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intuition that lower bounds in small characteristic “should be” easier, as there are “fewer”

efficient algorithms to rule out. Following this intuition, a small characteristic analogue of

LST should be achievable, as done in this paper.

To justify this intuition, here are examples of efficient algebraic algorithms known to

exist in large characteristic which currently lack analogues in small characteristic. First,

consider the Newton identities, which relate the elementary symmetric polynomials to the

power-sum polynomials, but only in large characteristic. These identities are crucial in various

algebraic complexity settings. For example, for constructing non-trivially small depth-4

formulas for the elementary symmetric polynomials ([20]) (as used by Limaye, Srinivasan

and Tavenas [15]). Another example is a folklore construction of a polylogarithmic-depth

polynomial-size algebraic circuit for the determinant (essentially the Faddeev–LeVerrier

algorithm, expressed as an algebraic circuit), which uses traces of matrix powers to compute

the power-sums of eigenvalues, and then computes the product of the eigenvalues (the

determinant) from these power-sums using a small formula constructed from the Newton

identities.

Another example is Fischer’s identity [5], which shows how to compute the monomial

x1 . . . xn as a homogeneous sum of powers of linear forms, but only in large characteristic. This

identity was crucial to the celebrated depth-reduction of algebraic circuits to depth-3 ([13]).

A more computational example is the fundamental result in algebraic complexity that

small algebraic circuits can be factored efficiently ([14]); however in characteristic p the result

only produces a factorization up to p-th powers. The current inability (despite recent progress

of Andrews [2]) to take p-th roots of algebraic circuits in characteristic p in particular leads

to weaker hardness versus randomness trade-offs.

On the other hand, there are efficient algorithms that arise only in small characteristic

and as such the above intuition is not quite correct. In particular, in characteristic p we

have the identity (x + y)p = xp + yp. In characteristic 2, we can compute the permanent

efficiently (as det = perm over such fields) and also have a tighter connection between

boolean and algebraic circuits. One can also view n× n Hadamard matrices as examples of

this phenomenon, as in large characteristic they are full rank (and as such, “hard”), but in

characteristic two then can have rank O(logn) (and as such, “easy”). Additionally, lifted

Reed-Solomon codes ([12]) and William’s algorithm for k-path ([22]) are other techniques

that only work in small characteristic.

Proof Complexity

Aside from interest in algebraic circuit lower bounds in small characteristic for their own

sake, there are significant applications of such lower bounds.

A long-standing open question in proof-complexity is to prove superpolynomial lower

bounds over constant-depth reasoning using modular gates, in particular the AC
0[p]-Frege

system. This challenge is notable as the boolean circuit complexity version has been solved

by Razborov [19] and Smolensky [21], but the techniques have thus far not been successfully

exported into the proof-complexity setting. In the context of this challenge, Grochow and

Pitassi [11] showed that their Ideal Proof System (IPS) can efficiently simulate AC
0[p]-Frege

when IPS is over a field of characteristic p, and hence in particular that superpolynomial

lower bounds for constant-depth IPS refutations of CNFs in characteristic p would give

superpolynomial lower bounds against AC
0[p]-Frege.

Toward this goal, Govindasamy, Hakoniemi, and Tzameret [9] showed how the lower

bound of Limaye, Srinivasan and Tavenas [15] can yield a superpolynomial lower bound

against (multilinear) constant-depth IPS refutations for (a variant of) the subset-sum problem,

in large characteristic. While the subset-sum problem they use is easy in small characteristic
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and hence our lower bounds cannot as is improve their results, our results eliminate one

barrier to progress toward constant-depth IPS lower bounds in characteristic p, and hence

AC
0[p]-Frege lower bounds.

Polynomial Identity Testing

For applications within algebraic complexity itself, Limaye, Srinivasan and Tavenas [15]

showed how their lower bound yields a deterministic subexponential time polynomial identity

testing (PIT) algorithm for constant-depth algebraic circuits, in large characteristic. The

restriction on characteristic comes from two places, the lower bound itself, as well as the

known relations between algebraic hardness and derandomization. By removing one of these

restrictions, our result hence makes progress toward obtaining corresponding PIT algorithms

in small characteristic.

2 Our results

The lower bound of LST has two components. The first is a new set-multilinearization result

for algebraic circuits, showing that algebraic circuits can be non-trivially set-multilinearized

in a particular regime of parameters. The second component is a new lower bound for

set-multilinear formulas. While the second component holds over any field, the first requires

large characteristic. As such, our work focuses on this first component, which we now discuss

more in depth.

Recall that for a partition of variables x1 ⊔ · · · ⊔ xd, a set-multilinear monomial is one of

the form x1,i1 · · ·xd,id
. A set-multilinear polynomial is a linear combination of set-multilinear

monomials. Many important polynomials are set-multilinear with respect to natural partitions

of the variables. For example, the permanent of a matrix is set-multilinear with respect

to the partition of the matrix into rows. For algebraic circuits computing set-multilinear

polynomials it is natural to ask that the circuit respects the set-multilinear structure. In

particular, we say that an algebraic circuit is (syntactically) set-multilinear if all product

gates f = f1 · · · fk in the circuit have that the fi are on disjoint parts of the variable partition.

It follows then that set-multilinear circuits can only compute set-multilinear polynomials.

The first step of LST is a set-multilinearization result which transforms a low-depth

algebraic circuit on n variables computing a degree d set-multilinear polynomial to one

computing the same polynomial, where now the computation is itself set-multilinear. One

pays for imposing this structure by increasing the circuit size. Crucially, the size only

increases by a function of the degree d, not in the number of variables n.

▶ Theorem 1 ([15]). Let F be a field of characteristic char(F ) > d (or zero), where d is

a parameter. Let f a set-multilinear polynomial of degree d, computed by a product-depth

∆ circuit of size s. Then f is computed by a (dd · s)O(1)-size set-multilinear circuit of

product-depth 2∆.

This result is proven in two steps. The first is to use an efficient low-depth homogenization

transformation, that will double the product depth and increase the circuit size by 2O(
√

d).

This construction uses that the characteristic is large, and is a generalization of the following

result.

▶ Theorem 2 ([20]). Let F be a field of characteristic > d, or zero. Then the elementary

symmetric polynomial esymn,d =
∑

S∈([n]
d )

∏

i∈S xi has a homogeneous depth-4 sums of

products of sums of powers (
∑ ∏ ∑ ∧

) formula of size poly(n, 2
√

d).
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The standard connection between elementary symmetric polynomials and computing

homogeneous parts allows the above theorem to homogenize depth-3 circuits into homogeneous

depth-5 circuits with a 2O(
√

d)-blowup in circuit size. LST generalized Theorem 2 to weighted

elementary symmetric polynomials to allow the idea to succeed in higher depths.

After converting product-depth ∆ to homogeneous product-depth 2∆, LST then convert

the circuit to be set-multilinear while preserving the product-depth. This conversion will

work over any field, and is a simple gate-simulation proof.

▶ Theorem 3 ([15]). Let F be any field. Let f be a set-multilinear polynomial of degree

d, computed by a homogeneous product-depth ∆ circuit of size s. Then f is computed by a

poly(dd, s)-size set-multilinear circuit of product-depth ∆.

Combining the two steps of homogenization, then set-multilinearization, LST obtained

the following.

▶ Theorem 4 ([15]). Let F be a field of characteristic char(F ) > d (or zero). Let f be a

set-multilinear polynomial computed by a product-depth ∆ circuit of size s. Then f can be

computed by a (dd · s)O(1)-size set-multilinear circuit of product-depth 2∆.

The most natural method to obtaining the result of LST in arbitrary fields would be to

give an efficient homogenization for low-depth circuits over all fields, and indeed this was

posed as an open question in [8, 9, 16]. However, a barrier to this approach is that it is still

open to develop an analogue of Theorem 2 in small characteristic fields.

Additionally, a recent work of Fournier, Limaye, Srinivasan, Tavenas [8] formalized this

barrier, by showing that in small characteristic that a certain form of Newton identities

cannot hold. This shows that while in large characteristic the Newton identities imply

efficient low-depth homogenization for low-degree polynomials, there are provable barriers

for obtaining an analogous result in small characteristic.

2.1 Lower bounds over any field, without explicit set-multilinerization

Our first result is to show that while we do not overcome this barrier, we never the less

obtain the lower bound of LST over any field, which we state here incorporating the improved

parameters from Bhargav, Dutta, and Saxena [3].

▶ Theorem (Main Theorem, Theorem 10). Let F be any field, and d = o(logn). Then the

iterated matrix multiplication polynomial IMMn,d = (X1 · · ·Xd)1,1 where Xi is an n × n

symbolic matrix, requires

n
Θ

(

d
1

F2∆+2−1 /∆

)

size algebraic circuits of product depth ∆, where Fk is the k-th Fibonacci number (so F0 = 0,

F1 = F2 = 1, F3 = 2, etc.).2

We observe that one can bypass the above barrier, and indeed the entire need for efficient

low-depth homogenization, by arguing that the original techniques of LST already suffice for

obtaining their result in low-characteristic, due to considerations from mathematical logic.

That is, we study the proof of LST, and argue that the proof is sufficiently algebraic so that

generic algebraic arguments imply the result holds over arbitrary fields.

2 Bhargav, Dutta, and Saxena [3] use a slightly different indexing of Fibonacci numbers.
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We abstract the methods of LST as follows, which is loosely inspired by Geometric

Complexity Theory, as well as the theory of algebraic natural proofs ([7, 10]). Given a

polynomial f of degree d in n variables, we can view the polynomial as a list of N =
(

n+d
d

)

coefficients which we call the coefficient vector coeff(f). We then seek to construct a

polynomial Q (or in fact a collection of polynomials Q1, . . . , QM ) in N variables such that

Q(coeff(f)) = 0 whenever f has a small low-depth algebraic circuit. At the same time, we

want Q(coeff P ) ̸= 0 (or in fact, Qi(coeff(P )) ̸= 0 for some i) for some polynomial P . One

can then conclude that P does not have a small low-depth algebraic circuit.

One can instantiate LST in this framework as follows. One can carefully rewrite the

coefficients of polynomial f into a matrix Cf , and argue that the matrix Cf has low-rank.

As matrix rank is characterized by the vanishing of determinant of submatrices, we can take

the polynomials Qi to be the relevant determinants. Any polynomial P whose associated

matrix CP has high-rank will have a non-vanishing determinant, and hence Qi(coeff(P )) ̸= 0

for some i.

Many lower bounds techniques in algebraic complexity theory fall in the above “rank

based” framework, and often in such proofs one proves that the matrix is high rank by

arguing that there exists a large triangular submatrix whose diagonal entries are all 1. In

such cases, the determinant of this submatrix is in fact 1, so the matrix is high-rank over

every field. LST follows this approach, and as such this part of the framework does not

depend on the characteristic.

Instead, the dependence on the characteristic comes into the argument that the rank

of the matrices Cf is small. To show the rank is small over any field, we first note that

the relevant determinants are in fact polynomials with integer coefficients, regardless of

the actual field of consideration. Second, we note that small low-depth algebraic circuits

have a universal circuit U(x, y) ([18]),3 such that f = U(x, ´) for some constants ´ and

U(x, y) has a small low-depth circuit. Further, U has integer coefficients. We then argue

that viewing the field of computation as the characteristic zero field Q(y) (rational functions

in the indeterminates y), the matrix CU must have low-rank, as the argument of LST applies.

However, CU having low-rank over Q(y) implies certain determinants of integer polynomials

vanish, and thus also modulo p for any prime p. Hence CU has low-rank over any field, and

this will remain true even when we substitute y ← ´. In particular, Cf has low rank as

desired.

The overall idea is the standard fact from mathematical logic that if you want to prove a

polynomial identity A(x) = 0 where A has integer coefficients, then proving this identity in

characteristic zero implies the result over every field because zero over the integers is zero

modulo every prime p. A well-known example of this is the Cayley-Hamilton theorem, which

states that every n×n matrix A is a root of its characteristic polynomial pA(x) = det(xI−A).

Viewing the entries of A as symbolic this can be viewed as a polynomial identity with integer

coefficients, so suffices to prove it in characteristic zero, even if you use techniques specific

to characteristic zero. The Cayley-Hamilton theorem can be proven in characteristic zero

in two steps. First, one argues the theorem is true for all diagonalizable matrices, which is

simple. Second, one argues that diagonalizable matrices are topologically dense in C (say,

in the Euclidean topology, a notion highly tied to characteristic zero) amongst all matrices,

and hence by continuity the identity must also vanish on all matrices as desired. As such,

one proves the Cayley-Hamilton theorem over all fields using techniques highly specific to

characteristic zero.4

3 In the actual proof we do not need the universal circuit machinery and appeal to simpler arguments.
4 One can avoid the use of characteristic zero here using better algebraic techniques, such as Jordan

normal form.
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2.2 Lower bounds over any field, via explicit set-multilinearization

The results from the previous section showed that we were able to obtain the result of LST over

any field without actually efficiently converting algebraic circuits to be set-multilinear. This is

very suggestive that such a transformation should be achievable. While the barrier from above

regarding efficient small-characteristic homogenization still is present, we observe that we

can bypass this barrier (again) by combining the homogenization and set-multilinearization

steps used by LST into a single transformation.

▶ Theorem (Corollary 27). Let F be any field. Let the variables x be partitioned into

x = x1 ⊔ · · · ⊔ xd. Let f be a set-multilinear polynomial computed by a product-depth ∆

circuit of size s. Then f can be computed by a (dd · s)O(1)-size set-multilinear circuit of

product-depth 2∆.

This result is proven by a standard gate simulation argument. The new component is to

replace the use of the Newton identities by LST (which only work in large characteristic),

by the Binet-Minc identity [17], which is a non-trivial depth-4 set-multilinear identity for

computing (rectangular) permanents over any field. This is a natural step, as the Binet-Minc

identity can, in large characteristic, be used (see Corollary 19) to recover the efficient depth-4

homogeneous formula for the elementary symmetric polynomial (Theorem 2) whose lack of

small characteristic analogue is a barrier for LST holding in small characteristic.

Replacing the set-multilinearization of LST with the above result allows the rest of the

proof of LST (and the improvement of Bhargav, Dutta, and Saxena [3]) to work over any

field, giving another proof of our main result from above.

We note that that Binet-Minc identity has also recently been used in algebraic complexity

by Curticapean, Limaye and Srinivasan [4] for unrelated reasons.

The above Corollary 27 is a more constructive method for proving the LST result in small

characteristic, while the logical method is much more indirect. However we present the logical

approach because it was the first proof we discovered, which motivated the constructive

proof, and also the logical approach may have applications in other situations.

2.3 Related Work

An intriguing aspect of the work of LST is that it does not use the somewhat recent notion

of shifted partial derivatives, which has powered numerous advances in algebraic circuit lower

bounds in the past decade. Motivated by this, Amireddy, Garg, Kayal, Saha, Thankey [1]

were able to essential re-establish LST using shifted partial derivatives. They gave a novel

analysis of shifted partials using several “imbalance” ideas related to LST, but crucially their

analysis avoided the need to discuss set-multilinear polynomials and as such is perhaps more

flexible than the set-multilinear methods of LST.

One of their main lower bounds was that any homogeneous product-depth ∆ formula

computing IMMn,d requires size g nΩ(d21−∆
/∆), when d f O(lgn), over any field. Recall

that LST showed, over fields of large characteristic, that general circuits computing degree d

polynomials can be homogenized with a doubling in product-depth, and a 2Ω(
√

d) blow-up

in circuit size. Invoking this transformation, it follows that the results of Amireddy, Garg,

Kayal, Saha, Thankey [1] establish super-polynomial lower bounds for general low-depth

circuits, over fields of large characteristic. Quantitatively, the resulting bounds are in between

those of LST and those of Bhargav, Dutta, and Saxena [3].

While this paper does not provide a low-depth homogenization transformation akin to that

of LST over arbitrary fields, the logical methods of section 3 straightforwardly extend to the

setting of Amireddy, Garg, Kayal, Saha, Thankey [1]. That is, the rank-based lower bound

they establish for IMMn,d holds over all fields. The rank-based upper bound shows that all
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low-depth general circuits are simple in characteristic zero, using LST’s homogenization and

their shifted partial analysis. One then can, as in section 3, generically transfer these two

rank bounds to arbitrary fields, hence obtaining the lower bound for computing IMMn,d via

low-depth circuits over an arbitrary field. We omit the straightforward details, in particular

because the resulting parameters are worse that what are obtained in this work because we

invoke the improved parameters from the set-multilinear lower bounds of Bhargav, Dutta,

and Saxena [3].

3 Lower bounds over any field, via mathematical logic

In this section, we prove that the LST lower bound holds over any field, using techniques

from mathematical logic that transfer the result from large characteristic to all characteristic.

The following is our key lemma that transfers algebraic statements between different fields,

in particular showing that an integer matrix having low rank in characteristic zero implies it

has low-rank over every field. For our actual needs, we will need to consider matrices with

entries that are polynomials with integer coefficients.

▶ Lemma 5. Let M ∈ Z[x]m×n be a matrix with integer polynomial entries. Let F be any

field, and interpret M ∈ F[x]m×n via the unique non-trivial ring homomorphism φ : Z→ F.

Then for any ³ ∈ Fx,

rankFM(³) f rankF(x) M(x) f rankQ(x) M(x) .

Proof.

1) rankF(x) M(x) ≤ rankQ(x) M(x): In both cases the matrix M is the same, we simply

change the field of interpretation. Recall that a matrix is rank f s iff all (s+ 1)× (s+ 1)

submatrices have zero determinant. Let r = rankQ(x) M(x) so that all (r + 1) × (r + 1)

submatrices of M [x] have zero determinant in Q(x). As M has polynomial entries, and

the determinant is a polynomial, it follows that under the homomorphism φ that these

submatrices still have zero determinant. As such, all (s+ 1)× (s+ 1) submatrices of M have

zero determinant when viewed as a matrix in F[x]m×n, so that rankF(x) M(x) f s.

2) rankF M(α) ≤ rankF(x) M(x): Let t = rankF(x) M(x), so that all (t + 1) × (t + 1)

submatrices of M have determinant zero in F[x]. Define the ring homomorphism È : F[x]→ F

by x→ ³. As above, it then follows that all (t+ 1)× (t+ 1) submatrices of M have zero

determinant under this homomorphism. But as È(M(x)) = M(³), it then follows that all

such submatrices of M(³) have zero determinant in F, so rankFM(³) f t. ◀

▶ Definition 6. Let F a field. Let x be a set of variables with a partition x = y1 ⊔ · · · ⊔ ydy
⊔

z1 ⊔ · · · ⊔ zdz
, where d = dy + dz. Let Y denote the set of all set-multilinear monomials

with respect to the partition y = y1 ⊔ · · · ⊔ ydy
, and let Z denote the set of all set-multilinear

monomials with respect to the partition z = z1 ⊔ · · · ⊔ zdz
.

Given a polynomial f(x) which is set-multilinear with respect to the above partition, define

the coefficient matrix Cf ∈ FY ×Z by

(Cf )
yb,zc = Coeff

ybzc(f),

where yb, zc are set-multilinear monomials, and Coeff takes the coefficient of ybzc in f .

The relative rank of f is then defined as

relrankF(f) :=
rankF(Cf )
√

|Y | · |Z|
.

where rankF(Cf ) is the matrix rank of Cf over the field F.
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The following set-multilinearization result is a slight extension of what is proven in LST,

and follows from their methods as noted by [9].

▶ Definition 7. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd. A monomial is

set-multilinear (with respect to the partition x = x1 ⊔ · · · ⊔ xd) if it can be written has
∏d

i=1(xi)ji
for some j1, . . . , jd.

Define the set-multilinear projection (with respect to the partition x = x1⊔· · ·⊔xd)

to be the linear map Ãsm : F[x]→ F[x] which is identity on set-multilinear monomials, and

zero on all other monomials.

▶ Theorem 8 ([9, 15]). Let F be a field of characteristic char(F) > d (or zero), where d is a

parameter. Let f be a product-depth ∆ circuit of size s. Let the variables x be partitioned

into x = x1 ⊔ · · · ⊔ xd. Then the set-multilinear projection Ãsm(f) has a (dd · s)O(1)-size

set-multilinear circuit of product-depth 2∆.

We quote here the summary of the LST lower bound results that we need, incorporating

the improved parameters from Bhargav, Dutta, and Saxena [3].

▶ Theorem 9 ([3, 15]). Let F a field. Let x be a set of n variables, and d f o(logn) a

parameter. Then there exists a partition x = y1 ⊔ · · · ⊔ ydy
⊔ z1 ⊔ · · · ⊔ zdz

, only depending

on n and d, where d = dy + dz, such that any f(x) computed by a set-multilinear circuit of

size s and product-depth ∆ has relative rank bounded by

relrank(f) f s · n
−Θ

(

d
1

F∆+2−1 /∆

)

.

Further, there exists a set-multilinear polynomial P with {0, 1}-coefficients such that

relrank(P ) g
1

nΘ(1)
,

and P can be computed via evaluating the iterated matrix multiplication polynomial IMMn,d

to carefully chosen linear forms.

We now give our characteristic-free version of the above.

▶ Theorem 10. Let F be any field, and d = o(logn). Then IMMn,d requires

n
Θ

(

d
1

F2∆+2−1 /∆

)

size algebraic circuits of product depth ∆.

Proof. Let x be a set of n variables. From Theorem 9, there exists a partition x =

y1 ⊔ · · · ⊔ ydy
⊔ z1 ⊔ · · · ⊔ zdz

, only depending on n and d (and not on F), where d = dy + dz,

such that any f(x) computed by a set-multilinear circuit of size s and product-depth ∆ has

relative rank bounded by

relrank(f) f s · n
−Θ

(

d
1

F∆+2−1 /∆

)

.

Further, there exists a set-multilinear polynomial P with {0, 1}-coefficients such that

relrank(P ) g
1

nΘ(1)
,
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and P can be computed via evaluating the iterated matrix multiplication polynomial IMMn,d

to carefully chosen linear forms. In particular, any algebraic circuit lower bound for P

extends, up to poly(n) factors, to IMMn,d, so it suffices to prove the lower bound for P .

Suppose P (interpreted as a polynomial in F[x]) is computed by an algebraic circuit Φ

over F of size s and product-depth ∆. Create a new algebraic circuit Ψ by replacing each

field constant used in Φ with a distinct variable, so Ψ is size-s product-depth ∆ algebraic

circuit over the original variables x along with new variables w. Denote f(x,w) to be the

polynomial computed by Ψ. As Ψ is defined free from field constants, f can be viewed as

an integer polynomial f ∈ Z[x,w]. Finally, we can relate P and f by undoing the above, so

that there are values µ from F such that P (x) = f(x, µ).

Note that f(x,w) may not be set-multilinear, or even of particularly low-degree. However,

it does follow that Ãsm(P (x)) = Ãsm(f(x, µ)) as the equality P (x) = f(x, µ) is coefficient-wise,

so applying Ãsm to each side of equation either keeps the coefficient of P and f the same

(if the monomial is set-multilinear) or makes both coefficients zero (if the monomial is not

set-multilinear). As P is set-multilinear, we have P = Ãsm(P ), so hence P = Ãsm(f(x, µ)).

Now view Ψ as a circuit with constants over the field Q(w), so that f ∈ Q(w)[x]. It follows

from Theorem 8 that Ãsm(f) has a (dd · s)O(1)-size set-multilinear circuit of product-depth

2∆, and as such,

relrankQ(w)(Ãsm(f(x,w))) f (dd · s)O(1) · n
−Θ

(

d
1

F2∆+2−1 /∆

)

.

Using that relative rank is just the (scaled) rank of a matrix, we can invoke Lemma 5, to see

that

relrankF(Ãsm(f(x, µ))) f relrankQ(w)(Ãsm(f(x,w))) .

As P = Ãsm(f(x, µ)), we thus obtain that

1

nΘ(1)
f relrankF(P ) f (dd · s)O(1) · n

−Θ

(

d
1

F2∆+2−1 /∆

)

which yields the desired lower bound for s (using that d = o(logn)). ◀

4 Lower bounds over any field, constructively

In this section we give a constructive proof that any small low-depth algebraic circuit can

be non-trivially set-multilinearized, over any field. As mentioned, by replacing the field-

dependent set-multilinearization of LST with our set-multilinearization, this gives another

proof of our main theorem (Theorem 10). The starting point for our construction is the

rectangular permanent.

▶ Definition 11. Let X be an n × m symbolic matrix of variables, with n f m, where

Xi,j = xi,j are distinct variables. Define the (rectangular) permanent perm(X) ∈

Z[(xi,j)i∈[n],j∈[m]] by

permn×m(X) =
∑

Ã:[n]↪→[m]

x1,Ã(1) · · ·xn,Ã(n) ,

that is, the sum runs over all injective maps Ã from [n] to [m].

Note in particular that permn×m is a set-multilinear polynomial when we partition the

matrix into its rows.

It is sometimes helpful to view the rectangular permanent as a sum of square permanents.

CCC 2024
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▶ Lemma 12. Let X be an n×m symbolic matrix of variables, with n f m, where Xi,j = xi,j

are distinct variables. Then,

permn×m(X) =
∑

S∈([m]
n )

permn×n(X|[n]×S) .

The above lemma shows the rectangular permanent is computable by poly(mn) size

algebraic circuits. However, the following identity gives a non-trivially better algorithm.

▶ Theorem 13 (Binet-Minc Identity [17]). Let X be an n×m symbolic matrix of variables,

with n f m, then the permanent can be computed by

permn×m(X) =
∑

F∈Pn

(−1)n−|F| ∏

S∈F
(|S| − 1)!

m
∑

j=1

∏

i∈S

xi,j

where Pn is the set of all partitions of [n] into (non-empty) sets, and |F| is the number of

parts in the partition F of [n].

To understand the complexity of this expression it is helpful to have the following

definition.

▶ Definition 14. Define the n-th Bell number Bn to be the number of ways to partition

[n] into (non-empty) sets.

We will use the following asymptotic estimate of Bell number size.

▶ Fact 15 ([6]). Bn = Θ
(

n
ln n

)n
.

The following lemma is easy to prove from the definition of Bell numbers.

▶ Lemma 16. Bn ·Bm f Bn+m.

The Binet-Minc identity immediately implies the following algebraic circuit for the

permanent.

▶ Corollary 17. The rectangular permanent permn×m has a
∑Bn

∏n ∑m ∏n
formula of

size poly(m,Bn), where the super-scripts are upper bounds on the respective fan-ins of the

formula. Further, this formula is set-multilinear (and hence homogeneous) with respect to

the partition of the n×m variables into rows.

Note that for m = n that this formula has complexity Θ( n
ln n )n, whereas Ryser’s formula

is also set-multilinear but has size poly(2n) (and is depth-3).

We now note that when the rows of the matrix are identical, the Binet-Minc identity

yields a small homogeneous depth-4 formula for the elementary symmetric polynomials, in

large characteristic. The resulting formula has the same parameters as the argument of

Shpilka and Wigderson [20], who proved it using the Newton identities. In particular, this

relation is analogous to how Ryser’s formula for the permanent, when applied to a matrix

with identical rows, yields Fischer’s depth-3 powering formula for the monomial.

▶ Lemma 18. Let x be n variables, and let Y be an d× n symbolic matrix of variables, with

d f n, where Yi,j = xj. Then,

permd×n(Y ) = d! esymn,d(x)
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Proof. d = n: This is immediate, as each monomial in the permanent now becomes x1 · · ·xn,

and there are n! many copies of this monomial.

d < n: Via Lemma 12,

permd×n(Y ) =
∑

S∈([n]
d )

permd×d(Y |[d]×S)

=d!
∏

i∈S
xi

= d! esymn,d(x) . ◀

We now re-analyze the complexity of the above.

▶ Corollary 19. Let F be a field of characteristic > d (or zero). The degree-d elementary

symmetric polynomial in n variables esymn,d has a homogeneous
∑2O(

√
d)

∏d ∑n ∧d
formula

of size poly(n, 2
√

d).

Proof.

Construction, correctness: Apply the Binet-Minc identity (Theorem 13) to the d×n matrix

Y where Yi,j = xj . By Lemma 18 this computes d! esymn,d, and we can divide by d! in F.

Complexity: We now analyze the complexity of the above.

permd×n(Y ) =
∑

F∈Pd

(−1)d−|F| ∏

S∈F
(|S| − 1)!

n
∑

j=1

∏

i∈S

Yi,j

=xj

=x
|S|
j

=
∑

F∈Pd

(−1)d−|F| ∏

S∈F
(|S| − 1)!

n
∑

j=1

x
|S|
j

fF

noting that fF only depends on the sizes of the how the partition F refines the set [n], we

can group together the identical summands fF based on how they partition the integer n,

=
∑

¼¢d

(−1)d−|¼|N¼

∏

¼∈¼

(¼− 1)!

n
∑

j=1

x¼
j

where the summation runs over all integer partitions ¼ of d, |¼| is the number of parts in

the partition ¼, and N¼ ∈ Z is the number of set partitions of [n] whose set sizes equal the

integer partition ¼.

Now note that the above formula is homogeneous (as the Binet-Minc identity is), and the

fan-ins of the formula are as desired because in particular the number of integer partitions

of d is 2O(
√

d) ([6]). Finally, observe that the bottom-most product gate is a powering

operation. ◀

The above implies that Binet-Minc can recover that depth-3 circuits can be efficient

homogenized into depth-5 circuits. As Binet-Minc holds over all fields and is additionally set-

multilinear, this suggests that we can perhaps go directly to set-multilinearization, bypassing

homogenization as an intermediate step. To do so, we need a slightly more general variant of

the permanent.

▶ Definition 20. Let X be an n × m symbolic matrix of variables, with n f m, where

Xi,j = xi,j are distinct variables. Let k f n. Define the k-surjective (rectangular)

permanent permn×m;k(X) ∈ Z[(xi,j)i∈[n],j∈[m]] by

permn×m;k(X) =
∑

Ã:[n]↪→[m],im(Ã)§[k]

x1,Ã(1) · · ·xn,Ã(n) ,

that is, the sum runs over all injective maps Ã from [n] to [m] that contain [k] in their image.
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Note in particular that permn×m;k is a set-multilinear polynomial when we partition the

matrix into its rows.

We can compute the surjective permanent by standard permanents.

▶ Lemma 21. Let X be an n×m symbolic matrix of variables, with n f m, where Xi,j = xi,j

are distinct variables. Let k f n. Then, the k-surjective permanent can be written as

permn×m;k(X) =
∑

S∈([n]
k )

permk×k(X|S×[k]) · perm(n−k)×(m−k)(X|([n]\S)×([m]\[k])) .

Further, this expression is set-multilinear with respect to partitioning X by its rows.

Proof. This follows from the observation that each map Ã : [n] ↪→ [m] with im(Ã) § [k]

uniquely decomposes into a bijection Ä : S ´ [k] for some S ∈
(

[n]
k

)

, and an injection

¿ : ([n] \ S) ↪→ ([m] \ [k]).

The claim about set-multilinearity then follows from noting that the multiplication

permk×k(X|S×[d]) · perm(n−k)×m−k(X|([n]\S)×([m]\[k]) is a product of two polynomials who

only use disjoint rows of X. ◀

We now analyze the complexity of computing the surjective permanent, by reduction to

standard permanents, and then applying the Binet-Minc identity.

▶ Corollary 22. Let k f n f m. The n×m k-surjective permanent has a poly(m,Θ( n
ln n )n)-

size depth-4 formula that is set-multilinear with respect to rows.

Proof. Via the above lemma, and the formula complexity of the Binet-Minc identity,

permn×m;k(X) =
∑

S∈([n]
k )

permk×k(X|S×[k])
∑

Bk
∏

k
∑

k
∏

k

·perm(n−k)×(m−k)(X|([n]\S)×([m]\[k]))
∑

Bn−k
∏

n−k
∑

m−k
∏

n−k

distributing the multiplication past the addition,

=

(n

k)
∑

Bk·Bn−k
∑

∑(n
k)BkBn−k

(
k

∏

k
∑

k
∏

) · (
n−k
∏

m−k
∑

n−k
∏

)
∏

n
∑

m
∏

n

from which the size bound follows by noting that
(

n
k

)

BkBn−k f 2nBn f Θ( n
ln n )n via

Lemma 16 and Fact 15.

The set-multilinearity of this formula follows from the fact that the decomposition used

here from the above lemma is set-multilinear, that Binet-Minc is set-multilinear, and that

our use of the distributive law preserves set-multilinearity. ◀

We now proceed to give a non-trivial set-multilinearization for low-depth algebraic circuits.

To do so, it will be helpful to have more notation for extracting various set-multilinear

components of polynomials.

▶ Definition 23. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd.

Let S ¦ [d]. A monomial is S-set-multilinear if it can be written as
∏

i∈S(xi)ji
for

some (ji)i∈S. Define the S-set-multilinear projection to be the linear map Ãsm,S which is

identity on S-set-multilinear monomials, and zero on all other monomials.

The set of S-set-multilinear monomials for some S ¦ [d] are called at most set-

multilinear monomials. Define the non-set-multilinear projection to be the linear

map Ã¬sm which is zero on at-most set-multilinear monomials, and identity on all other

monomials.
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In particular, for S = [d], Ãsm(f) and Ãsm,S(f) are the same. For S = ∅, Ãsm,S(f) is

the constant part of f , Ãsm,∅(f) = f(0). More generally, we can decompose f into its

set-multilinear parts as follows.

▶ Lemma 24. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd. Then for any

polynomial f ,

f = Ã¬sm(f) + f(0) +
∑

∅̸=S¦[d]

Ãsm,S(f) .

It immediately follows that we can simulate an addition (or even a linear combination) of

polynomials by instead adding the constituent set-multilinear parts.

▶ Lemma 25. Let f be any field. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd.

Let f1, . . . , fm be polynomials, with f = ³1f1 + · · ·+ ³mfm for ³1, . . . , ³m ∈ F. Let S ¦ [d].

Then Ãsm,S(f) can be computed by a depth-1 poly(m, 2d)-size set-multilinear
∑

-circuit given

{Ãsm,S(fj)}S¦[d],j∈[m] as inputs.

Less trivially is the simulation of a multiplication, for which we use the formula for the

surjective permanent (Corollary 22).

▶ Lemma 26. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd. Let f1, . . . , fm

be polynomials, with f = f1 · · · · · fm. Let S ¦ [d] be of size ℓ. Then Ãsm,S(f) can

be computed by a depth-4 poly(m,Θ( ℓ
ln ℓ )ℓ, 2d)-size set-multilinear

∑ ∏ ∑ ∏

-circuit given

{Ãsm,S(fj)}S¦[d],j∈[m] as inputs.

Proof. The number of inputs to the circuit is m2d. It remains to bound the number of gates

by poly(m,Θ( ℓ
ln ℓ )ℓ).

Rearrange the fi as needed so that f1(0) = · · · = fk(0) = 0 and fk+1(0), . . . , fm(0) ̸= 0,

for some k f m. Thus, we can normalize the computation via

f =

m
∏

i>k

fi(0) ·
∏

i∈[k]

fi ·
m

∏

i>k

fi

fi(0)
,

and thus define

gi =

{

fi i f k

fi/fi(0) i > k
,

and g =
∏

i gi. It then follows that f =
∏m

i>k fi(0) · g, gk+1(0) = · · · = gm(0) = 1, and

Ãsm,S(f) =
∏m

i>k fi(0) · Ãsm,S(g). As
∏m

i>k fi(0) is a non-zero constant, it suffices to prove

the claim for Ãsm,S(g).

Now write g as

g =

k
∏

i=1



Ã¬sm(gi) +
∑

∅̸=Si¦[d]

Ãsm,Si
(gi)



 ·
m

∏

i>k



Ã¬sm(gi) + 1 +
∑

∅̸=Si¦[d]

Ãsm,Si
(gi)



 .

In expanding the above product, the only at-most set-multilinear terms are of the form
∏

j

Ãsm,Sij
(gij

) ,

where the Sij
¦ [d] are disjoint (as otherwise we create non-multilinear terms), and the

indices {ij}j are distinct (as we take exactly one term from each gi [possibly the term 1]).
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Further, as gi(0) = 0 for i f k, we must have {ij}j § [k]. Hence, by collecting like terms, we

see that

Ãsm,S(g) =
∑

F∈PS

∑

Ã:F↪→[m];im(Ã)§[k]

∏

T ∈F
Ãsm,T (gÃ(T ))

where PS is the collection of set partitions of S, which we can rewrite in terms of k-surjective

permanents as

=
∑

F∈PS

perm|F|×m;k(AF ) ,

where for a partition F of S the matrix AF is |F| ×m size matrix defined by

(AF )T,j = Ãsm,T (gj) ,

for T ∈ F and j ∈ m. Note that the matrix AF has rows that access disjoint parts of the

set-multilinear partition of x, and so as the k-surjective permanent is set-multilinear with

respect to rows, the computation perm|F|×m;k(AF ) is set-multilinear with respect to the

partition of x. Further, a set-multilinear computation of this permanent will be set-multilinear

with respect to x. Hence, we can use the set-multilinear computation from Corollary 22 for

the surjective permanent, which in this case yields a depth-4 set-multilinear formula of size

poly(m,Θ( |F|
ln |F| )

|F|).
Computing Ãsm,S(g) is then a sum of B|S| many such perm|F|×m;k(AF ) terms, which does

not increase depth as we collapse two sequential layers of addition gates, and this preserves

set-multilinearity. The resulting size of the expression is poly(m,Θ( |F|
ln |F| )

|F|, B|S|, 2
d)) f

poly(m,Θ( ℓ
ln ℓ )ℓ, 2d), as |S| = ℓ, |F| f |S|. ◀

We now conclude with our set-multilinearization result over any field by gate-simulation.

▶ Corollary 27. Let F be any field. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd.

Suppose f ∈ F[x] can be computed by a size s product-depth ∆ algebraic circuit. Then

the set-multilinear projection Ãsm(f) ∈ F[x] can be computed by a size poly(s,Θ( d
ln d )d)-size

product-depth 2∆ circuit.

Proof. By gate simulation. Let Φ be the hypothesized circuit computing f . For each node v

in Φ, split v into its at-most set-multilinear parts Ãsm,S(v) for each S ¦ [d].

If v = ³1v1 + · · ·+ ³mvm, then we can express the at-most set-multilinear parts of v in

terms of the vi using a poly(m, 2d)-size product-depth 0 set-multilinear circuit by Lemma 25.

If v = v1 × · · · × vm, then we can express the at-most set-multilinear parts of v in terms of

the vi using a poly(m,Θ( d
ln d )d)-size product-depth 2 set-multilinear circuit by Lemma 26.

Correctness of the computation follows by induction on the circuit.

The overall size of the circuit has increased from s to poly(s,Θ( d
ln d )d) by counting the

size of the additional local gadgets of the gate simulation. Simulation of addition gates adds

no product depth. Each product gate in the original circuit is turned into a product-depth 2

circuit in the gate simulation, hence the overall product-depth has at most doubled. ◀
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