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Detecting topological superconductivity via Berry curvature effects in spectral functions
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Experimental efforts on topological superconductivity (TSC) have primarily focused on the detection of
Majorana boundary modes, while the bulk properties of TSC, particularly in two dimensions, remain relatively
underexplored. In this work, we theoretically propose a distinctive signature in the spectral function away from
the boundaries, capable of detecting two-dimensional (2D) chiral p-wave TSC induced in a Rashba spin-orbit-
coupled heterostructure. This signature can be probed experimentally through angle-resolved photoemission
spectroscopy or momentum- and energy-resolved tunneling spectroscopy under a weak magnetic field B. We
show that within the topological phase, the spectral intensity of the lowest superconducting band at small
momenta k ~ O brightens (darkens) linearly with increasing B, whereas it darkens (brightens) in the trivial
phase when the Rashba system is electron (hole) doped. This sharp contrast arises from the phase-space
Berry curvature (BC) of Bogoliubov quasiparticles, a novel quantum geometric property that generalizes the
conventional momentum-space BC. The effect of this phase-space BC can also be detected by the differential
conductance away from the boundaries. Our falsifiable prediction provides an experimental avenue for detecting
Rashba-induced chiral p-wave TSC without relying on Majorana mode detection, addressing a key challenge in

the realization of 2D TSC.

DOI: 10.1103/PhysRevB.111.064508

I. INTRODUCTION

Topological superconductors (TSCs) are exotic quantum
materials that exhibit nontrivial band topology in the bulk as
well as Majorana modes on different dimensional boundaries
[1-7]. The experimental detection of a TSC has remained one
of the key challenges in the fields of unconventional super-
conductivity and topological phases, despite intensive studies
in the past decade. Currently, many TSC experiments have
focused on detecting Majorana boundary signatures through
local scanning probes [3,8—18], although this approach of-
ten faces the challenge of distinguishing signals originating
from Majorana modes and from other more mundane sources
[17-25]. In contrast, experimental features in the bulk of TSC
associated with superconducting band topology remain rela-
tively underexplored.

Bands with nontrivial topology necessarily possess non-
trivial band geometry, which characterizes the changes in
eigenstates at neighboring momenta k and could have sig-
nificant influences on experimental observables in metals,
insulators, and superconductors [26-37]. Though relatively
unexplored, quantum geometric quantities defined in real
space and phase space can also lead to detectable exper-
imental features. For example, nontrivial Berry curvature
BC) i, A, A =rk, is expected for the Bogoliubov
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quasiparticles in two-dimensional (2D) chiral TSC, which fea-
tures a nonzero Chern number C = f dkQ (k) and quantized
thermal Hall conductivity [1]. Besides the momentum-space
BC, the generalized BCs defined in the real space €2,, and the
phase space €2, generally exist in the presence of external
perturbations, such as a magnetic field or supercurrent [34].
These generalized BCs were recently found to influence the
density of states and thermal responses in spin-singlet super-
conductors with spin-degenerate normal states [34].

Spin-orbit-coupled (SOC) normal states, on the other hand,
have been a crucial ingredient in strategies to achieve TSC
since manipulating Fermi surface spin textures can facili-
tate the formation of effectively spin-triplet Cooper pairs
[9,14,15,38—48]. Candidate materials for 2D chiral TSC pre-
dicted from this strategy include the proximitized surfaces
of topological insulators [38] and hole-doped monolayer
transition-metal dichalcogenides [47]. In this work, we will
focus on proximitized two-dimensional gas (2DEG) with
Rashba SOC [41] [see Fig. 1(a)].

Here, we theoretically predict a BC-induced signature in
the spectral function that distinguishes whether the super-
conducting Rashba 2DEG in Fig. 1(a) is in the topological
or trivial phase. This signature is found by examining the
generalized BC effects of Bogoliubov quasiparticles using a
semiclassical wave-packet analysis [29,34], and can be probed
by angular-resolved photoemission spectroscopy (ARPES)
or momentum- and energy-resolved tunneling spectroscopy
(MERTS) [49] under a weak magnetic field B [50]. We
show that the intensity of the lowest superconducting band
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FIG. 1. Sketches for (a) the considered heterostructure hosting an
effective 2D TSC, and (b) the in-plane spin texture S; on the Fermi
surface of the Rashba layer, where ¢y labels the intrinsic locking
angle between the spin and momentum. (c) The calculated lower
BdG band E_ (k) of H, where the dotted lines label the band extrema.

FM insulator

0 k

at small momenta k ~ O brightens (darkens) linearly with B
in the topological phase but darkens (brightens) in the trivial
phase, when the Rashba 2DEG is electron (hole) doped. This
phase-space BC effect can therefore serve as an experimental
diagnostic for chiral p-wave TSC realized by a proximitized
Rashba 2DEG.

II. MODEL

We consider a well-known minimal model [40,41] that de-
scribes the chiral p-wave TSC resulting from a Rashba 2DEG
proximitized by a s-wave superconductor and a ferromagnetic
insulator (see Fig. 1). In the presence of a weak magnetic field
B = Bz, the 2DEG layer is described by

H= ) / dzrcl(r)(ﬁ[—iv —AMP -+ haz)cam

o="1

+ Z fdzrcj,(r)a{a x [=iV — A(D)]} - 2¢, (r)
o="11

+ / dzr(Ac;(r)cj(rH A*cy(r)ey(r)), )

where c](r) creates an electron at position r with spin
o =1, | and mass m, o; are spin Pauli matrices, and A(r) =
B x r/2 denotes the vector potential. We have set /i =1,
the electric charge e = 1, and & > |u| so that the chemical
potential u intersects only the lower normal band. The second
and third lines describe, respectively, the Rashba SOC with
strength « and the proximity-induced superconductivity with
a pairing potential A.

This model is in the chiral p-wave TSC phase when the
ferromagnetic exchange coupling 4 > v/|A|?> 4+ u? and in the
trivial phase when /& < v/|A|> 4+ w2, In the following calcu-
lations, we consider a weak magnetic field B < |A| and a
Rashba layer within the TSC or trivial phase. For simplicity,
we approximate /& and B as two independent variables, assum-
ing that the Zeeman splitting caused by the applied magnetic
field and the orbital effect of the ferromagnetic insulator are
negligible.

We examine the dynamics of quasiparticles described by H
using a semiclassical wave-packet approach, which has been
successfully applied to metals [26,29,51] and spin-singlet su-
perconductors with spin-degenerate normal states [32,34,52].

We assume the external perturbation A(r) is time independent
and slowly varying in the real space r compared to the spread
of the wave packet. This allows us to neglect the r dependence
in A(r) in Eq. (1) and approximating A(r) by its value at the
wave-packet center r = r.. Such a scenario can be achieved
when the applied field strength is smaller but close to H,, so
that the lattice constant of the vortex lattice is close to the
coherence length.

The resulting effective Hamiltonian governing the wave-
packet dynamics can be further simplified by introducing the
Nambu spinor

W(k) =[cr(k) e, (k) (k) —ci(-kI", ()

where
cl(k) = / dPreBHATDTCT (1, 3)

After the transformation, the Hamiltonian assumes the form

H—l Z / &’k U (K)hggs (K)W(K)
= 3 = (27[)2 BdG )

thG (k) = [‘i:k + a(axky - Gykx)]fz + ]’l(fz

1 1
+ EA(‘EX +ity) + EA*(TX —iTy). 4)

Here & = k?/2m — u and 7; denotes the Pauli matrix acting
in the Nambu space.
This Hamiltonian can be diagonalized to

d*k
H = Z / (ZT)QEs(k)V:(k)Vs(k) -+ const., 5)

s==*1
by applying the Bogoliubov-de Gennes (BdG) transformation:
vs(K) = ®{(K)W(K), 6)

where the helicity s = & labels the upper and lower BdG
bands. ®,(k) = [ur,(K) 1, (k) vy(k) (k)] s the
eigenfunction of hgyg (k) with positive eigenenergy E;(k) and
it satisfies

hega (k)P (k) = Es(k) Py (k). (N

Solving the BAG equation, we find the quasiparticle energy

E, (k) = [(ak)2 AP + K2 + &2

2
+ 2s\/s,3[(ak)2 + h2] + | A2h? ]1/ )
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For & # h or s # —1, the BdG eigenfunction ®,(k) is given
by,

ups(K) = Dy(b)[Es(k)hge + | APh + h + &(@k® + h?)

+ S(ER) + h+ 80y (k262 + (1A +£7)]

w Xt /D2,
uys(k) = Ds(k)ark[& (& + Eq(k))

+ s\/(ak)2§k2 + h2(|A|2 + E}g)]g«xwk—n/z)/z’
vy (K) = Dy (k)| Al [(h + Eq (k)

+ s\/(ozk)zgk2 + (1A + g:kz)]e_i()(‘HPk—?T/Z)/Z’

v15(K) = Ds(k)| Aotk (& — h)e "X tm/2/2,
)

By contrast, when & = h and s = —1, we instead have
up,—1(k) =0,
uy_1(K) = D_y (k)| Al X Ho—m/D/2,
vy, —1(k) = —D_; (k)ake "X +T/D/2,
vy.—1(K) = D_j(k)E_ (k)e X~ ttm/D/2, (10)

Here the phase of the pairing potential y = arg(A) depends
on the pairing symmetry [53], the intrinsic angle of the Rashba
SOC is denoted by ¢y = arctan(k,/k.). Ds(k) is the normal-
ization constant.

III. QUASIPARTICLE WAVE PACKET

After diagonalizing H, we construct a wave packet for the
quasiparticles from the lower BdG band with s = —:

W) = /kws(k,t))/:(k)lG), an

where |G) denotes the superconducting ground state. The
envelope function wy(kK,t) obeys the normalization condi-
tion fk |lws(K,)|> =1 and is sharply peaked around k. =
fk |lws(k, 1)|°k, whereas the wave-packet center in the real
space is given by [32]

re =i/(ws(k9t)(bs(k))-I.ak(ws(kvt)cbs(k))' 12)
k

For cases where the perturbation is strong, a treatment in-
volving both s = % bands is required [28,29,54], which falls
beyond the scope of our current study.

The semiclassical dynamics of this quasiparticle wave
packet |W;) is described by its Lagrangian L, given by
the wave-packet average [55] of the operator [ = i% —-H
[29,34]. It can be expressed in terms of the momentum-space
and real-space Berry connections Ay, and A, as

L=- Es(kc) - kc - T + kc : Aks + i'c : -Ars~ (13)

The momentum-space Berry connection A;, is defined
in terms of the BdG wavefunction ® (k) as A =
i Qj (k) 0k, Ps(k.), and can be further simplified into

Aks = — 300s(Ke)ow, X + 3015 (ke P, (14)

Here

pas(K) =Y (o) (lttos (K)* = ug(R)P)  (15)

with a = 0,1 and ¢&,,, = £1. Physically speaking, po(k.)
and pj4(k.)/2 correspond to the wave-packet average [55] of
the total charge and spin, respectively (see Appendix A).

The real-space Berry connection A, is given by

Ars :-’Z(r_&‘ + pOs(kc)A(rc) + %B X d’ (16)

where A, is the real-space analog of Ay, in Eq. (14) by
replacing 0k, — 9y, . The second term describes how the total
charge of the wave packet pos(k.) couples to the external
vector potential A(r.), whereas the last term describes how
the charge dipole moment d of the wave packet couples to the
external magnetic field B. Note that these two terms enter the
Lagrangian in Eq. (13) in the same way as the well-known
Lagrangian describing the Lorentz force of a charged object
with a dipole moment in a magnetic field [56].

The dipole moment d of the wave packet, given by the
wave-packet average [55] of dipole moment operator d =
>, [ d*r &l (r)é, (r)(r —r.), contains two terms d =d; +
d,. The first term

di = 3(05,(k) — 1)k x, a7

was found nonzero for a d-wave pairing potential [34], but
vanishes for our case of an s-wave pairing potential with
dkx = 0. Nonetheless, we find that the second term

d> = 1[pas(ke) — pos(ke)pis (ke )19k, P, (18)

is a new source of dipole moment arising from the SOC. Note
that although d, scales with the winding of the Rashba angle
¢k, (Fig. 1), it is not inherited from the normal state because
the prefactor py; — pos01; = 0 when the pairing potential A =
0, where

p2s(ke) = Y o (Jus(ke) + [os (k). (19)

Thus, d; exists only in the superconducting state but not the
normal state.

This is physically because the quasiparticle wave packet
consists of momentum- and position-dependent mixtures of
electron and hole components, which allows a deviation of the
wave-packet center r, from the charge center. Since the dipole
moment d, emerges exclusively when superconductivity and
spin-orbit coupling coexist, d, can lead to new experimental
features of SOC superconductors through coupling to an ex-
ternal B field [see Eq. (6)].

IV. PHASE-SPACE BC AND DENSITY OF STATES

To analyze the experimental features of d,-induced BC, we
examine how the wave-packet dynamics are modified by BC
from Eq. (13):

ny” Ql’j’“i-_ || = [arﬁES(kC)]’ (20)
ijrs + 8i/ ijks kf ak(’EY(kc)

where the repeated Cartesian indices are implicitly summed.
The momentum-, real-, and phase-space BCs are defined as
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the derivatives of the Berry connections A, and Ay;:
Q= AL = AL WA =k QD

For the p 4+ ip TSC we consider in Eq. (1), we find that the
momentum- and phase-space BC under an external B field are
given by (see Appendix C)

Qs = 50, p15(ke) X Db Q= —30, (B x d), (22)

up to the leading order in the real-space gradient expansion,
where field-induced supercurrent is not considered in this
work. We find that while the presence of real-space BC €,, =
pos (K. )B does not depend on SOC, neither £y, nor 7 would
have survived in the absence of the SOC. Specifically, the
momentum-space 2, is inherited from the spin-orbit coupled
normal state, whereas the phase-space €2, describes the cou-
pling between the SOC-induced wave-packet dipole moment
to the external B field.

The BC effects on the semiclassical dynamics in Eq. (20)
have been shown [27,29] to modify the phase-space density
of states D(r, k), required by the conservation of the total
number of states N' = D(r, k)AV in a phase-space volume
AV = AkAr (see Appendix D). The modified phase-space
density of states was shown to be [29,34,57] D(r,k) ~ 1 +
Tr2y,s — R, - @i up to an inessential overall coefficient,
where a spatial gradient expansion is applied for slowly vary-
ing external fields. This BC-modified phase-space density of
states D(r, k) is the key factor that embeds the information
of the wave-packet BCs we find in Eq. (22) into experimental
observables.

For the p + ip TSC we consider, we obtain the BC-induced
phase-space density of states D = D — 1 under an external B
field using Eq. (22)

8D = —1B - (Vi x dp) — 3(pos Vipis x Vi) - B (23)

up to the leading order in spatial gradient d,.. Note that §D ex-
ists only in the presence of SOC: The latter term results from
the momentum- and real-space BC, which is proportional to
the winding of the Rashba angle ¢y in the spin-orbit-coupled
normal state. The former term results from the phase-space
BC, which exists only in a spin-orbit-coupled superconductor
due to the quasiparticle charge dipole moment d, in Eq. (7).

V. BC-INDUCED TOPOLOGICAL SIGNATURES
IN OBSERVABLES

We are now ready to examine how the BCs influence the
experimental observables in a p + ip TSC enabled by Rashba
SOC. With the BC-modified phase-space density of states
D =1+ 6D, we investigate the spectral function A(k, w) and
the normal metal-to-superconductor tunneling conductance
[58] G(r, w) given by

Ak o)=Y / D(r, K)oy (6) 8@ — Ex(k))

+ 00 (K) 28 (00 + Ey ()], (24a)
Gr.w)=Y /k D(r, K)o, (K)*8(e — Eq (k)
+ 00 (K) 28 (0 + Ey ()], (24b)
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FIG. 2. BC effects on the the spectral function A(K, w) in the
(a) topological phase and (b) trivial phase. The bare spectral function
Ao (k, ®) and the BC contribution per unit field strength sA(k, w)/B
are shown on the left and right panels, respectively. Here, we set
h =2 and h = 0.5 in (a) and (b), respectively, whereas we fix the
pairing potential A = 1, chemical potential © = 0.2, mass m = 0.5,
and SOC strength o = 1 in all figures unless specified otherwise.
This figure and Fig. 4 are generated by replacing the Dirac delta
function in Eq. (24) with a Lorentzian L(w) = 2 1/ 2/2)2 of width
n = 0.05.

T W0+

where we focus on the lower BdG band s = — and neglect
the small spatial variations in D(r, k) given the slowly vary-
ing perturbation. The spectral function can be probed by
the momentum- and energy-resolved tunneling spectroscopy
MERTS [49] or in principle ARPES under a weak magnetic
field. The tunneling conductance can be measured by STM
or tunneling junctions. For STM measurements that require
assess to open surfaces, a bilayer structure [15] could be more
feasible than the heterostructure in Fig. 1(a).

First, we demonstrate the BC effects in the spectral func-
tion A = A + A in Fig. 2. The uncorrected spectral function
Ap(Kk, w) and the BC contribution JA(K, w) are obtained by
setting D(k) =1 and §D(k) in Eq. (24a), respectively. At
zero field B = 0, the magnitude of A, reaches its peaks at fre-
quencies along the lower superconducting band w = —E_(k)
[see Fig. 2(a)]. Under an applied field B, the BC contribu-
tion 8A is activated, which modulates the peak intensities in
Ap in a momentum-dependent way tied to topology: In the
topological phase where i > /A2 + 2, the peak intensity at
small momenta k ~ 0 is enhanced by A > 0, as shown in
Fig. 2(a). In contrast, in the topologically trivial phase where
h < /A% + 12, we find a suppression A < 0 at k ~ 0, as
shown in Fig. 2(b). In either phase, the magnitude of BC-
induced enhancement or suppression |[6A| increases linearly
with B until it reaches the critical field strength.

Now, we show how the topological conditions explicitly
enter the BC-modified spectral function A = Ap + 5A at k =
0. For superconductivity described by the model H in Eq. (1),
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the topological conditions refer to (1) the Rashba strength
o # 0 is nonzero and (2) A2 > (A% + u?). To link these two
conditions to the BC effect in the spectral function, we in-
sert the full expressions of the coherence factors u,,(k.) and
Vo5 (K. ) into the BC-induced change § D(K) in the phase-space
density of states [see Eq. (23)] and arrive at

_ g O — YA ) o

=0 (A + u2) I = A = 42)

It is clear from Eq. (25) that when only the lower normal
band involves in pairing & > |u/|, criterion (1) and (2) indi-
cate that the BC-induced change 6D(k = 0) takes the sign
of the chemical potential u in the topological phase and its
opposite in the trivial phase, respectively. Together with the
fact that the normalized BC contribution A(Kk, w)/Ao(k, ®) =
3Dk, w) at w = —E_(k), which follows from Eq. (24a), we
conclude that the sign of the BC effect A at momentum k = 0
qualitatively detects whether the superconductivity is in the
topological or trivial phases.

Experimentally, this topological signature can be detected
in the following way: First, determine whether the chemical
potential of the 2DEG is u > 0 or u < 0, i.e., whether u is
closer to the higher or lower band bottom. Then in the former
(latter) case, one can identify whether the 2D superconductiv-
ity is in the topological (trivial) or trivial (topological) phase
if the ARPES or MERTS signal intensity enhances §A > 0
or suppresses A < 0 when an applied weak magnetic field
is applied. This change in intensity §A is expected to grow
linearly with the field strength B [59].

Moreover, this topological signature can be amplified
quadratically by the Rashba SOC strength « since Eq. (25) in-
dicates that A /Ay = 8D o «? at k = 0. We demonstrate this
drastic change in « at small momenta in Figs. 3(a) and 3(b) in
the topological and trivial phases, respectively, along with the
bare spectral function Ay (k, @) for the lower superconducting
band w = —FE_(k). In contrast to the small momenta regime,
the large momenta regime does not show clear monotonic de-
pendence in «. Besides amplifying the topological signature,
this «? enhancement at k = 0 can be used to quantitatively
determine the relative SOC strength between two different
Rashba layers or interfaces within otherwise identical het-
erostructures.

In contrast to the spectral function, the BC-modified
tunneling conductance G(w) = Go(w) + §G(w) is not an ef-
fective topological diagnostic. We contrast the results in the
topological and trivial phases in Fig. 4, where we omit
the position dependence since the signal is nearly uniform at
the scale of the wave packet. Here, the bare conductance G
and the BC correction § G are plotted using Eq. (24b) by taking
D(k) to be 1 and §D(Kk), respectively. The bare conductance
Gy shows four coherence peaks at frequencies w marked by
dotted lines, where the peak intensities are not particle-hole
symmetric since the effective pairing symmetry is not s wave
[58]. These peaks originate from the band extrema of the
lower BAG band [see Fig. 1(c)], which are accessible in the
low-density regime. In experiments, the number of visible
coherence peaks is determined by the normal state band struc-
ture, thermal and impurity-caused smearing, and the focused

(a)Topological
15

A(k,~E(k)) (a.u.)
A(k,—E(k)) (a.u.)

0 1 2 3 4 5 0 1 2 3 4 5
k k
(b)Trivial
15 20
a'=1 ! a=4
- 10 a 05 ) _ 10 Ao
g -
s = Oﬁf 3 O%am N
= -05 =-10 0
2 5 Ay 0 2 4 X @
m X = -20 a3
I R =
< 2 30 -
< VU5am < 40! % 2 4
k
S 1 2 3 a5 %1 2 3 4 s
k k

FIG. 3. The bare spectral functions Ay (k, @) and BC contribution
per field strength 6A/B at weak (left) and strong (right) SOC strength
« in the (a) topological and (b) trivial phases. The spectral functions
are plotted along the lower superconducting band w = —E_(k) at
each momentum k. The exchange coupling is setto 4 =2 and h =
0.5 in (a) and (b), whereas the SOC strengthissettoa = l andow = 4
in the left and right panels, respectively. Note that the normalized BC
contribution to the spectral function % is directly given by the BC
contribution to phase-space DOS per field strength 6D/B, as shown
in the insets.

frequency range. The bare signal Gy with no BC effect is given
by the tunneling spectrum at zero field B = 0.

When a weak magnetic field B is applied, the BC contri-
bution §G considerably suppresses the strengths of the two
lower-energy coherence peaks but not the higher-energy peaks
in Fig. 4(a). As we tune the strengths of the exchange coupling
h and SOC o within the topological regime, we generally
find a peak suppression or/and enhancement in intensities
that are nonuniform in frequency w and grows linearly with
an applied field B weaker than the critical field. Nonetheless,
the information about the topological conditions in Eq. (25)

(a) Topological (b) Trivial
15 15

—_
=)

G(w) (a.u.)
9]

G(w) (a.u.)
wn

Go

—_
(=)

Go

0 ) 6G/B 0 NsG/B
]V -
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

w w

FIG. 4. The BC effects in the tunneling conductance G(w) in the
(a) topological phase & = 2 and (b) the trivial case with 7 = 0.5. The
blue curves G, are the bare tunneling conductance obtained with
D) =1, i.e., at B=0. The red curves 6G/B are the corrections
per unit magnetic field B to Gy from the BC-induced change in the
phase-space DOS, calculated from Eq. (24) with D(k) replaced by
8D(k). We set the SOC strength to be « = 1 as in Fig 2.
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becomes convoluted in G(w) due to the momentum integral in
Eq. (24b). Therefore, the distinction between the BC effects
in the topological and trivial phases seems quantitative or
qualitative in a complicated way [see Fig. 4(b)]. Despite that
the distinction is quantitative in G(w) between topological and
trivial phases, our analyses point out that one should expect
such B-field-activated nonuniform modulation in experiments
due to the phase-space BC. Such BC effect is most easily
detectable in lightly doped TSC candidate materials where
multiple coherence peaks are visible.
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APPENDIX A: WAVE-PACKET PROPERTIES

In this Appendix, we derive some of the key properties
of quasiparticle wave packet discussed in the main text. The
wave-packet center coordinate in the real space defined in
Eq. (12) [32] can be expressed in terms of the coherence
factors as

re = O O (Ke, 1)+ Y (13 (k) s ()

+ vzs(kc)ak( Vos(Ke)). (A1)

J

Here, 6, stands for the phase of the envelope function
Oy (k, 1) = —arg w,(k, ). We have used the fact that the in-
tegral of any smooth function f(k) weighted by |w,(k, )|,
which is sharply peaked around the center k., can be approx-
imated by the value of f(k) atk = k.:

/dzk K, 1)?f(k) ~ f(k A2
Wlws(,)l f&k) =~ f(k.). (A2)

Using Eq. (14), Eq. (A1) can be rewritten as
re = ak(»9w (kca [) + »Akx
= Ok, Ouw(Ke, 1) — 3 p0s(K)dk, X + 5015(Ke)0k Pi,.  (A3)

Let us now consider the wave-packet average of the total
charge Q, total spin S, and the charge dipole moment d:

0= (W,JOW,)—(GIO|G), 0=0,5,4d, (A4)
where O represents
0=y / drgo(r)c) (r)cy (r),
1, 0=0,
gor)=1¢/2, O0=S, (AS)
r—r.,, O=d.

In terms of the quasiparticle operator y,(k), 0= Q S, d can
be rewritten as

O=Z/r

x [}y, (K1 ttgs, (k2) ;) (1), (k)
+ Vos, (kDS (—K2)ys, (KDY (k)] + ..., (A6)

where “...” represents terms involving yy or y'yT whose
contribution vanishes after taking the expectation value.
With the help of the following identities:

go(r)e Tk
ki ko

(Wl v (ks (ko) (W) = / wi (K}, Dw, Ky, 1) (Gl ys (K} (k1)ys, (K2)y, (kb) |G)
K.k,

w?(kl ) t)w.v(kZ’ t)‘ss,sz(ss,sl )

Wl v (k)7 ko) [We) = /k L w1 (G (s (y k) () [G)

we find

For O = Q or §, it is easy to see that the equation above can be further simplified to

= Sk],kQBS],Sz - 85,5183‘,52 w;k(k% t)ws(kl’ t) (A7)
W OW,) —(G101G) =Y f / itk * (ky, 1y (Ko, 10, (K1 s ()
s r Jk; k;
— wi (=Ko, Dws(—ky, D)ves(—ki)vE (—K2)]. (A8)
0= / lws(K, )|* pos(k) = pos(ke),
g (A9)

1 1
S= - / lws (K, 1)1*p15(K) = = prs(Ke).
2 Ji 2
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For the charge dipole moment d, one can express re~"®1=k)T in the Eq. (A8) as —idy,e"*®17%)T which results in
1AW = (G1316) = 3 [ [ (it 0 sl 0 bt ) = 3,1 )] = 7.0
k;.k;
=iy f w} (I, 1) @Awy (k, 1)) ([t (1> = g, (P) +i ) / |ws (K, 1)1 (a5, (K) Byt (K)
[ k o k

- v;v(k)akvas(k)) — I'CQ

= / |ws (K, £)[* (005 (K) 3By (K, 1) — B x /2 + pas(K) ki /2) — 10

+5 Z/(aklwa(k D) (s (R = |vg (k) )+ /st(k D)k (s (K> — [vg(K)[*)

= p()s(kc)ak‘.ew(kc» t) - 8k()(/2 + pZ‘v(kc)ak‘.(Pk,./z - rc;OOs(kc)~ (AIO)
Inserting the expression for r, in Eq. (A3), we find the wave-packet average of the charge dipole moment is given by
d= (05 (ko) — 1)dk, x + 3(p25(ke) — pos(ke)pis(Ke))d, P, . (Al1)

where the first and second terms correspond to d; in Eq. (17) and d, in Eq. (18), respectively.

APPENDIX B: LAGRANGIAN

This Appendix evaluates the Lagrangian which governs the semiclassical dynamics of the wave packet:

d d
= (W, (z— - H) IW,) — (G (:- —H) IG). (B1)

The part that contains the Hamiltonian is given by

(W, H W) — (G| H |G) = fk i, w1 (G m(kl)( /k ZEy(k)yJ(kwy(k))yj(kz>|G>

=/|ws(k,t)|2Ex(k)=Es(kc), (B2)
k

while the part that involves the time derivative reduces to

a C
<W|z W) = /wf(k,ngws 'd'; w (K, r) Sk
Jdr, . 0 .
il / w1, wy (e, 1) (G mkl)( '(k2)> G). (B3)
t ki ko 81'(

Note that the time dependence of the quasiparticle creation operator )/ST comes from the time dependence of the wave-packet
center re.
Using the BdG transformation Eq. (6), the term (W] i% |W;) can be further divided into three parts:

(W|l |W) = L+ L, + L3,

Jdr,
dt

0
L = i/w;‘(k,t)—ws
; ot

dr,
dt

/w (k, t) ws(k, 1)
Kk r

L—i / ik, ws (ky, 1)
ki .k

0 d . d 0
X <G|)/s(k1)[(WMTS(kz))C;(kz) + (gms(kz))ﬁ(kz) + (ng,s(kZ))C\L(_kZ) - <§U¢s(k2)>c¢(—kz)]|G),

Li—i / wi(ky, Hws (Ko, 1)
dt ki.ko

<G|Vv(k1)|:”Tv(k2)(

d
> - vm(kz)(;ﬂ(—kz))} |G).

(B4)

d a
¢(k2)) + Miv(k2)<_cl(k2)) + vlv(k2)<
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Here L; can be expressed in terms of the phase of the envelope function w; (K, ¢) at the wave-packet center k., i.e., 0,,(k., 1),

dr, 0
/st(k 1)] ( o 8_1'69"’(1(’”)

drc 0
8rc

Using the expression for the wave-packet center r. in Eq. (A3), one can rewrite this equation as

=_0 ( L’t)+

O (K, 1). (BS)

d dk, 0
= —0,(K., 1) — - —0, (K, t
1 dt w( ) di akc w( )
d .
= Eew(kcv t) - kc . (rc - -Aks)' (B6)

Converting the electron operator ¢, into the quasiparticle operator y; in L,, we obtain

- _
(gum(kzg Z(M?S/ (k2)y, (K2) — 4y (—ka)yy (—k2))
0 )
+ (aTuw(kz)) Z(ujxr (kz)Vj/ (k2) + vy (—ko)yy (—Kk2))
dr, . ¢ v
L=iGt [ wikowtenGineo| ° G)
K.k .
o + (8Tv¢x(k2)> Z(vf« (k2)yy (ko) + u v (—ka)yy (—ka))
d
+ (gumkz)) D Wi ()y (ko) — e (—ka)ys (—k2))
2L /| &P (u (k) Uy (K) + (k) Vs (K)
=1 . Wy N oS os
d[ k ~ gs
= l.'c ' -Ars' (B7)
For the evaluation of L3, note that
dr d dr d ,
e % k) = e O ([ grreitkrawor,
ar = (/ re ¢ (r)
dr, JA(r, _
- _i_" / % IGERFAT T, (1)
r C
dA(l‘c) / ( —l(ik+A(r())r>C (r)
dA(r,) 9
=4 7 a—kc(,(:tk) (B3)

which leads to

d
Ly = lEA(rc) . / w;‘(klv Hwg(ka, 1)

9 9 9
(Qlys(kl)[um(kz)(ak T(kZ))—i—u‘LS(kZ)(ak i(kz)) vls(k2)< ¢ (— kz))-i-vm(kz)( NG k2)>]|9>
d
= —i A / wi(k, H)(Okwy(k, 1)) (|ues (K> = Jvos(K)[?)
k

d
_iEA(rc)'/|wx(k,t)|2(u:s(k)3kuas(k)_v;s(k)akvax(k))- (B9)
k

Comparing this equation with the expression for the electric dipole moment d (see Eqs. (A10) and (A11)), it is easy to see that
L3 can be expressed as

Ly = —A(r.) - [pos(k)r. +d]. (B10)
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Combining everything, we obtain
L= —E(ke) = ke - (tc = Ag) + Fe - Ary — A(re) - [pos (ko)re + d]. (B11)

Here we have dropped terms, which can be expressed as total time derivatives and as a result do not enter the equation of motion.
Using A(r,) = %B X r., we find that the Lagrangian can be rewritten as Eq. (13).

APPENDIX C: EQUATION OF MOTION

In this Appendix, we derive the explicit expression for the equation of motion of the quasiparticle wave-packet dynamics in
terms of the coherence factors. Inserting the expression for the Lagrangian in Eq. (13) into the Euler-Lagrange equation
oL d oL oL d oL cl
—_— = =, —_— =, =X,),
ori dror’ ki di okl Y 1)

one can derive the equation of motion for the wave-packet center:

k= =0,y (ke) + QU kI + QU #

rks"c rrs' ¢
P = uEy(ke) — Qi ki — QL F. (C2)
Here we have employed the notation that repeated indices implies summation. Note that the Berry curvatures 2 are defined as
derivatives of the Berry connections Ay and A,:

Q;(]ks = 8,{;-A£5 — 3k(/:,4§{5, QY = 3,5.,4';'3 — BrgAi

Q =-Qfl = 9.4 - 0y Al (C3)

rks —

Equation (C2) can be rewritten in a vector form:

kc = _VrlEs(kc) + I"c X Szrs + VrL (kc ‘ -Aks) - (kc : Vkl)-Ars,

) . ) ) (C4)
r. = VkCEx(kc) — ke x @ — Vk,.(rc “Ar) + (X - Vrc)Akr
Here the vector forms of the Berry curvatures 2, and 2, are defined as
Szks = Vkr X AkSv Qrs = Vr( X ArSv (CS)
and they are related to their tensor counterparts €2,,; and Q2 by:
I 1 ij ij I
Qs = felijglr]rs/kks’ er]rs/kks = €1 (Co)

with €;;; being the Levi-Civita symbol. Note that in the present paper, we consider a 2D system, and therefore only the z
component of the vector Berry curvature €2 is nonvanishing.
Using the expressions for the Berry connections Ay, and A,,, we obtain

Qi = =1V pos(ke) x Vi x + 3 Vi p15(ke) x Vi ¢,
s = — Vi p0s(Ke) X (Vi x/2 — A(re)) + pos(ke)B + 3V, x B x d) + 3V, p1s(Ke) X Vi ¢y . (€7
The tensor-form of the phase-space Berry curvature €2, is given by,
Q= —1 (3,006 X — 3,1 005Ke)Byi %) + 5 (811 015Ky P, — 3y 015(Ke)Byi b, ) — 3y 005 (KA (1) — 13,,(B x d)'.
(C8)
Inserting Eq. (C7) into Eq. (C4) leads to the following form of the equation of motion:
ke = =V E(ke) + Fe X [= Vi, p00(K) X (5Vex = A()) + pos(ke)B + 3 Vi, x (B x d) + 3 Vi p1,(ke) X Vi ¢ ]
—5Ve [k - (00s(ke) Vi x = o1k Vi) + (ke - Vi) [00s (o) (53 Vi x — A(re) — 3B x d — 3015k Vi, 6 ],
fe = VieEs(ke) — ke X (=3 Vi pos(ke) X Vi x + 3 Vi pr(ke) X Vi ¢, )
+Vi{te - [p0s k) (5 Ve x — Are) — 3B x d = 5p1s(k) Ve i ]} — 5 (e - Vi) (pos(k) Vi X — p15(Ke) Vi i), (C9)

where the dependence of p,, on the coherence factors is given in Egs. (15) and (19).
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APPENDIX D: BERRY CURVATURE CORRECTION TO THE PHASE-SPACE DENSITY OF STATES

As mentioned in the main text, the equation of motion Eq. (C2) exhibits a noncanonical structure due to the presence of the
Berry curvatures, which leads to the breakdown of the conservation of the phase-space volume. In particular, the phase-space
volume element AV = AKAr is no longer constant in time and instead evolves according to [27]

1 dAV

RIS A A (D1)

AV dt

One therefore needs to introduce a modified phase-space density of states D(r, k) such that the number of states in volume
element AV, i.e., D(r, k)AV, remains constant over time. This Appendix provides the derivation of the correction to the phase-
space density of states induced by the Berry curvatures for the current model.

In terms of the Berry curvatures, up to an inessential coefficient, the modified phase-space density of states D(r, k) acquires

a form [29,57]

ers
b Z\/det I:ris +1

Qs — 1
o . (D2)
Qs ]

Since the external perturbation is assumed to be slowly varying in real space, one can perform an expansion in terms of the
spatial gradient and keep only the leading-order terms [34]. The Berry curvature correction to the phase-space density of states

8D = D — 1 therefore can be approximated by
D(r, K) = Tr s — Ly - Ly

= _Vk)OOs Ps —

B (Vi x d) + 3Vepos - Vix + 3Vipts - Vedx — 3 Veprs - Vi

— 3(Vipos X Vicx = Vipis X Vi) - (Vepos(K) x py — poB — 3V X B x d) — 3V p15(K) x Vigy), (D3)

where in the second step we have inserted the explicit expressions for the Berry curvatures. p; denotes the supercurrent p; =

%er —A.

We now separate 8§D into three different components: the external magnetic field B-dependent part §D;, the supercurrent

ps-dependent part §D,, and the remaining part §Ds:

Di(r, k) = —3B - (Vi x d) + 5(Vicpos X Vicx — Viepis X Vi) - [poB + 3V x (B x d)],

8D, (r, k) = —Vipos - Ps — 3(Vioos X Vix — Vs X Vi) - (Vepos X ),
8D3(r, k) = 2(Vepos - Vicx + Vipis - Vet — Vepis - Vid) + 1 (Vioos X Vix — Viors X Vid) - (Veprs X Vegy). (D4)

Dropping the higher-order terms in the spatial gradient V. in the equation above, we find §D3 = 0 and 6D, = —Vpo; - Ps,
which is not considered in this paper. We focus instead on the component §D; (r, k), which evaluates to

8D1(r,k) = —3B - (Vi x d) + 3005(Viepos X Vix — Viprs X Vi) - B
= —1B - [(Vkpas + posVkp1s — P1sViPos) X Viel. (D5)

Here in the second equality, we have inserted the expression for d in Eq. (A11). Note that this expression reduces to Eq. (23) for

s-wave pairing x = 0.
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