This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 1

GreeNX: An Energy-Efficient and Sustainable
Approach to Sparse Graph Convolution Networks
Accelerators using DVFS

Siqin Liu, Student Member, IEEE, Prakash Chand Kuve, and Avinash Karanth Senior Member, IEEE

Abstract—Graph convolutional networks (GCNs) have
emerged as an effective approach to extend deep learning
algorithms for graph-based data analytics. However, GCNs
implementation over large, sparse datasets presents challenges
due to irregular computation and dataflow patterns. Specialized
GCN accelerators have emerged to deliver superior performance
over generic processors. However, prior techniques that include
specialized datapaths, optimized sparse computation, and
memory access patterns, handle different phases of GCNs
differently which results in excess energy consumption and
reduced throughput due to sub-optimal dataflows.

In this paper, we propose GreeNX, a computation and
communication-aware GCN accelerator that uniformly applies
three complementary techniques to all phases of GCN. First,
we abstract two cascaded sparse-dense matrix multiplications
that uniformly process the computation in both aggregation and
combination phases of GCNs to improve throughput. Second, to
mitigate the overheads of processing irregular sparse data, we
develop a dynamic-voltage-and-frequency-scaling (DVFS) scheme
by grouping a row of processing elements (PEs) that dynamically
changes the applied voltage/frequency (V/F) to improve energy-
efficiency. Third, we conduct a comprehensive carbon footprint
evaluation, analyzing both embodied and operational emissions
for GCNs. Extensive simulation and experiments validate that
our GreeNX consistently reduces memory accesses and energy
consumption leading to an average 7.3x speedup and 5.6x
energy savings on six real-world graph datasets over several
state-of-the-art GCN accelerators including HyGCN, AWB-GCN,
GCoD, GRIP, IGCN, and LW-GCN.

Index Terms—Hardware Accelerator, Graph Convolution Net-
work, Dynamic Voltage and Frequency Scaling, Carbon Foot-
print.

I. INTRODUCTION

Graph convolutional networks (GCNs) have emerged as a
powerful neural network model for representing and process-
ing graph-structured data, finding practical applications across
various domains such as social networks, recommendation
systems, traffic prediction, knowledge graphs, and more [1]-
[9]. Although GCNs leverage the flexible representational ca-
pabilities of deep neural networks, they also introduce distinct
challenges in computation and dataflow due to their inherently
sparse and irregular graph structures.

In GCN:s, the bulk of execution latency is typically attributed
to computation and memory accesses, which are divided into

S. Liu and A. Karanth are with the School of Electrical Engineering
and Computer Science, Ohio University, Athens, OH 45701 USA e-mail:
15847719 @ohio.edu and karanth@ohio.edu

P. Kuve is with Timing and Communication Group (TCG) in Microchip
Technology Corporation, India e-mail: prakashchand.kuve @microchip.com

Manuscript received August 19, 2024; revised xx, 2024.

two main phases: aggregation and combination [10], [11].
The combination phase, characterized by regular computation,
resembles the fully connected layers seen in conventional
neural networks. In contrast, the aggregation phase involves
irregular computational and memory access patterns due to the
sparse nature of the graph structure, posing unique challenges.
To address the differing requirements of these phases, existing
GCN architectures often employ a hybrid approach, optimizing
the accelerator to handle each phase separately [12]-[19].
This approach typically includes specialized datapaths for each
phase, advanced sparse computation engines, and a coordi-
nated design that integrates both algorithmic and hardware
considerations. Strategies such as preprocessing input graph
data and clustering or reshaping inputs are also employed
to minimize irregularities in processing [17], [20]. However,
some of these methods can present implementation challenges,
such as the complexity of preprocessing, or they might result in
increased energy consumption and latency due to specialized
datapaths. These issues can limit the scalability and efficiency
of GCN accelerators.

The computation of graph convolutional network is com-
monly abstracted to sparse matrix multiplication (SpMM)
which is then implemented in GCN accelerators. One of the
most distinctive features is the ultra sparsity observed in the
matrix operands (e.g., the Nell dataset has 99.9927% sparsity).
Prior research has leveraged sparsity by optimizing Sparse
Matrix Multiplication (SpMM) by skipping zero elements in
outer products, which generally outperforms techniques based
on optimizing inner products. However, this method’s reliance
on generating a large volume of partial outer product results
places significant demands on both the capacity and bandwidth
of on-chip buffers. Additionally, we have identified that the
computation within Graph Convolutional Networks (GCNs)
can be conceptualized as two sequential sparse-dense matrix
multiplications (SDMMs), where one input matrix is extremely
sparse and the other is moderately sparse. Consequently,
there is a need for a new SpMM optimization paradigm that
efficiently accommodates the outer product approach while
also facilitating the effective processing of SDMMs across a
range of sparsity levels.

Even with an efficient GCN SDMM operator, challenges
persist in handling the irregular non-zeros in graph connections
and the corresponding memory accesses during the merge
stage of the outer product-based SDMM. These challenges
often result in excessive power consumption. While numerous
recent studies have developed Dynamic Voltage and Frequency

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 2

Scaling (DVES) optimizations for DNN accelerators to dynam-
ically adjust to irregular and varying workloads, thereby re-
ducing both static and dynamic power consumption [21]-[26],
these approaches predominantly focus on layer-wise and stage-
wise optimization. Such optimizations are adept at balancing
the varying computational loads across different DNN layers
[25] and adjusting to different graph topologies in Coarse-
grained Reconfigurable Arrays (CGRA) [26]. However, these
methods do not adequately address the unique two-phase com-
putation patterns and dataflow challenges specific to GCNs,
which critically impact the efficiency of GCN accelerators
[16]. A co-optimization of DVFS with the customized dataflow
and computation engine of the GCN accelerator is essential in
improving both the energy efficiency and throughput of GCN
inferences.

Rapid improvements in computing have been driven by
the continuous shrinking of transistor dimensions which has
benefited GCN accelerators as well. However, this progress
has also contributed to a substantial increase in energy con-
sumption for manufacturing the accelerator itself. With in-
formation and computing technologies (ICT) now accounting
for nearly 5% of global carbon emissions, a figure projected
to rise if not managed properly. As such, a detailed carbon
footprint analysis of GCN accelerators is essential, considering
both embodied emissions from manufacturing and operational
emissions during usage. By optimizing energy efficiency at
all stages, from raw material sourcing to active use, we can
mitigate the environmental impact of the GCN accelerator
design, contributing to more sustainable practices in ICT.

In this paper, we propose GreeNX, a computation and
communication-aware GCN accelerator that uniformly applies
three complementary techniques to all phases of GCN. First,
we unify the sparse-dense matrix multiplications for GCN
variants. In contrast to general SDMM workloads, GCN com-
putation features a highly sparse adjacency matrix, a relatively
moderate sparse feature matrix, and a dense weight matrix,
making it sub-optimal to conventional SDMM engines. There-
fore, we propose an accelerator architecture to implement such
SDMM optimization to maximize data reuse and minimize
memory access. Second, to mitigate the overheads of pro-
cessing irregular sparse data, we develop a dynamic-voltage-
and-frequency-scaling (DVFS) scheme by grouping a row of
processing elements (PEs) that dynamically changes the ap-
plied V/F to improve energy-efficiency. To improve workload
balance, we propose three DVFS models with corresponding
workload percentage thresholds to explore the design trade-
off between energy savings and throughput. In addition to
energy efficiency, we perform a carbon footprint evaluation of
GreeNX, considering both embodied and operational carbon
emissions. The evaluation leverages a carbon emission model
to assess the impact of the proposed DVFS schemes on the
overall carbon footprint. We demonstrate how different DVFS
modes affect carbon emissions, with the potential to select the
most environmentally efficient mode during runtime based on
workload intensity. The major contributions of this work are
as follows:

1) Optimize Sparse-dense Matrix Multiplication: We

abstract GCN variants into two unified SDMMs with

different sparsity ratios and propose a row-wise SDMM-
based hardware architecture to efficiently and uniformly
process both aggregation and combination phases. In
contrast to conventional SpMM engines [27], [28], we
customize the hardware to harness the zero-skipping
with the sparse matrix operand and maximize the data
reuse with the dense matrix operand, leading to energy-
efficient processing of GCN workloads.

2) Apply DVFS to the SDMM Engine: We implement a
DVFS scheme in GreeNX that applies power gating to
PEs during periods of low computation to save static
power and dynamically scales voltage and frequency
during periods of medium to high computation. This ap-
proach alleviates workload imbalance from the SDMM
mechanism and further reduces energy consumption.

3) Conduct Carbon-aware Performance Evaluation: We
conduct a comprehensive evaluation of the carbon foot-
print for GreeNX, assessing the impact of different
DVEFS modes on both embodied and operational emis-
sions. This evaluation helps identify the optimal DVFS
mode that minimizes the carbon footprint, contributing
to more sustainable ICT practices.

II. BACKGROUND
A. GCN basics

In several real-world applications, graph data are inherently
embedded into object features that describe the connections
between the objects. Therefore, it is appealing to extend
deep learning capabilities and execution efficiency for graph
data via Graph Neural Networks (GNNs). Among the many
variants of GNNs, GCNs [29] have seen rapid interest due to
the high efficiency of neural network-based graph processing.
GCNs follow the neighborhood aggregation scheme, where
the feature vector of each vertex is computed by recursively
aggregating and transforming the representing vectors of its
neighbor.

Unified Sparse GCN computation breakdown

Aggre'gatiun Phase Combi?atiun Phase

T N
Out Features: G

—
Reduced Sparse

Output Matrix
0 = RV*K2

r
Graph Node: V In Feature: | In Feature: |

ut Features: G

—

(o]
2
2
F -»
'S
&
3
Qo
£

-»

~[=T=[=[~
=l=]=]=

sle|=[~]=
sl=[=[=]=
“=[=[=]=

Graph Node: V
>

Graph Node: V
Graph Node: V

: Very Sparse Graph Mediate Sparse
Adjacency Matrix Feature Matrix
A = RV X = RN#K1

Dense Weight
Matrix
WzRK1xKZ

Graph Node: V

Fig. 1. GCN Computation Breakdown. GCN variants can be abstracted
into two uniform sparse-dense matrix multiplications (SDMMs) with different
sparsity ratios.

Aggregation is the most notable feature that distinguishes
GCN from other neural networks. Convolution in a graph
aggregates information from the neighboring nodes, applies
a specific aggregation function, and embeds a new feature as
the output. To be more specific, X is the feature matrix of
the initial graph with dimension N x M. NN is the number of
vertices and M is the number of features for each vertex. An

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 3

VOV1V2V3V4 Tick 01234 1 Workload Imbalance

A LIS c
3(1) 1golopt VA x % 2 Cora =CiteSeer = Nell
1(1]1]0]0 ©
V2 [o|1]1]o]1 \/\/\/x" %0.5
v3 [ofo]o]a]1 = 5
w | x N A x N
va [1]o]1]a]n w 0
Adjacency Matrix Direct Mapping PEO0 PEO1 PE10 PE11

Fig. 2. Illustration of workload imbalance in GCN direct mapping on a 2x2
PE mesh array. The adjacency matrix (left) highlights the sparse and irregular
patterns characteristic of the aggregation phase, which mainly contribute to
workload imbalance. This imbalance is evidenced by the varying PE utilization
across different datasets (right)

adjacency matrix is a square matrix used to represent a finite
graph. The elements of the matrix indicate whether pairs of
vertices are connected or not in the graph. One example can
be found in Fig. 1(a) where a non-zero element A;; indicates
an edge from ¢ to j. The degree matrix D is a diagonal matrix
that contains the information about the degree of each vertex
i.e. the number of edges attached to each vertex. The layer-
wise forward propagation of GCN is formulated as follows:

Aggregate(X;) = Z A X5
7=0 o 1)
Aggregate(X) =(D"°°AD7%%)Xx

Xk+1 :f(Xk,A) —_ U(D70.5AD70.5Xka)

Combination(H) = f(WEX¥*) = o(WkX¥) 2)

where A;; is an element of adjacency matrix A, X;; is an
element of vertex feature matrix X, and D is the degree
(diagonal) matrix of the current vertex. X* represents the
feature vector of vertex X at the k*” layer. The Aggregate
function aggregates multiple feature vectors from neighbors
whereas the Combination function transforms the feature
vector of each vertex to another feature vector using a multi-
layer perceptron (MLP) neural network.

A GCN computation example is shown in Fig. 1. Variants
of GCN models can be described by using Equation 1. The
difference between various GCN models can be derived by
transforming the adjacency matrix. GCN model variants can
be represented by X*+1 = f(X* A) = o(AX*W*), where
A dictates the type of GCN model; X IM, W, X! denote
the input feature matrix, intermediate output matrix, GCN
weight matrix, and the output feature matrix, respectively.
This abstraction offers convenient guidance to design efficient
GCN accelerators, in which architects only need to consider
the characteristics of the adjacency matrix to accommodate
different GCN models.

B. Workload Imbalance of GCNs

Sparse matrix multiplications (SpMMs) are ubiquitous in
numerous algorithms, including graph analytics, hybrid linear
solvers, Markov clustering, searching algorithms, and machine
learning. In general, the primary computational operations
used in GCNs can be summarized as a series of multiplications
between sparse and dense matrices (two cascaded SDMMs).
The graph data structure inherently dictates the irregularity
and sparsity of these cascaded SDMMs, thus becoming a
bottleneck in scaling the performance of GCN accelerators.

Domain-specific architectures can mitigate the challenges
posed by sparse zero-valued operands, which hinder paral-
lelism and throughput on general-purpose platforms, by cus-
tomizing the data structure and implementing efficient index-
ing algorithms. However, these solutions introduce significant
challenges related to workload imbalance. As shown in Figure
2, PEs are only actively used when the corresponding entries
of the adjacency matrix are non-zero. Although alternative
mapping algorithms can offer optimizations over direct map-
ping, the inherent features of sparsity and irregularity in GCN
computation remain unchanged. An analysis of such workload
imbalance on a 2 x 2 PE mesh array across three GCN datasets
is provided in Figure 2. PE utilization not only varies greatly
among different PEs but also across different datasets. While
the sparsity presents opportunities for hardware architects to
optimize power savings by avoiding zero-valued computations,
it also poses significant challenges in addressing these work-
load imbalance issues.

C. Dynamic Voltage and Frequency Scaling (DVFS)

DVES techniques have been applied to hardware accelera-
tors in prior work [22], [23], [30]. In the GCN accelerator, each
PE is a simple but independent computing unit that is respon-
sible for a chunk of computation assigned by the scheduler.
DVES can be applied at different levels of granularity. At the
coarse grain, DVFS can be applied where the power manager
monitors the GCN workload and adjusts the precision of the
GCN model by tuning the DVFS setting of CPUs or GPUs
[22]. It trades off both the model accuracy and throughput
for energy savings. Applying DVFS to the PE level at finer
granularity provides an energy-efficient approach for GCN
accelerators regardless of the adjacency matrix irregularity.
In GCN architecture, the sparsity in the adjacency matrix
leads to numerous irregularly located zeros, which impose
challenges for GCN accelerators to achieve optimal speedup
and energy efficiency. Instead of processing sparse data in a
regular manner with dedicated hardware [16], architects can
track the runtime data pattern of both operand matrices. By
scaling down the supply voltage and corresponding frequency
for sparse workloads and scaling up the voltage and frequency
for dense workloads, the DVFS technique can be applied to
the PE array to exploit the irregular sparsity feature in order
to save energy and address the workload imbalance problem.

III. PROPOSED ARCHITECTURE
A. Microarchitecture

The proposed architecture of GreeNX is designed to opti-
mize the processing of graph convolutional networks through
a coordinated microarchitecture that effectively leverages dy-
namic voltage and frequency scaling (DVFES) and sparse den-
sity matrix multiplication (SDMM). As depicted in Fig. 3(a),
the architecture centers around a Processing Element (PE)
array that is intricately connected through a hierarchical
mesh Network-on-Chip (NoC), enabling data communication
required by the GCN computation. The Global Buffer acts
as the main storage area and is segmented to accommodate
different types of matrix data in GCNs. Adjacent to the buffers,

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and

content may change prior to final publication.

Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 4

0 2 @ Row wise SDMM @ Multicast Network
npu :
Feature Look-Ahead FIFO Input RG] Weight

Spgfsf‘; Mat. eature Dataflow Look-up 2D Mesh Network Feature matrix Registgr File

uter [——— nd H Table Register file Register file
p ndex
ij L1 Router L1 Router
Matrix DenseRow
Input Dense
MI;t T Prefetcher Voltage Regulator Sesge)
5 . PE Cluster Local Sparsity
Weight VIF
o I Detector
Output Dense | Data |5 toPEarray
Mat. Buffer Disp @D DVFS
T ML-based DVFS
b— - Router Intermediate
Global E— predictor
Sparsity n output
Buffer Detector Five VIF States EHM Regs

(a) GREENX Architecture

(b) PE Microarchitecture

Fig. 3. (a) An overview of GreeNX architecture consisting of the three optimization techniques, (1) DVFS, (2)row-wise SDMM, and (3) multicast network.
(b) shows the internal PE microarchitecture consisting of an adjacency matrix, weight, input feature, intermediate output, output activation registers, a sparsity

detector, and arithmetic units.

the DenseRow Prefetcher plays a role in pre-loading data
into the PE array to minimize idle times due to indexing
overheads of the sparse representation. The Data Dispatcher
manages the dataflow within the architecture, ensuring that
data is efficiently routed and exhaustively deployed between
the buffers and the processing elements according to the
computation requirements.

The Sparsity Detector and the Dynamic V/F Generator
are critical to implementing DVFS within the architecture.
The Sparsity Detector analyzes the workload dynamically to
identify opportunities for voltage and frequency scaling based
on the sparsity of the data being processed. The Dynamic V/F
Generator then adjusts the voltage and frequency settings for
each PE cluster accordingly, optimizing power consumption
without compromising performance. The PE array is con-
nected in a mesh-based network. Each PE cluster has an
independent power and clock supply to support fine-grained
or coarse-grain DVFS scheme.

The PE microarchitecture, illustrated in Fig. 3(b), features
distinct local memory units tailored to different data types,
facilitating parallel processing of various dataflow variants that
necessitate specialized storage. The datapath is segmented into
three pipeline stages: DVFES prediction, buffer access, and
computation. The computation stage is equipped with a 32-
bit multiplier and a 64-bit accumulator, designed to execute
a multiplication and accumulation (MAC) operation within
a single cycle efficiently. The post-processing unit (PPU)
activates to apply the ReLu activation function to the output
following the accumulation phase. If the accumulation is not
complete, the PPU functions merely as a conduit for the
intermediate output, forwarding it to adjacent PEs for further
processing.

B. DVFS control system

Implementation of DVFS Control: In our proposed ar-
chitecture, the grouping of PEs for DVFES is implemented at
the hardware layer. Specifically, each PE cluster, containing
8 PEs, shares a common independent V/F supply, as shown
in Figure 3(a). A detailed schematic of the voltage regulator
and power multiplexer design for each PE cluster is presented

in Figure 5. Within each cluster, an L2 router with a full-
switching crossbar interconnects the PEs to support efficient
intra-cluster communication. DVFS control is managed on
the basis of the PE cluster as the basic unit. Clusters are
further interconnected through an L1 router, forming a 2D
mesh topology. Since different PE clusters operate under
independent V/F domains, asynchronous FIFOs are used in
each channel of the L1 router to support data communication
across V/F domains.

We propose three DVFS models with corresponding work-
load percentage thresholds to explore the design trade-off
between energy savings and throughput. We further extend the
proposed DVFS scheme with coarse-grained configuration to
explore the design trade-off between DVFS performance and
implementation overhead. Each DVFS model consists of one
inactive state (power-gated) and three active states. In an inac-
tive state, the voltage supply to the specific PE and its outgoing
interconnection is reduced to 0 V with no clock applied to the
PE. V/F pair for one PE may switch for each epoch, which
has to be short enough to maintain the granularity of DVFS
control, and long enough to allow the power supply switching
latency. Determining the optimal epoch size is a challenge. Af-
ter testing several epoch sizes, we set 50 cycles for a relatively
balanced design point [31]. PE in an active state can operate
in any one of the three available voltage levels. The V/F pairs
used are 0.8V/2.75ns,1.0V/2.25ns,1.2V/1.8ns, which are
numbered as V/F modes 2-4 with a power-gated state as mode
1. These voltage and frequency pairs are commonly configured
in DVFS-supported processors or accelerators [32]. Due to the
highly sparse nature of GCNs, we introduce a baseline mode
that is maintained constantly at a high voltage level and update
the threshold values to fit in the GCN workload distribution
as shown in Table 1.

Prediction algorithm: Instead of setting up the expected
V/F pair for the current workload, Our DVFS scheme predicts
the V/F pair requirement of the next epoch based on the
workload information of the current epoch. We devise a
neural network machine learning method simply based on
the previous workload distribution to predict the next epoch.
The implementation overheads are a low number of integer

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 5

TABLE I

WORKLOAD DISTRIBUTION AMONG DIFFERENT MODELS AND DVFS
MODES.

DVFS Models ov 0.8V/ 1.0V/ 1.2v/
2.75ns 2.25ns 1.8ns

Baseline 0% / / >0%
Power-Saving | <10% | 10-85% | 85-90% | >90%
Balanced <10% | 10-30% | 30-80% | >80%
Performance <10% 10-45% | 45-50% | >50%

multiplication, rather than millions
reinforcement learning methods [33].

Algorithm 1 details our DVFS controlling procedures,
which utilizes a compact multi-layer perceptron neural net-
work to dynamically adjust voltage and frequency settings
based on predicted workload characteristics for each epoch.
The perception network consists of an input layer with 7
neurons, a fully connected middle layer with 128 hidden
neurons, and a classification output layer equipped with 5
Softmax outputs for predicting V/F mode, which collectively
approximate the relationship between input feature sets and
labeled voltage/frequency (V/F) modes. The perception is
trained offline using runtime data derived from simulations
of real-world GCN datasets such as Cora, Citeceer, Ogbn-
ArXiv, Reddit, Pubmed, and Nell mapped onto the PE array.
The learned parameters are directly used as inference by the
DVEFS predictor in GreeNX.

In Algorithm 1, All PEs are initialized by a voltage of
1.2V and a clock cycle of 1.8ns (Line 1). The input features
are collected through the Sparsity detector of each PE and
calculated as an indicator of workload sparsity and compu-
tational intensity (Line 2 to 8). These collective data are fed
into the perceptron neural network that classifies and predicts
the optimal V/F mode (Line 10 to 25). As per the predictions
from the trained neural network, DVFS settings are adaptively
modified during runtime to optimize power consumption and
maintain high computational efficiency across different PE
islands (Line 9).

Dynamic voltage and frequency generation: The
overview of the DVFS system architecture is shown in
Fig. 4(a). The frequency and power modules generate voltages
and frequencies for the PE array based on Table I, configured
via signals F.,, and V., from the controller. The frequency
module’s sub-architecture is illustrated in Fig. 4(b), where a
Phase-Locked Loop (PLL) control block, implemented as a
finite state machine (FSM), regulates the local clock domain
by driving the PLL request signal. The feedback clock (fb)
ensures correct phase locking, and clock buffers (depicted
as triangles) serve as entry points to the clock distribution
network.

Previous works have proposed hierarchical power deliv-
ery systems to optimize system performance and latency
[34]. However, equipping each PE with a dedicated voltage
multiplexer introduces latency. To address this, we propose
a global Single-Input-Multiple-Output (SIMO) converter and
PE-wise power multiplexers, as shown in Fig. 5. We assume
a 1.5V off-chip voltage supply. The SIMO converter, simi-
lar to an inductor-based buck converter, generates multiple
output voltages using a single inductor (L1) and capacitors

of MAC operations in

Algorithm 1 DVFS Control Algorithm for Sparse GCN Work-

loads

Input: Graph (V, E); input features (X,, Vv € V); GCN depth K; weight
matrices (JW*); aggregator function; neighborhood function.

Output: Vector representation z,, for all v € V, and voltage/frequency
settings for each PE cluster.

1: Initialize voltage to 1.2V and clock frequency to 1.8ns for all PE clusters.
Feature Collection:

2: Wiy =Y, w; where (w; # 0)

3: Ay =3, a; where (a; # 0)

4: My = Wi x O? — F x (F — X¢) {F and O are input/output feature
sizes}
Edge Update:

5: for each vertex v in the active vertex list do

6: Update edge e(u,v) = EdgeUpdate(hif*1 , hﬁfl, Wedge)

7.

8

Store e(u,v) and update vertex state.
: end for
DVES Control in Aggregation Phase:
9: for each PE cluster h do
10: Set default V}, = 1.2V and highest frequency.
11: Perform SDMM computation: X; = SDMM(A¢, Wy, X¢)

12: Detect sparsity ~ via Sparsity Detector: AM;; =
SparsityDetect(Wy, A, My)

13: if AM;; =0 for all j then

14: Power-gate the current PE cluster.

15: else

16: Set V;, = 1.0V for moderate workload.

17: end if

18: if >°; AM;; < o then

19: Set V3, = 0.8V for light workload.

20: else

21: Maintain V}, = 1.2V for heavy workload.

22: end if

23: end for

(C1-C3), either on-chip or off-chip. Reference voltages Vrefl
(0.8V), Vref2 (1.0V), and Vref3 (1.2V) are derived from a
resistor divider. Comparators A1-A3 regulate output voltages
(Vout1-Vout3) relative to the references and control the PWM
switch controller. The controller senses input current and gen-
erates switching signals (SP, SN, S1-S3) to maintain voltage
regulation. The regulated outputs are distributed to PE arrays
via Power-MUXes, enabling voltage selection per cluster.
To balance DVFS overhead and scalability, we implement a
coarse-grained DVFS scheme by grouping PEs into rows or
columns.

outclk

PLL

ﬁ fb

[
|
I PLL
req PLL PLL ack

I CTRL

FSM
| e
|
|
|

Fout Frequency

Fcon .
El Controller . T

Process
veon |
Vout | DVFS FSM Controller |

< Power

(a) DVFS System Architecture (b) Frequency Module Schematic

Fig. 4. (a) DVFS system architecture overview (b) Phase-locked-loop (PLL)
based DVFS frequency generation schematic.

C. SDMM optimization for DVFS implementation

This section presents the unified SDMM for both the
aggregation and combination phases of GCNs introduced in
Section II-B. Our approach significantly enhances memory

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 6

Vrers

Vout1 (1.2V)

Veer: Vout2 (1.0V)

(1.2v)
Vrerz

(ov)_ 3

Vrers

L) J—F_ Vout3 (0.8V)
= Lic, 2

oav_§ R = I

R4

i imux
[_VIFDom.1_] [_VIFDom.2_] [_VIFDom.3_] [ViFDom.4_]

Fig. 5. Single-input-multiple-output (SIMO) based DVFS Power generation
and delivery schematic.

efficiency by maximizing the reuse of non-zero elements and
eliminating redundant accesses. A key challenge in sparse
inner product multiplication lies in the selective performance
of multiplications across matched non-zero indices, leading
to inefficiencies. Our proposed architecture addresses this
issue by leveraging Dynamic Voltage and Frequency Scal-
ing (DVFS) at various levels of granularity. The optimized
SDMM, enhanced with DVFS control, outperforms traditional
matrix multiplication methods by avoiding the need for index
matching. This results in increased reuse of non-zero elements
and reduces the frequency of fetching columns or rows from
memory.

Fig. 6 shows an example GCN computation and the cor-
responding sparse adjacency matrix A, input feature matrix
X0, intermediate output matrix IM, weight matrix W, and
the output feature matrix X', which can be used as inputs
for the next layer. We break the SDMM into three DVFS
implementation scenarios, that is, element-wise granularity,
row-wise granularity, and column-wise granularity. In element-
wise DVFS implementation, each element of adjacency matrix
A in a row is indexed step by step and multiplied with
the corresponding feature matrix elements X to generate
the intermediate output matrix IM. The sparsity detector
identifies zero-valued elements in A and subsequently skipping
the dataloading of the associated input feature elements from
XP©. This selective loading significantly reduces unnecessary
memory accesses and computational demands, enhancing the
overall efficiency of the matrix multiplication operation.

The second SDMM of I M and W follows the same pattern
to generate the output matrix X '. Without complex sparse data
encoding and decoding, element-wise SDMM can thoroughly
eliminate zero-valued operation by zero-skipping as shown
in the T'3 time stamp. Then, the DVES system controls the
current PE to the power-gating V/F stage to further reduce
both dynamic and static power consumption. Due to the large
size of the adjacency matrix in graph datasets and stringent
on-chip memory footprints, only a chunk of data (tile) can
be processed parallel on the PE. Therefore, we highlight
the tile size in grey color for both the SDMMs. In row-
wise DVFS implementation, we increase the throughput by
processing a row of matrix A at a time. Each row of A is

reused inside the PE array until all feature matrix elements are
traversed, avoiding redundant off-chip memory access. Instead
of skipping zero-valued operation for each index, row-wise
SDMM treats each row of matrix A as a set of workloads
and scales the voltage and frequency supply based on the
sparsity detected in the current working epoch. The column-
wise DVFS implementation is implemented when the row
dimension of the adjacency matrix is too large to fit into the
tile. As shown at the bottom of Fig. 6, each column is fetched
as sparse working loads and processed by the PE array with
scaled V/Fs accordingly.

IV. CARBON FOOTPRINT ANALYSIS

The carbon footprint of the hardware accelerator consists
of the operational and embodied emissions. The operational
emissions are computed as the product of the energy consumed
by running the target neural network workloads and the carbon
intensity on the hardware. The embodied carbon footprint of
hardware is measured as the product of the die area and carbon
emitted per unit area manufactured. The proposed DVFS not
only reduces energy consumption but also enhances carbon
efficiency based on the intensity of runtime workloads.

A. Operational Carbon Footprint

The operational carbon footprint of a hardware accelerator
during a DNN inference task depends on multiple factors,
including the algorithm’s efficiency, the number and power of
processing elements (PEs), the duration of processing, and the
efficiency of the data center’s power and cooling systems. The
carbon footprint can be estimated by the following formula:

Carbonfoolprim :Energyconsumed X Cozeinlensily (3)

Energy Consumption: The energy consumed by the system
can be modeled as a function of runtime, the number of
active cores, their utilization, memory usage, and the power
consumption of these components, adjusted by the Power
Usage Effectiveness (PUE) of the data center:

Energy . nsumed =t X (e X Pe X Ue + Nm X Pm) X PUE 4)

where ¢ is the runtime (in seconds), m. is the number
of processing cores, u. represents the core utilization factor
(ranging from O to 1), P, is the power consumption of a core
(in watts), n,, is the memory size (in gigabytes), and P,), is the
power consumption of memory (in watts). The PUE accounts
for the efficiency of the data center’s power usage.

B. Embodied Carbon Footprint

To assess the embodied carbon footprint (ECF) of a hard-
ware accelerator, emissions are considered at the component
level for each processing element, Network-on-Chip (NoC),
memory (DRAM), and storage element. Each integrated circuit
(IC) also contributes additional emissions due to packaging.
The embodied carbon footprint for a hardware platform can
be estimated as follows:

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 7
D Tile size Graph Node: V In Feature: | In Feature: | Out Features: G Out Features: G
> > > i bl E— Initial VIF state Scaled VIF Zero sklppmg
Sl Tofoe] = M [W= >
s (el 5 s : S O @ [
i B [Tol1[1][0]0 ° SITT 3 3
Elementwise o X 2 o X & K
granularity i ol1]1]0(1 i i @ » 2
o =
? 1/0j0[1]0 g E g- 3’
o 4[1fo]ofof1 oy o £ 5
Graph Node: V In Feature: | Out Features: G Out Features: G
—_— - — Lo
Z. 11000 :_ : s — > T1 Row, [1]4]o[o]o0] x (RN initial VIF state
Rowwise 3 (|0l i[ilolo]. ¢ 3 g - T2 Row, [o[4[40[0] * [N Scated ViF 1
granularity Z |[0[1[7[0]7 z z X g » S
& |[Aolo [0 g g o £ T3 Row, [o[4[4]o[4]x [N Scaled VIF 2
& [1]o]o]o]1 & & 5 g
Graph Node: V In Feature: | OutFeatures: G Out Features G Column, Column, Column,
s > P ———md - Initial V/F state Scaled VIF1 Scaled VIF 2
Columnwise 3 ||l0l1/1]0]0 X K 3 X 2 '§]]
granularity Z ||lo 1] 4]0 z z g _J » S n £ o
s [|[1]ofof1]o s s 5 £ 1] 0] 0]
6 y[1]ofofo]1 = 5 =]
© o ° £ o} [1] 0] (0]
Adjacency Matrix A Feature Matrix X° Intermediate Matrix IM Weight Matrix Output Matrix X!

Fig. 6. An example to explain the customized SDMM with DVFES controlling in element-wise, row-wise, and column-wise granularities.

TABLE II
SUMMARY OF THE GRAPH DATASET STATISTICS.

Dataset Nodes Edges Features Classes Storage
Cora 2,708 5,429 1,433 7 15 MB
Citesser 3,312 4,372 3,703 6 47 MB
Pubmed 19,717 44,338 500 3 38 MB
Nell 65,755 266,144 5,414 210 1.3 GB
Ogbn-ArXiv 169,343 1,166,243 128 40 103 MB
Reddit 232,965 114,615,892 602 41 1.8 GB
TABLE III

SUMMARY OF THE GCN MODEL SPECIFICATIONS.

Model Hidden Dim. Aggregation Major Features
GCN 2 Mean Aggregator /
GIN 3 Addition All hidden layers concatenated

GraphSAGE 2 Generalized Aggregator ~ Subsampled neighbors as GCN

PE, Memory, NoC, Storage

>

r

ECF = Kpackaging + EC, (5)

where r represents the different components, including pro-
cessing elements, memory modules, and storage devices, and
K packaging TEpresents the packaging footprint, which is typically
estimated based on industry standards (e.g., 0.15kg CO2 per

IC).

V. PERFORMANCE EVALUATION
A. Simulation Environment

Graph-based Datasets and Algorithms: We evaluate
GreeNX on three representative GCN algorithms, including
GCN [29], GraphSAGE [35], and GIN [36], and six graph
datasets, i.e., Cora, Citeceer, Ogbn-ArXiv, Reddit, Pubmed,
and Nell. The statistics for the targeted datasets and GCN
algorithms are summarized in Table II and III. These datasets
cover a wide range of graph-structure data tensors.

Hardware Evaluation: We use Design Compile Ultra from
Synopsys [37] to compile and synthesize the RTL design to
obtain the power consumption and latency of the hardware
components. FreePDK45, a 45nm technology node design
kit is used as the target library. We manually modify the

voltage and frequency settings to obtain the hardware metrics
under the predefined V/F pairs. We use Cacti [38] to estimate
the area, power, and access latency of the on-chip buffers
and FIFOs. Table V shows the area, static power, dynamic
power, and propagation latency of each submodule of the GCN
accelerator under a 1.2V/1.8ns setting for 45nm technology.
To evaluate the overall energy consumption and execution
latency of the benchmarks, we built a cycle-accurate simulator
in Python. The simulator models the microarchitectural design
of each module, counts the exact number of operations, and
estimates the energy consumption and latency.
State-of-the-Art GCN Accelerators: To compare our pro-
posed GreeNX with state-of-the-art (SOTA) GCN acceleration,
we consider a total of eight baselines: PyTorch Geometric
(PyG) [39] with Intel Xeon E5-2680 v3 CPUs and NVIDIA
RTX 8000 GPUs, Deep Graph Library (DGL) [40] with
NVIDIA RTX 8000 GPUs, HyGCN [15], AWB-GCN [41],
GCoD [17], GRIP [18], IGCN [42], and LW-GCN [19]. The
system configurations of the baselines and our GreeNX are
summarized in Table IV. We evaluate all the above platforms
in terms of speedups, energy consumption, and required off-
chip memory bandwidth and memory accesses. For example,
HyGCN is an ASIC design that uses 4608 fixed-point MAC
units running at 1GHz; AWB-GCN is an FPGA design that
uses 4096 floating-point MAC units (running at 330MHz). To
provide a fair comparison, GreeNX accelerator adopts 4096
PEs with a 32-bit fixed point precision.

B. Simulation Results

Speedups: We first evaluate GreeNX against both the general
platforms in terms of speedup, off-chip memory bandwidth
requirement, and the number of off-chip memory accesses.
Fig.7 shows the overall performance of our GreeNX over
the baselines. We can see thatGreeNX on average achieves
8562x and 1107x speedups over PyG-CPU and DGL-GPU,
respectively. The superior GreeNX improvements validate
the effectiveness of the proposed innovations: (1) GreeNX’s
unifying SDMM largely alleviates the irregularity of the graph
adjacency matrices, leading to more consecutive accesses of
off-chip memory; and (2) GreeNX accelerator utilizes DVFS

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024

oo

Il PyG-GPU [DGL-GPU [HYyGCN H AWB-GCN H GCoD M GRIP D IGCN [LW-GCN H GreeNX
<~ 1000000 o
x o~ 0 - S
~ 100000 || cwo 2 wa - o o 2 N x5 anNe 8 o 8 R S0 2 o)
2nadE 2 2889 ohn @ So@ o o § 238¢g 8 2988 Ssga8sg ~g88a 2g &
g | LEREE_3 doNg 522898 2Sgng Re gezods 282 Eegins G28BR 3 E5g®
.g 1000 [| = 54 - g Y B 5 . 8 g
@ toof g e - 3 @
O 10 = - = e et arey ~
Q.
4 =
‘n DDZZOLZZX|DDZZZZXDoZZaLr Z XD ZZoZXDZZXDoZZarZzZXDoaorZXDoZZoLZZXIDDZZonzZzzZzXDoZzZz X
LLOUOFOUZIRA0000ZA R 0UCFO0ZMM0V00ZIRV0ZIRA 00O U0Zlal opgOZ[alUUCpgO0ZalO0ORpgO0OZR 0002
kRN R R (AR R R R R CRCRe R R R R o o R R (o R R R R R R R R SR R ol (R R R R R Rl] RUR R R R R R R
> d a sl = @ Sl = @ it 11 it 52 = 11} a1z = Gl = m 5> = 1] it]
“'813 E‘”D-g:; Ewn_g::; Ewn_::; EXS E‘-’n-gzg Eo,,_g on_g::; E‘-’ﬂ-gzg EXciFs XY
< < < < < < <
Cora CiteSeer Pubmed Reddit Cora CiteSeer Pubmed Cora CiteSeer Pubmed

GCN

GIN GraphSAGE

Fig. 7. The normalized inference speedups (w.r.t. PyG-CPU) achieved by our GreeNX framework over eight SOTA baselines on three variants of GCN models

and representative citation graph datasets.

- =SDMM =HMESH =DATAFLOW =DVFS
S 12,000
8 GCN GIN GraphSage
=)
X 9,000
&
T 6,000
3
@ 3,000
[
Q.
@ 0
© O = v c = ® O = v c = © o = T £ =
3 @ @
835£8F 835:83F 835383
L3809 dgs9%9¢ SL350%¢e
[N [N (S

Fig. 8. Speedup breakdown of GreeNX accelerator

TABLE IV
HARDWARE PARAMETER SET UP AND PERFORMANCE COMPARISON WITH
CPU, GPU, AND STATE-OF-THE-ART ACCELERATORS.

Design Compute Unit Off-chip Memory D(i:]:]g;a P&v};;r
PyGCPU 2.5GHz@24 cores 133%5}?’ s ; 150
DGLGPU 1.35GHz@4352 cores 6016])51]35 (172?;:11) 250

GRIP 409 P Gty 039

T R G
GreeNX 401966[?& 614;1361?1S (445'ir5n) 0.258

to enable more balanced workloads while increasing the uti-
lization of the PE array by allowing more data reuse along
with lower on-chip storage.

We further compare GreeNX with SOTA GCN accelerators.
As shown in Fig.7, GreeNX on-average achieves 9.2x, 3.4x,
1.3x, 2.1x, 2.3, and 11.8x speedups over HyGCN, AWB-GCN,
GCoD, GRIP, IGCN, and LW-GCN (light version) respec-
tively. GreeNX benefits can be attributed to the three optimiza-
tion schemes. Specifically, HyGCN adopts fine-grained block-
wise scheduling while GreeNX adopts coarse-grained DVFS
and adaptive row-wise SDMM; AWB-GCN realizes workload
balance via on-the-fly autotuning while GreeNX leverages
DVES to achieve a naturally balanced workload. We further
provide the improvement breakdown in Fig.8, from which we

can see that the improvement is mostly attributed to GreeNX’s
DVEFS and row-wise SDMM enabled accelerator that con-
tributes to on-average 75.6% speedups, while multicast opti-
mized network further provides 14.3% speedups. The coarse-
grain DVFS scheme in GreeNX efficiently processes sparse
workload by scaling or shutting down the supply voltage and
frequency of each PE to save energy. The uniform control
avoids the workload imbalance and irregularity problems that
are incurred in the two accelerator architectures.

As for the speedup for specific datasets and GCN algo-
rithms, GreeNX performs on average 1.5x better and 2.7x
better on GIN over GCN and GraphSAGE. This is because
the aggregation computation requires a different range of
neighborhoods to be aggregated in GCN and GraphSAGE.
GreeNX benefits from the unified SDMMs for the two com-
putation phases, thereby performing better in the average
aggregation of GraphSAGE compared to the normalized ag-
gregation of GCN. Datasets also have an impact on the overall
speedup of GreeNX against other GCN accelerators. For
example, GreeNX achieves a speedup of 12005x on Cora but
only 2580x on Pubmed for GraphSAGE since the execution
order exploration only reduces memory access by 1.4x on
Pubmed dataset. Besides, the density of the feature matrix in
Pubmed is higher than that of other datasets, which impedes
the performance of DVFS in GreeNX because most of the
working epochs are active in high voltage settings. For other
accelerators exploiting sparsity to increase energy efficiency,
the high density of the input feature matrix in Pubmed also
hinders the speedup (such as GRIP and IGCN). Only DGL-
GPU can maintain the speedup in Pubmed due to a large
number of parallel GPU cores, though the overall speedups
are limited on other benchmarks.

Memory Bandwidth Consumption and Accesses: Fig.9
shows the evaluation results in terms of off-chip memory band-
width consumption. We can see that GreeNX only requires on-
average 18% and 67% off-chip memory bandwidth compared
to AWB-GCN, GCoD, respectively. The high bandwidth of
AWB-GCN is attributed to the required high-degree paral-
lelism, whereas GreeNX accelerator’s row-wise SDMM and
multicast optimized H-mesh NoC enable more frequent data
reuses, largely alleviating the off-chip bandwidth requirement.
Fig.9(b) reports the measured off-chip memory accesses com-
parison for processing GCNs with GreeNX, GCoD, and AWB-
GCN. The DRAM access reduction varies across the datasets

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 9

[l GCoD M AWB-GCN [GreeNX

[l GCoD H AWB-GCN [GreeNX

300
250
200
150
100

50

2594

2224
208.4 1914

Bnadwidth (GB/s)

AWB-GCN

Cora |CiteSeer[Pubmed

Q
Q
=z

(a)

218.5

[
S

17.5

-
o

Normalized Data
Access

o

GCoD
GCoD

m AWB-GCN

GCoD
GreeNX
GreeNX

AWB-GCN

CiteSeer
GraphSAGE (b) GCN

dit

Fig. 9. (a) Bandwidth requirement of GreeNX, GCoD, and AWB-GCN and (b) normalized data access of GreeNX, GCoD, and AWB-GCN. Note that we
record the peak bandwidth in (a), so the relative scale of (a) and (b) are slightly different.

and GCN algorithms. Specifically, GreeNX reduces DRAM
accesses by up to a factor of 2.7x over GCoD, and 14.6x
over AWB-GCN. Since GCoD and AWB-GCN use inefficient
GCN execution order, they involve more data movement from
the global buffer and off-chip memory into the PE array.
AWB-GCN optimizes the reuse of the intermediate matrix
by buffering the data between the two engines. However, it
sacrifices the input data reuse since it lacks dataflow manage-
ment. Moreover, the network-on-chip is not carefully tailored
in AWB-GCN and GCoD accelerator.

Energy consumption and breakdown. Fig.10 shows the
normalized energy consumption of GreeNX over general
computation platforms and GCN accelerators. GreeNX con-
sumes only 0.04%, 20.5%, and 85.1% energy on average
compared to PyG-GPU, AWB-GCN, and GCoD, respectively.
GreeNX achieves the worst energy efficiency on GraphSAGE
model, which is also the case for most other comparators. The
main reason is that GraphSAGE has additional computations
and data accesses when performing aggregation, which cannot
be optimized by hardware architectures. In terms of datasets,
GreeNX achieves optimal energy efficiency in graphs/kJ on
the Cora dataset. The underlying reason is that although the
Cora dataset possesses the lowest sparsity ratio, it has the least
number of graph dimensions, which requires less amount of
computations and data accesses compared to other datasets.
Fig.11 shows the energy breakdown with the contribution
of computations, on-chip memory accesses, and the three
proposed optimization components (i.e. SDMM, DVEFS, and
H-mesh NoC). We can see that memory accesses and computa-
tions consume most of the energy indicating the low overheads
of the proposed techniques in GreeNX. Another observation
is that on-chip memory access occupies the least energy on
Reddit dataset for all the GCN models. This is because Reddit
dataset offers the highest sparsity ratio (99.989%) and the most
irregular data distribution among other datasets, verifying the
effectiveness of GreeNX in exploiting sparsity and alleviating
irregularity through SDMM and DVFS. Energy-delay product
is used to verify that the optimization does not achieve high
energy efficiency by sacrificing processing parallelism. The
delay is calculated as the reciprocal of the number of execution
cycles.

Impact of DVFS: To evaluate the performance of the proposed
DVES scheme of GreeNX, we compare the baseline configu-
ration with the three DVFS models as depicted in Table 1. In

TABLE V
HARDWARE CHARACTERISTICS OF GREENX.

Area(mm2) % Power(mW) %
Total 4.55 100.00% 258.0 100.00%
PE Array 0.46 7.13% 65.4 23.62%
Sparsity Detector 0.14 2.36% 5.7 3.14%
Dynamic V/F Generator 0.07 1.07% 53 2.95%
DenseRow Prefetcher 0.12 1.85% 7.6 4.04%
Data Dispatcher 0.51 6.25% 19.4 9.58%
Network Router 0.03 0.48% 2.1 1.88%
SparseMat Memory 2.63 40.51% 8.5 36.72%
DenseMat Memory 0.75 13.28% 41.3 28.94%

Fig.12, energy consumption, execution latency, and the energy-
delay-product (EDP) are presented for various benchmarks.
All numbers are normalized to the baseline configuration that
operates at the highest voltage. The coarse-grain DVFS scheme
benefits most in terms of energy consumption by trading off
latency for most benchmarks. We use EDP to verify that
the DVFS scheme does not achieve high energy efficiency
by simply sacrificing parallelism. Cora dataset achieves the
best performance in the power-saving DVFS model with
59.3% energy consumption reduction, 17.8% latency increase,
and 49.2% EDP reduction. However, we observed that the
Nell dataset only obtains subtle energy reduction and even
increased EDP results. This is because the Nell dataset demon-
strates extremely sparse connections in the graph (0.0073%
data density). In most working epochs, the Sparsity Detector
outputs a power-gated state, which drives the DVES generator
to shut down the voltage supply for the PE array frequently.
The accumulated workloads get congested in these inactive
epochs, resulting in excessive execution latency.

Power and Area: Table V illustrates the hardware resources
in GreeNX with 4K PEs. GreeNX consumes 0.258 Watts of
total power while occupying 4.55 mm?2. The dynamic V/F
controlling logic accounts for 9.68% of the entire accelerator
(including Sparsity Detector, Dynamic V/F Generator, and
Data Dispatcher).

Carbon Performance Evaluation: Utilizing the carbon emis-
sion as discussed in Section IV, we assessed the impact
of our four proposed DVFS modes, as detailed in Table I,
with the results illustrated in Figure 13. We compared the
baseline GreeNX design, which operates at a fixed voltage
and frequency without DVFS optimization, against three pro-
posed DVFS implementations: GreeNX_PS, GreeNX_BA, and

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 10
Il PyG-GPU [DGL-GPU [HyGCN | AWB-GCN Il GCoD Il GRIP [IGCN] LW-GCN Il GreeNX
2\ 100000
8 ; 10000
o= 1000
=a
«lﬁ @ 100
>0 10
9 (= 1
2= 22853 g zx
w g9 2g¢ Q e s
ggTg 2 &
8%z 5
Cora Reddit Pubmed
GIN GraphSAGE

Fig. 10. Energy Efficiency in Graph/kJ achieved by our GreeNX framework over eight SOTA baselines on three variants of GCN models and representative

citation graph datasets.

M Routers

B SRAM

100%

80%

60%

40%

20%
s

[DVFS Control

- T

M PE Array

o
s 3 8

[[1 SDMM Dispatcher

= E-ﬂ = T <

0%

Energy Consumption
Percentage

g @ %] T 55 N“’w.n%
o = o o = @ o = @
ST 2 E®@3T |3 2 E@T |8 T 4 EDT
68 9°%¢ 6 g350¢ 6 g£359¢
o a o a o o
GCN GIN GraphSAGE

Fig. 11. The energy breakdown of the GreeNX framework when evaluated
on the six datasets and the three GCN models.

-g 150 = Energy = Delay =EDP

£ .

3 | 1]

g 1.00 I I [I I-

C >

I'“2050

-3

[=]

N

© 0.00

£ DT O oD T O o T O oD T O o T O o T O

E £8c|£82|£g8| £32| £882|£8¢8

o 1 © m © T £EC T £EC T £EC T EC

4 O SE|pSE|onSE|wDSE|BSE|nwSE
- 5 . 5| -~ %5 » 85| =~ 85| =85
gog|tog | tag gag) Fag) fag
S 2|5 | &|3 &|3 &|s &
o o o o o o
Cora Citeseer Nell Collab Pubmed Reddit

Fig. 12. EDP results for coarse-grained DVFS scheme on various datasets.

GreeNX_PE.

As shown in Figure 13, the carbon footprint per inference
varies across different datasets (Cora, CiteSeer, Pubmed, and
Reddit) due to the distinct strategies employed by each DVFS
mode. The figure differentiates between embodied and opera-
tional carbon contributions, highlighting that while all DVFS
modes achieve significant reductions in operational energy
consumption, this does not uniformly translate to lower carbon
emissions. This discrepancy arises because the DVFS modes
introduce additional overheads, reflected in the embodied
carbon costs. By implementing carbon-aware control during
runtime, the DVFS controller can be optimized to select
the mode that minimizes overall carbon emissions, thereby
enhancing environmental efficiency.

VI. RELATED WORK

Graph Inference Accelerators. The ultra sparsity in real-
world graphs (e.g., Nell dataset has 99.988% sparsity vs.

[l Baseline [0 GreeNX_PS [GreeNX_BA M GreeNX_PE

g 60
o
E b Operational
ES 4
5
_E-u—
o £
25 20
c o
g Embodied
S 0
Cora CiteSeer Pubmed Reddit Ogbn

Fig. 13. Carbon footprint per inference for different datasets under various
configurations: Baseline, GreeNX under Power_saving, Balance, and Perfor-
mance DVFS modes.

sparse DNNs have 88.9% 92.3% sparsity [43]) imposes
challenges on the dynamic and irregular data accesses for
GCNs’ feature aggregation, which has a different execution
pattern with DNN accelerators, leading to dedicated GCNss.
GraphABCD [44] is an asynchronous heterogeneous graph
analytic framework that offers algorithm and architectural
supports for asynchronous execution, without undermining its
fast convergence properties. Recently, RAHP [45] introduces
a redundancy-aware approach specifically for HyperGNN in-
ference, optimizing computation and memory access patterns
to significantly reduce redundant calculations. Furthermore,
NeuraChip [14] employs a hash-based decoupled spatial ac-
celerator design that effectively balances load and optimizes
data caching strategies to improve performance and energy
efficiency in GNN computations. Although these accelerators
deliver considerable performance and energy efficiency im-
provement, they are inefficient when handling GCNs because
even though they are designed to alleviate the irregularity of
graph data, they do not leverage the regularity in GCNs.

Neural Network Accelerators. Numerous research efforts
have been dedicated to enhancing the speed of neural net-
works, as demonstrated by works such as [46]-[52]. In the
case of dense neural networks, the focus of accelerators is
primarily on utilizing vast parallelism to enhance performance
and utilization. For instance, TPU [47] and Eyeriss [46] are
two examples of such accelerators. To improve the hardware
implementation efficiency of compressed DNN models, accel-
erators have been developed to exploit the inherent sparsity of
neural networks, thereby reducing the number of operations
required [48]-[52]. However, GCNs contain two-phase matrix

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024

multiplications that enable new kinds of parallelisms and data
reuse patterns that are not exploited in these neural network
accelerators. Although we can extend CNN accelerators to
run SpMMs by equalizing the input and filter dimensions, it
weakens the advantages of CNN accelerators since they are
specialized for convolutions rather than matrix multiplications.

VII. CONCLUSIONS

In this paper, we introduce GreeNX, an energy-efficient
GCN accelerator that optimizes the use of Dynamic Voltage
and Frequency Scaling (DVFS) and Sparse-Dense Matrix
Multiplication (SDMM) within a hierarchical mesh network
to enhance throughput and energy efficiency. GreeNX cap-
italizes on sparse graph connections with a novel row-wise
SDMM approach that improves data reuse and enables high
parallelism, addressing workload imbalances by dynamically
adjusting processing elements’ operating voltages in real-time.
Despite these advancements, the reliance on DVFS could
introduce complexity in real-time operational tuning and may
limit scalability under varying workload conditions. Future
research will focus on refining DVFS algorithms to enhance
adaptability and exploring advanced machine learning tech-
niques for predictive workload management. A comprehensive
carbon footprint analysis—covering both embodied and oper-
ational emissions—underscores the environmental benefits of
our strategies, positioning GreeNX as a sustainable solution
in large-scale deployments. Performance tests on six real-
world graph datasets show that GreeNX achieves significant
gains, with a 7.3x speedup and 5.6x energy savings over
contemporary state-of-the-art accelerators such as HyGCN,
AWB-GCN, GCoD, GRIP, IGCN, and LW-GCN.

ACKNOWLEDGMENTS

This research was partially supported by NSF grants CCF-
1703013, CCF-1901192, CCF-1936794, CCF-2324645, and
CCF-2311544.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4-24, 2020.

[2] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and
J. Zhou, “Aligraph: a comprehensive graph neural network platform,”
arXiv preprint arXiv:1902.08730, 2019.

[3] L. Wu, P. Sun, R. Hong, Y. Fu, X. Wang, and M. Wang, “Socialgcn:
An efficient graph convolutional network based model for social recom-
mendation,” arXiv preprint arXiv:1811.02815, 2018.

[4] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974-983.

[5] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 922-929.

[6] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, “Knowledge graph
convolutional networks for recommender systems,” in The world wide
web conference, 2019, pp. 3307-3313.

[71 A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. Battaglia, “Learning to simulate complex physics with graph
networks,” in International conference on machine learning. PMLR,
2020, pp. 8459-8468.

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23

[t

[24]

[25]

[26]

(27]

[28]

Y. Wang, S. Qian, J. Hu, Q. Fang, and C. Xu, “Fake news detection via
knowledge-driven multimodal graph convolutional networks,” in Pro-
ceedings of the 2020 international conference on multimedia retrieval,
2020, pp. 540-547.

X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, “Graph neural networks
and their current applications in bioinformatics,” Frontiers in genetics,
vol. 12, p. 690049, 2021.

M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Char-
acterizing and understanding gcns on gpu,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 22-25, 2020.

Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo, “Architectural
implications of graph neural networks,” IEEE Computer architecture
letters, vol. 19, no. 1, pp. 59-62, 2020.

Y. Li, T.-Y. Yang, M.-C. Yang, Z. Shen, and B. Li, “Celeritas: Out-of-
core based unsupervised graph neural network via cross-layer computing
2024, in 2024 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 1EEE, 2024, pp. 91-107.

D. Gurevin, M. Shan, S. Huang, M. A. Hasan, C. Ding, and O. Khan,
“Prunegnn: Algorithm-architecture pruning framework for graph neural
network acceleration,” in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 1EEE, 2024, pp. 108—
123.

K. Shivdikar, N. B. Agostini, M. Jayaweera, G. Jonatan, J. L. Abelldn,
A. Joshi, J. Kim, and D. Kaeli, “Neurachip: Accelerating gnn com-
putations with a hash-based decoupled spatial accelerator,” in 2024
ACM/IEEE 51st Annual International Symposium on Computer Archi-
tecture (ISCA), 2024, pp. 946-960.

M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygen: A gen accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 15-29.

J. Li, A. Louri, A. Karanth, and R. Bunescu, “Gcnax: A flexible and
energy-efficient accelerator for graph convolutional neural networks,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2021, pp. 775-788.

H. You, T. Geng, Y. Zhang, A. Li, and Y. Lin, “Gcod: Graph convolu-
tional network acceleration via dedicated algorithm and accelerator co-
design,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 1EEE, 2022, pp. 460-474.

K. Kiningham, C. Re, and P. Levis, “Grip: A graph neural network
accelerator architecture,” arXiv preprint arXiv:2007.13828, 2020.

Z. Tao, C. Wu, Y. Liang, and L. He, “Lw-gcn: A lightweight
fpga-based graph convolutional network accelerator,” arXiv preprint
arXiv:2111.03184, 2021.

F. Shi, A. Y. Jin, and S.-C. Zhu, “Versagnn: a versatile accelerator for
graph neural networks,” arXiv preprint arXiv:2105.01280, 2021.

S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Coordinated batching
and dvfs for dnn inference on gpu accelerators,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 10, pp. 2496-2508, 2022.
S. Jain, L. Lin, and M. Alioto, “Automated design of reconfigurable
microarchitectures for accelerators under wide-voltage scaling,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 3, pp. 777-790, 2020.

S. Song, X. Zheng, A. Gerstlauer, and L. K. John, “Fine-grained power
analysis of emerging graph processing workloads for cloud operations
management,” in 2016 IEEE International Conference on Big Data (Big
Data), 2016, pp. 2121-2126.

S. Liu and A. Karanth, “Dynamic voltage and frequency scaling to
improve energy-efficiency of hardware accelerators,” in 2021 IEEE 28th
International Conference on High Performance Computing, Data, and
Analytics (HiPC). 1EEE, 2021, pp. 232-241.

X. Hou, P. Tang, T. Xu, C. Xu, C. Li, and M. Guo, “Cpm: A cross-
layer power management facility to enable qos-aware aiot systems,” in
2024 IEEE/ACM 32nd International Symposium on Quality of Service
(IWQoS), 2024, pp. 1-10.

C. Tan, M. Jiang, D. Patil, Y. Ou, Z. Li, L. Ju, T. Mitra, H. Park,
A. Tumeo, and J. Zhang, “Iced: An integrated cgra framework enabling
dvfs-aware acceleration,” in 2024 57th IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 1EEE, 2024, pp. 1338-1352.
Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient
architecture for sparse matrix multiplication,” in 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2020, pp. 261-274.

G. Huang, G. Dai, Y. Wang, and H. Yang, “Ge-spmm: General-purpose
sparse matrix-matrix multiplication on gpus for graph neural networks,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2020, pp. 1-12.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3577218

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 10, NO. 4 AUGUST 2024 12
[29] T. N. Kipf and M. Welling, “Semi-supervised classification with graph accelerator for compressed-sparse convolutional neural networks,” ACM
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016. SIGARCH computer architecture news, vol. 45, no. 2, pp. 27-40, 2017.
[30] G. Santoro, M. R. Casu, V. Peluso, A. Calimera, and M. Alioto, “Design- [51] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar,
space exploration of pareto-optimal architectures for deep learning with “Sparten: A sparse tensor accelerator for convolutional neural networks,”
dvfs,” in 2018 IEEE International Symposium on Circuits and Systems in Proceedings of the 52nd Annual IEEE/ACM International Symposium
(ISCAS). IEEE, 2018, pp. 1-5. on Microarchitecture, 2019, pp. 151-165.
[31] W. Jiang, H. Yu, J. Zhang, J. Wu, S. Luo, and Y. Ha, “Optimizing [52] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
energy efficiency of cnn-based object detection with dynamic voltage W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
and frequency scaling,” Journal of Semiconductors, vol. 41, no. 2, p. network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
022406, 2020. pp. 243-254, 2016.
[32] Q. Wang and X. Chu, “Gpgpu performance estimation with core
and memory frequency scaling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 12, pp. 2865-2881, 2020.
[33] Z. Yu, P. Machado, A. Zahid, A. M. Abdulghani, K. Dashtipour,
H. Heidari, M. A. Imran, and Q. H. Abbasi, “Energy and performance
trade-off optimization in heterogeneous computing via reinforcement
learning,” Electronics, vol. 9, no. 11, p. 1812, 2020.
[34] M. Clark, Y. Chen, A. Karanth, B. Ma, and A. Louri, “Dozznoc:
Reducing static and dynamic energy in nocs with low-latency voltage Siqin Liu (S’19) received the B.S. degree in optical
regulators using machine learning,” in 2020 IEEE International Parallel information science and technology from the Wuhan
and Distributed Processing Symposium (IPDPS). 1EEE, 2020, pp. 1-11. University, Wuhan, China in 2011. After graduation,
[35] P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben- he joined Lingcom Electronics Ltd., a digital signal
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017. - - processing platform provider, and was employed as
[36] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph -e an electronic hardware engineer for 8 years. He is
neural networks?” arXiv preprint arXiv:1810.00826, 2018. \“; currently a Ph.D. student in the Electrical Engi-
[37] P. Kurup and T. Abbasi, Logic synthesis using Synopsys®. Springer o /\) neering and Computer Science department at Ohio
Science & Business Media, 2012. ‘ University, Athens, OH, USA. His current research
[38] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A interests include computer architecture, Deep Neural
tool to understand large caches,” University of Utah and Hewlett Packard Networks hardware accelerators, and network-on-
Laboratories, Tech. Rep, vol. 147, 2009. chips (NoCs).
[39] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.
[40] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai et al., “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.
[41] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt et al., “Awb-gcn: A graph convolutional network
accelerator with runtime workload rebalancing,” in 2020 53rd Annual Prakash Kuve received his B. Tech degree in
IEEE/ACM International Symposium on Microarchitecture (MICRO). Electronics and Communication Engineering from
IEEE, 2020, pp. 922-936. Manipal Institute of Technology, Manipal, India and
[42] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt, a Master’s Equivalent degree in Micro-Electronics
Y. Lin, and A. Li, “I-gen: A graph convolutional network accelerator from KarMic Training Center, Manipal in 1999 and
with runtime locality enhancement through islandization,” in MICRO-54: 2000 respectively. He is currently working with the
54th Annual IEEE/ACM International Symposium on Microarchitecture, Timing and Communication Group (TCG) at Mi-
2021, pp. 1051-1063. crochip Technology Corporation. His work interests
[43] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con- include Precision Data Converters, low-jitter PLL
nections for efficient neural network,” Advances in neural information circuits, and Power management circuits.
processing systems, vol. 28, 2015.
[44] Y. Yang, Z. Li, Y. Deng, Z. Liu, S. Yin, S. Wei, and L. Liu, “Graphabcd:
Scaling out graph analytics with asynchronous block coordinate de-
scent,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2020, pp. 419—-432.
[45] H. Yu, Y. Zhang, L. He, Y. Zhao, X. Li, R. Xin, J. Zhao, X. Liao,
H. Liu, B. He et al., “Rahp: A redundancy-aware accelerator for high-
performance hypergraph neural network,” in 2024 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1EEE, 2024,
pp. 1264-1277. Avinash Karanth (SM’12) received the M.S. and
[46] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture Ph.D. degrees in electrical and computer engineering
for energy-efficient dataflow for convolutional neural networks,” ACM from the University of Arizona, Tucson, AZ, USA,
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367-379, in 2003 and 2006, respectively. He is currently the
2016. Chair of the School of Electrical Engineering and
[47] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, Computer Science in Ohio University, Athens, OH,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter USA. His current research interests include com-
performance analysis of a tensor processing unit,” in Proceedings of the puter architecture, optical interconnects, chip mul-
44th annual international symposium on computer architecture, 2017, tiprocessors (CMPs), and network-on-chips (NoCs).
pp. 1-12. He was a recipient of the National Science Founda-
[48] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and tion CAREER Award in 2011, the Best Paper Award
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network at the ICCD 2013 conference and his papers have been nominated for best
computing,” ACM SIGARCH Computer Architecture News, vol. 44, paper at the HiPC-2021, DATE-2019, NoCs-2010 and ASP-DAC-2009. He is
no. 3, pp. 1-13, 2016. the Editor-in-Chief for IEEE Transactions on Computers and Associate Editor
[49] S.Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and for IEEE Transactions on Cloud Computing journals. He is a senior member
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in of IEEE and member of ACM.
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 1EEE, 2016, pp. 1-12.
[50] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,

B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

