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Abstract—Photonic neural networks enable faster and energy-
efficient inferences for deep neural network implementations
when compared to electrical counterparts. Prior training methods
for photonic neural networks modify the network or decompose
the inputs or weights to simplify the training, however that could
impact accuracy. Electrical training uses backpropagation that
needs to partially differentiate each of the weights with respect
to the loss function on a number of examples to achieve high
accuracy. While the traditional backpropagation algorithm can
be applied to electrical networks, it is difficult to directly apply
to photonic neural network with Mach-Zehnder Interferometer
(MZI) meshes that have different parameters (frequency and
phase). In this paper, we implement the traditional backprop-
agation algorithm to train the parameters of the MZI meshes
with gradient descent. Parameters of the mesh are trained
by implementing a modified backpropagation algorithm on the
hardware, and those operations may be performed on device.
The implementation does not modify the circuits or add any
additional lasers and therefore, self-trains the MZI to achieve
the desired accuracy and achieve O(n2) speedup over electrical
methods. We test our training algorithms on MNIST datasets and
show that our method improves the training when compared to
state-of-the-art electrical backpropagation.

I. INTRODUCTION

Deep learning is well established for solving complex

problems [7] in many applications such as autonomy, language

models, video and image recognition and several others. With

demands of higher accuracy, neural models have continuously

evolved to become complex networks that have a significant

number of weights, inputs, connections and layers which

impact both inference and training time [7]. Taken together,

large models put tremendous pressure on the computation

and memory requirements to meet accuracy and throughput

demands of applications. Electronic accelerators have imple-

mented several optimizations for improving throughput and

reducing the computation and memory complexity by apply-

ing quantization, exploiting sparsity, pre-processing data, and

other techniques. However, training neural network models

consume both power and latency in electrical models which

becomes challenging with large models.

Emerging technology such as silicon photonics has the

potential to lower the energy cost while allowing parallel com-

putations which could result in both higher energy-efficiency

and throughput. Photonics has proven to substantially improve

the communication bottleneck with improved performance−
per − watt for long and short distances (within chassis

or board) for inter-processor communication. The intrinsic

properties of light also make photonics a potential contender

for parallel compute tasks such as linear algebra and matrix

multiplication. Several research groups from both academia

and industry have proposed photonic neural network acceler-

ation to scale deep neural network (DNN) inference in terms

of energy efficiency and throughput, achieving more than

an order of magnitude latency improvement over electronic

accelerators. For example, Clement’s or Reck’s arrangement

of Mach-Zehnder interferometers can represent any general

matrix multiplication [14] [2]. Each MZI within the grid will

need to be trained (amplitude and phase) to compute the linear

algebra transformations or matrix multiplication.

As MZIs have two parameters, phase and amplitude, prior

work have shown on how to adjust/correct the phase/amplitude

of MZIMs to overcome any imperfections in device fab-

rication when meshes of MZIs are connected [11]. Other

approaches have shown techniques on how to train the non-

linear device parameters with a numerical model, and then

to use this numerical model to train the analog devices as

in Zheng et.al. [20]. Such methods allows for the gradient to

be computed more accurately than existing training methods,

but conversions from a numerical model to photonic device

parameters may make this combined numerical and photonic

approach more expensive than a purely numerical training.

Such training also does not take into account any device

imperfections. Training a photonic device without access to

a numerical representation requires additional information

about the device’s behavior than the result of an inference

[6]. Hughes et. al. implement a training algorithm that takes

samples of each MZI’s output and uses this result over multiple

passes to compute the gradient for each MZI parameter

collectively [6]. This method allows for a MZI mesh to be

trained by itself, but it requires significant modifications and

may suffer in non-ideal cases [3] [6]. Conversely, Zhang et.

al. approach this problem by using an algorithm that does

not require the numerical device model to be known with a

genetic algorithm [19]. This allows the device to be trained

over time without measuring how each parameter impacts

individually, but requires a family of candidate parameters

to be created, which implies that the number of calculations

increases significantly compared to inferences.

In this paper, we propose a method to train any MZI-

based photonic neural network (PNN) using an additional

dot product circuit. A system such as the MZI mesh in

Figure 1 may be be used to implement the training of a PNN
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Fig. 1. Model of MZI mesh and peripherals including lasers, photodetectors, DACs, ADCs and dot products required for training of mesh parameters.
Numbering of MZI’s corresponds to the index of the MZI and its parameters.

Fig. 2. Model of MZI and its effect on the electric field component of
input signals.

through this algorithm. We accomplished this by modifying

backpropagation to a form that may be implemented on the

mesh using only the summation of partial sums, and the

addition of constant values to MZI parameters. This modified

backpropagation allows the gradient with respect to device

parameters to be computed exactly, allowing a gradient descent

approach adapted to PNNs. This allows for an entire layer’s

gradient to be calculated after a number of passes equal

to the number of parameters plus two times the number of

inputs. Parameters of the mesh are trained by implementing

a modified backpropagation algorithm on the hardware, and

those operations may be performed on device. The imple-

mentation does not modify the circuits or add any additional

lasers and therefore, self-trains the MZI to achieve the desired

accuracy and achieve O(n2) speedup over electrical methods.

We test our training algorithms on MNIST and CIFAR-10

datasets and show that our method improves the training when

compared to state-of-the-art electrical backpropagation. The

major contributions of this work as follows:

• Gradient Descent: Implements gradient descent in a

number of passes that scales linearly with the number

of layer parameters. This improves the efficiency of the

proposed training algorithm.

• Unmodified Mesh: Allows for the MZI mesh to be

trained without significantly modifying its circuits or any

adding additional lasers or photodetectors beyond what

is required for inferences. This allows on-device training

which simplifies the architecture for both training and

inference.

• Energy-efficient Training: Since the training is on the

device parameters rather than comparison to a numerical

representation, the implementation is similar to those

used for static matrices, and we can avoid costly calibra-

tions. Our results indicate that the training algorithm is

comparable to both existing photonic and digital training

results in terms of accuracy and throughput.

II. BACKGROUND

A. MZI Mesh Architecture

The effect of a single Mach-Zehnder interferometer (MZI)

on the electric field may be modeled by two parameters,

phase and amplitude, as described in Figure 2. MZI’s may be

arranged to form a multiport interferometer in an exponentially

large number of configurations, including those described by

Clements et. al. [2] and Reck et. al. [14]. The effects of

any mesh on electric field can be described as a matrix

multiplication:

T(nj ,φj ,ωj) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0
0 1 . . . . . . 0
...

. . .
...

... eiφj sinωj eiφj cosωj

...
... cosωj − sinωj

...
...

. . .
...

0 . . . . . . 1 0
0 . . . . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where φi and ωi denote the MZI parameters in Figure 2 for

each MZI device in the mesh, and nj and mj denote the lanes

of the mesh that connect the MZIs. While the meshes utilized

here and described by Clements et. al. only connect adjacent

lanes [2], the training algorithm introduced in this paper may
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be applied to any arrangement of MZIs. The arangements of

MZI introduced by Clements et. al. may represent any unitary

matrix [2], and this property is desirable for using the multiport

interferometers in photonic neural networks.

Since we cannot easily measure the electric field directly, a

PNN computed on an MZI mesh measures the optical power

with photodiodes. This means that the layers compute the

magnitude squared of the result of the matrix multiplication.

This gives us for every layer:

M(l) =
∏
j=1

T(n(l)
j , φ

(l)
j , ω

(l)
j )

z(l+1) = |M(l)a(l)|2 + b(l)

a(l+1) = f(z(l+1))

where l denotes the particular layer computed, z(l+1) is the

output of the matrix multiplication plus the bias for layer l,
and a(l+1) denotes the output of the layer l where f is its

activation function. Note that for the purposes of this paper, the

magnitude operator always refers to the element-wise complex

magnitude. This result, a(l+1) may be used as the input to the

next layer and this may be used to compute inferences through

the entire network. This model allows for an entire PNN to

be computed on a MZI mesh such as the one described in

Figure 1.

B. Backpropagation Algorithm

We briefly review the backpropagation algorithm since we

propose to modify some of the steps to compute the gradients

with supervised training. Supervised training in this case

consists of minimizing an error function, denoted here as J,

which evaluates the error as the residual squared, although

this process works for any differentiable error function. Next,

the gradient of the error function is taken with respect to

every network parameter, and this value is used to update each

parameter. For a set of parameters, ω, the updated weights are:

ωi(t+ 1) = ωi(t)− α
∂J
∂ωi

ω(t+ 1) = ωi(t)− α∇ωJ

For the last layer, the gradient with respect to its parame-

ters is trivial, but for the preceding layers, this task is less

straightforward. A method for generalizing this process uses an

intermediate vector δ(l), to track the derivative of each layer’s

outputs with respect to the loss. This can then be multiplied

by the derivative of a layer with respect to its parameters to

get the final gradient:

δ
(l+1)
i =

∂J
∂z(l+1)

i

∂J
∂ω

(l)
j

=

|a|∑
i=1

δ
(l+1)
i

∂z(l+1)
i

∂ω
(l)
j

In order to do this for every layer l, the values of the δ(l)

may be found for every layer recursively from the output using

the chain rule of partial derivatives:

δ(L) = (a(L) − y)� f ′(z(L))

δ(l) = f ′(z(l))�
|δ(l)|∑
i=1

δ
(l+1)
i

∂z(l+1)
i

∂a(l)

The algorithm for computing the gradient using this method

is straightforward. Calculate the vector δ(l) for every layer,

l, and use it to compute the gradient and update for each

layer’s parameters. This process is then repeated until training

is completed according to the version of backpropagation that

is being applied.

III. PROPOSED BACKPROPAGATION TRAINING

ALGORITHM FOR PNN

In order to implement gradient descent on the networks

described in Figure 1, we need to compute the gradient with

respect to each mesh parameter and increment it in the form:

φ(t+ 1) = φ(t)− α∇φJ

ω(t+ 1) = ω(t)− α∇ωJ

for parameter vectors φ and ω. Utilizing our derivative of

the output, we find the gradient as the dot product of the

intermediate vector δ(l) and the derivative of the mesh itself

with respect of its parameters.

Finding the values of both of these vectors is challenging

because the mesh can only measure the modulus squared of

its matrix multiplication, which removes both the complex

component of the result, and additionally implies the mesh

can only return positive values, whereas both δ(l) and the

derivative of z(l+1) may be signed.

Computing Gradient: In order to compute the gradient, we

compute two mesh iterations for every MZI parameter, and

take the difference of the result as done in Figure 3 for the

derivative of the MZI in the first row, third column. For

each ωi, we add a constant value of π/4 to its value, and

modulate channels that do not connect to the MZI containing

the target parameter by a factor of 1/
√
2 and store the result

of the mesh in an intermediate vector q. Next, we repeat but

instead subtract the target parameter by π/4 and store this

second result in the intermediate vector p. The factor of 1/
√
2

can be accomplished by the addition of MZM’s between any

connecting MZI’s. Since the multiplicative effect of this MZM

needs to be only 1 or 1/
√
2, its size can much smaller than

would be required otherwise, as its state is effectively binary.

As can be seen in the full algorithm proof in the appendix, the

difference of q and p is exactly equal to the derivative of z(l+1)

with respect to the target parameter. This difference can be

computed by a PE connected to each output of the mesh. These

two steps need to be repeated for every parameter, ωi. Figure 3

shows the calculation for ω31 by adding and subtracting π/4.

This step needs to be implemented for each of MZIs.

The process is continued for every φi in the mesh in the

manner described in Figure 3. This version is slightly simpler,

adding π/6 to the target parameter, and storing the mesh result

in the vector u. Then again we compute the layer subtracting

π/6 from the target parameter and store it in v. Finally,
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Fig. 3. (a) and (b) Method for taking derivative of ωi. Difference of two passes with an offset of a constant value to the target weight. Parallel
paths must be modulated by a factor of 1√

2
, indicated at the sections highlighted red. (c) and (d) Corresponding process for derivative of φi. For

both processes, the derivative is taken with respect to paramters of the MZI in index (3,1) and all other mesh parameters are unchanged.

the difference of the intermediate vectors u and v is exactly

equal to the derivative of the output with respect to the target

parameter φi. These two steps need to be repeated for every

parameter, φi. Figure 3 shows the calculation for phi31 by

adding and subtracting π/6. This step needs to be implemented

for each of MZIs.

Both of these methods allow the computing of the gradient

by exploiting the fact that for any complex matrix M, and

for any complex vector, a, and any MZI, the derivative of the

modulus squared of their product can be computed by only

modifying the MZI and possibly inserting the diagonal matrix

D with the following identity:

∂

∂ω
|MT (ω, φ)a|2 = |MT (ω+

π

4
, φ)Da|2−|MT (ω−π

4
, φ)Da|2

Dik =

{
1 k = ni, k = mi
1√
2

else

∂

∂φ
|MT (ω, φ)a|2 = |MT (ω, φ+

π

6
)a|2− |MT (ω, φ− π

6
)a|2

which yields
∂z(l+1)

∂ωi
= q − p

∂z(l+1)

∂φi

= u − v

This allows for the derivatives of the output with respect

to the target parameter vector to be computed in two times

as many steps as there are parameters to take the derivative.

This also means that in both cases the inputs to the layer are

exactly what they were on the inference step in all stages of

this process. The derivative of the bias vector is unmodified

from standard backpropagation and is trivially proven to be

one if the output index matches the bias parameter index and

zero otherwise.

Finally once the derivative of the vector z(l+1) is computed,

the final derivative of error with respect to the parameter is

computed by taking the dot product of the our result from the

previous step with δ as discussed already.

∂J
∂φ

(l)
j

=

|a|∑
i=1

∂J
∂z

(l+1)
i

∂z
(l+1)
i

∂φ
(l)
j

=

|a|∑
i=1

δ
(l+1)
i

∂z(l+1)
i

∂φ
(l)
j

∂J
∂ω

(l)
j

=

|a|∑
i=1

∂J
∂z

(l+1)
i

∂z
(l+1)
i

∂ω
(l)
j

=

|a|∑
i=1

δ
(l+1)
i

∂z(l+1)
i

∂ω
(l)
j

Once each layer is computed, the value for the preceeding

layer’s δ(l) may be calculated by following the method de-

scribed in Figure 4. It describes how in three steps a single

value of the δ vector may be computed first by setting the input

to all input channels except the target index to zero, and storing

the result at each output channel in the temporary vector x.

The second step is to repeat the first doing the opposite, setting

only the target parameter to zero and storing the result in the

temporary vector y. The third and final step is to take the

difference of the values of x and y and also to add the result

from the multiplication from the inference step, and then take

the dot product of the resulting vector with the δ(l) from the
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Fig. 4. Method for obtaining δi. Difference of two passes with ai set
to zero for the first, and all of a except ai set to zero. These are added
to the mesh results from the inference step to obtain the δi element
for each layer. Finally, the dot product of the summation and the next
layer’s δ gives the current layer’s value for that index. Finally, the result
is multiplied by the derivative of the activation function and divided by
the ai.

current layer to get a single scalar value, which is multiplied

by the activation function’s derivative and the inverse of the

result from the inference step. This gives the value of the

vector δ(l−1) for the preceding layer and allows the gradient

of that layer to be computed. The algorithm depicted here and

in Figure 4 functions by exploiting the following identity:

δ
(l−1)
j =

f ′(z(l)j )

a
(l)
j

δ(l)·[|M (l)a(l)|2+|M (l)s|2−|M (l)(a(l)−s)|2]

sk =

{
a(l)j k = j

0 else

which yields

δ
(l−1)
j =

f(z
(l)
j )

a
(l)
j

δ(l) · (x − y)

Key Insight: With both of the stages repeated for each

layer, the gradient of every parameter in the network will be

calculated. If one calculates the number of MZI runs, it will

will be two times the number of parameters plus two times the

number of inputs. We calculate q, p, u and v vectors for ωi

and φi for each MZI. Then x and y vectors are calculated by

setting one of the inputs to zero and then setting the remaining

inputs to zero as discussed previously. Now, both Clements

et. al. and Rick et. al. could also be used to train the MZIs

using their proposed decomposition method. The proposed

decomposition method relies on two important properties of

the Tm,n matrices. First, for any given unitary matrix U, there

are specific values of ω and φ that make any target element

in row m or n of matrix Tm,nU zero [14]. Second, any

target element in column n or m of U can also be nulled by

multiplying U from the right by a T−1
m,n. As seen in [2], for a 5

× 5 case, nulling elements of U one by one in such a way that

every Tm,n and T−1
m,n matrix used in the process completely

determines both the reflectivity and phase shift of one beam

splitter and phase shifter. The sequence of Tm,n and T−1
m,n

matrices must both correspond to the desired order of beam

splitters in the interferometer and guarantee that the nulled

elements of U are not affected by subsequent operations.

In the Reck decomposition, the entire matrix can be nulled

using either only Tm,n matrices or onlyT−1
m,n matrices while

still making sure nulled elements of U are not affected by

subsequent operations. Therefore, the nulling of elements has

to be implemented for each beam splitter for each parameter.

This increases the costs for Clement’s and Rick’s approaches

compared to our proposed approach. The total number of mesh

iterations for both of these stages combined will be equal to

two plus the number of inputs squared minus the number of

inputs. Given that there are intermediate values computed after

every layer, the output of each layer must be held in memory

each epoch. Moreover, the result for the mesh before the bias

is added and activation must also be stored in memory. This

is true for other training methods with photonics [6] where

the constant parameter values are calculated and then utilized

at the end. These processes collectively allow for the gradient

with respect to every parameter in the network to be computed,

and once this is done, the gradient descent may occur as it

would via any other method.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

training algorithm on MZI meshes. We first describe the

training of the MZI meshes and then evaluate the latency and

energy costs for different deep neural network models such as

VGG-16 and MobileNet. We also compare the MZI meshes

with state-of-the-art electrical and photonic accelerators.

A. Training Evaluation

We numerically evaluate the training method with our own

simulator built in C. We extend the simulator to include the

MZI meshes with the parameters (ω and φ) for training. We

test the simulator with the proposed training method and com-

pare against existing backpropagation methods. All evaluation

with different fixed, varying training rates for MNIST and

Imagenet datasets. We run the training both for numerical

method and photonic models for different epochs to evaluate

the training performance.
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The photonic neural network was modeled by considering

all the optical component losses and modeled using DSENT

[18] tool. This tool captures losses for various components in-

cluding external laser, losses through MZIs, waveguide losses

and electrical frontend and backend circuitry (ADCs/DACs,

TIA, etc). The overall power consumption Ptotal includes three

parts: laser power Plaser, power consumption of transmitting

circuitry PTX, and power consumption of receiving circuitry

PRX. This was carefully calculated for each pass through

the MZI meshes (and also for different size of MZIs). This

provided the inference energy and then we calculated the

gradient costs for each layer. We have calculated the energy

consumption for each of our photonic devices (losses, external

laser) and then modeled the inference and gradient cost.

This method for training MZI architectures was tested

against conventional training methods such as backpropagation

with numerical matrices, and its performance was evaluated.

Due to the relatively small space of angle values for each

MZI, it can increase performance substantially to normalize

the angle increments. This improves performance by reducing

the likelihood of increments beyond the target. Alternatively,

a sufficiently low learning rate can approximate this effect

without the additional calculations to normalize the weight

increment vectors.

With these optimizations in mind, the algorithm is trained

against MNIST and compared to conventional training meth-

ods. The training consists of samples of the MNIST dataset,

and is trained for up to 100 epochs for most of the design

space exploration. Various methods of backpropagation are

applied, such as fixed learning rate, variable learning rate, and

others to test the effectiveness of the proposed approach. One

key training method is to normalize the increment for layer

parameters. What this method entails is taking the vector of

the gradient, and if the euclidean norm exceeds a threshold, to

divide the vector by a scalar to reduce its norm to the target

threshold. This is particularly applicable for this case as the

space of possible angle values for phase-shifters is very small,

and excessively large increments are unlikely to converge.

With neural networks of identical size, the training rates are

comparable on average, with the accuracy of the photonic

neural network converging at a slightly reduced rate, with the

converged values being roughly equivalent on average, as can

be seen in Figure 5.

For a fixed learning rate of 0.02 the parameterized gradient

descent for the MZI mesh converged slightly more slowly

than the purely numeric model, but it converged at a roughly

comparable rate. After 100 epochs the numeric model only

predicted the incorrect result 15% of the time, and the photonic

model had an error rate of 21% on the same verification set.

The second result in Figure 5 models a learning rate that is

inversely proportional to time for training. Here the results are

very similar, with both models being correct 88% of the time.

The space of angle values is very small, so smaller weight

increments typically improve accuracy whenever the error is

high, as the high error of initial results can cause angle values

to overshoot ideal values in many cases. Finally, the last result

in Figure 5 is the best results for both the numeric and photonic

model analysis. In this sample of the dataset, the best method

Fig. 5. (a) Training on random sample sets from MNIST dataset with
fixed learning rate of 0.02 for both numeric and photonic models. (b)
Training with learning rate that scales inversely each epoch. Training
where the best hyperparemeters for both numeric and photonic models
are used seperately. In this case the best version is the inversely scaling
learning rate for the numeric model, and the normalized increment model
for the photonic model.

for the numeric model is the inversely proportional learning

rate, and the best method for the photonic model is one with

smaller, or normalized increments.

Additionally, the training algorithm is implemented on a

MZI mesh based implementation of ResNet18, and trained on

the Imagenet dataset. For this larger dataset, the differences

are much less pronounced, while individual training iterations

take different paths, on average they converge at essentially

the same rate, as can be seen in Figure 6.
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Fig. 6. Training error rate for imagenet dataset. Using batch size of 200
for both, decreasing learning rate for both numeric and photonic training,
and normalized increments for the photonic model as well. In both cases
using the best particular learning rates. Error rates are averaged from
5 randomly reordered training passes of the dataset. Both models used
a numeric or photonic implementation of ResNet18

TABLE I
ENERGY COST PARAMETERS FOR MZI AND LASER COST, AND LOSS

PARAMETERS FOR MZIS AND LINKING WAVEGUIDES

Layer Parameters Value
MZI Loss 2 dB

MZI Energy Cost [12] [4] 0.45-5pJ / Op
Waveguide Loss 0.1 dB/MZI

Laser Cost ∼7.93 W

B. Energy and Latency Estimations

The performance of the system was evaluated both for

inference and gradient descent use cases. First circuits were

modeled of a series of MZI sizes, each along the algorithm

prescribed in Clements et. al. in order to minimize optical

depth [2].

The power loss is measured for each size and in this

conservative model the loss is calculated to increase by ap-

proximately 2 decibels for every increase in optical depth. The

energy consumption of the lasers is modeled using DSENT

[18] from the data on signal losses obtained from the circuit

model. The resulting component parameters are in Table I. We

must factor in the fact that for every laser source, there are

photodiodes at every possible output it must reach, and again

the power consumption is larger for these analog signals than

for purely digital sources. It also accounts for the dynamic

power consumption for control devices, analog-to-digital con-

verters (ADCs) and various small miscellaneous power drains,

but these remain a relatively insignificant contribution to the

total power cost.

In order to model the total power consumption for each

layer, we must account for the cost of the circuits that control

the phase shifters. For the purposes of phase-shifter settings,

the matrices the layers compute are static because the phase

shifters are controlled by the parameters directly rather than

calibrated to fit some external matrix. The phase shifter power

consumption varies depending on the system, ranging from

0.45 pJ to 5 pJ per operation for this system [4] [12]. We will

Fig. 7. (a) Energy consumption for the inference stage for a layer of
given size. Heaters make up an overwhelming amount of the power
consumption. (b) Inference cost for for a variety of integer layer sizes.

be using the higher power consumption value for the modelling

of this system. Note that this method of setting a MZI mesh to

a matrix is both significantly more energy efficient and affords

a higher bandwidth than setting the MZI to an external weight

matrix rather than predefined parameters [12]. We break the

power consumption into dynamic power, leakage, laser power

and heater costs for different sizes of MZI (3 × 3, 5 × 5, 8 ×
8 and 11 × 11). The energy consumption for inference grows

linearly for larger sizes of the MZI as seen in the Figure 7(a)

with the heaters needed to stabilize the lasers consuming

maximum energy. As can be seen in Figure 7(b), the energy

cost for the inference step grows roughly linearly as the layer

size increases. This is because the dominant source of power

consumption is the heaters for modulating the lasers, and the

number of lasers grows linearly. The power consumption is

roughly 8 mW per laser for all tested bandwidths, as cited in

Table I. It can also be seen in Figure 7(b) that as the laser

power consumption increases, it is a small contribution to the

total power consumption.

Once the cost of inference is known, determining the energy

cost of the gradient step is a simple matter. The gradient is

taken by using the mesh repeatedly. Calculating the value for

δ and the gradient for each layer can be done by the methods

described in the previous sections. The power consumption

for each step of this process is the same as it is in the
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Fig. 8. Energy consumption scaling as layer size increases. Uses upper
bound for MZI tuning cost of 5pJ/Op.

TABLE II
ENERGY COST FOR INFERENCE AND GRADIENT STEPS IN VGG-16

TRAINING SEPARATED BY LAYER

VGG-16
Layer Output Kernel Layer Cost (mJ) Gradient Cost (mJ)
224x224x64 3x3 0.058 5.69
112x112x128 3x3 0.010 0.95
56x56x256 3x3 0.005 0.47
28x28x256 3x3 0.001 0.12
14x14x512 3x3 0.001 0.06
4096 FC 11.1 890.4
1000 FC 0.663 53.1
Total 11.9 958.8

TABLE III
ENERGY COST FOR INFERENCE AND GRADIENT STEPS IN MOBILENET

TRAINING SEPARATED BY LAYER

MobileNet
Layer Output Kernel Layer Cost (mJ) Gradient Cost (mJ)
112x112x32 3x3 0.0024 0.24
112x112x32 3x3 0.0024 0.24
56x56x64 3x3 0.0012 0.12
56x56x128 3x3 0.0024 0.24
28x28x128 3x3 0.0006 0.06
28x28x256 3x3 0.0012 0.12
14x14x256 3x3 0.0003 0.03
14x14x512 3x3 0.0006 0.06
7x7x512 3x3 0.0001 0.01
7x7x1024 3x3 0.0003 0.03
9 Layers 1x1xN 0.1620 12.96
1000 FC 0.0054 0.43

Total 0.179 14.54

TABLE IV
INFERENCE PER SECOND (IPS) AND GRADIENT TIME FOR VGG-16 AND

MOBILENET FOR MZI MESHES.

Network IPS Gradient Time(sec)
VGG-16 0.33 160.7

Mobilenet 0.30 237.4

inference step, but the mesh is used repeatedly for each layer as

described before: two times plus the size of the layer squared

minus the size of the layer. Figure 8 shows for various MZI

sizes and as observed, larger MZI sizes consume more power

for gradient computation. We also consider different power

estimates, conservative by assuming optical power parameters

(losses) to become worse and aggressive by assuming that

optical parameters to become much better in the future. The

cost of the gradient for a variety of layer sizes is in Figure 8.

As can be seen, the cost of the gradient increases extremely

quickly as size of the layer increases, which is unsurprising

as the cost of each mesh operation scales linearly, and the

number of mesh iterations increases quadratically. The cost of

the dot products is extremely small because the results can be

passed into it directly from the mesh without ever needing to

make a DRAM access. This makes the power consumption of

the dot product very low as there are not any memory accesses

[1]. The result is that the dot product has marginal impact on

the cost of the gradient compared to the optoelectronic power

costs.

The models for the cost of gradients and the cost of the in-

ferences were applied to various existing network architectures

in order to compare performance on existing benchmarks. The

results for inference and gradient energy costs are in Tables

II, II, and IV. All of these are operated using the 10 GHz

benchmark used by Mojaver et. al. [12]. With this operating

speed, the inference step for VGG-16 and Mobilenet take

around 3 seconds each, as detailed in Table V. The most

significant sources of energy cost are the largest layers. Large

layers can be broken apart into smaller matrix multiplications

in the same manner as is commonly used in processing

element array methods, such as those used by Eyeriss or

similar accelerators [1]. While it may be possible to reduce

energy cost by doing this, exploring this method for reducing

power consumption is beyond the scope of this paper. In this

instance, it is only used for the extremely large fully connected

layers. Fortunately, this has no effect on how the gradient is

calculated, the task is just broken up into each partial sum. The

most efficient layers in all cases are the smallest convolutions,

as the cost of layer inferences increases as the size does, as

previously discussed. However, decreasing layer size in favor

of more neurons increases the time it takes for this method to

perform inferences. Because of this, VGG-16 and Mobilenet

both require more time for both inference and gradient despite

having a lower energy cost. The primary method to improve

energy consumption is to reduce the size of the layers, and the

method to improve inferences per second is to increase layer

size.

As far as physical dimensions of the proposed architecture

is concerned, there have been prior programmable MZIs

designed and fabricated [5]. For example, the programmable

nanophotonic processor (PNP) is composed of 176 individu-

ally tunable phase modulators and 88 interferometers spanning

a chip area of 4.9 mm by 2.4 mm. These are moderate

dimensions of the chip to build photonic neural network ac-

celerators. Therefore, we expect that the proposed accelerator

with associated components (laser, DAC, ADC) should easily

fit within chip dimensions [9], [17].
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TABLE V
INFERENCE TIME AND COST PER INFERENCE COMPARISON FOR PROPOSED

MZI MESHES AND OTHER ELECTRICAL AND OPTICAL ACCELERATORS.

Accelerator Inference Time (ms) Cost per Inference (mJ)
MZI Mesh 280 51.19
Eyeriss [1] 29 8.01

Res-DNN [16] 2.90 2.34
UNPU [8] 2.89 0.91

HolyLight [9] 0.02 1.11
Albireo [17] 0.13 2.91

TABLE VI
TIME COMPLEXITY AND MESH BANDWIDTH COMPARISONS.

Mesh Training Method Time Complexity Mesh Bandwidth
Clements et. al. O(N4) ∼10 MHz

Dynamic Calibration O(N2) ∼2 kHz

Parameterized Gradient O(N2) 10 MHz

Finally, this system is compared against numerous existing

methods for hardware acceleration, as can be seen in Table

V. Both the time for inferences and the energy consumption

of this conservative model of the system is greater than the

compared electrical accelerators [1] [16] [8]. This difference

is more significant for the photonic accelerators, which is

unsurprising for the relatively low bandwidth for this model

[9] [17]. It may be possible to improve the performance of

the MZI mesh to match these benchmarks since the mesh is

mostly unmodified. Further work to analyze the maximum per-

formance this system might find the limits to the possibilities

of this system.

Table VI shows the different mesh training methods, time

complexity and mesh bandwidths. It must be noted that

programming weights can be an order of magnitude more

expensive and imposes limits on bandwidth [12] [4]. In the

dynamic calibrated meshes analyzed by Hassan et. al., the

mesh bandwidths are on the order of 2kHz which is a

difference of three orders of magnitude on the time it takes

each training step and the time complexity is O(N2). Both the

calibration process described by Hassan et. al., and the method

of setting parameters described by Clements et. al. increase the

cost of training meshes by existing methods significantly. Our

parameterized gradient approach discussed in previosuly in

Section III shows higher mesh bandwidth of 10 MHz (similar

to Clements et.al. [2]) with a time complexity of O(N2). In

order to set a multiport interferometer’s parameters, the values

of the matrix multiplication must be found to zero an element

of an intermediate matrix, and this must be repeated for

every MZI in the layer. As discussed already, the calibration

method of obtaining this is extremely time intensive, but the

nulling parameters of an element otherwise requires solving

the system of linear equations, which is a task with quadratic

time complexity and therefore, Clements et.al. will require

O(N4).

V. RELATED WORK

Reck’s decomposition shows how to transform N input

states into N output states using an arrangement of beam split-

ters, phase shifters and mirrors. The methodology transforms

the input state with modes (k1, k2) into output states with

modes (k‘1, k‘2) as shown [14]:[
eiφsinω eiφcosω
cosω −sinω

] [
k1
k2

]
=

[
k‘1
k‘2

]

The parameter ω describes the reflectivity (
√
R = sin ω)

and transmittance (
√
T = cos ω) of the beam splitter. The

parameter φ can be realized as an external phase shifter after

the beam splitter. Reck et. al. adopts this approach where the

beam splitter with variable reflectivity can be substituted by

a Mach-Zehnder interferometer (MZI) using symmetric 50:50

beam splitters. The most important conclusion of this work is

that one can setup the unitary matrix transformation by using

these beam splitters or MZIs. This seminal work proposed to

apply this methodology to crytography and quantum teleporta-

tion in quantum information science and not to neural network

modeling.

David Miller [10], [11] showed how to design an optical

device that can perform any linear function or coupling be-

tween inputs and outputs. The work showed the key concept

with successive beam splitters that have phase shifts and

reflectivities which can be calibrated such that each device

self-configures. This process requires only local feedback

loops each operating on a single measurable parameter. Such

feedback loops can be left running during device opera-

tion, allowing continuous optimization and compensation for

drifts in devices. This self-configuration is also progressive,

requiring no global calculations or optimization. While the

initial concept applied to beam splitters, successive designs

applied to path-length adjusted programmable MZIs and was

experimentally proven [13], [15]. This is self-training MZIs,

but needs additional detectors and equal path lengths for

all signal transmission. This approach has not been directly

applied to different neural network layers for training.

Clements et. al. [2] builds on Reck’s model and improves

in some of the key areas. First, Clement’s design achieves the

minimal optical depth, requiring roughly half of the depth of

the Reck design, which is important for minimizing optical

losses and reducing fabrication resources. Second, the natural

symmetry of this new design makes it significantly more

robust to fabrication errors caused by mismatched optical

losses. Clement’s finding is based on a new mathematical

decomposition of a unitary matrix and this decomposition is

used to prove the universality of the design and to construct

an efficient algorithm to program interferometers based on it.

The decomposition method in Clement’s can be applied to

both row-wise (as Reck’s) Tm,n and column-wise T−1
m,n for

a unitary matrix of U with size of m,n. This decomposition

does not delve into many details on training the layers or with

varying number of inputs.

Other in-situ training approaches have been proposed to

train MZIs as seen in [6]. The proposed techniques uses back-

propagation in a techniques called time-reversal interference

method (TRIM) to compute the cost of the gradient function.

After calculating the original amplitude, the time reversed

adjoint input is calculated by sending the loss function from

the output port. After the interference between the original and

time reversed input, the intensities are measured and subtracted
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from the original amplitudes. This process while has a constant

time, the reversing of signals sent into the MZI meshes

requires lasers and detectors to be reversed which is a much

harder problem. When compared to our approach, keeping

the lasers and detectors in identical locations simplifies the

hardware architecture.

VI. CONCLUSIONS

This paper introduces a method to perform parameterized

gradient descent on a multiport interferometer composed of

MZIs. The proposed algorithm accomplishes training without

adding any additional photodiodes or lasers. This allows

for training of the system parameters directly, circumventing

extremely costly calibrations during the training process. The

proposed method can accomplish the inference phase of pho-

tonic neural networks for allowing the PNN to be trained via

backpropagation. This algorithm for MZI training introduces

the possibility for parameterized gradient descent for any

circuit which utilizes MZI’s for linear algebra.
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APPENDIX A

DERIVATIVE ALGORITHM

The transfer matrix for a circuit of MZIs is the product of

T(nj ,φj ,ωj) such that:

U =

M∏
j=1

T(nj ,φj ,ωj)

For a mesh with input vector a, and an output vector z, the

output for the layer can be defined with element-wise complex

magnitude as:
�z = |U�a|2

zj = |
N∑

k=1

Ujkak|2

Neglecting bias in notation as its derivative is trivial. To find

the derivative of each output with respect to φx

let A =

M∏
j=x+1

T(nj ,φj ,ωj)

let �q =
x−1∏
j=1

T(nj ,φj ,ωj)�a

Substituting in �z:

�z = |AT(nj ,φj ,ωj)�q|2

let w = nx, let v = nx +1, let �m = U�a = AT(nj ,φj ,ωj)�q
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This yields for each row, mj

mj = Awxe
iφx(qw sinωx + qv cosωx)+

Avx(qv cosωx − qv sinωx) +

w−1∑
k=1

Ajkqk +

N∑
k=v+1

Ajkqk

let c =

w−1∑
k=1

Ajkqk +

N∑
k=v+1

Ajkqk

mj = Awxe
iφx(qw sinωx + qv cosωx)+

Avx(qv cosωx − qv sinωx) + c

Substituting into the output vector �z:

zj = |mj |2 = |c + Awxe
iφx(qw sinωx + qv cosωx)+

Avx(qv cosωx − qv sinωx)|2

zj = |c|2 + |Awx|2|(qw sinωx + qv cosωx)|2

+|Avx|2|(qw cosωx − qv sinωx)|2

+[Awxe
iφx(qw sinωx + qv cosωx), c]+

[Avx(qw cosωx − qv sinωx), c]

+[Awxe
iφx(qw sinωx+qv cosωx),Avx(qw cosωx−qv sinωx)]

Take the result for power from Appendix A, for each term,

seperately:

|Awx|2|(qw sinωx + qv cosωx)|2 =

|Awx|2(|qw|2 sin2 ωx+[qw, qv] sinωx cosωx+|qv|2 cos2 ωx)

|Avx|2|(qw cosωx − qv sinωx)|2 =

|Avx|2(|qw|2 cos2 ωx− [qw, qv] sinωx cosωx+ |qv|2 sin2 ωx)

[Awxe
iφx(qw sinωx + qv cosωx), c] =

[Awxe
iφxqw, c] sinωx+

[Awxe
iφxqv, c] cosωx

[Avx(qw cosωx − qv sinωx), c] =

[Avxqw, c] cosωx − [Avxqv, c] sinωx

And finally

[Awxe
iφx(qw sinωx+qv cosωx),Avx(qw cosωx−qv sinωx)] =

[Awxe
iφx ,Avx](q2

w − q2
v) sinωx cosωx+

[Awxe
iφxqv,Avxqw] cos

2 ωx − [Awxe
iφxqw,Avxqv] sin

2 ωx

let t1 = |Awx|2|qw|2 + |Avx|2|qv|2 − [Awxe
iφxqw,Avxqv]

let t2 = |Awx|2|qv|2 + |Avx|2|qw|2 + [Awxe
iφxqv,Avxqw]

let t3 = |Awx|2[qw, qv]−|Avx|2[qw, qv]+[Awxe
iφx ,Avx](q2

w−q2
v)

let t4 = [Awxe
iφxqw, c]− [Avxqv, c]

let t5 = [Awxe
iφxqv, c] + [Avxqw, c]

Combine like terms in zj

zj = t1 sin
2 ωx+t2 cos

2 ωx+t3 sinωx cosωx+t4 sinωx+t5 cosωx

Derivative of zj :

zj = t1 sin 2ωx−t2 sin 2ωx+t3 cos 2ωx+t4 cosωx−t5 sinωx

Moving one term at a time for two passes of the mesh, set
ωx to ωx plus π/4 for the first, and ωx minus π/4 for the

second. For the t1 terms:

sin2(ωx +
π

4
)− sin2(ωx − π

4
)

(sinωx + cosωx)
2

2
− (sinωx − cosωx)

2

2

2 sinωx cosωx = sin 2ωx

For the t2 terms:

cos2(ωx +
π

4
)− cos2(ωx − π

4
)

(cosωx − sinωx)
2

2
− (cosωx + sinωx)

2

2

−2 sinωx cosωx = − sin 2ωx

For the t3 terms:

sin(ωx +
π

4
) cos(ωx +

π

4
)− sin(ωx − π

4
) cos(ωx − π

4
)

(cos2 ωx − sin2 ωx)

2
− (sin2 ωx − cos2 ωx)

2

cos2 ωx − sin2 ωx = cos 2ωx

For the t4 terms:

sin(ωx +
π

4
)− sin(ωx − π

4
)

sinωx + cosωx√
2

− sinωx − cosωx√
2√

2 cosωx

For the t5 terms:

cos(ωx +
π

4
)− cos(ωx − π

4
)

cosωx − sinωx√
2

− cosωx + sinωx√
2

−
√
2 sinωx

This means that for nearly all terms that do not contain c,

this method obtains the derivative with respect to ωx exactly,

and for terms that do contain c, it is off by a factor of
√
2

If we modulate channels that do not pass through the target

MZI by 1/
√
2, then taking two passes of the mesh with the

original value of ωx plus π/4 and then minus π/4, we obtain

the derivative with respect to that parameter, ωx. Therefore we

can implement the derivative with two mesh iterations adding

and subtracting π/4, and multiplying channels that do not pass

through the mesh by 1/
√
2.
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