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Abstract—Photonic neural networks enable faster and energy-
efficient inferences for deep neural network implementations
when compared to electrical counterparts. Prior training methods
for photonic neural networks modify the network or decompose
the inputs or weights to simplify the training, however that could
impact accuracy. Electrical training uses backpropagation that
needs to partially differentiate each of the weights with respect
to the loss function on a number of examples to achieve high
accuracy. While the traditional backpropagation algorithm can
be applied to electrical networks, it is difficult to directly apply
to photonic neural network with Mach-Zehnder Interferometer
(MZI) meshes that have different parameters (frequency and
phase). In this paper, we implement the traditional backprop-
agation algorithm to train the parameters of the MZI meshes
with gradient descent. Parameters of the mesh are trained
by implementing a modified backpropagation algorithm on the
hardware, and those operations may be performed on device.
The implementation does not modify the circuits or add any
additional lasers and therefore, self-trains the MZI to achieve
the desired accuracy and achieve O(n?) speedup over electrical
methods. We test our training algorithms on MNIST datasets and
show that our method improves the training when compared to
state-of-the-art electrical backpropagation.

[. INTRODUCTION

Deep learning is well established for solving complex
problems [7] in many applications such as autonomy, language
models, video and image recognition and several others. With
demands of higher accuracy, neural models have continuously
evolved to become complex networks that have a significant
number of weights, inputs, connections and layers which
impact both inference and training time [7]. Taken together,
large models put tremendous pressure on the computation
and memory requirements to meet accuracy and throughput
demands of applications. Electronic accelerators have imple-
mented several optimizations for improving throughput and
reducing the computation and memory complexity by apply-
ing quantization, exploiting sparsity, pre-processing data, and
other techniques. However, training neural network models
consume both power and latency in electrical models which
becomes challenging with large models.

Emerging technology such as silicon photonics has the
potential to lower the energy cost while allowing parallel com-
putations which could result in both higher energy-efficiency
and throughput. Photonics has proven to substantially improve
the communication bottleneck with improved per formance—
per — watt for long and short distances (within chassis
or board) for inter-processor communication. The intrinsic

properties of light also make photonics a potential contender
for parallel compute tasks such as linear algebra and matrix
multiplication. Several research groups from both academia
and industry have proposed photonic neural network acceler-
ation to scale deep neural network (DNN) inference in terms
of energy efficiency and throughput, achieving more than
an order of magnitude latency improvement over electronic
accelerators. For example, Clement’s or Reck’s arrangement
of Mach-Zehnder interferometers can represent any general
matrix multiplication [14] [2]. Each MZI within the grid will
need to be trained (amplitude and phase) to compute the linear
algebra transformations or matrix multiplication.

As MZIs have two parameters, phase and amplitude, prior
work have shown on how to adjust/correct the phase/amplitude
of MZIMs to overcome any imperfections in device fab-
rication when meshes of MZIs are connected [11]. Other
approaches have shown techniques on how to train the non-
linear device parameters with a numerical model, and then
to use this numerical model to train the analog devices as
in Zheng et.al. [20]. Such methods allows for the gradient to
be computed more accurately than existing training methods,
but conversions from a numerical model to photonic device
parameters may make this combined numerical and photonic
approach more expensive than a purely numerical training.
Such training also does not take into account any device
imperfections. Training a photonic device without access to
a numerical representation requires additional information
about the device’s behavior than the result of an inference
[6]. Hughes et. al. implement a training algorithm that takes
samples of each MZI’s output and uses this result over multiple
passes to compute the gradient for each MZI parameter
collectively [6]. This method allows for a MZI mesh to be
trained by itself, but it requires significant modifications and
may suffer in non-ideal cases [3] [6]. Conversely, Zhang et.
al. approach this problem by using an algorithm that does
not require the numerical device model to be known with a
genetic algorithm [19]. This allows the device to be trained
over time without measuring how each parameter impacts
individually, but requires a family of candidate parameters
to be created, which implies that the number of calculations
increases significantly compared to inferences.

In this paper, we propose a method to train any MZI-
based photonic neural network (PNN) using an additional
dot product circuit. A system such as the MZI mesh in
Figure 1 may be be used to implement the training of a PNN

2640-0316/24/$31.00 ©2024 IEEE 210
DOI 10.1109/HiPC62374.2024.00020
Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:01 UTC from IEEE Xplore. Restrictions apply.



WVHd
vd

Lasers

Photodetclectors Dot Product

Toio

Jolo

—
—
—*
—*

—

O

A

eios
oo

]

O

¥

51 A

42 ;

53

H }-{44

A= =lA
46

57I

Fig. 1. Model of MZI mesh and peripherals including lasers, photodetectors, DACs, ADCs and dot products required for training of mesh parameters.
Numbering of MZI’s corresponds to the index of the MZI and its parameters.
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Fig. 2. Model of MZI and its effect on the electric field component of
input signals.

through this algorithm. We accomplished this by modifying
backpropagation to a form that may be implemented on the
mesh using only the summation of partial sums, and the
addition of constant values to MZI parameters. This modified
backpropagation allows the gradient with respect to device
parameters to be computed exactly, allowing a gradient descent
approach adapted to PNNs. This allows for an entire layer’s
gradient to be calculated after a number of passes equal
to the number of parameters plus two times the number of
inputs. Parameters of the mesh are trained by implementing
a modified backpropagation algorithm on the hardware, and
those operations may be performed on device. The imple-
mentation does not modify the circuits or add any additional
lasers and therefore, self-trains the MZI to achieve the desired
accuracy and achieve O(n?) speedup over electrical methods.
We test our training algorithms on MNIST and CIFAR-10
datasets and show that our method improves the training when
compared to state-of-the-art electrical backpropagation. The
major contributions of this work as follows:

o Gradient Descent: Implements gradient descent in a
number of passes that scales linearly with the number
of layer parameters. This improves the efficiency of the
proposed training algorithm.

o Unmodified Mesh: Allows for the MZI mesh to be
trained without significantly modifying its circuits or any
adding additional lasers or photodetectors beyond what

is required for inferences. This allows on-device training
which simplifies the architecture for both training and
inference.

« Energy-efficient Training: Since the training is on the
device parameters rather than comparison to a numerical
representation, the implementation is similar to those
used for static matrices, and we can avoid costly calibra-
tions. Our results indicate that the training algorithm is
comparable to both existing photonic and digital training
results in terms of accuracy and throughput.

II. BACKGROUND
A. MZI Mesh Architecture

The effect of a single Mach-Zehnder interferometer (MZI)
on the electric field may be modeled by two parameters,
phase and amplitude, as described in Figure 2. MZI’s may be
arranged to form a multiport interferometer in an exponentially
large number of configurations, including those described by
Clements et. al. [2] and Reck et. al. [14]. The effects of
any mesh on electric field can be described as a matrix
multiplication:

T(n;, ¢;,w;) =
0 0]
0 1 0
ePisinw; €% cosw;
COS Wj —sinw;
0 ... ... 10
0 ... 01

where ¢; and w; denote the MZI parameters in Figure 2 for
each MZI device in the mesh, and n; and m; denote the lanes
of the mesh that connect the MZIs. While the meshes utilized
here and described by Clements et. al. only connect adjacent
lanes [2], the training algorithm introduced in this paper may
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be applied to any arrangement of MZIs. The arangements of
MZI introduced by Clements et. al. may represent any unitary
matrix [2], and this property is desirable for using the multiport
interferometers in photonic neural networks.

Since we cannot easily measure the electric field directly, a
PNN computed on an MZI mesh measures the optical power
with photodiodes. This means that the layers compute the
magnitude squared of the result of the matrix multiplication.
This gives us for every layer:

l l l
MY =TT, 6, )
j=1

2D = MOa® 2 4 p®
a(+h) — f(z(l+1>)

where | denotes the particular layer computed, z(t1) is the
output of the matrix multiplication plus the bias for layer [,
and alt1) denotes the output of the layer [ where f is its
activation function. Note that for the purposes of this paper, the
magnitude operator always refers to the element-wise complex
magnitude. This result, alt1) may be used as the input to the
next layer and this may be used to compute inferences through
the entire network. This model allows for an entire PNN to
be computed on a MZI mesh such as the one described in
Figure 1.

B. Backpropagation Algorithm

We briefly review the backpropagation algorithm since we
propose to modify some of the steps to compute the gradients
with supervised training. Supervised training in this case
consists of minimizing an error function, denoted here as J,
which evaluates the error as the residual squared, although
this process works for any differentiable error function. Next,
the gradient of the error function is taken with respect to
every network parameter, and this value is used to update each
parameter. For a set of parameters, w, the updated weights are:

8wi

w(t+1) =w(t) —aV,J

wi(t + 1) = wi(t)

For the last layer, the gradient with respect to its parame-
ters is trivial, but for the preceding layers, this task is less
straightforward. A method for generalizing this process uses an
intermediate vector & (l), to track the derivative of each layer’s
outputs with respect to the loss. This can then be multiplied
by the derivative of a layer with respect to its parameters to
get the final gradient:

PICEI aJ
i - aZ(l+1)

ozt

&u](-l)

aJ

|al
_ (l+1)
&u](-l)

D4

i=1

In order to do this for every layer [, the values of the § @
may be found for every layer recursively from the output using
the chain rule of partial derivatives:
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The algorithm for computing the gradient using this method
is straightforward. Calculate the vector 6" for every layer,
[, and use it to compute the gradient and update for each
layer’s parameters. This process is then repeated until training
is completed according to the version of backpropagation that
is being applied.

III. PROPOSED BACKPROPAGATION TRAINING
ALGORITHM FOR PNN

In order to implement gradient descent on the networks
described in Figure 1, we need to compute the gradient with
respect to each mesh parameter and increment it in the form:

d(t+1) = p(t) —aVyl
w(t+1)=w(t)—aV,J

for parameter vectors ¢ and w. Utilizing our derivative of
the output, we find the gradient as the dot product of the
intermediate vector 6" and the derivative of the mesh itself
with respect of its parameters.

Finding the values of both of these vectors is challenging

because the mesh can only measure the modulus squared of
its matrix multiplication, which removes both the complex
component of the result, and additionally implies the mesh
can only return positive values, whereas both 6" and the
derivative of z(!*1) may be signed.
Computing Gradient: In order to compute the gradient, we
compute two mesh iterations for every MZI parameter, and
take the difference of the result as done in Figure 3 for the
derivative of the MZI in the first row, third column. For
each w;, we add a constant value of 7/4 to its value, and
modulate channels that do not connect to the MZI containing
the target parameter by a factor of 1/1/2 and store the result
of the mesh in an intermediate vector q. Next, we repeat but
instead subtract the target parameter by 7/4 and store this
second result in the intermediate vector p. The factor of 1 / V2
can be accomplished by the addition of MZM’s between any
connecting MZI’s. Since the multiplicative effect of this MZM
needs to be only 1 or 1/ V/2, its size can much smaller than
would be required otherwise, as its state is effectively binary.
As can be seen in the full algorithm proof in the appendix, the
difference of q and p is exactly equal to the derivative of z(!*1)
with respect to the target parameter. This difference can be
computed by a PE connected to each output of the mesh. These
two steps need to be repeated for every parameter, w;. Figure 3
shows the calculation for ws; by adding and subtracting 7 /4.
This step needs to be implemented for each of MZIs.

The process is continued for every ¢; in the mesh in the
manner described in Figure 3. This version is slightly simpler,
adding 7/6 to the target parameter, and storing the mesh result
in the vector u. Then again we compute the layer subtracting
w/6 from the target parameter and store it in v. Finally,
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Fig. 3. (a) and (b) Method for taking derivative of w;. Difference of two passes with an offset of a constant value to the target weight. Parallel
paths must be modulated by a factor of ?, indicated at the sections highlighted red. (c) and (d) Corresponding process for derivative of ¢;. For
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both processes, the derivative is taken wi

the difference of the intermediate vectors u and v is exactly
equal to the derivative of the output with respect to the target
parameter ¢;. These two steps need to be repeated for every
parameter, ¢;. Figure 3 shows the calculation for phis; by
adding and subtracting 7/6. This step needs to be implemented
for each of MZIs.

Both of these methods allow the computing of the gradient
by exploiting the fact that for any complex matrix M, and
for any complex vector, a, and any MZI, the derivative of the
modulus squared of their product can be computed by only
modifying the MZI and possibly inserting the diagonal matrix
D with the following identity:

0 T T
—|MT 2 = |MT(w+=,¢)Dal>~|MT(w—=, $)Dal?
o5 | MT (@, 0)af* = [MT (. ¢) Dal’~|MT (w——., ¢)Dal

1
D7k:{ 1
V2

90 2 _ T2 a2
5l MT (@ 0)al = |MT(w,6+ )al* = [MT(w, 6~ Oal

k=mn;k=m;
else

which yields

az(lJrl)
Ow; —4a-p
0Z(l+1)
=u—v
09,

This allows for the derivatives of the output with respect
to the target parameter vector to be computed in two times
as many steps as there are parameters to take the derivative.

respect to paramters of the MZI in index (3,1) and all other mesh parameters are unchanged.

This also means that in both cases the inputs to the layer are
exactly what they were on the inference step in all stages of
this process. The derivative of the bias vector is unmodified
from standard backpropagation and is trivially proven to be
one if the output index matches the bias parameter index and
zero otherwise.

Finally once the derivative of the vector z(‘t1) is computed,
the final derivative of error with respect to the parameter is
computed by taking the dot product of the our result from the
previous step with § as discussed already.

[a]

aJ Z

o1 8Z£z+1) B a| (z+1)325l+1)

6¢§~l) - i=1 azz(lﬂ) 3<Z>§l) i=1 ' 3</’;~l)
o= % o1 oA"Y I onY
8w‘§.l) =1 azi(lﬂ) awj.l) im1 ' 6w;~l)

Once each layer is computed, the value for the preceeding
layer’s 60 may be calculated by following the method de-
scribed in Figure 4. It describes how in three steps a single
value of the d vector may be computed first by setting the input
to all input channels except the target index to zero, and storing
the result at each output channel in the temporary vector x.
The second step is to repeat the first doing the opposite, setting
only the target parameter to zero and storing the result in the
temporary vector y. The third and final step is to take the
difference of the values of x and y and also to add the result
from the multiplication from the inference step, and then take
the dot product of the resulting vector with the 6% from the

213

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 25,2025 at 23:49:01 UTC from IEEE Xplore. Restrictions apply.



2ayv

an

hils

d[\

o O]
(I

¥ oo

i
o
Lo

oav

A
A

(IMPd”)? + x1— }’1)62“)
(IMPa")? + x, — ¥2)854

(IM3'a"|? + x3— y3)68 1] NGO
O )2 ?’;@_ f(Z4)/a4-
(IMg)a(l)|2+ xs_y5)6(1+1 > C)
OO (SEH
(IMe'd"|? + x¢— ¥6)04 1
N
(lM'(7l)a(l)|2 + )

1

X7 }’7)5(7
I+1

Xg— Y 8)6(8
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is multiplied by the derivative of the activation function and divided by
the Qje

(Mg’ +

current layer to get a single scalar value, which is multiplied
by the activation function’s derivative and the inverse of the
result from the inference step. This gives the value of the
vector 6 for the preceding layer and allows the gradient
of that layer to be computed. The algorithm depicted here and
in Figure 4 functions by exploiting the following identity:

7'(=")
5;1*1) = 7276<l)~[\]\/[(l)a(”|2+\M(l)s|2—w[(l)(a(”—s)|2]
. a;_)
O] _
8 = a;’ k=
0 else
which yields
O]
(1-1) f(zj ) )

J
Key Insight: With both of the stages repeated for each
layer, the gradient of every parameter in the network will be
calculated. If one calculates the number of MZI runs, it will
will be two times the number of parameters plus two times the
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number of inputs. We calculate q, p, u and v vectors for w;
and ¢; for each MZI. Then x and y vectors are calculated by
setting one of the inputs to zero and then setting the remaining
inputs to zero as discussed previously. Now, both Clements
et. al. and Rick et. al. could also be used to train the MZIs
using their proposed decomposition method. The proposed
decomposition method relies on two important properties of
the 15, ,, matrices. First, for any given unitary matrix U, there
are specific values of w and ¢ that make any target element
in row m or n of matrix T, ,U zero [14]. Second, any
target element in column n or m of U can also be nulled by
multiplying U from the right by a 7, 177 As seen in [2], fora 5
x 5 case, nulling elements of U one by one in such a way that
every 1), , and T;}" matrix used in the process completely
determines both the reflectivity and phase shift of one beam
splitter and phase shifter. The sequence of 7}, ,, and T;’ln
matrices must both correspond to the desired order of beam
splitters in the interferometer and guarantee that the nulled
elements of U are not affected by subsequent operations.
In the Reck decomposition, the entire matrix can be nulled
using either only 7, ,, matrices or onlyT, " matrices while
still making sure nulled elements of U are not affected by
subsequent operations. Therefore, the nulling of elements has
to be implemented for each beam splitter for each parameter.
This increases the costs for Clement’s and Rick’s approaches
compared to our proposed approach. The total number of mesh
iterations for both of these stages combined will be equal to
two plus the number of inputs squared minus the number of
inputs. Given that there are intermediate values computed after
every layer, the output of each layer must be held in memory
each epoch. Moreover, the result for the mesh before the bias
is added and activation must also be stored in memory. This
is true for other training methods with photonics [6] where
the constant parameter values are calculated and then utilized
at the end. These processes collectively allow for the gradient
with respect to every parameter in the network to be computed,
and once this is done, the gradient descent may occur as it
would via any other method.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
training algorithm on MZI meshes. We first describe the
training of the MZI meshes and then evaluate the latency and
energy costs for different deep neural network models such as
VGG-16 and MobileNet. We also compare the MZI meshes
with state-of-the-art electrical and photonic accelerators.

A. Training Evaluation

We numerically evaluate the training method with our own
simulator built in C. We extend the simulator to include the
MZI meshes with the parameters (w and ¢) for training. We
test the simulator with the proposed training method and com-
pare against existing backpropagation methods. All evaluation
with different fixed, varying training rates for MNIST and
Imagenet datasets. We run the training both for numerical
method and photonic models for different epochs to evaluate
the training performance.
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The photonic neural network was modeled by considering
all the optical component losses and modeled using DSENT
[18] tool. This tool captures losses for various components in-
cluding external laser, losses through MZIs, waveguide losses
and electrical frontend and backend circuitry (ADCs/DACs,
TIA, etc). The overall power consumption Ptotal includes three
parts: laser power Plaser, power consumption of transmitting
circuitry PTX, and power consumption of receiving circuitry
PRX. This was carefully calculated for each pass through
the MZI meshes (and also for different size of MZIs). This
provided the inference energy and then we calculated the
gradient costs for each layer. We have calculated the energy
consumption for each of our photonic devices (losses, external
laser) and then modeled the inference and gradient cost.

This method for training MZI architectures was tested
against conventional training methods such as backpropagation
with numerical matrices, and its performance was evaluated.
Due to the relatively small space of angle values for each
MZI, it can increase performance substantially to normalize
the angle increments. This improves performance by reducing
the likelihood of increments beyond the target. Alternatively,
a sufficiently low learning rate can approximate this effect
without the additional calculations to normalize the weight
increment vectors.

With these optimizations in mind, the algorithm is trained
against MNIST and compared to conventional training meth-
ods. The training consists of samples of the MNIST dataset,
and is trained for up to 100 epochs for most of the design
space exploration. Various methods of backpropagation are
applied, such as fixed learning rate, variable learning rate, and
others to test the effectiveness of the proposed approach. One
key training method is to normalize the increment for layer
parameters. What this method entails is taking the vector of
the gradient, and if the euclidean norm exceeds a threshold, to
divide the vector by a scalar to reduce its norm to the target
threshold. This is particularly applicable for this case as the
space of possible angle values for phase-shifters is very small,
and excessively large increments are unlikely to converge.
With neural networks of identical size, the training rates are
comparable on average, with the accuracy of the photonic
neural network converging at a slightly reduced rate, with the
converged values being roughly equivalent on average, as can
be seen in Figure 5.

For a fixed learning rate of 0.02 the parameterized gradient
descent for the MZI mesh converged slightly more slowly
than the purely numeric model, but it converged at a roughly
comparable rate. After 100 epochs the numeric model only
predicted the incorrect result 15% of the time, and the photonic
model had an error rate of 21% on the same verification set.
The second result in Figure 5 models a learning rate that is
inversely proportional to time for training. Here the results are
very similar, with both models being correct 88% of the time.
The space of angle values is very small, so smaller weight
increments typically improve accuracy whenever the error is
high, as the high error of initial results can cause angle values
to overshoot ideal values in many cases. Finally, the last result
in Figure 5 is the best results for both the numeric and photonic
model analysis. In this sample of the dataset, the best method
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Fig. 5. (a) Training on random sample sets from MNIST dataset with
fixed learning rate of 0.02 for both numeric and photonic models. (b)
Training with learning rate that scales inversely each epoch. Training
where the best hyperparemeters for both numeric and photonic models
are used seperately. In this case the best version is the inversely scaling
learning rate for the numeric model, and the normalized increment model
for the photonic model.

for the numeric model is the inversely proportional learning
rate, and the best method for the photonic model is one with
smaller, or normalized increments.

Additionally, the training algorithm is implemented on a
MZI mesh based implementation of ResNet18, and trained on
the Imagenet dataset. For this larger dataset, the differences
are much less pronounced, while individual training iterations
take different paths, on average they converge at essentially
the same rate, as can be seen in Figure 6.
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Fig. 6. Training error rate for imagenet dataset. Using batch size of 200
for both, decreasing learning rate for both numeric and photonic training,
and normalized increments for the photonic model as well. In both cases
using the best particular learning rates. Error rates are averaged from
5 randomly reordered training passes of the dataset. Both models used
a numeric or photonic implementation of ResNet18

TABLE I
ENERGY COST PARAMETERS FOR MZI AND LASER COST, AND LOSS
PARAMETERS FOR MZIS AND LINKING WAVEGUIDES

Layer Parameters Value
MZI Loss 2 dB
MZI Energy Cost [12] [4] | 0.45-5p] / Op
Waveguide Loss 0.1 dB/MZI
Laser Cost ~7.93 W

B. Energy and Latency Estimations

The performance of the system was evaluated both for
inference and gradient descent use cases. First circuits were
modeled of a series of MZI sizes, each along the algorithm
prescribed in Clements et. al. in order to minimize optical
depth [2].

The power loss is measured for each size and in this
conservative model the loss is calculated to increase by ap-
proximately 2 decibels for every increase in optical depth. The
energy consumption of the lasers is modeled using DSENT
[18] from the data on signal losses obtained from the circuit
model. The resulting component parameters are in Table I. We
must factor in the fact that for every laser source, there are
photodiodes at every possible output it must reach, and again
the power consumption is larger for these analog signals than
for purely digital sources. It also accounts for the dynamic
power consumption for control devices, analog-to-digital con-
verters (ADCs) and various small miscellaneous power drains,
but these remain a relatively insignificant contribution to the
total power cost.

In order to model the total power consumption for each
layer, we must account for the cost of the circuits that control
the phase shifters. For the purposes of phase-shifter settings,
the matrices the layers compute are static because the phase
shifters are controlled by the parameters directly rather than
calibrated to fit some external matrix. The phase shifter power
consumption varies depending on the system, ranging from
0.45 pJ to 5 pJ per operation for this system [4] [12]. We will
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be using the higher power consumption value for the modelling
of this system. Note that this method of setting a MZI mesh to
a matrix is both significantly more energy efficient and affords
a higher bandwidth than setting the MZI to an external weight
matrix rather than predefined parameters [12]. We break the
power consumption into dynamic power, leakage, laser power
and heater costs for different sizes of MZI (3 x 3,5 x 5, 8 X
8 and 11 x 11). The energy consumption for inference grows
linearly for larger sizes of the MZI as seen in the Figure 7(a)
with the heaters needed to stabilize the lasers consuming
maximum energy. As can be seen in Figure 7(b), the energy
cost for the inference step grows roughly linearly as the layer
size increases. This is because the dominant source of power
consumption is the heaters for modulating the lasers, and the
number of lasers grows linearly. The power consumption is
roughly 8 mW per laser for all tested bandwidths, as cited in
Table I. It can also be seen in Figure 7(b) that as the laser
power consumption increases, it is a small contribution to the
total power consumption.

Once the cost of inference is known, determining the energy
cost of the gradient step is a simple matter. The gradient is
taken by using the mesh repeatedly. Calculating the value for
d and the gradient for each layer can be done by the methods
described in the previous sections. The power consumption
for each step of this process is the same as it is in the
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Fig. 8. Energy consumption scaling as layer size increases. Uses upper
bound for MZI tuning cost of 5pJ/Op.

TABLE II
ENERGY COST FOR INFERENCE AND GRADIENT STEPS IN VGG-16
TRAINING SEPARATED BY LAYER

VGG-16
Layer Output | Kernel | Layer Cost (m]J) | Gradient Cost (mJ)
224x224x64 3x3 0.058 5.69
T12x112x128 3x3 0.010 0.95
56x56x256 3x3 0.005 0.47
28x28x256 3x3 0.001 0.12
14x14x512 3x3 0.001 0.06
4096 FC 11.1 890.4
1000 FC 0.663 53.1
Total 11.9 958.8
TABLE III

ENERGY COST FOR INFERENCE AND GRADIENT STEPS IN MOBILENET
TRAINING SEPARATED BY LAYER

MobileNet
Layer Output | Kernel | Layer Cost (m]J) | Gradient Cost (mJ)
112x112x32 3x3 0.0024 0.24
T12x112x32 3x3 0.0024 0.24
56x56x64 3x3 0.0012 0.12
56x56x128 3x3 0.0024 0.24
28x28x128 3x3 0.0006 0.06
28x28x256 3x3 0.0012 0.12
14x14x256 3x3 0.0003 0.03
14x14x512 3x3 0.0006 0.06
TXTx512 3x3 0.0001 0.01
7x7x1024 3x3 0.0003 0.03
9 Layers IxIxN | 0.1620 12.96
1000 FC 0.0054 0.43
Total 0.179 14.54
TABLE IV

INFERENCE PER SECOND (IPS) AND GRADIENT TIME FOR VGG-16 AND
MOBILENET FOR MZI MESHES.

Network IPS Gradient Time(sec)
VGG-16 0.33 160.7
Mobilenet | 0.30 237.4
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inference step, but the mesh is used repeatedly for each layer as
described before: two times plus the size of the layer squared
minus the size of the layer. Figure 8 shows for various MZI
sizes and as observed, larger MZI sizes consume more power
for gradient computation. We also consider different power
estimates, conservative by assuming optical power parameters
(losses) to become worse and aggressive by assuming that
optical parameters to become much better in the future. The
cost of the gradient for a variety of layer sizes is in Figure 8.
As can be seen, the cost of the gradient increases extremely
quickly as size of the layer increases, which is unsurprising
as the cost of each mesh operation scales linearly, and the
number of mesh iterations increases quadratically. The cost of
the dot products is extremely small because the results can be
passed into it directly from the mesh without ever needing to
make a DRAM access. This makes the power consumption of
the dot product very low as there are not any memory accesses
[1]. The result is that the dot product has marginal impact on
the cost of the gradient compared to the optoelectronic power
costs.

The models for the cost of gradients and the cost of the in-
ferences were applied to various existing network architectures
in order to compare performance on existing benchmarks. The
results for inference and gradient energy costs are in Tables
IL, II, and IV. All of these are operated using the 10 GHz
benchmark used by Mojaver et. al. [12]. With this operating
speed, the inference step for VGG-16 and Mobilenet take
around 3 seconds each, as detailed in Table V. The most
significant sources of energy cost are the largest layers. Large
layers can be broken apart into smaller matrix multiplications
in the same manner as is commonly used in processing
element array methods, such as those used by Eyeriss or
similar accelerators [1]. While it may be possible to reduce
energy cost by doing this, exploring this method for reducing
power consumption is beyond the scope of this paper. In this
instance, it is only used for the extremely large fully connected
layers. Fortunately, this has no effect on how the gradient is
calculated, the task is just broken up into each partial sum. The
most efficient layers in all cases are the smallest convolutions,
as the cost of layer inferences increases as the size does, as
previously discussed. However, decreasing layer size in favor
of more neurons increases the time it takes for this method to
perform inferences. Because of this, VGG-16 and Mobilenet
both require more time for both inference and gradient despite
having a lower energy cost. The primary method to improve
energy consumption is to reduce the size of the layers, and the
method to improve inferences per second is to increase layer
size.

As far as physical dimensions of the proposed architecture
is concerned, there have been prior programmable MZIs
designed and fabricated [5]. For example, the programmable
nanophotonic processor (PNP) is composed of 176 individu-
ally tunable phase modulators and 88 interferometers spanning
a chip area of 4.9 mm by 2.4 mm. These are moderate
dimensions of the chip to build photonic neural network ac-
celerators. Therefore, we expect that the proposed accelerator
with associated components (laser, DAC, ADC) should easily
fit within chip dimensions [9], [17].
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TABLE V
INFERENCE TIME AND COST PER INFERENCE COMPARISON FOR PROPOSED
MZI MESHES AND OTHER ELECTRICAL AND OPTICAL ACCELERATORS.

Accelerator Inference Time (ms) | Cost per Inference (mJ)

MZI Mesh 280 51.19

Eyeriss [1] 29 8.01
Res-DNN [16] 2.90 2.34

UNPU [8] 2.89 0.91
HolyLight [9] 0.02 .11

Albireo [17] 0.13 291

TABLE VI

TIME COMPLEXITY AND MESH BANDWIDTH COMPARISONS.

Mesh Training Method | Time Complexity | Mesh Bandwidth
Clements et. al. O(N%) ~10 MHz
Dynamic Calibration O(N?) ~2 kHz
Parameterized Gradient O(N?) 10 MHz

Finally, this system is compared against numerous existing
methods for hardware acceleration, as can be seen in Table
V. Both the time for inferences and the energy consumption
of this conservative model of the system is greater than the
compared electrical accelerators [1] [16] [8]. This difference
is more significant for the photonic accelerators, which is
unsurprising for the relatively low bandwidth for this model
[9] [17]. It may be possible to improve the performance of
the MZI mesh to match these benchmarks since the mesh is
mostly unmodified. Further work to analyze the maximum per-
formance this system might find the limits to the possibilities
of this system.

Table VI shows the different mesh training methods, time
complexity and mesh bandwidths. It must be noted that
programming weights can be an order of magnitude more
expensive and imposes limits on bandwidth [12] [4]. In the
dynamic calibrated meshes analyzed by Hassan et. al., the
mesh bandwidths are on the order of 2kHz which is a
difference of three orders of magnitude on the time it takes
each training step and the time complexity is O(/N2). Both the
calibration process described by Hassan et. al., and the method
of setting parameters described by Clements et. al. increase the
cost of training meshes by existing methods significantly. Our
parameterized gradient approach discussed in previosuly in
Section III shows higher mesh bandwidth of 10 MHz (similar
to Clements et.al. [2]) with a time complexity of O(N?). In
order to set a multiport interferometer’s parameters, the values
of the matrix multiplication must be found to zero an element
of an intermediate matrix, and this must be repeated for
every MZI in the layer. As discussed already, the calibration
method of obtaining this is extremely time intensive, but the
nulling parameters of an element otherwise requires solving
the system of linear equations, which is a task with quadratic
time complexity and therefore, Clements et.al. will require
O(N*).

V. RELATED WORK

Reck’s decomposition shows how to transform N input
states into N output states using an arrangement of beam split-
ters, phase shifters and mirrors. The methodology transforms
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the input state with modes (ky, ko) into output states with
modes (k;, k) as shown [14]:

ecosw| [k1] _ [k

—sinw] |:k’2:| B {kz}

The parameter w describes the reflectivity (vR = sin w)
and transmittance (v = cos w) of the beam splitter. The
parameter ¢ can be realized as an external phase shifter after
the beam splitter. Reck et. al. adopts this approach where the
beam splitter with variable reflectivity can be substituted by
a Mach-Zehnder interferometer (MZI) using symmetric 50:50
beam splitters. The most important conclusion of this work is
that one can setup the unitary matrix transformation by using
these beam splitters or MZIs. This seminal work proposed to
apply this methodology to crytography and quantum teleporta-
tion in quantum information science and not to neural network
modeling.

David Miller [10], [11] showed how to design an optical
device that can perform any linear function or coupling be-
tween inputs and outputs. The work showed the key concept
with successive beam splitters that have phase shifts and
reflectivities which can be calibrated such that each device
self-configures. This process requires only local feedback
loops each operating on a single measurable parameter. Such
feedback loops can be left running during device opera-
tion, allowing continuous optimization and compensation for
drifts in devices. This self-configuration is also progressive,
requiring no global calculations or optimization. While the
initial concept applied to beam splitters, successive designs
applied to path-length adjusted programmable MZIs and was
experimentally proven [13], [15]. This is self-training MZlIs,
but needs additional detectors and equal path lengths for
all signal transmission. This approach has not been directly
applied to different neural network layers for training.

Clements et. al. [2] builds on Reck’s model and improves
in some of the key areas. First, Clement’s design achieves the
minimal optical depth, requiring roughly half of the depth of
the Reck design, which is important for minimizing optical
losses and reducing fabrication resources. Second, the natural
symmetry of this new design makes it significantly more
robust to fabrication errors caused by mismatched optical
losses. Clement’s finding is based on a new mathematical
decomposition of a unitary matrix and this decomposition is
used to prove the universality of the design and to construct
an efficient algorithm to program interferometers based on it.
The decomposition method in Clement’s can be applied to
both row-wise (as Reck’s) T}, , and column-wise T;,ln for
a unitary matrix of U with size of m,n. This decomposition
does not delve into many details on training the layers or with
varying number of inputs.

Other in-situ training approaches have been proposed to
train MZIs as seen in [6]. The proposed techniques uses back-
propagation in a techniques called time-reversal interference
method (TRIM) to compute the cost of the gradient function.
After calculating the original amplitude, the time reversed
adjoint input is calculated by sending the loss function from
the output port. After the interference between the original and
time reversed input, the intensities are measured and subtracted

€' sinw
cosw
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from the original amplitudes. This process while has a constant
time, the reversing of signals sent into the MZI meshes
requires lasers and detectors to be reversed which is a much
harder problem. When compared to our approach, keeping
the lasers and detectors in identical locations simplifies the
hardware architecture.

VI. CONCLUSIONS

This paper introduces a method to perform parameterized
gradient descent on a multiport interferometer composed of
MZIs. The proposed algorithm accomplishes training without
adding any additional photodiodes or lasers. This allows
for training of the system parameters directly, circumventing
extremely costly calibrations during the training process. The
proposed method can accomplish the inference phase of pho-
tonic neural networks for allowing the PNN to be trained via
backpropagation. This algorithm for MZI training introduces
the possibility for parameterized gradient descent for any
circuit which utilizes MZI’s for linear algebra.
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APPENDIX A
DERIVATIVE ALGORITHM

The transfer matrix for a circuit of MZIs is the product of
T(nj, ¢;,w;) such that:
M

U= H T(njv ¢j7wj)
j=1
For a mesh with input vector a, and an output vector z, the
output for the layer can be defined with element-wise complex

magnitude as:
7Z=|Ua]?

N
2 =Y Upapl’
k=1

Neglecting bias in notation as its derivative is trivial. To find
the derivative of each output with respect to ¢,

M

let A= [[ T(n;,¢; w))
j=x+1

r—1

let =[] T(n;, ¢;,w;)d

j=1
Substituting in Z:
zZ= ‘AT(n]a ¢)j7 w])(_ﬂQ

let w =ng, let v=mn, +1, let m = Uad = AT(n;, ¢,,w;)q
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This yields for each row, m;

m; = szei‘bm(qw sinw, + q,, cosw, )+

w—1 N
A'ux(qu CoOswy — (, Sinww) + Z A]qu + Z Ajqu o
k=1 k=v+1 7
w—1 N
let ¢ = Z Ajrq, + Z Ajrqy 2
k=1 k=v+1
m; = A€ (q, sinw, + q, cosw, )+ Wy

Ayz(q, cosw, —q, sinw,) + ¢
Substituting into the output vector z:
z; = [m;|* = |e + Ay (q, sinw, + q, cosw, )+
Auz(q, cosw, — q, sinw,)|?
zj = |c|2 + ‘A7U1|2|(qu) sinw, +q, cos wz)|2
+|Auz)?|(q,, cosw, — q, sinw,)|?
+[A e (q,, sinw, + q, cosw,), ¢+
[Ayz(q, cosw, —q,sinw,), c]
Jr[sze””‘d’m (q,, Sinwy;+q, coswy ), Az (q,, cOSw,—q, sinw, )]

Take the result for power from Appendix A, for each term,
seperately:

|sz|2|(qw sinwg +q, cos “"I)|2 =

|sz|2(\qw 2 sin? wz+[qy,, q,] sinw, cos wgg—‘,—|qv\2 cos? W)

|AUCL‘|2|(qw Coswy — (, 8in “"z)|2 =

|Aue2(qy,|? cos® w, —[q,,, q,] sin w,, cos w, +|q, | sin? W)

[Awee'®s(q,, sinw, +q, cosw,),c] =
[Apc®=q,, ¢]sinw,+

[szei% q,,¢] cosw,

[Ayz(q,, cosw, —q, sinw,),¢] =
[Avzq,,, €] cosw, — [Ayeq,, €] sinw,
And finally
Ay el (qq, sinw,+q, coswy ), Ayz(q,, cosw,—q, sinw,)] =
[Awee™® Av)(q? — ¢2) sinw, cosw,+

[Awwei¢m qv? A/Ua.'qw] COS2 Wy — [Awdbewsm qw’ A’U’L'qv] Sin2 Wy

let i, = |sz|2|qw|2 + ‘sz|2|qu‘2 - [szeitﬁmqu”Aqu]
let ta = |Auwl?[q,|° + [Ava 0, |* + [Auwce’®q,, Avzq,]
let t3 = |Awa|* (€ @)~ [Ave * (€0 9]+ Awae'®" Avs] (45, —q7)

let ty = [szei"’mqw,c] — [Av2q,, ]
let t5 = [szeid)m Q¢ + [Ay2q,, ]

Combine like terms in z;

=1t sin? wy+to cos? W, +ts sin w, cos w,+ty sin w, +t5 cos w,

Derivative of z;:
= t1 sin 2w, —t9 sin 2w, +t3 cos 2w, +1t4 COS W, —15 sin W,

Moving one term at a time for two passes of the mesh, set
to w, plus 7/4 for the first, and w, minus 7/4 for the
second. For the ¢; terms:

sin?(w, + %) — sin®(w, — %)
(sinw, + coswy)? ~ (sinw, —cos w,)?
2 2

2sin w, cosw, = sin 2w,

For the t5 terms:

2 Y eos(w. — T
cos®(wy + 4) cos” (wy 4)
(cosw, —sinw,)?  (cosw, +sinw,)?
2 2
—2sinw, cosw, = —sin 2w,

For the t3 terms:

sin(w, + %) cos(wy + %) — sin(w, — %) cos(wy —

Nk

(cos? wy — sin® wy) B (sin? w, — cos? w,)
2 2

cos®w, — sin? W, = Ccos 2w,

For the ¢4 terms:
. i . T
sin(w, + Z) sin(w, Z)

sinw, + cosw,  Sinw, — cosw,

V2 V2

V2 coswy
For the 5 terms:
cos(wy + %) — cos(w, — %)

cosw, —sinw,  cosw, + sinw,

V2 V2

—V2sinw,

This means that for nearly all terms that do not contain c,
this method obtains the derivative with respect to w, exactly,
and for terms that do contain ¢, it is off by a factor of V2
If we modulate channels that do not pass through the target
MZI by 1/+/2, then taking two passes of the mesh with the
original value of w, plus 7/4 and then minus /4, we obtain
the derivative with respect to that parameter, w,. Therefore we
can implement the derivative with two mesh iterations adding
and subtracting 7 /4, and multiplying channels that do not pass
through the mesh by 1/+/2.
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