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Detecting topological superconductivity via Berry curvature effects in spectral functions

Yunxiang Liao *

Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden

Yi-Ting Hsu †

Department of Physics and Astronomy, University of Notre Dame, South Bend, Indiana 46556, USA

(Received 20 June 2024; revised 1 November 2024; accepted 21 January 2025; published 14 February 2025)

Experimental efforts on topological superconductivity (TSC) have primarily focused on the detection of

Majorana boundary modes, while the bulk properties of TSC, particularly in two dimensions, remain relatively

underexplored. In this work, we theoretically propose a distinctive signature in the spectral function away from

the boundaries, capable of detecting two-dimensional (2D) chiral p-wave TSC induced in a Rashba spin-orbit-

coupled heterostructure. This signature can be probed experimentally through angle-resolved photoemission

spectroscopy or momentum- and energy-resolved tunneling spectroscopy under a weak magnetic field B. We

show that within the topological phase, the spectral intensity of the lowest superconducting band at small

momenta k ∼ 0 brightens (darkens) linearly with increasing B, whereas it darkens (brightens) in the trivial

phase when the Rashba system is electron (hole) doped. This sharp contrast arises from the phase-space

Berry curvature (BC) of Bogoliubov quasiparticles, a novel quantum geometric property that generalizes the

conventional momentum-space BC. The effect of this phase-space BC can also be detected by the differential

conductance away from the boundaries. Our falsifiable prediction provides an experimental avenue for detecting

Rashba-induced chiral p-wave TSC without relying on Majorana mode detection, addressing a key challenge in

the realization of 2D TSC.

DOI: 10.1103/PhysRevB.111.064508

I. INTRODUCTION

Topological superconductors (TSCs) are exotic quantum

materials that exhibit nontrivial band topology in the bulk as

well as Majorana modes on different dimensional boundaries

[1–7]. The experimental detection of a TSC has remained one

of the key challenges in the fields of unconventional super-

conductivity and topological phases, despite intensive studies

in the past decade. Currently, many TSC experiments have

focused on detecting Majorana boundary signatures through

local scanning probes [3,8–18], although this approach of-

ten faces the challenge of distinguishing signals originating

from Majorana modes and from other more mundane sources

[17–25]. In contrast, experimental features in the bulk of TSC

associated with superconducting band topology remain rela-

tively underexplored.

Bands with nontrivial topology necessarily possess non-

trivial band geometry, which characterizes the changes in

eigenstates at neighboring momenta k and could have sig-

nificant influences on experimental observables in metals,

insulators, and superconductors [26–37]. Though relatively

unexplored, quantum geometric quantities defined in real

space and phase space can also lead to detectable exper-

imental features. For example, nontrivial Berry curvature

(BC) �λλ′ , λ, λ′ = r, k, is expected for the Bogoliubov
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quasiparticles in two-dimensional (2D) chiral TSC, which fea-

tures a nonzero Chern number C =
∫

dk�kk (k) and quantized

thermal Hall conductivity [1]. Besides the momentum-space

BC, the generalized BCs defined in the real space �rr and the

phase space �kr generally exist in the presence of external

perturbations, such as a magnetic field or supercurrent [34].

These generalized BCs were recently found to influence the

density of states and thermal responses in spin-singlet super-

conductors with spin-degenerate normal states [34].

Spin-orbit-coupled (SOC) normal states, on the other hand,

have been a crucial ingredient in strategies to achieve TSC

since manipulating Fermi surface spin textures can facili-

tate the formation of effectively spin-triplet Cooper pairs

[9,14,15,38–48]. Candidate materials for 2D chiral TSC pre-

dicted from this strategy include the proximitized surfaces

of topological insulators [38] and hole-doped monolayer

transition-metal dichalcogenides [47]. In this work, we will

focus on proximitized two-dimensional gas (2DEG) with

Rashba SOC [41] [see Fig. 1(a)].

Here, we theoretically predict a BC-induced signature in

the spectral function that distinguishes whether the super-

conducting Rashba 2DEG in Fig. 1(a) is in the topological

or trivial phase. This signature is found by examining the

generalized BC effects of Bogoliubov quasiparticles using a

semiclassical wave-packet analysis [29,34], and can be probed

by angular-resolved photoemission spectroscopy (ARPES)

or momentum- and energy-resolved tunneling spectroscopy

(MERTS) [49] under a weak magnetic field B [50]. We

show that the intensity of the lowest superconducting band

2469-9950/2025/111(6)/064508(12) 064508-1 ©2025 American Physical Society



YUNXIANG LIAO AND YI-TING HSU PHYSICAL REVIEW B 111, 064508 (2025)

φk

FIG. 1. Sketches for (a) the considered heterostructure hosting an

effective 2D TSC, and (b) the in-plane spin texture S‖ on the Fermi

surface of the Rashba layer, where φk labels the intrinsic locking

angle between the spin and momentum. (c) The calculated lower

BdG band E−(k) of H , where the dotted lines label the band extrema.

at small momenta k ∼ 0 brightens (darkens) linearly with B

in the topological phase but darkens (brightens) in the trivial

phase, when the Rashba 2DEG is electron (hole) doped. This

phase-space BC effect can therefore serve as an experimental

diagnostic for chiral p-wave TSC realized by a proximitized

Rashba 2DEG.

II. MODEL

We consider a well-known minimal model [40,41] that de-

scribes the chiral p-wave TSC resulting from a Rashba 2DEG

proximitized by a s-wave superconductor and a ferromagnetic

insulator (see Fig. 1). In the presence of a weak magnetic field

B = Bẑ, the 2DEG layer is described by

H =
∑

σ=↑,↓

∫

d2rc†
σ (r)

(

1

2m
[−i∇ − A(r)]2 − μ + hσz

)

cσ (r)

+
∑

σ=↑,↓

∫

d2rc†
σ (r)α{σ × [−i∇ − A(r)]} · ẑcσ (r)

+
∫

d2r
(

�c
†
↑(r)c†

↓(r) + �∗c↓(r)c↑(r)
)

, (1)

where c†
σ (r) creates an electron at position r with spin

σ =↑,↓ and mass m, σi are spin Pauli matrices, and A(r) =
B × r/2 denotes the vector potential. We have set h̄ = 1,

the electric charge e = 1, and h > |μ| so that the chemical

potential μ intersects only the lower normal band. The second

and third lines describe, respectively, the Rashba SOC with

strength α and the proximity-induced superconductivity with

a pairing potential �.

This model is in the chiral p-wave TSC phase when the

ferromagnetic exchange coupling h >
√

|�|2 + μ2 and in the

trivial phase when h <
√

|�|2 + μ2. In the following calcu-

lations, we consider a weak magnetic field B < |�| and a

Rashba layer within the TSC or trivial phase. For simplicity,

we approximate h and B as two independent variables, assum-

ing that the Zeeman splitting caused by the applied magnetic

field and the orbital effect of the ferromagnetic insulator are

negligible.

We examine the dynamics of quasiparticles described by H

using a semiclassical wave-packet approach, which has been

successfully applied to metals [26,29,51] and spin-singlet su-

perconductors with spin-degenerate normal states [32,34,52].

We assume the external perturbation A(r) is time independent

and slowly varying in the real space r compared to the spread

of the wave packet. This allows us to neglect the r dependence

in A(r) in Eq. (1) and approximating A(r) by its value at the

wave-packet center r = rc. Such a scenario can be achieved

when the applied field strength is smaller but close to Hc2 so

that the lattice constant of the vortex lattice is close to the

coherence length.

The resulting effective Hamiltonian governing the wave-

packet dynamics can be further simplified by introducing the

Nambu spinor

�(k) = [c↑(k) c↓(k) c
†
↓(−k) − c

†
↑(−k)]T , (2)

where

c†
σ (k) =

∫

d2rei(k+A(rc ))·rc†
σ (r). (3)

After the transformation, the Hamiltonian assumes the form

H =
1

2

∑

σ=↑,↓

∫

d2k

(2π )2
�†(k)hBdG(k)�(k),

hBdG(k) = [ξk + α(σxky − σykx )]τz + hσz

+
1

2
�(τx + iτy) +

1

2
�∗(τx − iτy). (4)

Here ξk = k2/2m − μ and τi denotes the Pauli matrix acting

in the Nambu space.

This Hamiltonian can be diagonalized to

H =
∑

s=±1

∫

d2k

(2π )2
Es(k)γ †

s (k)γs(k) + const., (5)

by applying the Bogoliubov-de Gennes (BdG) transformation:

γs(k) = 
†
s (k)�(k), (6)

where the helicity s = ± labels the upper and lower BdG

bands. 
s(k) = [u↑s(k) u↓s(k) v↓s(k) v↑s(k)]
T

is the

eigenfunction of hBdG(k) with positive eigenenergy Es(k) and

it satisfies

hBdG(k)
s(k) = Es(k)
s(k). (7)

Solving the BdG equation, we find the quasiparticle energy

Es(k) =
[

(αk)2 + |�|2 + h2 + ξ 2
k

+ 2s

√

ξ 2
k

[(αk)2 + h2] + |�|2h2

]1/2

. (8)
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For ξk 	= h or s 	= −1, the BdG eigenfunction 
s(k) is given

by,

u↑s(k) = Ds(k)
[

Es(k)hξk + |�|2h + hξ 2
k + ξk (α2k2 + h2)

+ s(Es(k) + h + ξk )

√

(αk)2ξ 2
k

+ h2
(

|�|2 + ξ 2
k

)]

× ei(χ−φk+π/2)/2,

u↓s(k) = Ds(k)αk
[

ξk (ξk + Es(k))

+ s

√

(αk)2ξ 2
k

+ h2
(

|�|2 + ξ 2
k

)]

ei(χ+φk−π/2)/2,

v↓s(k) = Ds(k)|�|
[

h(h + Es(k))

+ s

√

(αk)2ξ 2
k

+ h2
(

|�|2 + ξ 2
k

)]

e−i(χ+φk−π/2)/2,

v↑s(k) = Ds(k)|�|αk(ξk − h)e−i(χ−φk+π/2)/2.

(9)

By contrast, when ξk = h and s = −1, we instead have

u↑,−1(k) = 0,

u↓,−1(k) = D−1(k)|�|ei(χ+φk−π/2)/2,

v↓,−1(k) = −D−1(k)αke−i(χ+φk−π/2)/2,

v↑,−1(k) = D−1(k)E−1(k)e−i(χ−φk+π/2)/2. (10)

Here the phase of the pairing potential χ ≡ arg(�) depends

on the pairing symmetry [53], the intrinsic angle of the Rashba

SOC is denoted by φk ≡ arctan(ky/kx ). Ds(k) is the normal-

ization constant.

III. QUASIPARTICLE WAVE PACKET

After diagonalizing H , we construct a wave packet for the

quasiparticles from the lower BdG band with s = −:

|Ws〉 =
∫

k

ws(k, t )γ †
s (k) |G〉 , (11)

where |G〉 denotes the superconducting ground state. The

envelope function ws(k, t ) obeys the normalization condi-

tion
∫

k
|ws(k, t )|2 = 1 and is sharply peaked around kc =

∫

k
|ws(k, t )|2k, whereas the wave-packet center in the real

space is given by [32]

rc = i

∫

k

(ws(k, t )
s(k))†∂k(ws(k, t )
s(k)). (12)

For cases where the perturbation is strong, a treatment in-

volving both s = ± bands is required [28,29,54], which falls

beyond the scope of our current study.

The semiclassical dynamics of this quasiparticle wave

packet |Ws〉 is described by its Lagrangian L, given by

the wave-packet average [55] of the operator L̂ = i d
dt

− Ĥ

[29,34]. It can be expressed in terms of the momentum-space

and real-space Berry connections Aks and Ars as

L = − Es(kc) − k̇c · rc + k̇c · Aks + ṙc · Ars. (13)

The momentum-space Berry connection Aks is defined

in terms of the BdG wavefunction 
s(k) as Aks =
i
†

s (kc)∂kc

s(kc), and can be further simplified into

Aks = − 1
2
ρ0s(kc)∂kc

χ + 1
2
ρ1s(kc)∂kc

φkc
. (14)

Here

ρas(k) =
∑

σ

(ζσ )a(|uσ s(k)|2 − |vσ s(k)|2) (15)

with a = 0, 1 and ζ↑/↓ = ±1. Physically speaking, ρ0s(kc)

and ρ1s(kc)/2 correspond to the wave-packet average [55] of

the total charge and spin, respectively (see Appendix A).

The real-space Berry connection Ars is given by

Ars =Ãrs + ρ0s(kc)A(rc) + 1
2
B × d, (16)

where Ãrs is the real-space analog of Aks in Eq. (14) by

replacing ∂kc
→ ∂rc

. The second term describes how the total

charge of the wave packet ρ0s(kc) couples to the external

vector potential A(rc), whereas the last term describes how

the charge dipole moment d of the wave packet couples to the

external magnetic field B. Note that these two terms enter the

Lagrangian in Eq. (13) in the same way as the well-known

Lagrangian describing the Lorentz force of a charged object

with a dipole moment in a magnetic field [56].

The dipole moment d of the wave packet, given by the

wave-packet average [55] of dipole moment operator d̂ =
∑

σ

∫

d2r ĉ†
σ (r)ĉσ (r)(r − rc), contains two terms d = d1 +

d2. The first term

d1 = 1
2

(

ρ2
0s(kc) − 1

)

∂kc
χ, (17)

was found nonzero for a d-wave pairing potential [34], but

vanishes for our case of an s-wave pairing potential with

∂kχ = 0. Nonetheless, we find that the second term

d2 = 1
2
[ρ2s(kc) − ρ0s(kc)ρ1s(kc)]∂kc

φkc
, (18)

is a new source of dipole moment arising from the SOC. Note

that although d2 scales with the winding of the Rashba angle

φkc
(Fig. 1), it is not inherited from the normal state because

the prefactor ρ2s − ρ0sρ1s = 0 when the pairing potential � =
0, where

ρ2s(kc) =
∑

σ

ζσ (|uσ s(kc)|2 + |vσ s(kc)|2). (19)

Thus, d2 exists only in the superconducting state but not the

normal state.

This is physically because the quasiparticle wave packet

consists of momentum- and position-dependent mixtures of

electron and hole components, which allows a deviation of the

wave-packet center rc from the charge center. Since the dipole

moment d2 emerges exclusively when superconductivity and

spin-orbit coupling coexist, d2 can lead to new experimental

features of SOC superconductors through coupling to an ex-

ternal B field [see Eq. (6)].

IV. PHASE-SPACE BC AND DENSITY OF STATES

To analyze the experimental features of d2-induced BC, we

examine how the wave-packet dynamics are modified by BC

from Eq. (13):
[

�
i j
rrs �

i j

rks
− δi j

�
i j

krs
+ δi j �

i j

kks

][

ṙ
j
c

k̇
j
c

]

=
[

∂ri
c
Es(kc)

∂ki
c
Es(kc)

]

, (20)

where the repeated Cartesian indices are implicitly summed.

The momentum-, real-, and phase-space BCs are defined as
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the derivatives of the Berry connections Ars and Aks:

�
i j

λλ′s ≡ ∂λi
c
A

j

λ′s − ∂
λ

′ j
c
A

i
λs, λ, λ′ = r, k. (21)

For the p + ip TSC we consider in Eq. (1), we find that the

momentum- and phase-space BC under an external B field are

given by (see Appendix C)

�ks = 1
2
∂kc

ρ1s(kc) × ∂kc
φkc

, �
i j

rks
= − 1

2
∂

k
j
c
(B × d)i, (22)

up to the leading order in the real-space gradient expansion,

where field-induced supercurrent is not considered in this

work. We find that while the presence of real-space BC �rs =
ρ0s(kc)B does not depend on SOC, neither �ks nor �

i j

rks
would

have survived in the absence of the SOC. Specifically, the

momentum-space �ks is inherited from the spin-orbit coupled

normal state, whereas the phase-space �krs describes the cou-

pling between the SOC-induced wave-packet dipole moment

to the external B field.

The BC effects on the semiclassical dynamics in Eq. (20)

have been shown [27,29] to modify the phase-space density

of states D(r, k), required by the conservation of the total

number of states N = D(r, k)�V in a phase-space volume

�V = �k�r (see Appendix D). The modified phase-space

density of states was shown to be [29,34,57] D(r, k) ≈ 1 +
Tr�krs − �rs · �ks up to an inessential overall coefficient,

where a spatial gradient expansion is applied for slowly vary-

ing external fields. This BC-modified phase-space density of

states D(r, k) is the key factor that embeds the information

of the wave-packet BCs we find in Eq. (22) into experimental

observables.

For the p + ip TSC we consider, we obtain the BC-induced

phase-space density of states δD = D − 1 under an external B

field using Eq. (22)

δD = − 1
2
B · (∇k × d2) − 1

2
(ρ0s∇kρ1s × ∇kφk ) · B (23)

up to the leading order in spatial gradient ∂r. Note that δD ex-

ists only in the presence of SOC: The latter term results from

the momentum- and real-space BC, which is proportional to

the winding of the Rashba angle φk in the spin-orbit-coupled

normal state. The former term results from the phase-space

BC, which exists only in a spin-orbit-coupled superconductor

due to the quasiparticle charge dipole moment d2 in Eq. (7).

V. BC-INDUCED TOPOLOGICAL SIGNATURES

IN OBSERVABLES

We are now ready to examine how the BCs influence the

experimental observables in a p + ip TSC enabled by Rashba

SOC. With the BC-modified phase-space density of states

D = 1 + δD, we investigate the spectral function A(k, ω) and

the normal metal-to-superconductor tunneling conductance

[58] G(r, ω) given by

A(k, ω) =
∑

σ

∫

r

D(r, k)[|uσ s(k)|2δ(ω − Es(k))

+ |vσ s(k)|2δ(ω + Es(k))], (24a)

G(r, ω) =
∑

σ

∫

k

D(r, k)[|uσ s(k)|2δ(ω − Es(k))

+ |vσ s(k)|2δ(ω + Es(k))], (24b)

FIG. 2. BC effects on the the spectral function A(k, ω) in the

(a) topological phase and (b) trivial phase. The bare spectral function

A0(k, ω) and the BC contribution per unit field strength δA(k, ω)/B

are shown on the left and right panels, respectively. Here, we set

h = 2 and h = 0.5 in (a) and (b), respectively, whereas we fix the

pairing potential � = 1, chemical potential μ = 0.2, mass m = 0.5,

and SOC strength α = 1 in all figures unless specified otherwise.

This figure and Fig. 4 are generated by replacing the Dirac delta

function in Eq. (24) with a Lorentzian L(ω) = 1

π

η/2

ω2+(η/2)2 of width

η = 0.05.

where we focus on the lower BdG band s = − and neglect

the small spatial variations in D(r, k) given the slowly vary-

ing perturbation. The spectral function can be probed by

the momentum- and energy-resolved tunneling spectroscopy

MERTS [49] or in principle ARPES under a weak magnetic

field. The tunneling conductance can be measured by STM

or tunneling junctions. For STM measurements that require

assess to open surfaces, a bilayer structure [15] could be more

feasible than the heterostructure in Fig. 1(a).

First, we demonstrate the BC effects in the spectral func-

tion A = A0 + δA in Fig. 2. The uncorrected spectral function

A0(k, ω) and the BC contribution δA(k, ω) are obtained by

setting D(k) = 1 and δD(k) in Eq. (24a), respectively. At

zero field B = 0, the magnitude of A0 reaches its peaks at fre-

quencies along the lower superconducting band ω = −E−(k)

[see Fig. 2(a)]. Under an applied field B, the BC contribu-

tion δA is activated, which modulates the peak intensities in

A0 in a momentum-dependent way tied to topology: In the

topological phase where h >
√

�2 + μ2, the peak intensity at

small momenta k ∼ 0 is enhanced by δA > 0, as shown in

Fig. 2(a). In contrast, in the topologically trivial phase where

h <
√

�2 + μ2, we find a suppression δA < 0 at k ∼ 0, as

shown in Fig. 2(b). In either phase, the magnitude of BC-

induced enhancement or suppression |δA| increases linearly

with B until it reaches the critical field strength.

Now, we show how the topological conditions explicitly

enter the BC-modified spectral function A = A0 + δA at k =
0. For superconductivity described by the model H in Eq. (1),
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the topological conditions refer to (1) the Rashba strength

α 	= 0 is nonzero and (2) h2 > (�2 + μ2). To link these two

conditions to the BC effect in the spectral function, we in-

sert the full expressions of the coherence factors uσ s(kc) and

vσ s(kc) into the BC-induced change δD(k) in the phase-space

density of states [see Eq. (23)] and arrive at

δD(k = 0) = Bα2 μ(h�2 + (h2 − μ2)
√

�2 + μ2)

2h2(�2 + μ2)(h2 − �2 − μ2)
. (25)

It is clear from Eq. (25) that when only the lower normal

band involves in pairing h > |μ|, criterion (1) and (2) indi-

cate that the BC-induced change δD(k = 0) takes the sign

of the chemical potential μ in the topological phase and its

opposite in the trivial phase, respectively. Together with the

fact that the normalized BC contribution δA(k, ω)/A0(k, ω) =
δD(k, ω) at ω = −E−(k), which follows from Eq. (24a), we

conclude that the sign of the BC effect δA at momentum k = 0

qualitatively detects whether the superconductivity is in the

topological or trivial phases.

Experimentally, this topological signature can be detected

in the following way: First, determine whether the chemical

potential of the 2DEG is μ > 0 or μ < 0, i.e., whether μ is

closer to the higher or lower band bottom. Then in the former

(latter) case, one can identify whether the 2D superconductiv-

ity is in the topological (trivial) or trivial (topological) phase

if the ARPES or MERTS signal intensity enhances δA > 0

or suppresses δA � 0 when an applied weak magnetic field

is applied. This change in intensity δA is expected to grow

linearly with the field strength B [59].

Moreover, this topological signature can be amplified

quadratically by the Rashba SOC strength α since Eq. (25) in-

dicates that δA/A0 = δD ∝ α2 at k = 0. We demonstrate this

drastic change in α at small momenta in Figs. 3(a) and 3(b) in

the topological and trivial phases, respectively, along with the

bare spectral function A0(k, ω) for the lower superconducting

band ω = −E−(k). In contrast to the small momenta regime,

the large momenta regime does not show clear monotonic de-

pendence in α. Besides amplifying the topological signature,

this α2 enhancement at k = 0 can be used to quantitatively

determine the relative SOC strength between two different

Rashba layers or interfaces within otherwise identical het-

erostructures.

In contrast to the spectral function, the BC-modified

tunneling conductance G(ω) = G0(ω) + δG(ω) is not an ef-

fective topological diagnostic. We contrast the results in the

topological and trivial phases in Fig. 4, where we omit

the position dependence since the signal is nearly uniform at

the scale of the wave packet. Here, the bare conductance G0

and the BC correction δG are plotted using Eq. (24b) by taking

D(k) to be 1 and δD(k), respectively. The bare conductance

G0 shows four coherence peaks at frequencies ω marked by

dotted lines, where the peak intensities are not particle-hole

symmetric since the effective pairing symmetry is not s wave

[58]. These peaks originate from the band extrema of the

lower BdG band [see Fig. 1(c)], which are accessible in the

low-density regime. In experiments, the number of visible

coherence peaks is determined by the normal state band struc-

ture, thermal and impurity-caused smearing, and the focused

FIG. 3. The bare spectral functions A0(k, ω) and BC contribution

per field strength δA/B at weak (left) and strong (right) SOC strength

α in the (a) topological and (b) trivial phases. The spectral functions

are plotted along the lower superconducting band ω = −E−(k) at

each momentum k. The exchange coupling is set to h = 2 and h =
0.5 in (a) and (b), whereas the SOC strength is set to α = 1 and α = 4

in the left and right panels, respectively. Note that the normalized BC

contribution to the spectral function
δA/B

A0
is directly given by the BC

contribution to phase-space DOS per field strength δD/B, as shown

in the insets.

frequency range. The bare signal G0 with no BC effect is given

by the tunneling spectrum at zero field B = 0.

When a weak magnetic field B is applied, the BC contri-

bution δG considerably suppresses the strengths of the two

lower-energy coherence peaks but not the higher-energy peaks

in Fig. 4(a). As we tune the strengths of the exchange coupling

h and SOC α within the topological regime, we generally

find a peak suppression or/and enhancement in intensities

that are nonuniform in frequency ω and grows linearly with

an applied field B weaker than the critical field. Nonetheless,

the information about the topological conditions in Eq. (25)

FIG. 4. The BC effects in the tunneling conductance G(ω) in the

(a) topological phase h = 2 and (b) the trivial case with h = 0.5. The

blue curves G0 are the bare tunneling conductance obtained with

D(k) = 1, i.e., at B = 0. The red curves δG/B are the corrections

per unit magnetic field B to G0 from the BC-induced change in the

phase-space DOS, calculated from Eq. (24) with D(k) replaced by

δD(k). We set the SOC strength to be α = 1 as in Fig 2.
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becomes convoluted in G(ω) due to the momentum integral in

Eq. (24b). Therefore, the distinction between the BC effects

in the topological and trivial phases seems quantitative or

qualitative in a complicated way [see Fig. 4(b)]. Despite that

the distinction is quantitative in G(ω) between topological and

trivial phases, our analyses point out that one should expect

such B-field-activated nonuniform modulation in experiments

due to the phase-space BC. Such BC effect is most easily

detectable in lightly doped TSC candidate materials where

multiple coherence peaks are visible.
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APPENDIX A: WAVE-PACKET PROPERTIES

In this Appendix, we derive some of the key properties

of quasiparticle wave packet discussed in the main text. The

wave-packet center coordinate in the real space defined in

Eq. (12) [32] can be expressed in terms of the coherence

factors as

rc = ∂kc
θw(kc, t ) + i

∑

σ

(u∗
σ s(kc)∂kc

uσ s(kc)

+ v
∗
σ s(kc)∂kc

vσ s(kc)). (A1)

Here, θw stands for the phase of the envelope function

θw(k, t ) ≡ − arg ws(k, t ). We have used the fact that the in-

tegral of any smooth function f (k) weighted by |ws(k, t )|2,

which is sharply peaked around the center kc, can be approx-

imated by the value of f (k) at k = kc:
∫

d2k

(2π )2
|ws(k, t )|2 f (k) ≈ f (kc). (A2)

Using Eq. (14), Eq. (A1) can be rewritten as

rc = ∂kc
θw(kc, t ) + Aks

= ∂kc
θw(kc, t ) − 1

2
ρ0s(kc)∂kc

χ + 1
2
ρ1s(kc)∂kc

φkc
. (A3)

Let us now consider the wave-packet average of the total

charge Q, total spin S, and the charge dipole moment d:

O = 〈Ws| Ô |Ws〉 − 〈G| Ô |G〉 , O = Q, S, d, (A4)

where Ô represents

Ô =
∑

σ

∫

drgO(r)c†
σ (r)cσ (r),

gO(r) =

⎧

⎪

⎨

⎪

⎩

1, O = Q,

ζσ /2, O = S,

r − rc, O = d.

(A5)

In terms of the quasiparticle operator γs(k), Ô = Q̂, Ŝ, d̂ can

be rewritten as

Ô =
∑

σ,s1,s2

∫

r,k1,k2

gO(r)e−i(k1−k2 )·r

× [u∗
σ s1

(k1)uσ s2
(k2)γ †

s1
(k1)γs2

(k2)

+ vσ s1
(−k1)v∗

σ s2
(−k2)γs1

(−k1)γ †
s2

(−k2)] + . . . , (A6)

where “. . .” represents terms involving γ γ or γ †γ † whose

contribution vanishes after taking the expectation value.

With the help of the following identities:

〈Ws| γ †
s1

(k1)γs2
(k2) |Ws〉 =

∫

k′
1,k

′
2

w
∗
s (k′

1, t )ws(k
′
2, t ) 〈G| γs(k

′
1)γ †

s1
(k1)γs2

(k2)γ †
s (k′

2) |G〉

= w
∗
s (k1, t )ws(k2, t )δs,s2

δs,s1
,

〈Ws| γs1
(k1)γ †

s2
(k2) |Ws〉 =

∫

k′
1,k

′
2

w
∗
s (k′

1, t )ws(k
′
2, t ) 〈G| γs(k

′
1)γs1

(k1)γ †
s2

(k2)γ †
s (k′

2) |G〉

= δk1,k2
δs1,s2

− δs,s1
δs,s2

w
∗
s (k2, t )ws(k1, t ) (A7)

we find

〈Ws| Ô |Ws〉 − 〈G| Ô |G〉 =
∑

σ

∫

r

∫

k1,k2

e−i(k1−k2 )·rgO(r)[w∗
s (k1, t )ws(k2, t )u∗

σ s(k1)uσ s(k2)

− w
∗
s (−k2, t )ws(−k1, t )vσ s(−k1)v∗

σ s(−k2)]. (A8)

For Ô = Q̂ or Ŝ, it is easy to see that the equation above can be further simplified to

Q =
∫

k

|ws(k, t )|2ρ0s(k) = ρ0s(kc),

S =
1

2

∫

k

|ws(k, t )|2ρ1s(k) =
1

2
ρ1s(kc).

(A9)

064508-6



DETECTING TOPOLOGICAL SUPERCONDUCTIVITY VIA … PHYSICAL REVIEW B 111, 064508 (2025)

For the charge dipole moment d, one can express re−i(k1−k2 )·r in the Eq. (A8) as −i∂k2
e−i(k1−k2 )·r, which results in

〈Ws| d̂ |Ws〉 − 〈G| d̂ |G〉 =
∑

σ

∫

r

∫

k1,k2

(−i∂k2
e−i(k1−k2 )·r )w∗

s (k1, t )ws(k2, t )[u∗
σ s(k1)uσ s(k2) − v

∗
σ s(k1)vσ s(k2)] − rcQ

= i
∑

σ

∫

k

w
∗
s (k, t )(∂kws(k, t ))(|uσ s(k)|2 − |vσ s(k)|2) + i

∑

σ

∫

k

|ws(k, t )|2(u∗
σ s(k)∂kuσ s(k)

− v
∗
σ s(k)∂kvσ s(k)) − rcQ

=
∫

k

|ws(k, t )|2(ρ0s(k)∂kθw(k, t ) − ∂kχ/2 + ρ2s(k)∂kφk/2) − rcQ

+
i

2

∑

σ

∫

k

(∂k|ws(k, t )|2)(|uσ s(k)|2 − |vσ s(k)|2) +
i

2

∑

σ

∫

k

|ws(k, t )|2∂k(|uσ s(k)|2 − |vσ s(k)|2)

= ρ0s(kc)∂kc
θw(kc, t ) − ∂kc

χ/2 + ρ2s(kc)∂kc
φkc

/2 − rcρ0s(kc). (A10)

Inserting the expression for rc in Eq. (A3), we find the wave-packet average of the charge dipole moment is given by

d = 1
2

(

ρ2
0s(kc) − 1

)

∂kc
χ + 1

2
(ρ2s(kc) − ρ0s(kc)ρ1s(kc))∂kc

φkc
, (A11)

where the first and second terms correspond to d1 in Eq. (17) and d2 in Eq. (18), respectively.

APPENDIX B: LAGRANGIAN

This Appendix evaluates the Lagrangian which governs the semiclassical dynamics of the wave packet:

L = 〈Ws|
(

i
d

dt
− H

)

|Ws〉 − 〈G|
(

i
d

dt
− H

)

|G〉 . (B1)

The part that contains the Hamiltonian is given by

〈Ws| H |Ws〉 − 〈G| H |G〉 =
∫

k1,k2

w
∗
s (k1, t )ws(k2, t ) 〈G| γs(k1)

(

∫

k

∑

s′

Es′ (k)γ †
s′ (k)γs′ (k)

)

γ †
s (k2) |G〉

=
∫

k

|ws(k, t )|2Es(k) = Es(kc), (B2)

while the part that involves the time derivative reduces to

〈Ws| i
d

dt
|Ws〉 = i

∫

k

w
∗
s (k, t )

∂

∂t
ws(k, t ) + i

drc

dt
·
∫

k

w
∗
s (k, t )

∂

∂rc

ws(k, t )

+ i
drc

dt
·
∫

k1,k2

w
∗
s (k1, t )ws(k2, t ) 〈G| γs(k1)

(

∂

∂rc

γ †
s (k2)

)

|G〉 . (B3)

Note that the time dependence of the quasiparticle creation operator γ †
s comes from the time dependence of the wave-packet

center rc.

Using the BdG transformation Eq. (6), the term 〈Ws| i d
dt

|Ws〉 can be further divided into three parts:

〈Ws|i
d

dt
|Ws〉 = L1 + L2 + L3,

L1 = i

∫

k

w
∗
s (k, t )

∂

∂t
ws(k, t ) + i

drc

dt
·
∫

k

w
∗
s (k, t )

∂

∂rc

ws(k, t )

L2 = i
drc

dt
·
∫

k1,k2

w
∗
s (k1, t )ws(k2, t )

× 〈G|γs(k1)

[(

∂

∂rc

u↑s(k2)

)

c
†
↑(k2) +

(

∂

∂rc

u↓s(k2)

)

c
†
↓(k2) +

(

∂

∂rc

v↓s(k2)

)

c↓(−k2) −
(

∂

∂rc

v↑s(k2)

)

c↑(−k2)

]

|G〉,

L3 = i
drc

dt
·
∫

k1,k2

w
∗
s (k1, t )ws(k2, t )

× 〈G|γs(k1)

[

u↑s(k2)

(

∂

∂rc

c
†
↑(k2)

)

+ u↓s(k2)

(

∂

∂rc

c
†
↓(k2)

)

+ v↓s(k2)

(

∂

∂rc

c↓(−k2)

)

− v↑s(k2)

(

∂

∂rc

c↑(−k2)

)]

|G〉.

(B4)
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Here L1 can be expressed in terms of the phase of the envelope function ws(k, t ) at the wave-packet center kc, i.e., θw(kc, t ),

L1 =
∫

k

|ws(k, t )|2
(

∂

∂t
θw(k, t ) +

drc

dt
·

∂

∂rc

θw(k, t )

)

=
∂

∂t
θw(kc, t ) +

drc

dt
·

∂

∂rc

θw(kc, t ). (B5)

Using the expression for the wave-packet center rc in Eq. (A3), one can rewrite this equation as

L1 =
d

dt
θw(kc, t ) −

dkc

dt
·

∂

∂kc

θw(kc, t )

=
d

dt
θw(kc, t ) − k̇c · (rc − Aks). (B6)

Converting the electron operator cσ into the quasiparticle operator γs in L2, we obtain

L2 = i
drc

dt
·
∫

k1,k2

w
∗
s (k1, t )ws(k2, t ) 〈G| γs(k1)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

∂

∂rc

u↑s(k2)

)

∑

s′

(u∗
↑s′ (k2)γ †

s′ (k2) − v↑s′ (−k2)γs′ (−k2))

+
(

∂

∂rc

u↓s(k2)

)

∑

s′

(u∗
↓s′ (k2)γ †

s′ (k2) + v↓s′ (−k2)γs′ (−k2))

+
(

∂

∂rc

v↓s(k2)

)

∑

s′

(v∗
↓s′ (k2)γ †

s′ (k2) + u↓s′ (−k2)γs′ (−k2))

+
(

∂

∂rc

v↑s(k2)

)

∑

s′

(v∗
↑s′ (k2)γ †

s′ (k2) − u↑s′ (−k2)γs′ (−k2))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|G〉

= i
drc

dt
·
∫

k

|ws(k, t )|2
∑

σ

(

u∗
σ s(k)

∂

∂rc

uσ s(k) + v
∗
σ s(k)

∂

∂rc

vσ s(k)

)

= ṙc · Ars. (B7)

For the evaluation of L3, note that

drc

dt
·

∂

∂rc

cσ (±k) =
drc

dt
·

∂

∂rc

(∫

d2re−i(±k+A(rc ))·rcσ (r)

)

= −i
drc

dt
·
∫

r

∂A(rc) · r

∂rc

e−i(±k+A(rc ))·rcσ (r)

=
dA(rc)

dt
·
∫

d2r

(

±
∂

∂k
e−i(±k+A(rc ))·r

)

cσ (r)

= ±
dA(rc)

dt
·

∂

∂k
cσ (±k), (B8)

which leads to

L3 = i
d

dt
A(rc) ·

∫

k1,k2

w
∗
s (k1, t )ws(k2, t )

× 〈�|γs(k1)

[

u↑s(k2)

(

∂

∂k2

c
†
↑(k2)

)

+ u↓s(k2)

(

∂

∂k2

c
†
↓(k2)

)

− v↓s(k2)

(

∂

∂k2

c↓(−k2)

)

+ v↑s(k2)

(

∂

∂k2

c↑(−k2)

)]

|�〉

= −i
d

dt
A(rc) ·

∫

k

w
∗
s (k, t )(∂kws(k, t ))

(

|uσ s(k)|2 − |vσ s(k)|2
)

− i
d

dt
A(rc) ·

∫

k

|ws(k, t )|2(u∗
σ s(k)∂kuσ s(k) − v

∗
σ s(k)∂kvσ s(k)). (B9)

Comparing this equation with the expression for the electric dipole moment d (see Eqs. (A10) and (A11)), it is easy to see that

L3 can be expressed as

L3 = −Ȧ(rc) · [ρ0s(kc)rc + d]. (B10)
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Combining everything, we obtain

L = −Es(kc) − k̇c · (rc − Aks) + ṙc · Ars − Ȧ(rc) · [ρ0s(kc)rc + d]. (B11)

Here we have dropped terms, which can be expressed as total time derivatives and as a result do not enter the equation of motion.

Using A(rc) = 1
2
B × rc, we find that the Lagrangian can be rewritten as Eq. (13).

APPENDIX C: EQUATION OF MOTION

In this Appendix, we derive the explicit expression for the equation of motion of the quasiparticle wave-packet dynamics in

terms of the coherence factors. Inserting the expression for the Lagrangian in Eq. (13) into the Euler-Lagrange equation

∂L

∂ri
c

=
d

dt

∂L

∂ ṙi
c

,
∂L

∂ki
c

=
d

dt

∂L

∂ k̇i
c

, i = x, y, (C1)

one can derive the equation of motion for the wave-packet center:

k̇i
c = −∂ri

c
Es(kc) + �

i j

rks
k̇ j

c + �i j
rrsṙ

j
c ,

ṙi
c = ∂ki

c
Es(kc) − �

i j

kks
k̇ j

c − �
i j

krs
ṙ j

c . (C2)

Here we have employed the notation that repeated indices implies summation. Note that the Berry curvatures � are defined as

derivatives of the Berry connections Aks and Ars:

�
i j

kks
≡ ∂ki

c
A

j

ks
− ∂

k
j
c
A

i
ks, �i j

rrs ≡ ∂ri
c
A

j
rs − ∂

r
j
c
A

i
rs,

�
i j

rks
≡ −�

ji

krs
≡ ∂ri

c
A

j

ks
− ∂

k
j
c
A

i
rs. (C3)

Equation (C2) can be rewritten in a vector form:

k̇c = −∇rc
Es(kc) + ṙc × �rs + ∇rc

(

k̇c · Aks

)

−
(

k̇c · ∇kc

)

Ars,

ṙc = ∇kc
Es(kc) − k̇c × �ks − ∇kc

(ṙc · Ars) + (ṙc · ∇rc
)Aks.

(C4)

Here the vector forms of the Berry curvatures �rs and �ks are defined as

�ks = ∇kc
× Aks, �rs = ∇rc

× Ars, (C5)

and they are related to their tensor counterparts �rrs and �kks by:

�
l
rs/ks = 1

2
εli j�

i j

rrs/kks
, �

i j

rrs/kks
= εi jl�

l
rs/ks, (C6)

with εi jl being the Levi-Civita symbol. Note that in the present paper, we consider a 2D system, and therefore only the z

component of the vector Berry curvature � is nonvanishing.

Using the expressions for the Berry connections Aks and Ars, we obtain

�ks = − 1
2
∇kc

ρ0s(kc) × ∇kc
χ + 1

2
∇kc

ρ1s(kc) × ∇kc
φkc

,

�rs = −∇rc
ρ0s(kc) × (∇rc

χ/2 − A(rc)) + ρ0s(kc)B + 1
2
∇rc

× (B × d) + 1
2
∇rc

ρ1s(kc) × ∇rc
φkc

. (C7)

The tensor-form of the phase-space Berry curvature �rk is given by,

�
i j

rks
= − 1

2

(

∂ri
c
ρ0s(kc)∂

k
j
c
χ − ∂

k
j
c
ρ0s(kc)∂ri

c
χ
)

+ 1
2

(

∂ri
c
ρ1s(kc)∂

k
j
c
φkc

− ∂
k

j
c
ρ1s(kc)∂ri

c
φkc

)

− ∂
k

j
c
ρ0s(kc)Ai(rc) − 1

2
∂

k
j
c
(B × d)i.

(C8)

Inserting Eq. (C7) into Eq. (C4) leads to the following form of the equation of motion:

k̇c = −∇rc
Es(kc) + ṙc ×

[

−∇rc
ρ0s(kc) ×

(

1
2
∇rc

χ − A(rc)
)

+ ρ0s(kc)B + 1
2
∇rc

× (B × d) + 1
2
∇rc

ρ1s(kc) × ∇rc
φkc

]

− 1
2
∇rc

[

k̇c · (ρ0s(kc)∇kc
χ − ρ1s(kc)∇kc

φkc
)
]

+
(

k̇c · ∇kc

)[

ρ0s(kc)
(

1
2
∇rc

χ − A(rc)
)

− 1
2
B × d − 1

2
ρ1s(kc)∇rc

φkc

]

,

ṙc = ∇kc
Es(kc) − k̇c ×

(

− 1
2
∇kc

ρ0s(kc) × ∇kc
χ + 1

2
∇kc

ρ1s(kc) × ∇kc
φkc

)

+∇kc

{

ṙc ·
[

ρ0s(kc)
(

1
2
∇rc

χ − A(rc)
)

− 1
2
B × d − 1

2
ρ1s(kc)∇rc

φkc

]}

− 1
2
(ṙc · ∇rc

)(ρ0s(kc)∇kc
χ − ρ1s(kc)∇kc

φkc
), (C9)

where the dependence of ρas on the coherence factors is given in Eqs. (15) and (19).
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APPENDIX D: BERRY CURVATURE CORRECTION TO THE PHASE-SPACE DENSITY OF STATES

As mentioned in the main text, the equation of motion Eq. (C2) exhibits a noncanonical structure due to the presence of the

Berry curvatures, which leads to the breakdown of the conservation of the phase-space volume. In particular, the phase-space

volume element �V = �k�r is no longer constant in time and instead evolves according to [27]

1

�V

d�V

dt
= ∇r · ṙ + ∇k · k̇. (D1)

One therefore needs to introduce a modified phase-space density of states D(r, k) such that the number of states in volume

element �V , i.e., D(r, k)�V , remains constant over time. This Appendix provides the derivation of the correction to the phase-

space density of states induced by the Berry curvatures for the current model.

In terms of the Berry curvatures, up to an inessential coefficient, the modified phase-space density of states D(r, k) acquires

a form [29,57]

D =

√

det

[

�rrs �rks − I

�krs + I �kks

]

. (D2)

Since the external perturbation is assumed to be slowly varying in real space, one can perform an expansion in terms of the

spatial gradient and keep only the leading-order terms [34]. The Berry curvature correction to the phase-space density of states

δD ≡ D − 1 therefore can be approximated by

δD(r, k) = Tr�krs − �rs · �ks

= −∇kρ0s · ps − 1
2
B · (∇k × d) + 1

2
∇rρ0s · ∇kχ + 1

2
∇kρ1s · ∇rφk − 1

2
∇rρ1s · ∇kφk

− 1
2
(∇kρ0s × ∇kχ − ∇kρ1s × ∇kφk ) ·

(

∇rρ0s(k) × ps − ρ0sB − 1
2
∇r × (B × d) − 1

2
∇rρ1s(k) × ∇rφk

)

, (D3)

where in the second step we have inserted the explicit expressions for the Berry curvatures. ps denotes the supercurrent ps ≡
1
2
∇rχ − A.

We now separate δD into three different components: the external magnetic field B-dependent part δD1, the supercurrent

ps-dependent part δD2, and the remaining part δD3:

δD1(r, k) = − 1
2
B · (∇k × d) + 1

2
(∇kρ0s × ∇kχ − ∇kρ1s × ∇kφk ) ·

[

ρ0sB + 1
2
∇r × (B × d)

]

,

δD2(r, k) = −∇kρ0s · ps − 1
2
(∇kρ0s × ∇kχ − ∇kρ1s × ∇kφk ) · (∇rρ0s × ps),

δD3(r, k) = 1
2
(∇rρ0s · ∇kχ + ∇kρ1s · ∇rφk − ∇rρ1s · ∇kφk ) + 1

4
(∇kρ0s × ∇kχ − ∇kρ1s × ∇kφk ) · (∇rρ1s × ∇rφk ). (D4)

Dropping the higher-order terms in the spatial gradient ∇r in the equation above, we find δD3 = 0 and δD2 = −∇kρ0s · ps,

which is not considered in this paper. We focus instead on the component δD1(r, k), which evaluates to

δD1(r, k) = − 1
2
B · (∇k × d) + 1

2
ρ0s(∇kρ0s × ∇kχ − ∇kρ1s × ∇kφk ) · B

= − 1
4
B · [(∇kρ2s + ρ0s∇kρ1s − ρ1s∇kρ0s) × ∇kφk]. (D5)

Here in the second equality, we have inserted the expression for d in Eq. (A11). Note that this expression reduces to Eq. (23) for

s-wave pairing χ = 0.
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