⌋+1

)
2 + [t− (b− h′)]b⌊ t−1+h′

b ⌋.
(A15)

(Case 4) When −b + 1 ≤ h′ ≤ −1 then the very first
grouping has |h′| many elements in it, each evaluated to −1,
i.e., the sum over the first is grouping is just h′. Thus we
only have a sum over t + h′ elements. So the main piece is
b
∑p−1

k′=0 k
′ = bp(p − 1)/2 where p = ⌊ t+h′

b ⌋. The tail has
[t+ h′]b elements each evaluated to ⌊ t−1+h′

b ⌋. Thus

S = h′ +
b⌊ t+h′

b ⌋
(
⌊ t+h′

b ⌋−1

)
2 + [t+ h′]b⌊ t−1+h′

b ⌋. (A16)

Now we are interested in

N on-diag =
d−2∑
k=1
k odd

1 + ⌊k−2s
2b ⌋ + ⌊k+2s

2b ⌋ (A17)

= t+

(
t−1∑
k′=0

⌊ 2k′+1−(2a−1)
2b ⌋ +

t−1∑
k′=0

⌊ 2k′+1+(2a−1)
2b ⌋

)
(A18)

= t+

(
t−1∑
k′=0

⌊k′−a+1
b ⌋ +

t−1∑
k′=0

⌊k′+a
b ⌋

)
. (A19)

The term in parenthesis, say S ′, can be evaluated using the
previous as S ′ = Sh′=−a+1 + Sh′=a.
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When a = 1 we use case 1 and case 3. Then we have

N off-diag = t2

b + t
b + 1−b

2b + ζoff-diag, (A20)

where

ζoff-diag = 1
2b [t+ 1]2b

+ 1
2b [t+ 1]b(b− 2 − 2[t]b)

+ 1
2b [t]b(b− 2 − 2[t− 1]b). (A21)

Note that 0 ≤ ζoff-diag ≤ 2b is an easy (but crude) estimate.
When a = b then we use case 4 and case 2. But one can show
we get the exact same thing as for a = 1.

This leaves us with 2 ≤ a ≤ b − 1 which come from
case 3 and case 4. In these cases

N off-diag = t2

b + t
b + 2a(a−b−1)+b+1

2b + ζoff-diag, (A22)

where

ζoff-diag = 1
2b [t+ 1 − a]2b

+ 1
2b [t+ 1 − a]b(b− 2 − 2[t− a]b)

+ 1
2b [t+ a]b(b− 2 − 2[−1 + a+ t]b + [a+ t]b).

(A23)

This is also crudely estimated as 0 ≤ ζoff-diag ≤ 2b. One can
show that a = a0 and a = b− a0 + 1 give the same N off-diag.
One can actually check that this reproduces the a = 1 and
a = b cases so this is the general formula. □

Let N be the number of quadratic equations from
Theorem 1, i.e., N = N on-diag+N off-diag. Recall that d = 2t+1,
i.e., t is the number of errors we can correct.

Theorem 2:

N = 3
2b t

2 + (2+b)
2b t+ 2a(a−b−1)+b+1

2b + ζ, (A24)

where

ζ = 1
2b

(
((−a+ t+ 1) mod b)2+

+ (−2((t− a) mod b) + b− 2)((−a+ t+ 1) mod b)
+ ((a+ t) mod b)(−2((a+ t− 1) mod b)

+ ((a+ t) mod b) + b− 2) + (t mod b)2

+
(
−2((t− 1

2 ) mod b) + b− 1
)
(t mod b)

)
. (A25)

A crude estimate for ζ is 0 ≤ ζ ≤ 3b for all t and all a.
Notice that a = a0 and a = b+ 1− a0 yield the same N . For
example, τ 1 and τ b yield the same N , τ 2 and τ b−1 yield the
same N , etc. Also notice that for Q(1) = BD2 (i.e., b = 1 and
a = 1) we have ζ = 0 and so N = 3

2 t(t + 1). This special
case reproduces the result found in [10].

APPENDIX B
EXISTENCE OF SOLUTIONS

Finding a (BD2b, τ a) covariant real spin code with distance
d amounts to solving a homogeneous system of N quadratic
equations in µ variables. Note that we could consider the
more general case of complex spin codes but then the error
correction conditions would be complex sesquilinear forms
rather than complex quadratic forms. And while there are

powerful tools from algebraic geometry for analyzing systems
of complex quadratic forms, such as Groebner bases, these
generally do not carry over to sesquilinear forms.

If this were a homogeneous system of real linear equations
then we could guarantee a non-zero real solution exists so long
as µ > N , the smallest µ for which a solution exists being µ =
N + 1. Unfortunately, there is no current theory of existence
of real solutions to systems of real quadratic equations (the
main obstruction is that R is not algebraically closed).

Existence results analogous to the linear case do exist
for quadratic equations over the complex numbers. Consider
a system of algebraically independent quadratic equations
given by xTBix = 0. Then Bezout’s theorem from algebraic
geometry guarantees that a non-zero complex solution exists
as long as the number of variables, µ, is strictly greater than
the number of equations, N . So, just as in the linear case,
a non-zero complex solution exists when µ = N+1. Bezout’s
theorem is not directly applicable in our case because even
if the coefficients of the quadratic forms are all real, it only
guarantees the existence of a complex solution, not a real one
(which our analysis requires, see Lemma 7).

In the present setup we have yet to discover, either
numerically or analytically, a situation where the heuristic µ =
N + 1 fails. This observation was also noticed in [5] and the
authors used this idea to construct many spin codes covariant
for the single qubit Clifford group. Thus we conjecture that
whenever we have N error conditions and µ = N +1 degrees
of freedom we can find the desired spin code.

APPENDIX C
CODEWORDS FOR TRANSVERSAL T FAMILY

See Table IV.

APPENDIX D
ENCODING AND DECODING

There isn’t a general theory of encoding and decoding
generic non-additive codes. However, permutation-invariant
non-additive codes (like the ones studied here) have
significantly more structure. The theory and experimental
realization of the efficient (and fault tolerant) preparation of
Dicke states and the encoding of a qubit into symmetric
states is well studied [26], [49], [50], [51], [52], [53].
So the encoding step of our permutation-invariant codes seems
plausible.

In contrast, it was only recently discovered how to decode
a permutation-invariant code efficiently [54]. The idea of the
decoding algorithm is to get an error syndrome (in the form
of a standard Young tableau) by first measuring the total
angular momentum on subsets of the physical qubits. Then
one can get back to the original code by projecting within
the error subspace and applying a unitary (using quantum
Schur transforms or teleportation). The authors of [54] give
protocols to implement such a decoding algorithm on a near
term quantum device.

However, it is not clear whether the previous decoding
algorithm is fault-tolerant, and certainly more work needs to
be done before we can determine how competitive our codes
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TABLE IV

(CONJECTURED) CODE FAMILY 2 FOR d = 3, 5, 7, 9, 11, 13. THIS FAMILY IMPLEMENTS A TRANSVERSAL T GATE. WE HAVE GIVEN |0⟩, AND |1⟩ CAN

BE FOUND BY REPLACING |Dn
w⟩ WITH |Dn

n−w⟩. FINALLY, τa IS THE RELEVANT IRREP OF Q(3) = BD8 = ⟨X, T⟩

are to analogous stabilizer codes in practice. Our work in this
paper should be primarily seen as motivation to study the
underdeveloped theory of non-additive codes (both theoretical
and practical considerations).
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