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Abstract—We show that for some constant β > 0, any subset A

of integers {1, . . . , N} of size at least 2−O((logN)β) ·N contains a
non-trivial three-term arithmetic progression. Previously, three-
term arithmetic progressions were known to exist only for sets
of size at least N/(logN)1+c for a constant c > 0.

Our approach is first to develop new analytic techniques for
addressing some related questions in the finite-field setting and
then to apply some analogous variants of these same techniques,
suitably adapted for the more complicated setting of integers.

I. INTRODUCTION

A 3-progression is a triple of integers of the form (a, a+b, a+
2b), and it is said to be nontrivial if b ̸= 0. It is straightforward

to check that a triple (x, z, y) is of this form if and only if

x + y = 2z, and that, in this case, the progression is trivial

only if x = y. We consider the problem of finding a nontrivial

3-progression within a set A ¦ [N ] ¦ Z, where we assume

only that the set A has somewhat large density inside [N ].
Regarding this problem, we prove the following.

Theorem I.1. The following holds for some absolute constant

exponent ´ > 0. Suppose A ¦ [N ] has density ¶ = |A|/N.
Then, either A contains a nontrivial 3-progression, or else

¶ f 2−Ω(log(N)β).

In [Rot53], Roth proved a statement of the same form: that

dense enough sets A ¦ [N ] must contain a nontrivial 3-

progression, for density threshold ¶ ≈ 1/ log logN. This was

improved by Heath-Brown and Szemerédi to ¶ ≈ 1/ log(N)c

for some small c > 0 [HB87], [Sze90]. This bound was

further refined in the works of Bourgain, and Sanders [Bou99],

[Bou08], [San12a] where it is shown that one can take

c = 1/2, c = 2/3, and then c = 3/4. Sanders then obtained

a density-threshold of the form ¶ ≈ (log logN)6/ logN
[San11].1 This was further sharpened by a factor (log logN)2

by Bloom and then again by another factor log logN by

Schoen [Blo16], [Sch21]. The best bound previously available

Zander Kelley is supported by NSF grant CCF-1814788, and CAREER
award 2047310. Raghu Meka is supported by NSF AF 2007682.

1See also the work of Bloom and Sisask [BS19], which obtains a compara-
ble result by some different methods which are closely related to the approach
taken here.

is due to Bloom and Sisask [BS20], who show that a set

A ¦ [N ] with no 3-progressions must have density

¶ f O

(
1

log(N)1+c

)

for some small c > 0. We also refer to Appendix A for a more

detailed discussion of some previous approaches and how our

methods relate to them.

In the other direction, it was shown by Behrend2 that for

infinitely many values N there are indeed subsets A ¦ [N ]

of density roughly ¶ ≈ 2− log(N)1/2 which have no nontrivial

3-progressions.

More specifically, we establish the following.

Theorem I.2. Suppose A ¦ [N ] has density at least 2−d.

Then the number of triples (x, y, z) ∈ A3 with x+ y = 2z is

at least

2−O(d12)N2.

Since there are only |A| f N trivial 3-progressions, we

do indeed obtain a nontrivial 3-progression, unless logN f
O(d12).

We also consider a similar problem where A ¦ F
n
q is a subset

of a vector space over some finite field. In this setting, we

prove the following.

Theorem I.3. Suppose A ¦ F
n
q has density at least 2−d. Then

the number of triples (x, y, z) ∈ A3 with x + y = 2z is at

least

q−O(d9)|Fn
q |2.

As a standalone result, we point out that this theorem is strictly

worse than the state-of-the-art bound, which can be obtained

from algebraic techniques pioneered by [CLP17] and [EG17],

which gave a strong resolution to the cap-set problem. Indeed,

Fox and Lovász obtain strong bounds for Green’s “arith-

metic removal lemma” by combining the algebraic results of

[KSS18] with some additional combinatorial arguments. In

particular, their results imply the following.

2[Beh46]. See also the works of Elkin [Elk10], Green and Wolf [GW10],
and O’Bryant [O’B11] for some refinements.
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Theorem I.4 (Special case of Theorem 3 in [FL17]). Suppose

A ¦ F
n
q has density at least 2−d. Then the number of triples

(x, y, z) ∈ A3 with x+ y = 2z is at least q−O(d)|Fn
q |2.

Instead, our interest in Theorem I.3 is that we can obtain it

using purely analytic techniques and that these same tech-

niques can then be slightly modified and extended to prove

Theorem I.2. Partially for expository reasons, we devote a

substantial portion of this paper to first addressing the finite

field case. This will allow us to present most of the key ideas

needed to prove our main theorem while ignoring additional

complications arising in the setting A ¦ Z. We also remark

that techniques based on additive combinatorics have found

several applications within computer science (going all the

way back to the paper of [CFL83] who used Behrend’s

construction for a communication protocol to more recent

applications such as [BKM22]). We believe the new analytic

techniques will have other applications.

A. Structural Results in the Finite Field Setting

This section highlights a structural result in the finite field

setting that follows from our analytic techniques but is not

known to follow from algebraic methods. To describe it, we

recall the notation for sumsets:

A+B := {a+ b : a ∈ A, b ∈ B} .

For a set A ¦ F
n
q , we also use the notation Span∗(A) to denote

the minimal affine subspace containing A – that is, Span∗(A)
refers to the common intersection of all affine subspaces

containing A, which is itself an affine subspace.

The following structural result says that for any dense set A ¦
F
n
q , there is a reasonably large subset A′ ¦ A, which is tightly

contained in its own span (in a specific technical sense).

Lemma I.5 (A large subset tightly contained in its own span).

Fix a parameter τ ∈
[
0, 1

2

]
. Suppose that A ¦ F

n
q has size

|A| g 2−d|Fn
q |. Then, there is a subset A′ ¦ A with

i.
|A′|

|Span∗(A′)| g
|A|
|Fn

q |
and

ii. Codim(Span∗(A′)) f O(d5 log(1/τ)4)

such that |A′ +A′| g (1− τ)|Span∗(A′)|.
Taken together, conditions (i) and (ii) roughly say simply

that A′ is large: for example, they imply that |A′| g
q−O(d5 log(1/τ)4)|Fn

q |. However, we are additionally guaranteed

(by (i)) that the density of A′ inside its span is no worse than

the original density of A inside F
n
q . To unpack the conclusion,

let us write Span∗(A′) =: V + ¸ for some linear subspace V
and some shift ¸ ∈ F

n
q . Also let B := A′ − ¸. Clearly, we

have Span(B) = V . That is, B is contained in V , and it

also “eventually” generates V : for instance we can surely say

that {c1b1 + c2b2 · · ·+ cnbn : ci ∈ Fq, bi ∈ B} = V . On the

other hand, we can compare this to our conclusion, which says

that merely taking

B +B = {b1 + b2 : b1, b2 ∈ B}

is already enough to generate all but a tiny fraction of V : we

have |B+B| g (1−τ)|V | and so |V \(B+B)| f τ |V |.

We proceed to compare this result with some related results

in the literature: Specifically, Sanders’ quasipolynomial Bo-

golyubov–Ruzsa lemma (specialized to the finite field setting)

and the critical technical lemma underlying its proof.

Let us first consider what we’ll call the Bogolyubov–Ruzsa

Problem. We recall the notation for sumsets: 2A denotes A+A
and tA denotes the set of all sums a1 + a2 + . . . + at with

ai ∈ A.

Problem I.6 (Bogolyubov-Ruzsa Problem over Fn
p ). Let A ¦

F
n
p be a set of points in a vector space over a prime field.

Fix t ∈ N and assume that |A+A| f K|A|. Find (or rather,

prove the existence of) an affine subspace V which is as large

as possible and contained in tA.

Note that any sufficiently dense set (i.e., one of size |A| g
K−1|Fn

p |) trivially satisfies |A + A| f |Fn
q | f K|A|, so to

solve the Bogolyubov-Ruzsa problem one must at least handle

the special case of finding a large subspace in tA for all dense

sets A. Furthermore, solving the problem in this special case

is sufficient to obtain very similar parameters for the general

case. The reduction can be summarized as follows: for any t f
O(1), a set A ¦ F

n
p with |A+A| f K|A| can be embedded by

some linear map ϕ from F
n
p into F

m
p in such way that

• ϕ is injective on A (and indeed, even on tA),

• |ϕ(A)| g K−O(1)|Fm
p |, and

• The set tϕ(A) = ϕ(tA) contains an affine subspace V ¦
F
m
p only if the preimage ϕ−1(V ) is an affine subspace in

F
n
p .

For a more detailed explanation, see, e.g., the nice description

given in [Lov15]. In light of this reduction to the dense case,

we restrict our attention to the following.3

Problem I.7 (Bogolyubov Problem over F
n
q ). Let A ¦ F

n
q .

Fix t ∈ N and assume that |A| g 2−d|Fn
q |. Find an affine

subspace V which is as large as possible and contained in

tA.

Regarding this problem, Sanders proves the following.

Theorem I.8 ([San12b]). Suppose A ¦ F
n
q has size |A| g

2−d|Fn
q |. Then there is an affine subspace V ¦ 4A of

codimension at most O(d4) in F
n
q .

Sanders’ approach to the Bogolyubov Problem for 4A is first to

address what we’ll call the Approximate Bogolyubov Problem

for 2A:

3We note that the reduction from the more general Bogolyubov-Ruzsa
problem for vector spaces over prime fields Fp to the more specific Bo-
golyubov problem over Fp uses the fact that subspaces in Fn

p can be precisely
characterized as those subsets which are closed under addition – i.e., additive
subgroups. However, it is sensible to consider the Bogolyubov problem itself
over general finite fields Fq .
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Problem I.9 (Approximate Bogolyubov Problem over F
n
q ).

Let A ¦ F
n
q . Fix t ∈ N and assume that |A| g 2−d|Fn

q |.
Find an affine subspace V which is as large as possible and

is “mostly” contained in tA, in the sense that

|V ∩ (tA)| g (1− τ)|V |

for some τ as small as possible.

The connection between the Approximate Bogolyubov Prob-

lem for tA and the Exact Bogolyubov Problem for 2tA is due

to the following simple claim.

Claim I.10. Suppose B ¦ F
n
q is a set with a large intersection

with some linear subspace V : |B ∩ V | > 1
2 |V |. Then B +B

contains V .

Proof. Let x ∈ V . We may trivially write x = (x + y) − y
for any element y ∈ V . Consider doing so for a uniformly

random choice of y ∈ V. By a union bound, the chance that

the events x + y ∈ B and −y ∈ B occur simultaneously is

nonzero.

Sanders provides the following solution to the Approximate

Bogolyubov Problem for sumsets 2A over Fn
q .

Theorem I.11 ([San12b]). Suppose A ¦ F
n
q has size |A| g

2−d|Fn
q |. Then for any τ g 2−d, there is an affine subspace

V of codimension at most O(d4/τ2) with

|V ∩ (A+A)| g (1− τ)|V |.

It is useful to compare this with our structural result above,

Lemma I.5, which accomplishes something similar in spirit.

Indeed, given A we may find A′ ¦ A and consider its

container V := Span∗(A′), which in our case has codimension

O(d5 log(1/τ)4). We note that 2V is again an affine subspace

of the same size as V (2V is just a translate of V ) which

contains A′ +A′, and that

|2V ∩(A+A)| g |2V ∩(A′+A′)| = |A′+A′| g (1−τ)|2V |.

Thus, our result can also be understood as a solution to the

Approximate Bogolyubov Problem for 2A; compared with

Sanders’ solution, we obtain codimension which is moderately

worse in terms of its dependence of the density parameter

d in exchange for substantially improved dependence on the

error parameter τ . This answers a question posed by Hatami,

Hosseini, and Lovett in [HHL18] – they ask whether it is

possible to obtain codimension dO(1) log(1/τ)O(1) for the

Approximate Bogolyubov Problem for 2A, and we confirm

that indeed it is.

We can also answer a related question posed by Schoen and

Sisask in Section 9 of [SS16]: they ask whether it is possible to

obtain codimension dO(1) for the Exact Bogolyubov Problem

for 3A, as Sanders does for 4A. The following result confirms

this.

Corollary I.12 (Direct corollary of Lemma I.5). Suppose A ¦
F
n
q has size |A| g 2−d|Fn

q |. Then, there is a subset A′ ¦ A
with size

|A′| g q−O(d9)|Fn
q |

such that A′ +A′ +A′ is an affine subspace.

Proof. We apply Lemma I.5 with parameter τ set slightly

smaller than 2−d. We consider the resulting subset A′ and

affine subspace Span∗(A′), which we write as V + ¸ for

some linear subspace V and some shift ¸. Consider the set

B := A′ − ¸ ¦ V . We argue that 3B = V, which proves that

3A′ = V + 3¸. Indeed, if 3B ̸= V , then there is some x ∈ V
such that the set x−B does not intersect with B+B. However,

x−B is a set in V of size |x−B| = |B| g 2−d|V |, and we

also have |B +B| g (1− τ)|V |, so this is not possible.

B. A robust structural lemma

The structural result given in the previous section is in fact

a special case of a more analytically robust variant which we

proceed to describe. We recall the notation

RA(x) :=
∣∣{(a1, a2) ∈ A2 : a1 + a2 = x

}∣∣ ,

which counts the number of “representations” of x as a

sum of two elements of A. We also consider the alternative

normalization

rA(x) :=
RA(x)

|A|2

which is normalized as a distribution function on F
n
q – that

is,
∑

x∈Fn
q
rA(x) = 1. Recall that Lemma I.5 says that for

any dense set A ¦ F
n
q , there is a reasonably large subset

A′ ¦ A which is tightly contained in its own span, in the

sense that

|A′ +A′| g (1− τ)|Span∗(A′)|.

For the sake of clarity let us write Span∗(A′) = V +¸ where V
is a linear subspace. We have of course that |V | = |Span∗(A′)|.
Note that the distribution rA′(x) is supported on the affine sub-

space 2Span∗(A′) = V +2¸. Our robust variant of Lemma I.5

states that in fact the distribution rA′(x) is very close to the

uniform distribution on V + 2¸. The fact that the support of

rA′ , i.e. A′ +A′, is large follows as a corollary.

To state this result we need the following notion for measuring

closeness of distributions. In what follows, a “distribution”

Ã : Ω → R is a nonnegative function on Ω with
∑

x∈Ω Ã(x) =
1.

Definition I.13. Given k g 1 and two distributions Ã, Ã′ :
Ω → R, define the k-norm divergence of Ã from Ã′ as the

quantity
(∑

x∈Ω |Ã(x)− Ã′(x)|k∑
x∈Ω Ã′(x)k

)1/k

.
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In the case that Ã′ corresponds to some flat distribution

Ã′(x) = 1S(x)
|S| , uniform over some subset S ¦ Ω, and Ã

is supported on S, this can be equivalently expressed as
(

E
x∈S

∣∣∣∣
Ã(x)

Ã′(x)
− 1

∣∣∣∣
k
)1/k

.

Lemma I.14 (A robust variant of Lemma I.5). Fix a constant

ε ∈ (0, 1) and a parameter k g 1. Suppose that A ¦ F
n
q has

size |A| g 2−d|Fn
q |. Then, there is a subset A′ ¦ A with

i.
|A′|

|Span∗(A′)| g
|A|
|Fn

q |
and

ii. Codim(Span∗(A′)) f Oε(d
5k4)

such that the distribution rA′(x) has k-norm divergence at

most ε from the uniform distribution on 2Span∗(A′).

We note that Lemma I.5 does indeed follow as a special case

by invoking Lemma I.14 e.g. with ε = 1/2. This is because,

if Ã is a distribution supported on some set B ¦ B′, and

|B′ \ B| g τ |B′|, then the k-norm divergence from Ã to the

uniform distribution on B′ is at least τ1/k.

II. TECHNICAL INTRODUCTION

The techniques and applications considered in this work are

centered around the following question. Let A,B, and C be

subsets of a finite abelian group G of size N , each with size

at least 2−dN . We ask: what sort of generic “pseudorandom”

conditions on the sets A,B,C are sufficient to ensure that the

number of solutions to the equation a+ b = c, with (a, b, c) ∈
A×B×C, is off by only a small multiplicative factor (1±ε)
from the the “expected” number, |A||B||C|/N?

We are particularly concerned with the following three con-

ditions on a set A ¦ G, which each attempts to quantify

the “additive pseudorandomness” of A in some capacity.

For concreteness, we will first state the three conditions –

spreadness, regularity, and self-regularity – in the counting

measure. However, we will shortly return to restate each

of them using alternative normalization conventions which

will greatly increase their interpretability. We recall some

standard notations for the number of “representations” of x
as a sum or difference of elements of some sets A and B:

RA,B(x) := |{(a, b) ∈ (A×B) : a+ b = x}|, R−
A,B(x) :=

|{(a, b) ∈ (A×B) : a− b = x}|, RA(x) := RA,A(x), and

R−
A(x) := R−

A,A(x).

Definition II.1 ((µ, r)-spread). Let A be a subset of Fn
q . For

µ, r g 1, we say A is (µ, r)-spread if,

|A ∩ V |
|V | f µ|A|

|Fn
q |

.

for all affine subspaces V ¦ F
n
q of codimension at most r.

Our first condition – spreadness – applies only to the case G =
F
n
q ; however, we will eventually return to consider possible

substitutes for when we are working in a different group.4

4Specifically, we will consider some alternatives where a Bohr set, or a
generalized arithmetic progression, instead plays the role of the subspace.

Spreadness is important to us because it is easy to obtain, for

instance, by a density-increment argument.

Definition II.2 ((µ, k)-regular). Let A be a subset of a finite

abelian group G. For µ, k g 1, We say that A is (µ, k)-regular

if ∑

a∈A

RB,C(a) f
µ|A||B||C|

|G|

for all sets B,C ¦ G with size at least |B|, |C| g 2−k|G|.
Definition II.3 ((µ, k)-self-regular). We say that A ¦ G is

(µ, k)-self-regular if

∑

x∈G

R−
A(x)

k f µ|A|2k
|G|k−1

.

Our latter two conditions – regularity and self-regularity –

apply to general finite abelian groups. In contrast to spread-

ness, regularity is important to us because it is useful to have,

although it is not clear that it is easy to obtain.

We can summarize the overall argument for our structural

result, Lemma I.14, into three steps:

1) One can use density increments to obtain spreadness.

This follows from a simple greedy argument and is

formalized in Proposition II.15.

2) One can (informally speaking) obtain regularity from

spreadness. This is a core ingredient of our approach

and is formalized in Theorem II.8.

3) One can obtain strong two-sided bounds on the number

of solutions to a + b = c from regularity. This is

formalized in Theorem II.11.

Points 2 and 3 above can be considered the two main technical

contributions of our work. Taken together, they give the

following answer to the central question described above (for

the setting G = F
n
q ). To control the number of solutions

to a + b + c = 0 with a, b, c ∈ A,B,C, to within a

factor (1 ± O(ε)) of the expected number |A||B||C|/|G|, it

suffices that any two of the three sets are (1+ε, poly(d, 1/ε))-
spread.

A. Density formulation

We take a moment to switch to a more “analytic” language

for expressing the three conditions introduced above which

both eases their interpretability and clarifies their importance

for controlling the number of solutions to a+ b = c. Here in

the introduction, we avoid an extended discussion of details

regarding, e.g., normalization conventions (a more detailed

description can be found in Section III). However, we highlight

the following key points.

• We use the notation ∥f∥k :=
(
Ex∈G |f(x)|k

)1/k
for

k g 1 and functions f : G → R, as well as ∥f∥∞ :=
maxx∈G |f(x)|.

• We consider density functions on G, which are simply

nonnegative functions F : G → R with ∥F∥1 = 1.
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• Given a set A ¦ G, we abuse notation and let A(x)
denote the density function which corresponds to the

uniform density on A. Under this normalization, a set

of size |A| = 2−d|G| has corresponding density function

A(x) with ∥A∥∞ = 2d.
• Given density functions A(x) and B(x), we consider both

the convolution (A∗B)(x) and the cross-correlation (A⋆
B)(x), both of which are again density functions. Indeed,

they are the density functions that are proportional to the

representation-counting functions RA,B(x) and R−
B,A(x).

Finally, let us introduce the following notations relevant to

capturing the spreadness and regularity conditions. For non-

negative f : Fn
q → R, we define

∥f∥⊥,r := max
V⊆F

n
q

Codim(V )fr

ïV, fð , (1)

where the maximization is quantified over affine subspaces

V ¦ F
n
q of codimension at most r. For nonnegative f : G →

R, we define

∥f∥∗,k := max
B,C⊆G

∥B∥∞,∥C∥∞f2k

ïB ∗ C, fð , (2)

where the maximization is quantified over subsets B,C ¦ G
of sizes |B|, |C| g 2−k|G|. We can restate each of our three

conditions above in the density formulation.

Definition II.4 (Spreadness – density formulation). We say

that A ¦ F
n
q is (µ, r)-spread if

∥A∥⊥,r f µ.

Definition II.5 (Regularity – density formulation). We say that

A is (µ, k)-regular if

∥A∥∗,k f µ.

Definition II.6 (Self-regularity – density formulation). We say

that A is (µ, k)-self-regular if

∥A ⋆ A∥k f µ.

Generally, for all three conditions, we are most interested in

the regime where µ = 1+ ε and ε is a small constant.

B. Regularity from spreadness; Upper-bounds from regular-

ity

We can also restate our central question in the density formu-

lation as follows.

Question II.7. Let A,B,C ¦ G. Suppose that the corre-

sponding density functions satisfy the (min-)entropy deficit

condition ∥A∥∞, ∥B∥∞, ∥C∥∞ f 2d. What sort of generic

pseudorandom conditions on A(x), B(x), C(x) are sufficient

to ensure that

ïA ∗B,Cð = 1±O(ε),

where ε is some small constant?

We note that (basically by definition) imposing the condition

of (1 + ε, d)-regularity on the set A is sufficient to obtain

good upper bounds for this question (and also necessary if we

wish to avoid imposing any further conditions on the sets B
and C beyond the given constraints on their sizes) as we have

ïA ∗B,Cð = ïA,B ⋆ Cð. Thus, if this quantity is at least

1 + ε then the fact that ∥A∥∗,d g 1 + ε is witnessed by the

convolution of C with −B.

Our first main technical result says that spread sets are

regular.

Theorem II.8 (Structure vs. Pseudorandomness in F
n
q –

simplified combination of Theorem IV.6 and Theorem IV.10).

Suppose A ¦ F
n
q has size |A| g 2−d|Fn

q |. If ∥A∥∗,k g 1 + ε,

then ∥A∥⊥,r g 1 + ε
8 for some r f Oε(k

7d). Similarly,

if ∥A ⋆ A∥k g 1 + ε, then ∥A∥⊥,r g 1 + ε
4 . for some

r f Oε(k
4d4).

We can offer a couple of different interpretations of this result.

Firstly we can interpret it analytically as follows. Suppose the

density function A(x) has a deviation upwards from the uni-

form density function, which can be detected, or “witnessed”,

by some convolution of two large sets (i.e., by a density

corresponding to a rather weak additive structure). Then, the

above theorem says that this deviation can be witnessed almost

as well by the uniform density over a reasonably large affine

subspace (i.e., a set with a very strict additive structure).

Alternatively, we can interpret the contrapositive in the well-

known structure vs. pseudorandomness paradigm. Specifically,

we have the following dichotomy: a given set A is either

pseudorandom, in the sense that it is (1 + ε, k)-regular, or

it has some non-negligible amount of additive structure which

can be detected by some large affine subspace V ,

ïV,Að g 1 +
ε

8
,

and we obtain the resulting density increment of A onto

V :
|A ∩ V |
|V | g

(
1 +

ε

8

) |A|
|Fn

q |
.

We give the following quick summary of the proof of The-

orem II.8 which is intended for experts. Alternatively, a

more detailed overview can be found in Appendix A, which

in particular gives some additional discussion of the tools

involved, as well as an account of how the proof is arrived at

“naturally” as the result of a sequence of observations.

For brevity, we discuss only the most important claim made

in Theorem II.8: that ∥A⋆A∥k g 1+Ω(1) implies ∥A∥⊥,r g
1+Ω(1) for some r f O(k4d4). We will establish the stronger

claim ∥A⋆A∥⊥,r g 1+Ω(1), which is sufficient. Our starting

point is the following consequence of Sanders’ invariance

lemma.5

5By this we mean the result one obtains by combining the Croot-Sisask
lemma with Chang’s inequality – an idea which first appeared in the work of
Sanders [San12b]. See Lemma A.15 for the specific form of the result used
here.
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Proposition II.9. Let k g 1 and ε ∈ [2−k, 1]. For any

bounded function f : Fn
q → [0, 1], we have

∥f∥⊥,k4/ε2 g ∥f∥∗,k −O(ε).

Suppose ∥A ⋆ A∥k g 1 + 2ε for some small constant ε, and

consider the super-level set indicator

f(x) := 1((A ⋆ A)(x) g 1 + ε) .

Our plan is to argue that ∥f∥∗,k′ g 1− ε
8 for some k′ f O(kd).

From this it follows that

∥A ⋆ A∥⊥,O(k4d4) g (1 + ε)∥f∥⊥,O(k4d4)

g (1 + ε)(1− ε
4 )

g 1 + Ω(1),

as desired. To argue that we indeed have ∥f∥∗,k′ ≈ 1 for some

value k′ which is not too large, we develop the following tool

(which is applicable more generally to any finite abelian group

G).

Lemma II.10 (Sifting lemma). Suppose A ¦ G has size |A| =
¶|G|. Fix a nonnegative function h : G → Rg0 and an integer

k g 2. Let D(x) denote the unique density function which is

proportional to (A ⋆ A)(x)k, and suppose that ïD,hð = ·.

Then there is a subset A′ ¦ A with ïA′ ⋆ A′, hð f 2 · · and
|A′|
|G| g 1

2 · ¶k.

Applying this to h := 1− f shows that ∥f∥∗,O(kd) ≈ 1. This

completes the argument; it remains only to prove the sifting

lemma and work out the quantitative details – this is done in

Section IV-A. We remark briefly that the sifting lemma can

be seen as an extension of Schoen’s “Pre-BSG” lemma – this

is discussed in more detail in Appendix C.

C. Strong two-sided bounds from self-regularity

We have seen that spreadness is sufficient to give good upper

bounds for our central question, Question II.7. However, for

applications, typically, one is more interested in lower bounds

– in particular, in settings where we would like to establish the

existence of solutions. For this we turn to the following: our

second main technical contribution, which says that if A and

B are both self-regular, then A ∗B is near-uniform.

Theorem II.11 (Strong two-sided bounds from self-regular-

ity). Let A,B be subsets of a finite abelian group G. Suppose

that A and B are both (1 + ε, +k/ε,)-self-regular for some

ε ∈ [0, 1
4 ] and some even integer k g 2. Then

∥A ∗B − 1∥k f 2ε.

In particular, ïA ∗B,Cð = 1 ± O(ε) for any set C of size

|C| g 2−k|G|.

Proof. Our first step is to apply the following claim, which

can be proved without much trouble by a slightly nontrivial

application of Cauchy–Schwarz.

Proposition II.12 (Decoupling inequality). Let A,B be den-

sity functions on a finite abelian group G. For even integers

k ∈ N we have

∥A ∗B − 1∥k f ∥A ⋆ A− 1∥1/2k ∥B ⋆ B − 1∥1/2k .

So, it suffices to show that both ∥A ⋆ A − 1∥k f 2ε and

∥B ⋆B− 1∥k f 2ε; without loss of generality let us consider

A. We argue that the near-uniformity of A ⋆ A follows from

an upper bound on ∥A⋆A∥k′ (with k′ := +k/ε,). This follows

by combining two simple claims.

Proposition II.13 (Positive correlation for spectrally positive

functions – restatement of Corollary V.5). Let G be a finite

abelian group, and let f1, f2, . . . , ft be some real-valued

functions on G which are “spectrally positive.” That is, each of

the Fourier coefficients f̂i(³) is real and non-negative. Then,

for uniformly random x ∈ G,

E[f1(x)f2(x) · · · ft(x)] g E[f1(x)]E[f2(x)] · · ·E[ft(x)] g 0.

Proposition II.14 (Odd moments – reformulation of Proposi-

tion V.7). Let Z be a real-valued random variable. We use the

notation ∥Z∥k := E
[
|Z|k

]1/k
. Suppose Z has non-negative

odd moments: that is, E [Zt] g 0 for all odd integers t ∈ N.

If ∥1+Z∥k′ f 1+ ε for some integer k′ and some ε ∈ [0, 1
4 ],

then ∥Z∥k f 2ε for any even integer k f εk′.

Our density function (A ⋆A)(x) is indeed spectrally positive,

and so is its centering, F := A⋆A− 1. From this we see that

A ⋆ A has non-negative odd central moments:

E
(
(A ⋆ A)(x)− 1

)t
= F (x)t g 0

for all odd t ∈ N. Since we have assumed the upper bound

∥A ⋆ A∥k′ f 1 + ε, we obtain the desired two-sided bound

∥A⋆A−1∥k f 2ε. This proves the first claim. For the second

claim, we can write

ïA ∗B,Cð = ï1, Cð+ ïA ∗B − 1, Cð = 1 + ïA ∗B − 1, Cð ,

and use a Hölder inequality to estimate

|ïA ∗B − 1, Cð| f ∥A ∗B − 1∥k∥C∥1+ 1

k−1

f ∥A ∗B − 1∥k∥C∥1/k∞ ∥C∥1−1/k
1

= ∥A ∗B − 1∥k∥C∥1/k∞

f 2∥A ∗B − 1∥k.

We remark that it is always possible, for generic density

functions D, to infer some kind of bound on ∥D − 1∥k
from an upper bound ∥D∥k f 1 + ε. However, this generic

bound degrades rapidly as k increases: consider, for example,

a density function which is uniform over some subset of G of

size (1− ε)|G|. In this case we have

∥D∥k′ f ∥D∥∞ =
1

1− ε
≈ 1 + ε
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for any k′, and yet

∥D − 1∥k g ε1/k.

So, for our arguments above, it was quite important that there

are no self-convolutions which are shaped in such a way. More

specifically: self-convolutions A ⋆ A which have deviations

downwards from 1 must also have deviations upwards from

1 of comparable strength, as measured by the k-norm, for

(roughly speaking) any choice of k. This is what allows us

to efficiently convert our upper bound from Theorem II.8

into a lower bound. It is interesting to contrast this situation

with the discussion surrounding Question A.3 in the appendix.

Specifically, we discuss a formal setting where one can obtain

strong upper-control on the quantity ïA ∗B,Cð from the

density-increment method, but it is impossible to obtain any

nontrivial lower bound ïA ∗B,Cð > 0.

A review of all the steps. We recall that, as a result of the

combination of all of our observations, one can infer from

the starting assumption ïA ∗B,Cð f 1 − Ω(1) that either A
or B must have a density increment onto some large affine

subspace V . Now that we have seen everything needed for

this, we offer the following summary listing all the steps in

one place.

• Infer by Hölder that ∥A ∗B− 1∥k g Ω(1), for k g d, as

witnessed by C.

• Argue that k-norm distance to uniform is maximized by

considering self-convolutions:

∥A∗B−1∥k f ∥A⋆A−1∥1/2k ∥B⋆B−1∥1/2k . Conclude

that either ∥A⋆A−1∥k g Ω(1) or ∥B⋆B−1∥k g Ω(1);
Suppose ∥A ⋆ A− 1∥k g Ω(1).

• Argue by spectral positivity that the presence of devia-

tions of A ⋆ A downwards from 1 entails the presence

of deviations upwards from 1 of comparable strength.

More concretely: argue that (upon increasing k slightly)

we have ∥A ⋆ A∥k g 1 + Ω(1).
• Use sifting to find a convolution A′ ⋆ A′ witnessing

∥f∥∗,O(dk) ≈ 1, where

f := 1(A ⋆ A g 1 + Ω(1)) .

• Use Sanders’ invariance lemma (which is itself powered

by the Croot-Sisask lemma and Chang’s inequality) to

deduce that ∥f∥⊥,O(d4k4) ≈ 1.

• Conclude that ïV,A ⋆ Að g 1 + Ω(1) for some V .

• Conclude that ïV ′, Að g 1+Ω(1) for some V ′ = V +a.

Let us now outline our plan for the remainder of the pa-

per.

In Section II-D, we discuss the well-known density-increment

framework and describe how it can be used to find a large

subset A′ ¦ A which is spread relative to its span. We use this

to complete the proof our main result for finite field setting:

the structural lemma, Lemma I.14.

In the middle part of the paper, we develop our main tools

used to prove Theorem II.8 and Theorem II.11: “sifting”

and “spectral positivity,” respectively. Both tools apply to

general finite abelian groups G. We also establish some “local”

variants of these techniques in preparation for later when we

will consider subsets A ¦ Z, as well as subsets of cyclic

groups.

• In Section III, we go over some definitions and conven-

tions related to normalization, convolutions, and Fourier

analysis.

• In Section IV, we prove the “sifting lemma”

(Lemma IV.4) and use is to finish the proof of

Theorem II.8.

• In Section V, we develop the simple tools needed to prove

Theorem II.11. These include various k-norm inequalities

for convolutions and self-convolutions, the latter of which

relies on the notion of spectral positivity.

In the final part of the paper, we consider the setting A ¦
[N ] ¦ Z.

• In Section VI, we give an overview of our plan to

establish the existence of many 3-progressions in the

integer case, discussing what changes must be made to

our approach which handles the finite field case. Most

notably, we consider some potential replacements for the

notion of “spreadness”, where some kind of approximate

subgroup, such as a generalized arithmetic progression

of bounded rank or a Bohr set of bounded rank, instead

plays the role of the subspace of bounded codimension.

• In Section VII, we go over some definitions and basic

properties related to generalized progressions, Bohr sets,

and Freiman homomorphisms. We also introduce a po-

tentially new device related to the notion of a Freiman

homomorphism which we call a “safe” set.

• In Section VIII, we complete our proof that dense sets

A ⊂ [N ] have many 3-progressions, which relies on tools

including sifting, spectral positivity, safe sets, as well as

a translation-invariance lemma which is due to Schoen

and Sisask.

D. The density-increment framework: completing the proof of

Lemma I.14

In this section we prove our main result for the finite field

setting by combining Theorem II.8 and Theorem II.11 with

the well-known density-increment approach.

Let us argue that spreadness is a property that is easy to obtain.

Before we begin, we discuss the notion of relative spreadness.

For a set A ¦ F
n
q contained within some linear subspace V

of codimension s, let us say that A is spread relative to V if,

upon embedding

A ¦ V ∼= F
n−s
q ,

the set is spread in the sense of Definition II.1. Additionally,

suppose that A is contained in some affine subspace V ′, which

can be uniquely described as V ′ = V + ¸ for some linear

subspace V and some ¸ ∈ V ⊥. Let us say that A is spread

relative to V ′ if A− ¸ is spread relative to V .
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Now, given a set A ¦ F
n
q of density at least 2−d, we can

find a large set A′ which is spread (relative to the ambient

space Span∗(A′)) by the following simple greedy algorithm.

Let A0 := A. We proceed to describe a nested sequence of

subsets Ai ¦ Ai−1; let Vi = Span∗(Ai). If the current set Ai

is not (1+ε, r) spread (relative to its container Vi), then there

must be an affine subspace V ′ ¦ Vi, which has codimension

at most r inside Vi, such that

|Ai ∩ V ′|
|V ′| > (1 + ε)

|Ai|
|Vi|

.

We then pass to the subset Ai+1 := Ai ∩ V ′. Since we begin

with a set with density ¶0 g 2−d, and the density of Ai in Vi

increases by at least a factor (1 + ε) on every iteration, we

must have density

¶i g (1 + ε)i · 2−d.

after i iterations. However, density cannot exceed 1 at any

point. Thus, in the case of ε ∈ [0, 1], this process must ter-

minate within some number t f d/ε iterations; by definition,

this means that the final set At is (1 + ε, r)-spread inside its

own span. To summarize, by this simple argument, we have

proved the following.

Proposition II.15. Let ε ∈ [0, 1]. Suppose A ¦ F
n
q has size

|A| g 2−d|Fn
q |. Then, for some linear subspace V ¦ F

n
q of

codimension s f rd/ε, and some shift ¸ ∈ V ⊥, the subset

A′ := A ∩ (V + ¸) satisfies the following:

1)
|A′|
|V | g |A|

|Fn
q |

, and

2) The set A′−¸ ¦ V is (1+ε, r)-spread inside V ∼= F
n−s
q

in the sense of Definition II.1.

We remark that it is somewhat more common to frame

the structure vs. pseudorandomness approach as a sort of

“branching process”, where at each step, our current set is

either pseudorandom and therefore (possibly by a lengthy

argument) satisfactory, or we find a density increment and

then repeat this argument recursively. Inspired by [BK12] and

[ALWZ20], we find it clarifying to insist that we do all of our

density-incrementing up front and then argue that the resulting

(spread) set must be satisfactory. Ultimately, though, there

does not seem to be a tangible advantage arising from either

viewpoint.

Next, we argue that spreadness of A and B implies near-

uniformity of A ∗B (simply by combining Theorem II.8 with

Theorem II.11).

Proposition II.16 (Near-uniformity from spreadness). We

have the following for some absolute constant c g 1. Suppose

A,B ¦ F
n
q are two sets each of size at least 2−d|Fn

q |, where

d g 1. Let r ∈ N, ε ∈ [0, 1
4 ], and k g 1 be such that

r g d4k4/εc.

If ∥A∥⊥,r f 1 + ε and ∥B∥⊥,r f 1 + ε, then

∥A ∗B − 1∥k f O(ε).

Proof. We argue by the contrapositive. Let · ∈ [0, 1], and

suppose that

∥A ∗B − 1∥k g ·.

By Theorem II.11, this means that either ∥A⋆A∥k′ g 1+Ω(·)
or ∥B ⋆ B∥k′ g 1 + Ω(·) for some k′ f O(k/·); without

loss of generality suppose ∥A ⋆ A∥k′ g 1 + Ω(·). We use

Theorem II.8 (or rather, the more specific Theorem IV.6) to

infer that

∥A∥⊥,r g 1 + Ω(·)

for some r f M(·) · d4k4, where M(·) f poly(1/·). Since

· ∈ [0, 1] was arbitrary, the result follows.

By combining the two claims above we easily obtain our struc-

tural lemma stated in the introduction, Lemma I.14.

Proof of Lemma I.14. We are given a constant ε, a parameter

k g 1, and a set |A| g 2−d|Fn
q |. Changing ε and d only

slightly, we may assume d g 1 and ε f 1/4.

We set a parameter r ∈ N to be some constant factor larger

than k4d4/εc. We invoke Proposition II.15 and consider the

subset A′ = A∩ (V + ¸) which is (1+ ε, r)-spread relative to

its span, V + ¸, an affine subspace with codimension at most

rd/ε = O(d5k4/εc+1) in F
n
q . By our choice of r, we may

apply Proposition II.16. So, the distribution

rA′−¸(x) :=
RA−¸(x)

|A|2

has k-norm divergence from the uniform distribution on V
bounded by O(ε). Equivalently, rA′(x) has O(ε) divergence

from the uniform distribution on V +2¸. Since ε ∈ [0, 1
2 ] was

arbitrary the result follows.

Furthermore, our lower bound for 3-progressions in the fi-

nite field setting also follows as a direct consequence of

Lemma I.14.

Proof of Theorem I.3 from Lemma I.14. Suppose A ¦ F
n
q

has size |A| g 2−d|Fn
q |. If q is even, we clearly have |A|2

solutions to x + y = 2z, since 2z = 0 for all z. So, let us

assume that q is odd. We seek to lower bound the number of

3-progressions in A, which is to say the quantity
∑

z∈A

RA(2z).

Our plan is to invoke Lemma I.14, with ε = 1/4 and k = d+1,

to obtain a nice subset A′, and then we will count only the

solutions to x+ y = 2z with x, y, z ∈ A′, and ignore the rest.

For the sake of clarity let us write Span∗(A) = V + ¸ where

V is a linear subspace, and consider instead the translated set

B := A′ − ¸ ¦ V , noting that translating an entire set does

not change the number of solutions to x+ y = 2z with x, y, z
in the set.

Lemma I.14 tells us that the distribution rB(x) has k-norm

divergence at most 1/4 from the uniform distribution on V .
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This in particular means that the number of points x ∈ V
where

rB(x) f
1

2|V |

is at most 2−k|V |. Now using the fact that q is odd, we note

that the dilation map z 7→ 2z is a permutation of V , and so

∑

z∈B

rB(2z) g
(
|B| − 2−k|V |

) 1

2|V | g
2−d

4
,

where we have used that fact that |B| g 2−d|V | and that

k = d+ 1. Overall, we see that
∑

z∈A

RA(2z) g
∑

z∈B

RB(2z)

g 2−O(d)|B|2

g q−O(d5k4)|Fn
q |2

= q−O(d9)|Fn
q |2.

III. PRELIMINARIES

A. Densities and normalization

Definition III.1. For an arbitrary finite set Ω, a density

function on Ω is simply a non-negative function D : Ω → Rg0

normalized so that

E
x∈Ω

D(x) = 1

.

• Let A ¦ Ω be a subset of size |A| = ¶|Ω|. Abusing

notation, we also write

A(x) :=
1A(x)

¶
=

{
1/¶ for x ∈ A

0 otherwise

to denote the (re-normalized) indicator function of A.

Under this normalization, A(x) is a density function.

• For any two functions f, g : Ω → R we define ïf, gð :=
Ex∈Ω f(x)g(x). For any set A we have the probabilistic

interpretation

ïA, gð = E
x∈Ω

A(x)g(x) = E
a∈A

g(a).

We can also apply this more generally to an arbitrary

density function B. Let b ∼ B denote a random variable

in Ω whose probability distribution is proportional to B.

Then ïB, gð has the interpretation

ïB, gð = E
x∈Ω

B(x)g(x) = E
b∼B

g(b).

Occasionally it will be useful to allow more generally

for complex-valued functions f, g (which can appear e.g.

during some intermediate calculations involving Fourier

expansions of real-valued functions, even if the resulting

quantity must be also real). In this case we insist on the

convention

ïf, gð = E
x∈Ω

f(x)g(x)

so that at least when B(x) is real-valued and g(x) is

complex-valued we still have

ïB, gð = E
x
B(x)g(x) = E

b∼B
g(b).

• For k g 1, we use the notation

∥f∥k =

(
E

x∈Ω
|f(x)|k

)1/k

,

and

∥f∥∞ = max
x∈Ω

|f(x)| .

• It is a consequence of Jensen’s inequality that for 1 f
k f k′ and any function f we have

∥f∥k f ∥f∥k′ .

B. Convolutions

• We specialize the finite set Ω from above to be a finite

abelian group G. Given two functions f, g : G → R, we

define their convolution with the following normalization:

(f ∗ g)(x) := E
y∈G

f(y)g(x− y)

= E
y∈G

f(x− y)g(y)

=
1

|G|
∑

y,z∈G
y+z=x

f(y)g(z).

• For a density function B, we can interpret B ∗ g as

(B ∗ g)(x) := E
y∈G

B(y)g(x− y) = E
b∼B

g(x− b).

• For two real-valued function f, g, we define the cross-

correlation f ⋆ g as the convolution of f(−x) with g:

(f ⋆ g)(x) := E
y∈G

f(−y)g(x− y) = E
y∈G

f(y)g(x+ y),

and we have

(B ⋆ g)(x) = E
b∼B

g(x+ b).

• If A,B are densities corresponding to (independent)

random variables a, b, then as a consequence of our

normalization conventions, A ∗ B is again a density.

Indeed, it is the density corresponding to the random

variable a + b ∈ G. Similarly, A ⋆ B is the density

corresponding to the random variable b− a ∈ G.

• We note the identity ïf ∗ g, hð = ïf, g ⋆ hð.

C. Fourier analysis on finite abelian groups

• Let {e³(·) : ³ ∈ G} denote the set of characters of the

finite abelian group G. Each character is a function from

G to the set of complex numbers of modulus 1. The

product of two characters is again a character: For ³, ´ ∈
G, e³ · e´ = e³+´ . Beyond this, the main important

properties of the characters (for the development of the

Fourier expansion) are

(i) orthogonality: ïe³, e´ð = Ex∈G e³(x)e´(x) =
Ex∈G e³(−x)e´(x) = 1(³ = ´), and

941

Authorized licensed use limited to: University of Illinois. Downloaded on June 26,2025 at 01:41:53 UTC from IEEE Xplore.  Restrictions apply. 



(ii) symmetry: e³(x) = ex(³).

In the case that the group G is presented explicitly as

G = ZN1
×ZN2

×· · ·×ZNr
we can consider the following

concrete description:

e³(x) := exp


2Ãi

r∑

j=1

³jxj

Nj


 .

• For a set A ¦ G, we define the fourier coefficients

Â(³) := ïA, e³ð = E
a∈A

e³(a).

• Note that Â(−³) = ïA, e−³ð = ïA, e³ð = Â(³).
• For a function f : G → R, we define the fourier

coefficients

f̂(³) := ïf, e³ð = E
y∈G

f(y)e³(y).

• We can express any function by its fourier expansion

f(x) =
∑

³∈G

f̂(³)e³(−x).

Proof.

∑

³

(
E
y
f(y)e³(y)

)
e³(−x) =

∑

y

E
³
f(y)e³(y)e³(−x)

=
∑

y

f(y)E
³
ey(³)ex(−³)

=
∑

y

f(y)1(y = x)

= f(x).

• We have the following fourier-analytic identities for real-

valued functions A(x), B(x), f(x). In general they can all

be verified, with no creativity required, by the following

process: express any function appearing by its Fourier

expansion, expand any products of sums appearing into a

sum of products, and then use the identity Ex∈G e³(x) =
1(³ = 0) to evaluate any expectations.

1) ïA, fð =∑³ Â(−³)f̂(³) =
∑

³ Â(³)f̂(−³)

2) (A ∗B)(x) =
∑

³ Â(³)B̂(³)e³(−x)

3) (A ⋆ B)(x) =
∑

³ Â(−³)B̂(³)e³(−x)

4) (A ⋆ A)(x) =
∑

³ |Â(³)|2e³(−x)

5) ∥A∥22 = ïA,Að =∑³ |Â(³)|2
6) ∥A ⋆ A∥22 =

∑
³ |Â(³)|4

IV. PROOF OF THEOREM II.8, AND SIFTING

A. Sifting lemma

It will be convenient to set aside the following generic argu-

ment.

Proposition IV.1 (Weighted pigeonhole principle, or “first-mo-

ment method”). Fix some nonnegative numbers g1, g2, . . . gm
and h1, h2, . . . , hm, with

∑
i hi > 0. Let

· :=

∑m
i=1 gi∑m
i=1 hi

and

µ(h) :=
1

m

m∑

i=1

hi.

(i) There exists a choice of j ∈ [m] with
gj
hj

f · (and not

of the form 0
0 ).

(ii) Furthermore, there exists a choice of j with both

gj
hj

f 2· and hj g 1
2µ(h)

(iii) More generally, suppose that H, τ > 0 are such that
∑

i : higH

hi g τ
∑

i

hi.

Then there is a choice of j with both

gj
hj

f ·

τ
and hj g H.

Proof. The degenerate case · = 0 is easy to handle: we simply

pick the largest value hj . So suppose · ̸= 0 and consider

the first claim. We discard any indices i where both gi =
hi = 0, noting that this does not change the value of

∑
i gi or∑

i hi. Consider the equality
∑

i gi = ·
∑

i hi. If the desired

conclusion does not hold, we have gi > ·hi for all i, and so∑
i(gi − ·hi) > 0, a contradiction. For the second claim, we

apply the first claim to the modified sequence

h′
i := hi · 1(hi g µ/2) .

For the final claim, we apply the first claim to the modified

sequence

h′′
i := hi · 1(hi g H) .

In preparation to make some combinatorial arguments we

briefly switch to the counting measure. This also allows us

to also handle finite subsets A of infinite groups G, noting

that summations such as
∑

x∈G RA(x) are sensible because

RA is finitely supported.

Lemma IV.2 (Sifting lemma – counting formulation). Con-

sider

• a finite subset A of an abelian group G,

• a function f : G → Rg0, and

• an integer k g 2.

There is a subset A′ ¦ A with

1

|A′|2
∑

a,b∈A′

f(a− b) f 2 ·
∑

x R
−
A(x)

kf(x)∑
x R

−
A(x)

k

and

|A′| g 1
2 ·
∑

x R
−
A(x)

k

|A|k .

Specifically, A′ is of the form

A′(s) := A ∩ (A+ s1) ∩ · · · ∩ (A+ sk−1)

for some s = (s1, s2, · · · , sk−1) ∈ Gk−1.
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Proof. For s ∈ Gk−1, let

A′(s) := A ∩ (A+ s1) ∩ (A+ s2) ∩ · · · ∩ (A+ sk−1).

We wish to understand the quantity
∑

a,b∈A′(s) f(a− b)

|A′(s)|2

for various choices of s. Define

g(s) :=
∑

a,b∈A′(s)

f(a− b)

and

h(s) := |A′(s)|2.

We would like to apply the weighted pigeonhole principle to

find a suitable choice of s, and so we need to compute
∑

s g(s)
and

∑
s h(s). Before we start the computation we point out

ahead-of-time the following combinatorial identities:

R−
A(a− b) = |A ∩ (A+ a− b)| = |(A− a) ∩ (A− b)|

=
∑

t∈G

1A−a(t)1A−b(t)

=
∑

t∈G

1A+t(a)1A+t(b).

We have
∑

x

R−
A(x)

kf(x) =
∑

a,b∈A

R−
A(a− b)k−1f(a− b)

=
∑

a,b∈A

(∑

t

1A+t(a)1A+t(b)

)k−1

f(a− b)

=
∑

a,b∈A
s1,...sk−1




k−1∏

j=1

1A+sj (a)






k−1∏

j=1

1A+sj (b)


 f(a− b)

=
∑

a,b∈A
s1,...sk−1

(
1⋂k−1

j=1
(A+sj)

(a)
)(

1⋂k−1

j=1
(A+sj)

(b)
)
f(a− b)

=
∑

s1,...,sk−1

∑

a,b∈A′(s)

f(a− b)

=
∑

s

g(s).

A special case of this same calculation (with f ≡ 1) also gives

∑

x

R−
A(x)

k =
∑

s

h(s) =
∑

s

|A′(s)|2.

Thus we have

· :=

∑
s g(s)∑
s h(s)

=

∑
x R(x)kf(x)∑

x R(x)k
.

We remark that in the case that G is finite and A is a

dense subset of size |A| = ¶|G|, we can obtain a quite

satisfactory conclusion already by applying part (ii) of the

weighted pigeonhole principle. Indeed, for uniformly random

s ∈ Gk−1, we have average size

E
s
|A′(s)|2 = E

s
h(s)

=
1

|G|k−1

∑

x

R−
A(x)

k

=
1

|G|k−2
E
x
R−

A(x)
k

= ¶2k|G|2 E
x
(A ⋆ A)(x)k

g ¶2k|G|2.

However, we consider the following argument which is better

in general. We wish to determine a value M which is as large

as possible and also satisfies
∑

s : |A′(s)|gM

|A′(s)|2 g 1
2 ·
∑

s

|A′(s)|2.

For any choice of M we have
∑

s : |A′(s)|fM

|A′(s)|2 f M ·
∑

s

|A′(s)|

= M ·
∑

s

∑

a∈A

1A+s1(a) · 1A+s2(a) · · ·1A+sk−1
(a)

= M ·
∑

a∈A

∑

s

1A−a(s1) · 1A−a(s2) · · ·1A−a(sk−1)

= M · |A|k.

This shows that we may take

M = 1
2 ·
∑

s |A′(s)|2
|A|k = 1

2 ·
∑

x R
−
A(x)

k

|A|k .

We conclude by part (iii) of the weighted pigeonhole principle.

Remark IV.3. We note that the combinatorial argument above

which shows that
∑

x

R−
A(x)

kf(x) =
∑

s

∑

a,b∈A′(s)

f(a−b) =
∑

s

∑

x

R−
A′(s)(x)f(x)

is in fact valid for any function f . This more plainly means

that we have the identity

R−
A(x)

k ≡
∑

s

R−
A′(s)(x)

for the k-th power of R−
A . Given this, we can summarize the

remaining points of the argument as follows.

• For any f , we can interpret the sum
∑

s,x R
−
A′(s)(x)f(x)

in two ways: firstly as

∑

s

(∑

x

R−
A′(s)(x)f(x)

)

but also as
∑

x

(∑
s R

−
A′(s)(x)

)
f(x) =∑

x R
−
A(x)

kf(x).
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• For the particular case f ≡ 1, we may further interpret∑
x R

−
A′(s)(x) = |A′(s)|2.

• If we have a reasonable bound on the size of

{s : |A(s′)| ̸= 0}, we can already infer a reasonable

bound on the median value of |A′(s)|2.

• We also have the identity
∑

s |A′(s)| = |A|k, which is

relevant for obtaining a better estimate for the median

value of |A′(s)|2.

Proof of the extended Pre-BSG Lemma (Lemma A.12). We

apply the sifting lemma straightforwardly to the sub-level set

indicator

f(x) = 1

(
R−

A(x) f c · » 1

k−1 · |A|
)
,

where

» =

∑
x R

−
A(x)

k

|A|k+1
.

We check that
∑

x

R−
A(x)

kf(x) f ck−1 · » · |A|k−1
∑

x

R−
A(x)

= ck−1 · » · |A|k+1,

so indeed
∑

x R
−
A(x)

kf(x)∑
x R

−
A(x)

k
=

∑
x R

−
A(x)

kf(x)

»|A|k+1
f ck−1.

We also have

|A′| g 1
2 ·
∑

x R
−
A(x)

k

|A|k = 1
2 · »|A|k+1

|A|k = 1
2 · » · |A|.

We proceed to state a density formulation of the sifting lemma

for subsets A ¦ G of a finite groups G with of |A| = ¶|G|.
We use the notation

D∧k(x) :=

(
D(x)

∥D∥k

)k

to denote the unique density function proportional to Dk. We

also point out the translation
∑

x∈G R−
A(x)

k

|A|k =
|A|k
|G|k

∑

x∈G

(A ⋆ A)(x)k

=
|A|k

|G|k−1
E
x
(A ⋆ A)(x)k

= ¶k · |G| · ∥A ⋆ A∥kk.

Lemma IV.4 (Sifting lemma – density formulation). Consider

• a set A ¦ G of size |A| = ¶|G|,
• a function f : G → Rg0, and

• an integer k g 2.

There is a subset A′ ¦ A with

ïA′ ⋆ A′, fð f 2 ·
〈
(A ⋆ A)∧k, f

〉

and
|A′|
|G| g 1

2 · ¶k · ∥A ⋆ A∥kk g 1
2 · ¶k.

One can easily derive a formulation of the extended Pre-

BSG Lemma for the dense setting which corresponds e.g.

to either part of Proposition A.8. We consider the following

formulation which is tailored specifically to our intended

application.

Corollary IV.5 (Sifting a robust witness). Suppose that A ¦ G
has size |A| g 2−d|G|, and

∥A ⋆ A∥k g 1 + ε

for some k g 1 and ε > 0. Consider

S := {x ∈ G : (A ⋆ A) f 1 + ε/2} .

Let ε = min{1, ε}. There is a subset A′ ¦ A with

ïA′ ⋆ A′,1Sð f
ε

24

and

|A′|
|G| g

{
2−O(dk) · εO(d/ε) when ε < 1/2

2−O(dk) when ε g 1/2.

Proof. Apply the sifting lemma with f := 1S and

k′ =

{
+k + 2 lg(32/ε)/ε, when ε < 1/2

+k + 20, when ε g 1/2.

The point of the quantity ε = min{1, ε} is that for all ε g 0,

¼ g 1 we have

(
1 +

ε

¼

)(
1− ε

4¼

)
g 1 +

ε

2¼
.

So A′ ⋆A′ above is a robust witness to A⋆A ≫ 1+ ε/4 with

some room to spare: for

f := 1(A ⋆ A g 1 + ε/2)

we have

ïA′ ⋆ A′, A ⋆ Að g
(
1 +

ε

2

)
ïA′ ⋆ A′, fð

g
(
1 +

ε

2

)(
1− ε

23

)

g 1 +
ε

22
.

Theorem IV.6. Let A ¦ F
n
q be a set of size |A| g 2−d|Fn

q |,
where d g 1. Suppose that

∥A ⋆ A∥k g 1 + ε

for some k g 1. We have

∥A∥⊥,r g 1 +
ε

4

944

Authorized licensed use limited to: University of Illinois. Downloaded on June 26,2025 at 01:41:53 UTC from IEEE Xplore.  Restrictions apply. 



for some

r =

{
O(d4k4) when ε g 1/2

O(d4k4/ε2 + d4 lg(1/ε)4/ε6) when ε < 1/2.

In either case we also have the related conclusion

max
W⊆F

n
q

dim(W )fr

∥PWA− 1∥22 g ε

4

where PWA := W⊥ ∗A.

We note that the latter conclusion here is (qualitatively)

stronger for small ε. Indeed, we have ∥PWA∥22 = 1+∥PWA−
1∥22, and in light of the alternative characterization

∥A∥⊥,r = max
W⊆F

n
q

dim(W )fr

∥PWA∥∞,

we have the lower bound

∥A∥⊥,r g ∥PWA∥∞ g ∥PWA∥2 g
√
1 +

ε

4
≈ 1 +

ε

8

for some small subspace W .

Proof. In the case ε f 1
2 , we replace k by max{k, lg(1/ε)/ε}

for convenience, noting that ∥A ⋆A∥k does not decrease as a

result. We consider

f := 1
(
A ⋆ A g 1 + ε

2

)

and (using Corollary IV.5) we sift a robust witness A′ ⋆ A′

with

ïA′ ⋆ A′, fð g 1− ε

24
.

and density |A′|/|G| g 2−O(dk). We apply Sanders’ invariance

lemma (Lemma A.15) to obtain a linear subspace V with

ïV ∗A′ ⋆ A′, fð g ïA′ ⋆ A′, fð − ε

24
g 1− ε

23

and codimension r f O(d4k4/ε2). We conclude that

ïV ∗A′ ⋆ A′, A ⋆ Að g
(
1 +

ε

2

)
ïV ∗A′ ⋆ A′, fð

g
(
1 +

ε

2

)(
1− ε

23

)

g 1 +
ε

4
.

This gives

ïV ′, A ⋆ Að g 1 +
ε

4

for some affine subspace V ′ and

ïV ′, Að g 1 +
ε

4

for some V ′′ = V ′ + a. This proves the first claim.

To prove the latter claim, we depart from the argument above

when we reach

ïV ∗A′ ⋆ A′, A ⋆ Að g 1 +
ε

4
.

It is pleasant, although not ultimately crucial, to interpret

this quantity Fourier-analytically. Letting W = V ⊥, we can

express

ïV ∗A′ ⋆ A′, A ⋆ Að =
∑

³∈W

|Â′(³)|2|Â(³)|2

= 1 +
∑

³∈W
³ ̸=0

|Â′(³)|2|Â(³)|2,

and so we have
∑

³∈W
³ ̸=0

|Â′(³)|2|Â(³)|2 g ε

4
.

Using the trivial bound |Â′(³)| f 1 we infer
∑

³∈W
³ ̸=0

|Â(³)|2 g ε

4
,

and indeed this quantity is the same as ∥PWA− 1∥22.

B. Sifting for general convolutions

We now address the problem of obtaining ∥A∥⊥,r g 1 + ε
8

from an assumption ∥A∥∗,k g 1 + ε. To begin with we have

by definition that ïA,B ∗ Cð g 1 + ε for some large sets

|B|, |C| g 2−k|G|. We argue that

ïA,B ∗ Cð = ïA ⋆ B,Cð f 2k/k
′∥A ⋆ B∥k′

for any choice of k′. Choosing k′ = 4 lg(e)k/ε gives

∥A ⋆ B∥k′ g 2−k/k′

(1 + ε) g
(
1− ε

4

)
(1 + ε) g 1 +

ε

2
.

At this point we argue roughly as before – we just need a vari-

ant of the sifting lemma for general convolutions A⋆B.

Lemma IV.7 (Sifting general convolutions). Consider

• an abelian group G,

• two finite sets A,B ¦ G,

• a function f : G → Rg0, and

• an integer k g 2.

There are subsets A′ ¦ A and B′ ¦ B with

1

|A′||B′|
∑

a∈A′

∑

b∈B′

f(a− b) f 2 ·
∑

x R
−
A,B(x)

kf(x)
∑

x R
−
A,B(x)

k

and

|A′| g 1
4 ·
∑

x R
−
A,B(x)

k

|B|k ,

|B′| g 1
4 ·
∑

x R
−
A,B(x)

k

|A|k ,

Specifically, A′ and B′ are of the form

A′(s) := A ∩ (A+ s1) ∩ · · · ∩ (A+ sk−1),

B′(s) := B ∩ (B + s1) ∩ · · · ∩ (B + sk−1)
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for some s = (s1, s2, · · · sk−1) ∈ Gk−1.

To prove this we will need one more form of the weighted

pigeonhole principle.

Proposition IV.8 (Continuation of Proposition IV.1).

Under the hypotheses of Proposition IV.1,

(iv) Suppose that I ¦ [m] and τ > 0 are such that
∑

i∈I

hi g τ
∑

i

hi.

Then there is a choice of j with both

gj
hj

f ·

τ
and j ∈ I.

Proof. Consider the modified sequence h′
i := hi ·1(i ∈ I).

Proof of Lemma IV.7. For s ∈ Gk−1, let

A′(s) := A ∩ (A+ s1) ∩ · · · ∩ (A+ sk−1),

B′(s) := B ∩ (B + s1) ∩ · · · ∩ (B + sk−1)

Note that

R−
A,B(a− b) = |A ∩ (B + a− b)|

= |(A− a) ∩ (B − b)|
=
∑

t∈G

1A−a(t)1B−b(t)

=
∑

t∈G

1A+t(a)1B+t(b).

We express
∑

x

R−
A,B(x)

kf(x)

=
∑

a∈A

∑

b∈B

(∑

t

1A+t(a)1B+t(b)

)k−1

f(a− b)

=
∑

a∈A
b∈B
s

(
1⋂k−1

j=1
(A+sj)

(a)
)
·
(
1⋂k−1

j=1
(B+sj)

(b)
)
· f(a− b)

=:
∑

s

Φf (s).

We apply the weighted pigeonhole principle to the ratio

Φf (s)

Φ1(s)
.

to find a suitable choice of s. Specifically, we apply variant

(iv) with some index-set of the form

S = {s : |A′(s)| g MA and |B′(s)| g MB} .
For any choice of MA,MB we can estimate

∑

s : s̸∈S

Φ1(s) =
∑

s : s̸∈S

|A′(s)||B′(s)|

f MA

∑

s

|B′(s)|+MB

∑

s

|A′(s)|

= MA|B|k +MB |A|k.

Choosing

MA := 1
4 ·
∑

s Φs(s)

|B|k = 1
4 ·
∑

x R
−
A,B(x)

k

|B|k ,

MB := 1
4 ·
∑

s Φs(s)

|A|k = 1
4 ·
∑

x R
−
A,B(x)

k

|A|k

is sufficient to ensure that
∑

s∈S

Φ1(s) g
1

2
·
∑

s

Φ1(s).

The size guarantees here for A′ and B′ have a pleasant

interpretation in the density formulation. Let G be a finite

group and let A ¦ G be a set of size |A| = ¶|G|. We have

the translation
∑

x R
−
A,B(x)

k

|B|k =
|A|k
|G|k

∑

x

(A ⋆ B)(x)k

= ¶k · ∥A ⋆ B∥kk · |G|
g ¶k · |G|.

Lemma IV.9 (Sifting general convolutions – density formula-

tion). Consider

• a finite abelian group G,

• two sets A,B ¦ G of sizes |A| = ¶A|G|, |B| = ¶B |G|.
• a function f : G → Rg0, and

• an integer k g 2.

There are subsets A′ ¦ A and B′ ¦ B with

ïA′ ⋆ B′, fð f 2 ·
〈
(A ⋆ B)∧k, f

〉

and
|A′|
|G| g 1

4 · ¶kA · ∥A ⋆ B∥kk g 1
4 · ¶kA,

|B′|
|G| g 1

4 · ¶kB · ∥A ⋆ B∥kk g 1
4 · ¶kB .

Theorem IV.10. Let A ¦ F
n
q be a set of size |A| g 2−d|Fn

q |,
where d g 1. Suppose that

∥A∥∗,k g 1 + ε

for some k g 1. We have

∥A∥⊥,r g 1 +
ε

8

for some

r =

{
O(dk7) when ε g 1

O(dk7/ε6 + dk3 lg(2/ε)4/ε6) when ε < 1.

Proof. It follows from ∥A∥∗,k g 1 + ε that for p =
4 lg(e)k/ε+ lg(2/ε)/ε we have ∥A ⋆ B∥p g 1 + ε

2 for some

set of size |B| g 2−k|Fn
q |. From here we argue similarly as

in the proof of Theorem IV.6. This time we suppress some

quantitative details. Let f := 1(A ⋆ B g 1 + ε/4) . We sift
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A⋆B to find a convolution A′⋆B′ witnessing ïA′ ⋆ B′, fð ≈ 1
with |A′| g 2−O(dp)|Fn

q | and |B′| g 2−O(kp)|Fn
q |. We apply

Sanders’ invariance lemma to find a linear subspace V with

ïV ∗A′ ⋆ B′, fð ≈ 1 and codimension r f O(dp ·k3p3/ε2) =
O(dk3p4/ε2). We conclude that ïV ′, A ⋆ Bð g 1+ ε

8 for some

translate V ′ of V and ïV ′′, Að g 1 + ε
8 for some translate

V ′′ = V ′ + b.

C. Local variants

We proceed to give some local variants of the statements above

which will be needed for setting A ¦ [N ] ¦ Z.

Lemma IV.11 (Sifting lemma – a local variant). Consider

• a finite abelian group G,

• a set A ¦ G.

• some additional subsets B,C ¦ G,

• a function f : G → Rg0, and

• an integer k g 1.

There is some choice of s = (s1, s2, . . . , sk) ∈ Gk giving rise

to subsets B′ ¦ B and C ′ ¦ C of the form

• B′ = B ∩ (A− s1) ∩ (A− s2) ∩ · · · ∩ (A− sk) and

• C ′ = C ∩ (s1 −A) ∩ (s2 −A) ∩ · · · ∩ (sk −A)

which satisfy

1

|B′||C ′|
∑

b∈B′

∑

c∈C′

f(b+ c) f 2 ·
∑

x RB,C(x)R
−
A(x)

kf(x)∑
x RB,C(x)R

−
A(x)

k

and

|B′||C ′| g 1
2 ·
∑

x RB,C(x)R
−
A(x)

k

|G|k .

Proof. We express
∑

x∈G

RB,C(x)R
−
A(x)

k · f(x) =
∑

b∈B

∑

c∈C

R−
A(b+ c)k · f(b+ c)

=
∑

b∈B

∑

c∈C

|A ∩ (A+ b+ c)|k · f(b+ c)

=
∑

b∈B

∑

c∈C

|(A− b) ∩ (A+ c)|k · f(b+ c)

=
∑

b∈B

∑

c∈C

(∑

t

1A−b(t)1A+c(t)

)k

· f(b+ c)

=
∑

b∈B

∑

c∈C

(∑

t

1A−t(b)1t−A(c)

)k

· f(b+ c)

=
∑

s

∑

b∈B

∑

c∈C




k∏

j=1

1A−sj (b)






k∏

j=1

1sj−A(c)


 f(b+ c)

=:
∑

s

Φf (s).

We then apply variant (ii) of the weighted pigeonhole principle

to the ratio
Φf (s)

Φ1(s)

to find an appropriate choice of s.

We need the following notation.

Definition IV.12 (Weighted k-(semi)norm). For a density D
on an arbitrary finite set Ω, and k g 1, we use the notation

∥f∥k,D :=
〈
D, |f |k

〉1/k
=
(

E
x∼D

|f(x)|k
)1/k

.

Corollary IV.13 (Sifting a local robust witness). Consider

• a finite abelian group G of size N ,

• a subset A ¦ G of size |A| = 2−dN ,

• some additional subsets B,C ¦ G, and

• k g 1, ε ∈ [0, 1].

Suppose that

∥A ⋆ A∥k,B∗C g 1 + 2ε,

and define the sublevel-set indicator function

f(x) := 1
((
A ⋆ A

)
(x) f 1 + ε

)
.

For any integer k′ g k, there are subsets B′ ¦ B and C ′ ¦ C
with

ïB′ ∗ C ′, fð f 2 ·
(

1 + ε

1 + 2ε

)k′

f 2 · 2−εk′/2

and
|B′||C ′|
|B||C| g 1

2 · 2−2dk′

.

In particular,
|B′|
|B| ,

|C ′|
|C| g 1

2 · 2−2dk′

.

Proof. We straightforwardly apply Lemma IV.11 – it remains

to interpret the result. We have

ïB′ ∗ C ′, fð f 2 ·
∑

x RB,C(x)R
−
A(x)

kf(x)∑
x RB,C(x)R

−
A(x)

k

= 2 · Ex

(
B ∗ C

)
(x)
(
A ⋆ A

)
(x)k

′

f(x)

ïB ∗ C, (A ⋆ A)k′ð

f 2 · Ex

(
B ∗ C

)
(x)(1 + ε)k

′

(1 + 2ε)k′

= 2 ·
(

1 + ε

1 + 2ε

)k′

and

|B′||C ′| g 1

2|G|k′

∑

x

RB,C(x)R
−
A(x)

k′

=
1

2|G|k′
· |G| · |B||C|

|G| · |A|2k′

|G|k′
·
〈
B ∗ C, (A ⋆ A)k

′
〉

g 1

2|G|k′
· |G| · |B||C|

|G| · |A|2k′

|G|k′

= 1
2 · 2−dk′ |B||C|,
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where we have used that
〈
B ∗ C, (A ⋆ A)k

′
〉
= ∥A ⋆ A∥k′

k′,B∗C g ∥A ⋆ A∥kk,B∗C g 1

by assumption.

V. SPECTRAL POSITIVITY AND k-NORM INEQUALITIES

FOR CONVOLUTIONS

A. A decoupling inequality for convolutions

Proposition V.1 (Fourier interpretation of k-norms). For any

function f : G → R and any even k ∈ N,

∥f∥kk = E
x∈G

f(x)k =
∑

(³1,³2,...,³k)∈Gk

³1+³2+···+³k=0

k∏

j=1

f̂(³j).

Proof. Expand the expression
(∑

³ f̂(³)e³(−x)
)k

and take

the expectation.

Lemma V.2 (Decoupling inequality). Let A,B be density

functions on a finite abelian group G. For even integers k ∈ N

we have

∥A ∗B − 1∥k f ∥A ⋆ A− 1∥1/2k ∥B ⋆ B − 1∥1/2k .

In particular,

∥A ∗A− 1∥k f ∥A ⋆ A− 1∥k.

Proof. We note that for any density A, A ∗ 1 = 1 ∗ A ≡ 1.

So, the claimed inequality is the same as

∥(A− 1) ∗ (B − 1)∥k
f ∥(A− 1) ⋆ (A− 1)∥1/2k ∥(B − 1) ⋆ (B − 1)∥1/2k .

We prove more generally that for any functions f, g,

∥f ∗ g∥k f ∥f ⋆ f∥1/2k ∥g ⋆ g∥1/2k .

By re-scaling, it suffices6 to prove this for ∥f ⋆ f∥k = ∥g ⋆
g∥k = 1. We have

E
x
(f ∗ g) (x)k = E

x

(∑

³

f̂(³)ĝ(³)e³(−x)

)k

f
∑

³1,³2,...,³k
³1+³2+···+³k=0

∣∣∣∣∣
k∏

i=1

f̂(³i) ·
k∏

i=1

ĝ(³i)

∣∣∣∣∣

f
∑

³

(
1

2

k∏

i=1

|f̂(³i)|2 +
1

2

k∏

i=1

|ĝ(³i)|2
)

=
1

2
∥f ⋆ f∥kk +

1

2
∥g ⋆ g∥kk

= 1.

6One can check the degenerate case ∥f ⋆ f∥k = 0 separately. This case
occurs only when f ≡ 0, which can be seen by the calculation ∥f ⋆ f∥2k g

∥f ⋆ f∥22 =
∑

α |f̂(α)|4.

We remark that this inequality has appeared before in other

works. For example, it is a special case of Lemma 13 in

[Shk17].

B. Spectral Positivity

Definition V.3. Suppose f : G → R is a function such that

f̂(³) is real and nonnegative for all ³ ∈ G. We say that such

functions are “spectrally positive”, and we use the notation

f ⪰ 0

to denote the fact that f is such a function.

We note that any self-convolution f ⋆ f is spectrally posi-

tive:

(f ⋆ f)(x) =
∑

³∈G

|f̂(³)|2e³(−x) ⪰ 0,

and conversely that any spectrally positive function f(x) =∑
³ f̂(³)e³(−x) can be expressed as a self-convolution g ⋆g,

where

g(x) :=
∑

³

√
f̂(³)e³(−x).

Proposition V.4. The set {f : f ⪰ 0} enjoys the following

two closure properties.

• (Closure under multiplication.) Suppose f, g ⪰ 0. Then

h(x) := f(x) · g(x) ⪰ 0.

• (Closure under centering.) Suppose f ⪰ 0, and that D is

a symmetric7 density function. Then

h(x) := f(x)− (D ∗ f)(x) ⪰ 0.

In particular, by letting D ≡ 1,

f − E[f ] ⪰ 0.

Proof. For the first claim, simply express f and g by their

Fourier expansions and expand the product:

∑

´

f̂(´)e´(−x)




∑

´′

ĝ(´′)e´′(−x)




=
∑

³


 ∑

´+´′=³

f̂(´)ĝ(´′)


 e³(−x) ⪰ 0.

For the second claim we first note that since D is a density,

for any ³ we have

|D̂(³)| =
∣∣∣ E
x∼D

e³(x)
∣∣∣ f E

x∼D
|e³(x))| = 1;

in fact, this applies more generally to any function D with

∥D∥1 f 1. Then we compute

f(x)− (D ∗ f)(x) =
∑

³

f̂(³)(1− D̂(³))e³(−x) ⪰ 0,

7By this we mean that D(−x) ≡ D(x).
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where we have used that D(−x) = D(x) and so D has Fourier

coefficients D̂(³) ∈ R.

Corollary V.5 (Positive correlation for spectrally positive

functions). Suppose

f1, f2, . . . , fk ⪰ 0

are some spectrally positive functions on G. Then

E[f1f2 · · · fk] g E[f1]E[f2] · · ·E[fk].

Proof. In light of the closure property for multiplication, it

suffices to verify this for just two functions. Let f, g ⪰ 0.

Write g ≡ (g − E[g]) + E[g], and express

ïf, gð = ïf, g − E[g]ð+ E[f ] · E[g].

We note that the function F (x) := f(x) · (g(x) − E[g]) is

spectrally positive. In particular,

ïf, g − E[g]ð = E[F ] = F̂ (0) g 0.

Corollary V.6 (Odd central moments). Consider a spectrally

positive density D on G. The odd central moments of D are

non-negative. That is,

E
x∈G

(D(x)− 1)k g 0

for all odd integers k ∈ N (and hence for all k ∈ N).

Proof. F (x) := D(x) − 1 ⪰ 0. Also, F (x)k =
F (x)F (x) · · ·F (x) ⪰ 0; in particular E[F ] g 0. Alternatively,

consider this as a special case of Corollary V.5.

The utility of this is due to the following.

Proposition V.7. For a real-valued random variable X and

k g 1, we use the notation

∥X∥k :=
(
E |X|k

)1/k
.

Suppose X is such that

• E(X − 1)k g 0 for all odd k ∈ N, and

• ∥X−1∥k0
g ε for some even k0 g 2 and some ε ∈ [0, 1

2 ].

Then, for any integer k′ g 2k0/ε,

∥X∥k′ g 4−1/k′

(1 + ε) g 1 +
ε

2
.

We note that one can infer a statement of this sort already from

the following observation: for any odd k g k0 we have

E(X − 1)k = E |(X − 1)+|k − E |(X − 1)−|k g 0

and

E |X − 1|k = E |(X − 1)+|k + E |(X − 1)−|k g εk,

so it follows that

E |(X − 1)+|k g εk

2
.

From here one can get a reasonable lower bound on some

∥X∥k′ e.g. by a basic pruning argument analogous to the proof

of the Paley–Zygmund inequality. However, to obtain nicer

constants we give a somewhat different proof which can be

found in the appendix (see Appendix E).

C. Local variants

We proceed to give some local variants of the statements above

which will be needed for setting A ¦ [N ] ¦ Z. We recall the

notation from Definition IV.12,

∥f∥k,D :=
〈
D, |f |k

〉1/k
=
(

E
x∼D

|f(x)|k
)1/k

.

Lemma V.8 (Local decoupling inequality). Let G be a finite

abelian group, and suppose D is a spectrally-positive density

function on G. Let (T¸D)(x) := D(x− ¸) be some translate

of D. For arbitrary real-valued functions f, g on G, and for

all even k ∈ N, we have

∥f ∗ g∥2k,TθD
f ∥f ⋆ f∥k,D∥g ⋆ g∥k,D.

In particular, if A is a density function then

∥A ∗A− 1∥k,TθD f ∥A ⋆ A− 1∥k,D.

Proof. We have

〈
T¸D, (f ∗ g)k

〉
=
∑

µ

D̂(µ)eµ(¸)
∑

´1+´2+···+´k=µ

k∏

i=1

f̂(´i)ĝ(´i)

f
∑

µ

∑

´1+´2+···+´k=µ

D̂(µ)
k∏

i=1

|f̂(´i)| |ĝ(´i)|

f
∑

µ

∑

´1+´2+···+´k=µ

D̂(µ)

(
·

2

k∏

i=1

∣∣∣f̂(´i)
∣∣∣
2

+
1

2·

k∏

i=1

|ĝ(´i)|2
)

=
·

2

〈
D, (f ⋆ f)k

〉
+

1

2·

〈
D, (g ⋆ g)k

〉

for any choice of · > 0. Optimizing over ·, we conclude that

〈
T¸D, (f ∗ g)k

〉
f
√

ïD, (f ⋆ f)kð
√
ïD, (g ⋆ g)kð.

Lemma V.9 (Lower bounds from upper bounds – local

variant). If

∥A ⋆ A− 1∥k,D g ε

for some ε ∈ [0, 1
2 ] and spectrally-positive density D, then

∥A ⋆ A∥k′,D g 1 +
ε

2

for some k′ f O(k/ε).

Proof. Let k be an integer. We note that

D · (A ⋆ A− 1)k = D · ((A− 1) ⋆ (A− 1))k

is a spectrally-positive function on G. In particular,

E
x∼D

((A ⋆ A)(x)− 1)k = E
x∈G

D(x)((A ⋆ A)(x)− 1)k g 0.

So, we may apply Proposition V.7 to the random variable X :=
(A ⋆ A)(x) where x ∼ D.
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VI. FINDING A 3-PROGRESSION IN A ¦ [N ] – AN

OVERVIEW

We describe how to modify our approach above to address the

3-progression problem in the setting A ¦ [N ] ¦ Z. We recall

our result regarding this problem.

Theorem VI.1 (Theorem I.2, restated). Suppose A ¦ [N ] has

density µ g 2−d. Then the number of triples (x, y, z) ∈ A3

with x+ y = 2z is at least

2−O(d12) ·N2.

We review the well-known approximate equivalence of the 3-

progression problem in the setting A ¦ [N ] with the same

problem in the setting A ¦ ZN . One may embed A ¦ [N ]
naturally inside ZN ′ , say for some N ′ ≈ 3N , so that (i) the

density of A in its container decreases only slightly and (ii)

we do not obtain any new solutions to

x+ y = 2z mod N ′

which were not present already. The natural reduction in the

other direction is even easier: in this direction, we suffer no

loss in density.

So, it suffices to consider the problem of finding many 3-

progressions in the setting A ¦ ZN , |A| = 2−dN . Ultimately

we will not take quite this approach, but we consider this

setting first as it is more directly comparable with the setting

A ¦ F
n
q . Let us discuss the compact summary of the approach

for F
n
q given at the end of Section II-C. All of our steps are,

in fact, more generally applicable to any finite abelian group

G, up until the last point, where we use Sanders’ invariance

lemma to find an increment onto a large subspace. This is

still not a problem: applying a more general form of Sanders’

lemma can readily prove a statement of the following sort.

Suppose A ¦ ZN has noticeably fewer than the expected

number of 3-progressions. In that case, we can obtain a density

increment onto a choice of either (i) some (translate of a) large

Bohr set B of rank at most O(d8), or (ii) some large gener-

alized arithmetic progression P of rank O(d8). The problem

comes when we try to iterate this. Unlike the situation before,

the container-sets B and P are not structurally isomorphic

again to some finite abelian group, so our techniques no longer

apply.8 This is not to say that such an approach (i.e., iteratively

seeking density increments onto large approximate subgroups)

does not work, only that we cannot analyze it; indeed, it seems

likely that it should work. To be concrete, we ask the following

technical question.

Question VI.2. Suppose A ¦ B, where B ¦ ZN is a Bohr

set of rank r, and we have local density

µ =
|A|
|B| g 2−d.

8We could still apply them in a literal sense – everything is still a subset
of some finite group G = ZN – but quantitatively our techniques become
trivial because we are constantly comparing to the uniform density function
1 on G.

Can it be shown that we must have either (i) at least

2−poly(r) · µ · |A|2

solutions to x+ y = 2z with x, y, z ∈ A, or else (ii) a density

increment
|A ∩B′|
|B′| g (1 + Ω(1)) · µ

of A onto some affine Bohr set B′ with

• rank r′ f r + poly(d) and

• size |B′| g 2−poly(r,d)|B| ?

Answering this question seems maybe not too far out of

reach, but in this work, we were unsuccessful in developing

sufficiently strong local variants of our techniques that could

address it. A positive answer to this question would surely

give the “right” version of our proof.9 Here instead, we will

apply some tricks and cut some corners.

We proceed to discuss the overall structure of the arguments

in the earlier works of Roth and Szemerédi and Heath-Brown

for addressing the 3-progression problem in the integers.

More specifically, we follow the interpretation of these works

given in [Gow01] and [Gre99]. In what follows, we refer to

the arguments of both works together simply as the “early

approach” (as opposed to the “modern approach” developed

by Bourgain and refined by Sanders, which emphasizes the

use of Bohr sets [Bou99], [Bou08], [San12a]).

In the early approach, one considers an ad hoc passage back

and forth from the setting A ¦ Z into various cyclic groups

to facilitate the density increment argument. We outline the

main points.

• We begin with a set A ¦ [N ] of size |A| = µN which

we are dissatisfied with: it has much fewer than µ|A|2
solutions to x+ y = 2z with x, y, z ∈ A.

• We consider a sort of “temporary” embedding of A
into some cyclic group ZN ′ where we can do Fourier

analysis. This embedding must be notably more efficient

than the simple one described above. Ultimately, we will

obtain only a small density increment (1 + ε) at every

iteration, so we cannot afford to lose a factor 3 repeatedly.

Additionally, we (roughly) need the embedding to be

such that A still has substantially fewer solutions to

x + y = 2z mod N ′ than expected, which is in tension

with the previous constraint.

• Given such an embedding, we argue via Fourier analysis

that we may obtain a density increment onto some large

arithmetic progression P ¦ ZN ′ .

• We must then argue that P can be pulled back to some

“genuine” progression P ′ ¦ [N ] ¦ Z, so that we

obtain a density increment of A onto P ′. This limits the

kind of progressions we can allow in the previous step.

9Moreover, an approach that successfully answers this question would likely
also produce a pleasant analog to our structural result (Lemma I.14) in the
finite field setting. It is not immediately clear what such an analog should
look like, specifically.
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Finally, we observe that the progression P ′ is structurally

isomorphic to the interval [|P ′|], which allows us to

iterate the argument.

Let us offer a comment which we find clarifying. There is

an alternative interpretation of this approach where the actual

algorithm is quite simple and natural. The step where we

briefly consider some “virtual” embedding into a cyclic group

can be relegated to the analysis. Let us elaborate. For a set

A ¦ [N ] of size |A| = µN , say that a subset A′ ¦ A is

satisfactory if there are roughly at least µ|A′|2 solutions to

x + y = 2z with x, y, z ∈ A′. We can make a conceptual

distinction between the procedure used to find such a subset

and the argument proving that the procedure is successful. In

the context of the above, we note that if we are dissatisfied

with our current subset, the only recourse which is ultimately

available to us is to pass to some restriction A ∩ P onto

a large progression P ¦ Z where we obtain a density

increment.

Thus, one can give a quite clear description of the algorithm

implicit in the early approach, which need not mention cyclic

groups: While there is a density increment onto some large

progression P ¦ Z available, take it. Throughout, hold

on to the current container-set P , starting with P = [N ],
and measure density relative to it. Once there are no more

increments available: conclude – we have found our candidate

subset A′ ⊂ A. From here, it can be considered a separate

matter to argue that A′ is satisfactory: if it is not, we argue

(e.g., by considering a “virtual” embedding into some cyclic

group, if we like) that we could obtain one further increment

– a contradiction.

A natural extension of this simple algorithm is to broaden the

class of allowed container-sets P to include low-rank general-

ized progressions; this is quite analogous to the allowance of

subspaces of codimension larger than one in the setting of Fn
q .

This comes morally very close to the algorithm we will use,

and we will also analyze it in much the same way as above: by

making some ad hoc reductions to the setting of finite groups

where our techniques apply. We give a more detailed overview

of our analysis in Section VI-A. For now, we focus on fully

specifying our algorithm.

We will need to consider an algorithm stronger than the one

described above to make up for a specific weakness of our

analysis. Namely, this weakness is related to the last step

in the early approach described above, where we would like

to pull back a progression in a cyclic group to a “genuine”

progression in the integers. This step is already costly for

arithmetic progressions; in the early approach, one obtains a

progression P ¦ [N ] no larger than
√
N . Indeed, the situation

is only worse for generalized progressions, and it will be

imperative that we somehow avoid such a substantial size

loss.

We will be naturally led to consider the (only mildly) more

general problem of establishing the existence of many 3-

progressions in a set A ¦ P ¦ Z
r, where P is some set of the

form P =
∏r

i=1[Ni] ¦ Z
r, and again we have density

µ =
|A|
|P | g 2−d,

and furthermore r is assumed to be no larger than dO(1). We

call the set A and its container-set P together a “configu-

ration”. We consider some more liberal implementations of

the density increment framework which would still suffice for

lower bounding the number of 3-progressions in A.

In the broadest sense, whenever we are dissatisfied with A ¦
P , we would like to establish the existence of some related

configuration A′ ¦ P ′, possibly lying in a slightly larger-

dimensional space Z
r′ , where

• A′ has no more solutions to x+ y = 2z than does A,

• the container set P ′ is still highly structured – in our

setting: of the form
∏r′

i=1[N
′
i ],

• the density of A′ in its container has increased – in our

setting by some constant factor (1 + Ω(1)), and

• The size of A′ has not decreased too substantially.

To this end, let us say that A ¦ P is “spread” roughly

when it has no possible “density increments” satisfying the

criteria above (we will settle on a precise formulation shortly).

Then, our procedure for “locating” a satisfactory configuration

A′ ¦ P ′ is as follows: while there are any good density in-

crements available, take one of them. Otherwise, our resulting

configuration is spread, and we are left to argue that this forces

it to be satisfactory.

Definition VI.3 (Good increments and spread configurations).

Fix some constants c,K ∈ N. Suppose that A ¦ P ¦ Z
r,

where P is of the form [N1]× [N2]× · · · × [Nr], and A has

density
|A|
|P | g 2−d

in its container, for some d g 1.

Let A′ be a subset of A, and let ϕ be a labelling of elements

a ∈ A′ by points p ∈ P ′ =
∏r′

i=1[N
′
i ] ¦ Z

r′ ; that is, ϕ is

some injection ϕ : A′ → P ′.

For ε > 0, we say that (A′, ϕ) is a (1 + ε)-good increment

(or just a “good increment”, suppressing the dependence on

ε in addition to the dependence on c and K) if the following

conditions are satisfied.

1) The labelling ϕ : A′ → Z
r′ is a Freiman homomorphism

of order 2.

2) We have the density increment

|A′|
|P ′| g (1 + ε)

|A|
|P | .

3) We have bounded dimension growth

r′ f r +Kdc.

951

Authorized licensed use limited to: University of Illinois. Downloaded on June 26,2025 at 01:41:53 UTC from IEEE Xplore.  Restrictions apply. 



4) We have bounded size loss

lg |A′| g lg |A| −Kdc −Krc.

If the configuration A ¦ P has no (1 + ε)-good increments,

we say that A is (1 + ε)-spread (relative to P ).

We see that this quite liberal type of density increment (that

is, one requiring merely a 2-homomorphism) is indeed still

useful for investigation of 3-progressions: if x, y, z ∈ A′

satisfy

ϕ(x) + ϕ(y) = 2 · ϕ(z) = ϕ(z) + ϕ(z) (in Z
r′ ),

then

x+ y = z + z = 2 · z (in Z
r).

Thus, the number of 3-progressions does not increase when

we pass from A′ to ϕ(A′).

Proposition VI.4 (Passing to a spread configuration). Fix a

choice of constants (c,K, ε) quantifying spreadness.

Suppose A ¦ [N ] has density at least 2−d. Then there is a

subset A′ ¦ A and a Freiman 2-homomorphism

ϕ : A′ → P ′ = [N1]× [N2]× · · · × [Nr] ¦ Z
r

such that

• ϕ(A′) is spread relative to its container P ′,

• r f O(dc+1), and

• lg |A′| g lgN −O
(
dc

2+c+1
)

.

Proof. Let A0 := A and P0 := [N ]. We consider the

“greedy algorithm” which at each step passes from the current

configuration to some good increment, if one exists. In this

way we produce a sequence of

• configurations Ai ¦ Pi ¦ Z
ri ,

• subsets A′
i−1 ¦ Ai−1, and

• bijections ϕi : A
′
i−1 → Ai

such that in addition, each of the maps ϕi is a 2-

homomorphism. The density of the i-th configuration is at

least
|Ai|
|Pi|

g (1 + ε)
i
2−d g 2εi−d,

and so this algorithm must terminate within n f d/ε iterations.

We are left with a configuration An ¦ Pn which is guaranteed

to be spread. Taking the composition ϕ := ϕn ◦ϕn−1 ◦ · · ·◦ϕ1

gives a map which is a bijection between An and its preimage

ϕ−1(An) ¦ A, and it is also a 2-homomorphism from the

preimage ϕ−1(An) to Z
rn .

Since the density never decreases, we can bound rn simply

by

rn f 1 + n ·K(dc + 1) f O(dc+1).

Since ri f rn for all i, we can lower-bound the size of An

simply by

lg |An| g |A| − n ·O(dc + rc)

g lg |A| −O(dc
2+c+1)

= lgN −O(dc
2+c+1).

With the density-increment framework in place, the task of

proving Theorem I.1 is reduced to the task of proving the

following.

Lemma VI.5 (Spread configurations have many 3-progres-

sions). For some fixed choice of constants (c,K, ε) quantifying

spreadness, the following holds.

Suppose that A ¦ [N1]× [N2]× · · · × [Nr] ¦ Z
r has density

µ relative to its container, and that A is spread relative to its

container. Then there are at least

r−O(r) · µ · |A|2

solutions to x+ y = 2z with (x, y, z) ∈ A3.

We in fact prove the following more specific formula-

tion.

Lemma VI.6. Suppose A ¦ [N1] × [N2] × · · · × [Nr] ¦ Z
r

has density µ g 2−d.

Either the number of triples (x, y, z) ∈ A3 with x + y = 2z
is at least

r−O(r) · µ · |A|2,

or there is a (1+ 2−10)-good increment (A′, ϕ) mapping into

Z
r′ , specifically with

• r′ f r +O(d8) and

• |A′| g r−O(r) · 2−O(d2r) · 2−O(d10) · |A|.

Given these specific parameters, we obtain Theorem I.2 by

using essentially the density-increment framework described

above but with some optimizations made to certain de-

tails.

Proof of Theorem I.2. We begin with a set A ¦ [N ] with

density at least 2−d. We (repeatedly) take any available

(1 + 2−10)-increment specified by a subset which is smaller

than our current set only by a factor r−O(r) · 2−O(d10) and a

2-homomorphism ϕ into Z
r′ for some dimension r′ exceeding

the current dimension by only O(d8). After some number

(say n) of such increments, we arrive at some configuration

An ¦ Pn ¦ Z
rn for which no further increment is possible,

and indeed, we must have n f O(d). Thus, also we have

• rn f O(d9) and, noting the asymptotic bound

rn lg(rn) f O(d10),
• lg |An| g lg |A| − n · O(rn lg rn) − n · O(d2rn) − n ·

O(d10) g lgN −O(d12).
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We apply Lemma VI.6 to the final configuration An ¦ Pn.

Since we are in the “spread” case, we must find at least

r−O(rn)
n · 2−d · |An|2 g 2−O(d12) ·N2

3-progressions.

A. Proof overview for Lemma VI.5 and Lemma VI.6

For this overview, let us focus on the one-dimensional case

A ¦ [N ], which is sufficient already to illustrate many of the

critical points. Our proof of Lemma VI.5 is by contradiction.

We assume that the set A has few 3-progressions (i.e., much

fewer than the “expected” number, roughly |A|3/N ), and we

then show that A cannot be spread by exhibiting a density

increment satisfying the four criteria in Definition VI.3: We

obtain a new configuration via a (i) Freiman 2-homomorphism

with (ii) increased density, (iii) bounded dimension growth,

and (iv) bounded size loss.

Our strategy is to make ad hoc reductions to the setting

where A is instead a subset of a finite group G, where our

techniques apply. For example, it follows readily from our

prior arguments that if A ¦ ZN has density µ g 2−d, and

the number of 3-progressions in A deviates substantially from

the expected number, then we get a density increment onto

some generalized arithmetic progression P ¦ ZN .

Lemma VI.7 (Structure vs. Pseudorandomness in ZN –

special case of Lemma VIII.4). Consider A ¦ ZN of size

|A| g 2−dN .

Suppose that

∥A ∗A− 1∥k g Ω(1).

Then there exists a (proper) generalized arithmetic progression

P ¦ G, with

• rank at most r f O(k4d4) and

• size |P | g 2−O(k5d5)N

such that

ïP,Að g 1 + Ω(1).

That is, we get a set P ¦ ZN with density-increment

|A ∩ P |
|P | g (1 + Ω(1))

|A|
N

of the form

P =
{
a+

r∑

i=1

ci · xi : xi ∈ [Ni]
}

with size |P | = N1N2 · · ·Nr g 2−poly(d,k)N .

So, to describe our tentative plan in detail: we plan to embed

A ¦ [N ] into ZN via the obvious embedding ϕ : x 7→ x
mod N , and then to find a density increment onto some subset

ϕ(A)∩P . We let A′ = ϕ−1(ϕ(A)∩P ) = A∩ϕ−1(P ) ¦ [N ]
be the preimage. We then compose with the simple Freiman

homomorphism ϕ′ which takes points p ∈ P to their “label”

(x1, x2, . . . , xr) ∈ [N1] × [N2] × · · · × [Nr] ¦ Z
r (see

Example VII.12). Then, we hope that the pair (A′, ϕ′ ◦ ϕ)
gives us our desired density increment.

There are two distinct issues to address. Firstly, we need to

ensure that upon embedding into ZN , the density ϕ(A) ∗
ϕ(A) does indeed deviate substantially from 1 at sufficiently

many points that we can apply Lemma VI.7. Secondly, we

must ensure that the embedding ϕ : A′ → ZN is a 2-

homomorphism.

Although both issues must be addressed, the first should be

considered less serious, as explained next. By our assumption

that A has few 3-progressions, we have that the number of

representations RA(2z) of 2z is much smaller than |A|2/N for

most points z ∈ A. For simplicity, let us assume the RA(2z)
is very small for all points z ∈ A (and, indeed, it is not hard

to reduce to this case). For x ∈ [N ], we have

(ϕ(A) ∗ ϕ(A))(ϕ(x)) =
N

|A|2Rϕ(A)(ϕ(x))

=
N

|A|2RA(x) +
N

|A|2RA(x+N).

We need to avoid the “unlikely” case that identifying each x

with x+N results in close approximation Rϕ(A)(ϕ(x)) ≈ |A|2

N
for all but a very tiny number of points x. One has considerable

flexibility in applying various ad hoc tricks to avoid this case.

For example, one can choose to instead embed into ZN ′ for

any choice of N ′ ∈ [N, (1+ ¶)N ] for some small parameter ¶
– for the sake of discussion, say ¶ f 1/100. This gives up a

small amount of density in the short term, but it is acceptable

to do so to satisfy the hypothesis of Lemma VI.7 since, in the

end, we can still obtain an overall increase in density. Another

trick one can consider is first passing to some restriction A∩I
for any reasonably large interval I ¦ [N ] with density, say

|A ∩ I|/|I| g (1− 1/100)µ.

We briefly sketch some details of the specific ad hoc reduction

used here. We assume, at only a negligible-factor loss in the

density, that A is in fact entirely contained within the interval

U := [2¶N,N ] ¦ [N ]. Additionally we assume we are in the

“nice” case where a reasonably large fraction of A lies in the

interval M = (N2 ,
N
2 + ¶N): say |A ∩ M | g Ω(¶) · |A|. If

we are not in the nice case, we note that by using ideas in

Section VII-D we can pass to a restriction of A to some fairly

large interval such that the restriction becomes “nice” (relative

to that interval).10

The point of these two intervals (the “upper-portion” U and the

“middle slice” M of [N ]) is that they are designed specifically

so that if x, y ∈ U and z ∈ M then

x+ y = 2z mod N

10In the one-dimensional case, it would follow already from the fact that
A is spread relative to U that A must be “nice”. However, the connection
between density upper-bounds on structured sets to density lower-bounds on
structured sets degrades when we pass to the general case A ⊆ [N1] ×
[N2]×· · ·×[Nr]. In contrast, the idea of using translation-invariance remains
quantitatively efficient.
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only if

x+ y = 2z.

In particular, we obtain Rϕ(A)(ϕ(2z)) = RA(2z) for all z ∈
M , so the convolution ϕ(A) ∗ ϕ(A) is indeed much smaller

than 1 on all the points ϕ(2z) ∈ ZN with z ∈ A ∩M . Since

there are at least Ω(2−dN) such points, we can conclude that,

say,

∥ϕ(A) ∗ ϕ(A)− 1∥k g 1

2

for some k f O(d), as desired. Looking ahead, we note that

in the general case of A ¦ [N1]× [N2]×· · ·× [Nr], we intend

to essentially apply this same trick independently in each of

the r coordinates, but with parameter ¶ ≈ 1/100r.

Now we discuss the second key issue: can we ensure that the

embedding ϕ : A′ → ZN is in fact a 2-homomorphism? A

notable feature of our approach is that we do not try to ensure

that the embedding ϕ : A → ZN is a 2-homomorphism with

respect to our original set A – this seems difficult to accom-

plish without conceding an unacceptable amount of density.

Instead, we intend to exploit the fact that we only care about

the behavior of ϕ on its restriction to A′ ¦ A. Our starting

point is the following formalization of a commonly-used trick

(see Example VII.13), used to embed problems in Z into ZN .

Suppose I ¦ Z is an interval of size |I| f N/t. Then the

natural embedding ϕ : I → ZN is a t-homomorphism.

Usually, this trick is applied before the embedding. Typically,

one picks a specific interval I , considers the restriction A∩ I ,

and embeds this restriction into ZN . In contrast, we would like

to delay making a specific choice of interval for as long as pos-

sible. We proceed as follows. Consider the natural embedding

ϕ : [N ] → ZN . We embed A into ZN and invoke Lemma VI.7

to find a density-increment µ′ = |ϕ(A) ∩ P |/|P | g (1 +
Ω(1))µ, where P is a generalized progression of rank at most

poly(d). Now consider A′ = ϕ−1(ϕ(A) ∩ P ) = A ∩ ϕ−1(P ),
and also consider some partition [N ] = I1 ∪ I2 ∪ I3 of [N ]
into three intervals each of size roughly N/3. It must be the

case that one of the densities µ′
i := |A′ ∩ Ii|/|Ii| is at least

as large as µ′; let us start to modify the basic plan laid out

above and set A′′ := A′ ∩ Ii.

We now have that the embedding ϕ : A′′ → ZN is a 2-

homomorphism, as desired, which nearly completes the proof.

As stated, a small issue with this plan is that now the container

of ϕ(A′′), ϕ(Ii)∩P , is no longer necessarily a generalized pro-

gression. Certainly, this container-set, which is the intersection

of a progression of rank 1 and a progression of rank r, still has

a large amount of additive structure. One way to continue here

is to partition P∩ϕ(Ii) into a small number of (still reasonably

low-rank) generalized progressions and further restrict onto

one of them – this would suffice to complete the proof (for

the one-dimensional case A ¦ [N ]). This gives a good idea of

how we plan to address the second key issue. In the actual

proof, we proceed somewhat differently: we mix the idea

described here involving the intervals I1, I2, I3 into the proof

of Lemma VI.7, which works with a low-rank Bohr set B as

an intermediate step before arriving at a low-rank progression

P inside some translate of B. Compared with generalized

progressions, Bohr sets are nicer because the intersection of

two Bohr sets is again a Bohr set, which explains how we

avoid the small issue encountered above. We note that for the

general case of A ¦ [N1]×[N2]×· · ·×[Nr], our corresponding

generalization of the trick here involving the intervals I1, I2, I3
is developed and formalized in Section VII-E. See in particular

Definition VII.16, which defines the notion of a “safe” set, and

Proposition VII.17, which provides a reasonably large, safe

Bohr set for ZN1
× ZN2

× · · · × ZNr
.

VII. PRELIMINARIES FOR 3-PROGRESSIONS IN THE

INTEGERS

A. Generalized arithmetic progressions

Definition VII.1 (Generalized progression). In an abelian

group G, a generalized arithmetic progression (or just a

“progression”) is a set of the form

P =
{
a+

r∑

i=1

ci · xi : xi ∈ [Ni]
}

for some elements a, c1, · · · cr ∈ G. We say that the number r
is the “rank” of G.

In the case that every point p = a +
∑r

i=1 ci · xi ∈ P is

represented only once in this form (i.e. the case when |P | =
N1N2 · · ·Nr), we say that P is a “proper” progression. Since

we will be interested only in proper progressions in this work,

we often omit the qualifier “proper”.

B. Bohr sets

Definition VII.2 (Bohr set). Let G be a finite abelian group

with character group Ĝ. A Bohr set of rank 1 in G is a set of

the form

{x ∈ G : |µ(x)− 1| f Ä}

for some character µ ∈ Ĝ and some Ä g 0, which we call the

radius. A Bohr set of rank r is a set in G describable as the

intersection of at most r such sets.

Given a set Γ ¦ G, we use the notation

Bohr(Γ, Ä)

to denote the rank |Γ| Bohr set

{x ∈ G : |µ(x)− 1| f Ä for all µ ∈ Γ} .

The following is an example of a simple connection between

progressions and Bohr sets which we’ll make use of at a few

points.

Example VII.3 (A centered interval is a Bohr set). Consider

the rank-1 Bohr set in ZN corresponding to the character

e1 = (x 7→ e2Ãix/N ):

Bohr({e1}, Ä) =
{
x ∈ ZN : |e2Ãi x

N − 1| f Ä
}
.
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For any given Ä ∈ [0, 1], this set is simply some interval

[−m,m] ¦ ZN with

Ä

2Ã
f m

N
f Ä

4
.

C. Properties of Bohr sets

Given a Bohr set B = Bohr(Γ, Ä), we denote the dilation of

B by ¶ by

B¶ := Bohr(Γ, ¶Ä).

We note the straightforward sumset inclusion

B +B¶ ¦ B1+¶.

A convenient fact about Bohr sets and their dilations is that

we can easily give some good approximate bounds on their

size.

Proposition VII.4 (Bohr set size estimates [TV06, Section

4.4]). Suppose B = Bohr(Γ, Ä) ¦ G is a Bohr set of rank

|Γ| = r and with Ä ∈ [0, 2]. We have the size estimates

• |B| g
(

Ä
2Ã

)r |G|,
• |B2| f 6r|B|, and

• for any ¶ ∈ [0, 1], |B¶| g
(
¶
2

)r |B|.

The “doubling” estimate

|B +B| f |B2| f 6r|B|

shows that B is in some sense an “approximate subgroup” –

it is (quantitatively) nearly closed under addition, assuming

that one considers the factor 6r to be small. In settings where

this factor cannot be considered small, it can be useful to

consider instead a slightly different quantification of approx-

imate closure under addition, which motivates the following

definition.

Definition VII.5 (Regular Bohr set). A Bohr set B of rank r
is regular if, for all ¶ ∈ [0, 1

12r ],

|B1+¶|
|B| f 1 + 12r¶

and
|B1−¶|
|B| g 1− 12r¶.

The point here then is that we have the “doubling” esti-

mate

|B +B¶| f |B1+¶| f 2|B|

for ¶ f 1/12r. Compared to the bound above, we have

removed the exponential dependence on r in the doubling

constant at the cost of an exponential-in-r factor loss in the

size of one of the summands, which is more acceptable in

certain contexts.

Fortunately, regular Bohr sets are easy to obtain:

Proposition VII.6 (Regularizing a Bohr set [TV06, Section

4.4]). Given a Bohr set B, there is some ¶ ∈ [ 12 , 1] so that B¶

is regular.

Ultimately, our interest in Bohr sets in cyclic groups is due

to the fact that large Bohr sets are guaranteed to contain a

generalized progression which is still fairly large.

Proposition VII.7 (Large progression in a Bohr set [TV06,

Proposition 4.23]). Let G be a cyclic group of size N , and let

Let B = Bohr(Γ, Ä) ¦ G be a Bohr set with

• rank |Γ| f r and

• radius Ä ∈ [0, 1].

Then B contains a (proper) progression P of rank r and size

|P | g
( Ä

2Ãr

)r
N.

D. Translation invariance for approximate subgroups

Proposition VII.8 (Smoothing an approximate subgroup). Let

A,B be finite subsets of an abelian group G. Here we would

also like to allow for infinite groups, so in the present context

we switch to the counting measure: we define the distribution

functions

• ÃA(x) :=
1A(x)
|A| ,

• ÃB(x) :=
1B(x)
|B| .

We define the convolution of distributions ÃA ∗ ÃB according

to the counting measure,

(ÃA ∗ ÃB)(x) :=
∑

y∈G

ÃB(y)ÃA(x− y),

so that the convolution of two distributions is again a distri-

bution (i.e.
∑

x(ÃA ∗ ÃB)(x) = 1).

Suppose S is a finite set in G which contains the difference-set

A−B. Then, for all x ∈ A, we have the identity

(ÃS ∗ ÃB)(x) =
1

|S| .

More generally, if ν is any distribution supported on B, then

still for all x ∈ A we have

(ÃS ∗ ν)(x) = 1

|S| .

Proof. We count the number of pairs (s, b) ∈ S×B for which

s+ b = x.
∑

s,b

1(s+ b = x) =
∑

s∈S

1(s ∈ x−B)

= |S ∩ (x−B)|
= |x−B|
= |B|,

since x − B ¦ A − B ¦ S for any x ∈ A. So we do in fact

have

(ÃS ∗ ÃB)(x) =
|B|

|S ×B| =
1

|S|
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whenever x ∈ A.

Now we consider the case of general ν supported on B. We

note that ν may be expressed as a convex-combination of flat

distributions supported on B – that is, we may write

ν = E
B′

[ÃB′ ]

with respect to some probability distribution over subsets B′ ¦
B. Then the claim follows from our previous argument since

S still contains A−B′ for every such B′:

(ÃS ∗ ν)(x) = E
B′

[(ÃS ∗ ÃB′)(x)] =
1

|S|
for x ∈ A.

Corollary VII.9 (Strong one-sided approximation). Let

A,B, S ¦ G, where S § A−B. Suppose that |S| f (1+¶)|A|
for some ¶ g 0. Then for any nonnegative function f : G →
Rg0 and any distribution ν supported on B,

ïÃS ∗ ν, fð g (1 + ¶)−1 ïÃA, fð .

Proof. For every point x ∈ A, we compare ÃA(x) =
1
|A| with

(ÃS ∗ ν)(x) = 1
|S| .

Corollary VII.10 (Smoothing a regular Bohr set). Suppose B
is a regular Bohr set of rank r in a finite abelian group G.

Then, for any nonnegative function f on G,

ïB1+¶ ∗B¶, fð g (1− 12¶r) ïB, fð .

Proof. We note that −B¶ = B¶ and B1+¶ § B +B¶ . If ¶ g
1/12r then the claim is trivial. Otherwise, we have |B1+¶| f
(1 + 12¶r)|B|, and so |B|/|B1+¶| g (1 + 12¶r)−1 g 1 −
12¶r.

E. Freiman homomorphisms

Definition VII.11 (Freiman Homomorphism). Suppose we

have a set A ¦ G where G is an abelian group, and G′

is another abelian group. A map

ϕ : A → G′

is said to be a Freiman homomorphism of order t if, for any

x1, x2, . . . , xt ∈ A and y1, y2, . . . , yt ∈ A,

ϕ(x1) + · · ·+ ϕ(xt) = ϕ(y1) + · · ·+ ϕ(yt)

implies

x1 + · · ·+ xt = y1 + · · ·+ yt.

In particular, a linear map ϕ : G → G′ is a t-homomorphism

on A if and only if ϕ is injective on the sumset tA.

While not immediate, it is easy to check (by making a trans-

lation) that a t-homomorphism ϕ is also a t′-homomorphism

for t′ < t; in particular any Freiman homomorphism ϕ must

at least be an injection. We also point out the trivial property

that if ϕ : A → G′ is a t-homomorphism, and A′ ¦ A, then

the restriction of ϕ to A′ is also a t-homomorphism.

We use the following simple Freiman homomorphism of-

ten.

Example VII.12 (Labelling a proper progression). Let

P =
{
a+

r∑

i=1

ci · xi : xi ∈ [Ni]
}
¦ G

be a (proper) progression, and define the map

ϕ : P → [N1]× [N2]× · · · × [Nr] ¦ Z
r

by

ϕ(p) = (x1, x2, . . . , xr).

This map is a Freiman homomorphism of all orders.

Proof. The only potentially tricky point is that ϕ is actually

well-defined, which is true only because P is proper. Besides

this, it is clear that equality of sums of vectors
∑t

j=1 x
j =∑t

j=1 y
j within Z

r implies the equality

a+

r∑

i=1

ci ·(x1
i +x2

i +· · ·+xt
i) = a+

r∑

i=1

ci ·(y1i +y2i +· · ·+yti)

in G.

The following is a formalization of a standard trick used

(e.g. in [Gow01]) to reduce questions regarding t-progressions

in the integers to some corresponding questions regarding t-
progressions in ZN . The trick itself is so simple that it is often

presented without any corresponding formalization. However,

in preparation for some more complicated extensions which

can no longer be reasonably handled “by inspection”, we work

out the details here with some care.

Example VII.13 (Embedding an interval). Define the natural

map

ϕ : [N ] → ZN

by

ϕ(x) = x mod N.

Let I = [a, a+m] ¦ [N ] be some interval with

m <
N

t
.

Then the map ϕ is a Freiman t-homomorphism when restricted

to I .

Proof. The sumset tI ¦ Z is contained in I ′ = [ta, ta+ tm].
Let x, y ∈ I ′. If x ≡ y mod N , this means that N divides

the distance |x− y|. However, this distance is at most

(ta+ tm)− ta < N.

So in fact we must have |x− y| = 0.
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It will turn out to be convenient for us if we could find a more

“intrinsic” formulation of this trick, in the sense that we would

like to find a formulation which refers to a nice set S ¦ ZN

rather than a nice set I ¦ [N ]. For instance, we might wish

to say that ϕ is such that if S is any interval in ZN with

length at most N/t, then the map ϕ is a t-homomorphism on

the pullback ϕ−1(S) ¦ [N ]. This statement is in fact false

(already for t g 2), which is witnessed by the example S =
{−1, 0, 1} ¦ ZN : under our map, this set has preimage

ϕ−1(S) = {1} ∪ {N − 1, N},
and now the sumset ϕ−1(S)+ϕ−1(S) contains two multiples

of N : both N and 2N . This demonstrates alarmingly the

importance of certain “implementation details” of linear maps

between groups in the present context which can often be

safely ignored in other contexts.

We can however make the following simple observation that

the behavior of the family of sets in [N ] obtainable from

preimages of intervals in ZN is not unboundedly bad; in the

terminology of [Gow01], [Gre99], an interval in ZN corre-

sponds to a union of at most two “genuine” intervals:

Observation VII.14. Fix the map ϕ : [N ] → ZN defined by

ϕ(x) = x mod N . Define the family of “intervals of size m”

in ZN by

Fm = {a+ ϕ([m]) : a ∈ ZN} .11

For any I ∈ Fm, the pullback I ′ = ϕ−1(I) is either

• an interval I ′ = [a, b] ¦ [N ] of size |I ′| = m, or

• the union of two intervals: specifically I ′ = [1, b]∪[a,N ],
with b < m and a > N −m.

We record the following immediate consequence of Exam-

ple VII.13 and Observation VII.14 – this statement shows

that it is possible to obtain the “intrinsic” formulation of

Example VII.13 we were looking for, so long as we are willing

to concede a small fraction of points in [N ].

Proposition VII.15 (A safe set in ZN ). Fix the map ϕ : [N ] →
ZN defined by ϕ(x) = x mod N . Fix a parameter ¶ ∈ (0, 1

2 ],
and define the “upper portion” of [N ] by

U = [¶N,N ] ¦ [N ].

Suppose I ¦ ZN is some interval12 of size |I| f ¶N , and that

t f 1/¶.

Then, for any translation by some a ∈ ZN , ϕ is a t-
homomorphism on the set

ϕ−1(I + a) ∩ U.

Proof. Using the characterization in Observation VII.14, we

see that the set ϕ−1(I+a)∩U is in fact equal to some interval13

11Note that we recover the same family if we instead consider sets a +
ϕ(I) ⊆ ZN where I = [a, b] ⊆ [N ] is any other interval of size |I| = m.

12See Observation VII.14 for what is precisely meant by this.
13It may be equal so the “trivial” interval ∅ – this case is also fine.

in [N ] of size at most ¶N . This is the case considered in

Example VII.13, so the claim follows.

We introduce the following definition to capture this phe-

nomenon in general.

Definition VII.16 (t-safe set). Consider two abelian groups

G,G′ and a subset A ¦ G. Fix an injection ϕ : A → G. We

say that a set B ¦ G′ is “t-safe” with respect to ϕ if, for

every translation ¸ ∈ G′, the restriction

ϕ : A ∩ ϕ−1(B + ¸) → G′

is a Freiman homomorphism of order t.

By a simple generalization of Proposition VII.15, we can

describe a highly structured, reasonably large set which is

safe with respect to the natural embedding of [¶N1, N1] ×
[¶N2, N2]×· · ·×[¶Nr, Nr] into ZN1

×ZN2
×· · ·×ZNr

.

Proposition VII.17 (A safe set in ZN1
× ZN2

× · · · × ZNr
).

Fix some natural numbers N1, N2, . . . Nr and a parameter

¶ ∈ (0, 1
2 ]. Consider the set [N1] × [N2] × · · · × [Nr] ¦ Z

r,
and define the “upper portion” of this set:

U :=
r∏

i=1

[¶Ni, Ni].

Fix the map ϕ : [N1]× [N2]×· · ·× [Nr] → G = ZN1
×ZN2

×
· · · × ZNr

defined by

ϕ(x) = x mod (N1, N2, . . . , Nr).

For i = 1, 2, . . . , r, let mi f ¶Ni, Ii := [mi], Bi :=
Ii mod Ni ¦ ZNi

, and let

B := B1 ×B2 × · · · ×Br.

If t f 1/¶, then B (and hence also any translate of B) is

t-safe with respect to the restriction ϕ : U → G. That is,

the natural embedding ϕ(x) = x mod (N1, N2 . . . , Nr) is a

t-homomorphism on the set

ϕ−1(B + ¸) ∩ U

for any translation a ∈ G.

Proof. We note that ϕ−1(B + ¸) ∩ U =
∏r

i=1 ϕ
−1
i (Bi +

¸i) ∩ [¶Ni, Ni], and we apply Proposition VII.15 on each

coordinate. To finish, we use the easily verifiable fact that

if ϕ1 : A1 → G1 and ϕ2 : A2 → G2 are both Freiman t-
homomorphisms, then the map from A1 × A2 to G1 × G2

given by

(x1, x2) 7→ (ϕ1(x1), ϕ2(x2))

is also a Freiman t-homomorphism.
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VIII. PROOF OF LEMMA VI.5 AND LEMMA VI.6

Lemma VI.5 follows straightforwardly from the following

three claims, which are proved in this section. Here, for

easier reading we present a slightly informal formulation of

each one, suppressing some minor details. The more specific

Lemma VI.6 follows from the details found in the correspond-

ing complete formulations.

Proposition VIII.1 (Informal version of Proposition VIII.10:

passing to a “nice” configuration). Suppose A ¦ [N1]×[N2]×
· · ·×[Nr] is a spread configuration with density µ. Then either

A has at least

r−O(r) · |A|3
|G|

3-progressions, or there is a large subset of A which is

Freiman 2-isomorphic to a “nice” configuration A′ ¦ P ′ =
[N ′

1]× [N ′
2]× · · · × [N ′

r] with the assurance that

• A′ ¦ P ′ is only slightly less spread, and

• |A′| g r−O(r)|A|.

Proposition VIII.2 (Informal version of Proposition VIII.9:

embedding a “nice” configuration). Suppose A ¦ [N1] ×
[N2] × · · · × [Nr] is a “nice” configuration with density

µ g 2−d. Then (firstly) the group G = ZN1
×ZN2

×· · ·×ZNr

must be cyclic. Let ϕ be the natural embedding ϕ : A → G.

Then we have

∥ϕ(A) ⋆ ϕ(A)∥k,B⋆B g 1 + Ω(1)

for some k f O(d) and some regular Bohr set B which

• has rank r and radius Ä ≈ 1/r, and

• is 2-safe with respect to the embedding ϕ : A → G.

Lemma VIII.3 (Informal version of Lemma VIII.4: obtaining

a density increment). Suppose A is a subset of a cyclic group

G with density µ g 2−d, and let B be a regular Bohr set with

rank r and radius Ä ≈ 1/r. If

∥A ⋆ A∥k,B⋆B g 1 + Ω(1),

then
|A ∩ P |
|P | g (1 + Ω(1))µ

for some generalized progression P which

• has rank r′ f r + poly(k, d),
• has size |P | g 2−poly(k,d,r)|G|, and

• is contained in some translate B + ¸.

Proof of Lemma VI.6.. Let A0 = A and r0 = r. In the case

that A has at least

r−O(r) |A|3
|P |

3-progressions, we are done. Otherwise, we apply Proposi-

tion VIII.10 with ε = 2−9. Either this immediately supplies us

with the desired density increment, or else we obtain a subset

A′
0 ¦ A0 and a 2-homomorphic bijection ϕ1 : A′

0 → A1 ¦ P1

where

• P1 = [p1]× [p2]× · · · × [pr1 ] ¦ Z
r1 ,

• |A1| g r−O(r)|A0| and r1 f r0,

• A1 ¦ P1 is ¶-nice with 1
10 g ¶ g Ω(1/r), and

• µ1 := |A1|
|P1|

g (1− 5ε)µ.

We apply Proposition VIII.9. Letting ϕ2 : A1 → A2 ¦ G be

the natural embedding into the group G = Zp1
×Zp2

× · · · ×
Zpr1

, we have

∥A2 ⋆ A2∥k,B⋆B g 1 + 1
4

for some k f O(d) and some large regular Bohr set B which is

2-safe with respect to ϕ2. Applying Lemma VIII.4, we obtain

a subset

A′
2 = A2 ∩ P3

where P3 is some proper progression which

• has rank r3 f r +O(d8),
• has size |P3| g r−O(r) · 2−O(d2r) · 2−O(d10) · |G|,
• is contained in some translate B + ¸, and

• provides the density increment

µ3 =
|A2 ∩ P3|

|P3|
g
(
1 + 1

32

)
µ1

g
(
1 + 1

32

) (
1− 5

29

)
µ

g
(
1 + 1

50

)
µ.

As the density does not decrease, we note also that

|A′
2| g r−O(r) · 2−O(d2r) · 2−O(d10)|A2|.

Since A′
2 ¦ P3 ¦ B + ¸, the map ϕ2 is a 2-homomorphism

when restricted to ϕ−1
2 (A′

2).

Finally, we let ϕ3 : P3 → Z
r3 be the simple Freiman

homomorphism described in Example VII.12 and we arrive

at our final configuration

A3 = ϕ3(A
′
2) ¦ ϕ3(P3) ¦ Z

r3 .

Letting ϕ := ϕ3 ◦ ϕ2 ◦ ϕ1 and A′ := ϕ−1(A3), we obtain the

desired increment (A′, ϕ).

A. Obtaining a density increment

Lemma VIII.4 (Structure vs. Pseudorandomness in ZN –

local variant). Consider

• a cyclic group G.

• a subset A ¦ G of size |A| g 2−d|G|,
• a regular Bohr set B = Bohr(Γ, Ä) of rank |Γ| = r,

• k ∈ N, and

• a constant14 ε0 ∈ [0, 1].

14We allow the implied constants in the O-notation here to depend on ε0.
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If

∥A ⋆ A∥k,B⋆B g 1 + ε0,

then there is a (proper) generalized progression P , contained

in some translate B + ¸, with

• rank r′ f r +O(k4d4) and

• size |P | g Är
′ · r−O(r) · 2−O(dkr) · 2−O(d5k5) ·N ,

and such that

|A ∩ P |
|P | g

(
1 +

ε0
8

) |A|
|G| .

We will need the following translation-invariance lemma due

to Schoen and Sisask.

Lemma VIII.5 (Special case of [SS16, Theorem 5.4]). Con-

sider

• a finite abelian group G,

• subsets X,Y ¦ G,

• a regular Bohr set B = Bohr(Γ, Ä) ¦ G with rank |Γ| =
r,

• an indicator function f : G → {0, 1}, and

• ε ∈ [0, 1].

If

|Y +B| f 2d|Y |

and

|X + Y +B| f 2s|X|,

then there is a Bohr set B′ = Bohr(Γ′, Ä′) ¦ B such that

•
∣∣((X ∗ Y ) ⋆ f

)
(b)−

(
(X ∗ Y ) ⋆ f

)
(0)
∣∣ f ε for all b ∈

B′,

• B′ has rank r′ f r+O
(
ds3/ε2 + ds log(1/ε)2/ε2

)
, and

• B′ has radius Ä′ g Ä · ε · 2−s/2/(r2r′).

In particular,

|ïD ∗X ∗ Y, fð − ïX ∗ Y, fð| f ε

for any density function D supported on B′.

It is maybe not immediately clear that this is indeed a special

case of Lemma 5.4 of [SS16], so we elaborate. We assume

familiarity with the statement as it appears in [SS16]. Let L ¦
G denote the support of our indicator function f = 1L. The

key point is that for our formulation here, one can observe

that the only values of f which can possibly play any role are

those values f(z) for which z is “near” zero – more accurately:

z ∈ X + Y +B. This assertion makes use of the fact that we

indeed have 0 ∈ B, so that X + Y ¦ X + Y + B. Thus, it

makes no difference for us to insist that L ¦ X + Y + B –

that is, to replace f by f ·1X+Y+B . Given this, the remaining

translation between the statements is straightforward: we apply

their Lemma 5.4 with S = B. Their sets A,M,L correspond

to our sets Y,X,−L. Their parameters ·,K correspond to our

parameters 2−s, 2d. Their lemma provides a bound on
∣∣∣∣∣∣
E

x∈X
y∈Y

f(x+ y + z + b)− E
x∈X
y∈Y

f(x+ y + z)

∣∣∣∣∣∣

for all b ∈ B′ and all z ∈ G, whereas we seek to control this

difference only at the single point z = 0.

Proof of Lemma VIII.4. By assumption we have
〈
B ⋆ B, |A ⋆ A|k

〉
=
〈
B,B ∗ (A ⋆ A)k

〉
g (1 + ε0)

k
.

We set ¶0 = ε0/100r, and pick ¶ ∈ [¶0/2, ¶0] so that B¶ is

regular. We apply Corollary VII.10 to get
〈
B1+¶ ∗B¶, B ∗ (A ⋆ A)k

〉
⪆ (1 + ε0)

k
,

yielding

〈
B1+¶ ∗B¶, B ∗ (A ⋆ A)k

〉1/k g 1 +
ε0
2
.

It follows that for some fixed ¸ ∈ B1+¶ , the translate C :=
−B + ¸ = B + ¸ satisfies

〈
B¶ ∗ C, (A ⋆ A)k

〉1/k g 1 +
ε0
2
.

By (possibly) increasing k only slightly we may assume that

21−ε0k/4 f 2−5ε0. Let ε = ε0/4 and apply Corollary IV.13

to get dense subsets X ¦ C and Y ¦ B¶ , both with relative

density at least 2−O(kd), such that

ïX ∗ Y, fð f ε

8
,

where

f(x) := 1
((
A ⋆ A

)
(x) f 1 + ε

)
.

Now, we invoke Lemma VIII.5 with sets X,Y and with Bohr

set B· , for some · ∈ [ ¶
2

2 , ¶
2], to get a final Bohr set

B′ = Bohr(Γ′, Ä′) ¦ B·

full of translations which leave X ∗ Y approximately fixed,

in the limited sense that they have little effect on the value

ïX ∗ Y, fð. We then pass to a large progression P ¦ B′ with

ïP ∗X ∗ Y, fð f ε

4
.

Since

|Y +B·| f |B¶ +B·| f |B¶+¶2 | f 2|B¶| f 2O(dk)|Y |,

and

|X + Y +B·| f |(B + ¸) +B¶+¶2 |
= |B +B¶+¶2 |
f |B1+¶+¶2 |
f 2|B| f 2O(dk)|X|,

we obtain a Bohr set B′ with parameters

• rank r′ f r +O(d4k4) and
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• radius Ä′ g Ä · r−O(1) · 2−O(dk),

and a progression P ¦ B′ ¦ B with parameters

• rank r′ = r +O(d4k4) and

• size |P | g Är
′ · r−O(r) · 2−O(dkr) · 2−O(d5k5) ·N ,

Since ïP ∗X ∗ Y, fð f ε/4, it must be the case that ïP ′, fð f
ε/4 for some translate P ′ of P . Recalling the definition of f ,

we obtain the lower-bound

ïP ′, A ⋆ Að g
(
1− ε

4

)
(1 + ε) g 1 +

ε

2
.

Again, it follows that

ïP ′′, Að g 1 +
ε

2
= 1 +

ε0
8
,

for some further translate P ′′ of P ′, which concludes the proof

since P ′′ is itself a progression with the same size and rank

as P .

B. Embedding a nice configuration

Definition VIII.6. Fix a parameter ¶ > 0. For an interval

I = [a, b] ¦ Z, the “upper portion” of I is the subset

U := [a+ 2¶(b− a), b],

and the “middle slice” of I is the subset

M :=
[
a+ 1

2 (b− a) + 1, a+ ( 12 + ¶)(b− a)
]
.

The point of these ad hoc definitions is that if we consider an

interval I = [N ] ¦ Z, if x, y ∈ U and z ∈ M , then

x+ y = 2z mod N

only if

x+ y = 2z.

This can be checked by inspection: since x + y, 2z ∈ [2N ],
the only way we can have N dividing |x + y − 2z| while

|x+ y− 2z| ̸= 0 is that |x+ y− 2z| = N . The sets U and M
are designed specifically so that (for any choice of ¶ ∈ [0, 1

2 ])
this is not possible.

Definition VIII.7. Fix a parameter ¶ > 0. For some intervals

Ii ¦ Z, and a cube P =
∏r

i=1 Ii ¦ Z
r, the “upper portion”

of P is the subset

U :=
r∏

i=1

Ui

and the “middle slice” of P is the subset

M :=
r∏

i=1

Mi.

We note the density lower-bounds

|U |
|P | g (1− 2¶)r g 1− 2¶r,

|M |
|P | g Ω(¶)r.

Definition VIII.8 (Nice configuration). Consider a configu-

ration A ¦ [N1]× [N2]× · · · × [Nr] ¦ Z
r with density

µ =
|A|

N1N2 · · ·Nr
.

Consider a parameter ¶ f 1/2r, and let v,m denote the

vectors

• v =
(
+( 12 + ¶

2 )N1,, +( 12 + ¶
2 )N2,, . . . , +( 12 + ¶

2 )Nr,
)
,

• m =
(
+ ¶
3N1,, + ¶

3N2,, . . . , + ¶
3Nr,

)
.

We say the configuration is (¶)-nice if

1) N1, N2, . . . , Nr are some distinct prime numbers not

including 2,

2) A is in fact contained within the upper-portion U =∏r
i=1[2¶Ni, Ni],

3) Given b, b′ ∈ Z
r drawn uniformly at random from

[−m1,m1] × [−m2,m2] × · · · × [−mr,mr], we have

the following “weighted” density lower-bound in the

middle-slice:

E
b,b′

[1A(v + b− b′)] g µ

2
.

4) We have a uniform bound on the number of representa-

tions of any point 2z:

max
z∈A

RA(2z) f
µ

4
· |A|.

Proposition VIII.9 (Embedding a nice configuration). Sup-

pose A ¦ [N1] × [N2] × · · · × [Nr] ¦ Z
r is a ¶-nice

configuration with density

|A|
N1N2 · · ·Nr

g 2−d.

Let ϕ be the natural map from Z
r to the group G = ZN1

×
ZN2

× · · · ×ZNr
given by ϕ(x) = x mod (N1, N2, . . . , Nr).

Then, there is an even integer k f O(d) and a Bohr set B =
Bohr(Γ, Ä) ¦ G such that

∥ϕ(A) ⋆ ϕ(A)∥k,B⋆B g 1 + 1
4

where the Bohr set B

• has rank |Γ| = r,

• has radius Ä g Ω(¶)
• is regular, and

• is 2-safe with respect to the restricted map ϕ : A → G.

Proof of Proposition VIII.9. In light of Lemma V.8 and

Lemma V.9, it suffices to establish the following: the existence

of a 2-safe regular Bohr set B (with adequate rank and radius)

such that, for some translate D = T¸(B ⋆ B),

∥ϕ(A) ∗ ϕ(A)− 1∥k,D g 1
2

for some even integer k f O(d). For any z ∈ A ∩M , where

M :=
r∏

i=1

[
Ni

2
,
Ni

2
+ ¶Ni

]
¦ Z

r,
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we have by construction that

Rϕ(A)(2ϕ(z)) = RA(2z) f
|A|2
4|G| .

That is, we have not increased the number of representations

of 2z as a sum of two elements in A by allowing equality mod

(N1, N2, . . . , Nr). After re-normalizing to a density function

we obtain

(ϕ(A) ∗ ϕ(A)) (2ϕ(z)) =
|G|
|A|2Rϕ(A)(2ϕ(z)) f

1

4

for such z. Let v,m ∈ Z
r be the vectors in Definition VIII.8,

and let b, b′ be uniformly random points drawn from the cube

Cm := [−m1,m1]× [−m2,m2]× · · · × [−mr,mr] ¦ Z
r.

We note that by construction we always have v+ b− b′ ∈ M .

It follows (from this and the third criterion for niceness in

Definition VIII.8) that 2ϕ(v + b − b′) has a non-negligible

chance of being a point where ϕ(A)∗ϕ(A) differs substantially

from uniform, so

E
b,b′∈Cm

∣∣∣
(
ϕ(A) ∗ ϕ(A)

)
(2ϕ(v) + 2ϕ(b)− 2ϕ(b′))− 1

∣∣∣
k

g 1
2 · 2−d ·

(
3
4

)k
,

still for any choice of k. Define the set

B := {2ϕ(b) : b ∈ Cm} ¦ ϕ(2Cm) ¦ G.

By Proposition VII.17, this set is 2-safe with respect to the

restriction

ϕ : U → G,

and since A ¦ U it is also 2-safe with respect to the further

restriction ϕ : A → G.

We apply essentially the observation in Example VII.3 to say

that B is in fact describable as a Bohr set of the group G =
ZN1

×ZN2
×· · ·×ZNr

. Indeed, for i = 1, 2, . . . , r let ³i ∈ ZNi

be the multiplicative inverse of 2 mod Ni. Now consider the

set of characters Γ consisting of

µi : x 7→ e2Ãi³ixi/Ni

for i = 1, 2, . . . , r. As in Example VII.3, we can say that

B = Bohr(Γ, Ä)

for some choice of Ä g Ω(¶). Additionally, due to the simple

structure of B we can verify directly that it is regular:

|B1+·| f
(
1 + 2

Ã·
)r |B| f (1 + ·r)|B|

and

|B1−·| g
(
1− 2

Ã·)
r|B| g (1− ·r

)
|B|

for · f 1/r.

Thus, we have that for the density D = T−2ϕ(v)(B ⋆ B),

〈
D, |ϕ(A) ∗ ϕ(A)− 1|k

〉
g 2−(d+1) ·

(
3
4

)k
.

Now choose k large enough that 2(d+1)/k f 3
2 , so that we get

∥ϕ(A) ∗ ϕ(A)− 1∥k,D =
〈
D, |ϕ(A) ∗ ϕ(A)− 1|k

〉1/k

g 2−(d+1)/k · 3
4

g 1
2 .

C. Obtaining a nice configuration

Proposition VIII.10. Fix a constant15 ε ∈ (0, 1
10 ] and let ¶ :=

ε/2r. Suppose A ¦ [N1]× [N2]×· · ·× [Nr] is a configuration

with density µ. Then, either A has at least

r−O(r) · µ · |A|2

solutions to x+ y = 2z with (x, y, z) ∈ A3, or we can obtain

a subset A′ ¦ A and a Freiman homomorphism (of all orders)

ϕ : A′ → P ′ ¦ Z
r′ with

• size |A′| g r−O(r)|A|,
• rank r′ f r,

and such that we obtain either: (i) a (¶)-nice configuration

with density

µ′ :=
|A′|
|P ′| g (1− 5ε)µ,

or (ii) a configuration which is not necessarily nice but has

increased density:

µ′ g
(
1 +

ε

2

)
µ.

Proof. Essentially the idea is to consider the restriction of A
to some subcube of the form P ′ =

∏r
i=1[ai, ai + pi − 1]

for some distinct primes pi each roughly of size ¶Ni. From

here it is easy enough to just translate the whole configuration

(A∩P ′) ¦ P ′ down to
∏r

i=1[pi] – such a translation is clearly

a Freiman homomorphism of all orders.

To ensure that we can make such a choice of primes we use

the fact that the number of primes in any interval [n/2, n]
is at least Ω(n/ log n) – this fact follows from the prime

number theorem, but such a lower bound also follows from

substantially more elementary arguments such as Erdös’ proof

of Bertrand’s postulate.

Without loss of generality suppose that N1 g N2 g · · · g Nr.

We wish to make a choice of distinct odd primes pi ∈
[¶Ni/2, ¶Ni]. Let n0 be the smallest natural number such

that, for any n g n0, the number of primes p ∈ [n/2, n]
is at least r + 1. It is the case that n0 is at most O( r log r

log log r ),
although we note it would be fine for us even just to say that

n0 f rO(1). If ¶Nr g n0 then clearly we can make such

choice of primes pi – otherwise, we will need to “fix” A in

the coordinates i corresponding to size-lengths Ni which are

too small. Specifically, we pass from A to the subset

A′ = {a ∈ A : ar = x} ,

15We allow the implied constants in the O-notation here to depend on ε.
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where we choose x ∈ [Nr] so that the size of A′ is maximized.

This results in no loss in density:

|A′|
N1N2 · · ·Nr−1

g |A|
N1N2 · · ·Nr

and only a small loss in size:

|A′| g
(

¶
n0

)
|A| g r−O(1)|A|.

With the last coordinate fixed, the projection map ϕ : Zr →
Z
r−1 is clearly a Freiman homomorphism of all orders on the

set A′. Continuing in this way, we may assume (at the cost

of only a factor r−O(r) loss in size, and no loss in density)

that we begin with a configuration A ¦
∏r

i=1[Ni] where r has

only decreased and that there are some distinct prime numbers

pi ∈ [¶Ni/2, ¶Ni] for i = 1, 2, . . . , r.

At this point we pause to apply a pruning step to address

niceness criterion number four. Let A′ ¦ A be the subset of

points x ∈ A with

RA(2x) f
4

ε
· E
z∈A

RA(2z).

By a Markov inequality, |A′| g (1 − ε/4)|A|, and so A′ has

density µ′ g (1− ε/4)µ.

We now consider the restriction of A′ to some subcube

Pa := a+ [p1]× [p2]× · · · × [pr] ¦ Z
r.

Let Ua denote the corresponding upper-portion of this cube.

Our plan is to set

A′′ := A′ ∩ Ua

for some choice of a ∈ Z
r, and our final configuration will

be (a translation of) A′′ ¦ Pa. Let

• v =
(
+( 12 + ¶

2 )p1,, +( 12 + ¶
2 )p2,, . . . , +( 12 + ¶

2 )pr,
)
,

• m =
(
+ ¶
3p1,, + ¶

3p2,, . . . , + ¶
3pr,

)
,

and define

B = [−m1,m1]× [−m2,m2]× · · · × [−mr,mr] ¦ Z
r.

We consider the quantities

µ′′
1(a) :=

|A′′|
|Ua|

= E
u∈Ua

1A′(u)

and

µ′′
2(a) := E

b,b′∈B
1A′(a+ v + b− b′).

We note that we may assume that

µ′′
1(a), µ

′′
2(a) f (1 + ε)µ′

for all translations a ∈ Z
r – otherwise we are done immedi-

ately as we would obtain a density increment either onto some

Ua or onto some translate of B:

µ′′ g (1 + ε)(1− ε/4)µ g (1 + ε/2)µ.

We consider a uniformly-random translation a drawn from the

set

[−p1, N1]× [−p2, N2]× · · · × [−pr, Nr] ¦ Z
r.

Applying Proposition VII.8 (or more specifically, its Corol-

lary VII.9), it follows that both of the expectations E[µ′′
1(a)]

and E[µ′′
2(a)] are at least

(1 + ¶)−rµ′ g (1− ¶r)µ′ g (1− ε/2)µ.

We can now apply a Markov inequality to the (nonnegative)

random variables

X1(a) := (1 + ε)− µ′′
1(a)

µ′

and

X2(a) := (1 + ε)− µ′′
2(a)

µ′

to conclude that there is a nonzero probability that we choose

a translation a simultaneously satisfying

X1(a), X2(a) f 3ε,

or rather

µ′′
1(a), µ

′′
2(a) g (1− 4ε)µ′.

Finally, we note that

µ′′ :=
|A′′|
|Pa|

=
|Ua|
|Pa|

|A′′|
|Ua|

g (1− ε/2)µ′′
1(a) g (1− ε/2)(1− 4ε)(1− ε/4)µ

g (1− 5ε)µ

and

RA′′(2x) f RA′(2x) f 4

ε

1

|A|
∑

z∈A

RA(2z)

for all x ∈ A′′. To conclude, we note that the quantity on the

right hand side is at most µ′′

4 |A′′|, except in the case that

∑

z∈A

RA(2z) g
ε

16
· µ′′ · |A||A′′| g r−O(r) · µ · |A|2,

i.e., the case that A has many 3-progressions.
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APPENDIX

In this section, we compare our techniques for controlling

the number of solutions to a + b = c with some previous

approaches, and we compare our conditions for quantifying

“additive pseudorandomness” with some analogous conditions

considered by other works.

Additive energy. We begin by discussing the notion of “ad-

ditive energy”, which is a good central measure of additive

structure to keep in mind as it can be easily compared with

everything else we discuss. For a set A ⊂ G the additive

energy of A is the quantity E(A) =
∑

x∈A R−
A(x)

2, which is

also the same as the number of solutions to a1−a2 = a3−a4
with ai ∈ A. It is always between |A|2 and |A|3. It can be

expressed in the density formulation as the quantity

E(A) =
|A|4
|G| ∥A ⋆ A∥22.
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Thus, for k = 2 our “self-regularity” condition corresponds

simply to some bound on the additive energy.16 For sufficiently

dense sets, there is a different lower bound which improves

on the trivial bound E(A) g |A|2: it is always the case that

E(A) is at least |A|4/|G|. The bounds

|A|4/|G| f E(A) f |A|3

translate gracefully to the following equivalent bounds on ∥A⋆
A∥22. By Jensen’s inequality and Young’s inequality,

1 = ∥A ⋆ A∥21 f ∥A ⋆ A∥22 f ∥A∥22.

Note that set of size |A| = 2−d|G| corresponds to a density

function with ∥A∥22 = 2d. More generally, the bounds above

apply to any density function A(x).

It is a typical sort of problem in additive combinatorics

to prove something nontrivial about the “additive structure”

of A when E(A) is “large”. In some contexts this means

that E(A) only slightly less than maximal: for instance if

E(A) g 1
10 |A|3, or perhaps E(A) g |A|3−1/10. In the present

work, we are interested in what can be said about A given

that the additive energy is only slightly greater than minimal:

for instance if ∥A ⋆ A∥22 g 1 + 1
10 . Thus, the alternative

normalization ∥A ⋆ A∥22 of the additive energy is a natural

choice for this setting.

The Roth-Meshulam argument. We review the classical

Roth-Meshulam argument ([Rot53], [Mes95]) in the case of

F
n
q , and discuss its relation to the present work. For an additive

character

e³ : Fn
q → C,

we consider the corresponding Fourier coefficient17

Â(³) := E
x∈A

e³(x) = ïA, e³ð .

We note that, for any set A, Â(0) = 1, and generally that

|Â(³)| f 1.

In the Roth-Meshulam argument, the key quantity for measur-

ing the additive pseudorandomness of a set A is the size of

its largest nontrivial Fourier coefficient:

max
³∈F

n
q

³ ̸=0

|Â(³)|.

The overall argument can be summarized compactly as fol-

lows.

Proposition A.1. Let A,B,C ¦ F
n
q be sets of size at least

2−d|Fn
q |.

1) If ∥A∥⊥,1 f 1 + ε then

max
³ ̸=0

|Â(³)| f 2ε.

16Similarly, for k g 2 our self-regularity condition is simply a bound on

the higher-order energy
∑

x R−

A(x)k which is also a well-studied concept;
see e.g. [SS13].

17See Section III for details regarding definitions and normalization con-
ventions related to the Fourier expansion.

2)

| ïA,B ∗ Cð−1| f max
³ ̸=0

|Â(³)|·∥B∥2∥C∥2 f max
³ ̸=0

|Â(³)|·2d.

Proof. For a linear subspace W , let PW denote the projection

operator

PW : f 7→ W⊥ ∗ f.

We note that the quantity ∥A∥⊥,r can be equivalently charac-

terized as

∥A∥⊥,r = max
W⊆F

n
q

dim(W )fr

∥PWA∥∞. (3)

We also note that for a function

A(x) =
∑

³∈Fn
q

Â(³)e³(−x)

we have

(PWA)(x) =
∑

³∈W

Â(³)e³(−x).

Fix some ³ ̸= 0, and let W be some one-dimensional subspace

containing it. We have

|Â(³)| = | ïPWA− 1, e³ð | f ∥PWA− 1∥1.

To finish, we use the basic fact that for any density function

F ,

∥F −1∥1 = 2∥(F −1)+∥1 f 2∥(F −1)+∥∞ = 2(∥F∥∞−1).

This proves the first claim. For the second claim we make the

following calculation.

| ïA,B ∗ Cð − 1| f
∑

³ ̸=0

|Â(³)||B̂(³)||Ĉ(³)|

f max
³ ̸=0

|Â(³)| ·
∑

´

|B̂(´)||Ĉ(´)|

f max
³ ̸=0

|Â(³)| ·
√∑

´

|B̂(´)|2
√∑

´

|Ĉ(´)|2

= max
³ ̸=0

|Â(³)| · ∥B∥2∥C∥2.

Thus, the overall structure of the argument very much resem-

bles our own: to begin, there is a “primitive” pseudorandom

condition (spreadness with respect to subspaces of codimen-

sion one), which can be ensured by a density increment argu-

ment. Then there is an intermediate pseudorandom condition

(i.e. a bound on max³ ̸=0 |Â(³)|), which firstly can be derived

from spreadness, and secondly is sufficient to directly control

the quantity ïA,B ∗ Cð when B and C are large.

We note another similarity to the present work. Consider the

following Fourier-analytic interpretation of the additive energy

of A:

∥A ⋆ A∥22 = 1 +
∑

³ ̸=0

|Â(³)|4 = 1 + ∥A ⋆ A− 1∥22.
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It is well known that (for very large sets A) a bound on

max³ ̸=0 |Â(³)| is roughly equivalent to a bound on ∥A⋆A−
1∥22:

max
³ ̸=0

|Â(³)|4 f
∑

³ ̸=0

|Â(³)|4

f max
³ ̸=0

|Â(³)|2 ·
∑

´

|Â(´)|2

= max
³ ̸=0

|Â(³)|2 · ∥A∥22.

Thus, another reasonable summary of the Roth-Meshulam

argument is that for very large sets A,B,C,

• ∥A ⋆ A∥2 can be controlled by ∥A∥⊥,1, and

• ïA,B ∗ Cð can be controlled by ∥A ⋆ A∥2.

The Bloom-Sisask physical space argument. In [BS19],

Bloom and Sisask show (in particular) how to obtain param-

eters for the cap-set problem very near to those given by the

Roth-Meshulam approach, but with arguments working almost

exclusively in physical space (rather than Fourier space). This

is a notable similarity to the present work, where we make

very little use of any “quantitative” Fourier analysis.18 In

particular, the Bloom-Sisask physical space argument more

closely resembles our approach than any other prior work.

We offer the following interpretation of their argument (as it

applies to the problem of controlling the quantity ïA ∗B,Cð,
for sets A,B,C ¦ F

n
q of density 2−d, by a spreadness

assumption).

There are three steps. Firstly: the plan is to control ïA ∗B,Cð
by obtaining a bound on the key quantity ∥A ∗ B − 1∥k,

for some k ≈ d. This is precisely what is done also in our

work, and already it distinguishes the approach from many

others, which consider instead some key quantity describable

in Fourier space. Secondly, Bloom and Sisask argue (by a com-

bination of the Croot-Sisask lemma19 and Chang’s inequality)

that ∥A ∗ B − 1∥k is similar to ∥V ∗ A ∗ B − 1∥k, for some

large subspace V . Thus, if

∥A ∗B − 1∥k g Ω(1)

then

∥V ∗A ∗B − 1∥k g Ω(1)

for some V of codimension r f 2d+O(log d+log k). The final

point is that such deviation from 1 is impossible if A and B
are both spread. Specifically, we apply the claim given below

with D := V ∗A and D′ := V ∗B (noting that V ∗ V = V ).

Overall, the Bloom-Sisask physical space argument shows that

18We implicitly rely on a small amount of quantitative Fourier analysis
through our use of Lemma A.15, whose proof relies on Chang’s inequality.
Besides this, our remaining Fourier-analytic arguments (i.e., regarding the
decoupling inequality and spectral positivity) are “qualitative”.

19The version of the Croot-Sisask lemma used is notably more efficient in
its dependence on the error parameter than, e.g., Lemma A.13. The parameters
involved in this alternative version are more subtle and it can be convenient
to handle the cases, say, ∥A ∗B∥k f 10 and ∥A ∗B∥k g 10 separately.

if | ïA,B ∗ Cð − 1| g Ω(1), then either ∥A∥⊥,r g 1 + Ω(1)
or ∥B∥⊥,r g 1 + Ω(1), for some

r f 2d+O(log d).

Proposition A.2. Let D and D′ be density functions on a

finite abelian group G. For ε g 0, if

∥D∥∞ f 1 + ε and ∥D′∥∞ f 1 + ε

then

∥D ∗D′ − 1∥∞ f ε

Proof. The pointwise upper bound D ∗ D′ − 1 f ε follows

easily by averaging: ∥D ∗ D′∥∞ f ∥D∥∞ f 1 + ε. Now

consider the pointwise lower bound. If ε > 1, such a bound

is trivial, so suppose ε f 1. We have

0 f (1 + ε−D) ∗ (1 + ε−D′)

= (1 + ε)2 − 2(1 + ε) +D ∗D′

= −1 + ε2 +D ∗D′,

and so

D ∗D g 1− ε2 g 1− ε.

Understanding the power of density increments. Let us say,

only in the context of the present section, that a set A ¦ F
n
q

of size |A| = 2−d|Fn
q | is simply “spread” if

∥A∥⊥,r f 1 +O

(
r(d+ 1)

n log n

)

for all r f n/2. One can check that this corresponds to the

condition that A has “no strong increments” considered by

Bateman and Katz [BK12] within their regime of interest:

namely d = Θ(log n). We are interested in this specific choice

of parameters essentially because it represents the limit of what

can be reasonably obtained by a generic density increment

argument.20 Given this definition, we consider the following

substantially more concrete variant of Question II.7.

Question A.3. Suppose A,B,C ¦ F
n
q are sets of size at

least 2−d|Fn
q |. For what values of d can we deduce that the

number of solutions to a + b + c = 0 is within a factor 2 of

|A||B||C|/|Fn
q |, from an assumption that

(i) one,

(ii) two, or

(iii) three

of the sets are “spread” (in the specific sense described

above)?

We note that Gowers asks essentially part (i) of this question

in a blog post [Gow11]. More accurately, he asks only about

when we can deduce the existence of at least one solution. The

Roth-Meshulam argument described above is relevant here: it

20We do not intend this as any kind of formal claim.

965

Authorized licensed use limited to: University of Illinois. Downloaded on June 26,2025 at 01:41:53 UTC from IEEE Xplore.  Restrictions apply. 



requires only a spreadness assumption on the single set A.

Given that A is spread, it tells us that

| ïA,B ∗ Cð − 1| f O

(
(d+ 1)2d

n log n

)
,

and so it provides the following positive answer regarding (i):

to ensure that

ïA,B ∗ Cð ∈
[
1
2 , 2
]
,

a spreadness assumption on just A is sufficient, for values of

d up to

d = lg n− c

where c is some constant. We consider the following example

which shows that for this question, the answer obtained from

the Roth-Meshulam argument is actually best-possible, despite

the fact that it makes use only of a bound on ∥A∥⊥,1. Let

d = lg n, and consider21

A :=
(
F
d
2 \ {0}

)
× F

n−d
2 ¦ F

n
2

and

B := {0} × F
n−d
2 ¦ F

n
2 .

We have B + B = B and ïA,B ∗Bð = 0. One can check

that A is indeed spread simply because, for any r,

∥A∥⊥,r f ∥A∥∞ =
1

1− 2−d
≈ 1 +

1

n
.

That is, A has no strong increment onto a large affine subspace

in particular because it has no strong increment onto a set of

any kind. Thus, for

d g lg n,

it is not possible to control ïA,B ∗ Cð by assuming spreadness

for just A; this fully answers the question of Gowers. However,

we point out that the situation changes dramatically if we

assume spreadness for just A but ask only for upper bounds.

Then the Roth-Meshulam argument is no longer optimal, and

indeed, in Theorem II.8 we show that k-regularity follows

from r-spreadness for r ≈ k7d. In particular we have

that ïA,B ∗ Cð f 2 whenever A is “spread” for d up to

roughly

d ≈ n1/9.

Summary for Question A.3. We summarize what we under-

stand regarding Question A.3.

• For d f lg n−O(1), the Roth-Meshulam argument shows

that a spreadness assumption on just A is sufficient to

ensure ïA,B ∗ Cð ∈ [ 12 , 2]. Moreover, only a bound on

∥A∥⊥,1 is needed.

• For d g lg n, a spreadness assumption on just A does

not ensure ïA,B ∗ Cð > 0.

• For d ⪅ n1/9, a spreadness assumption on just A ensures

ïA,B ∗ Cð f 2.

21The same example can be constructed over other small fields by consid-

ering Ft
q × F

n−t
q with qt ≈ n.

• For d ⪅ n1/9, a spreadness assumption on A and B
ensures ïA ∗B,Cð ∈ [ 12 , 2].

The Fourier sum of cubes measure. Recall the esti-

mate

| ïA,B ∗ Cð − 1| f
∑

³ ̸=0

|Â(³)||B̂(³)||Ĉ(³)|

which was used in the Roth-Meshulam argument. A sensible

approach for part (iii) of Question A.3, and one which is very

natural from a Fourier-analytic perspective, is to depart from

the earlier argument and treat this quantity more symmetrically

by considering
∑

³ ̸=0

|Â(³)||B̂(³)||Ĉ(³)|

f


∑

³ ̸=0

|Â(³)|3



1/3
∑

³ ̸=0

|B̂(³)|3



1/3
∑

³ ̸=0

|Ĉ(³)|3



1/3

.

This shows that a bound of, say,
∑

³ ̸=0

|Â(³)|3 f 1
2

on the sum of cubes of nontrivial Fourier coefficients is

sufficient to control ïA ∗B,Cð, if we assume such a bound it

for all three sets. Indeed, this was the approach taken in the

work of Bateman and Katz on the cap-set problem ([BK12]),

who show that ∑

³ ̸=0

|Â(³)|3 g Ω(1)

is sufficient to infer that A has density increment onto a large

affine subspace, for values of d up to d = (1+c) lg n for some

small constant c > 0, notably breaking the technical barrier

described above.

It has on occasion been taken as the obvious starting point for

any sort of analytic approach to the 3-progression problem to

begin with the assumption
∑

³ ̸=0 |Â(³)|3 g Ω(1) and then

to see what we can conclude about A. In light of this, it is

interesting to note that even in view of our work it seems still

unclear whether that approach is viable for obtaining strong

bounds. Specifically, we ask the following technical question

– we don’t know of any specific application related to its

resolution, but it seems interesting from a technical perspective

for trying to better understand the relation between the Fourier-

analytic approach with various “physical space” techniques

such as the Croot-Sisask lemma and sifting.

Question A.4. Let A ¦ G be a set of size |A| g 2−d|G|.
Suppose that ∑

³ ̸=0

|Â(³)|3 g Ω(1).

Does it follow that

∥A ⋆ A− 1∥k g Ω(1)

for some k f poly(d)?
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We make two remarks regarding this. Firstly, the answer is

affirmative if we instead start with, say, the stronger assump-

tion ∣∣∣∣∣∣
∑

³ ̸=0

Â(³)3

∣∣∣∣∣∣
g Ω(1).

In this case we can write
∑

³ ̸=0 Â(³)3 = ïA ∗A− 1, Bð,
where B(x) = A(−x), and bound this approximately by

∥A⋆A− 1∥d. Secondly, we note a connection in the opposite

direction. For even k ∈ N we have the Fourier-analytic

interpretation

∥A⋆A−1∥kk =
∑

³1+³2+···+³k=0
³i ̸=0

|Â(³1)|2|Â(³2)|2 · · · |Â(³k)|2.

Applying Young’s inequality to this gives

∥A ⋆ A− 1∥k f


∑

³ ̸=0

|Â(³)|2+ 2

k−1




1− 1

k

.

Finally, we can remark (at least superficially) on a connection

between our self-regularity condition and another key quantity

considered both in the work of Bateman and Katz as well as

the work of Bloom and Sisask ([BK12],[BS20]). For k ∈ N

we have the alternative Fourier-analytic interpretation

∥A ⋆ A∥2k2k =
〈
(A ⋆ A)k, (A ⋆ A)k

〉

=
∑

´


 ∑

³1+³2+···+³k=´

|Â(³1)|2|Â(³2)|2 · · · |Â(³k)|2



2

.

By comparison, the authors of the aforementioned works

consider various sets of the form

∆ =
{
³ ∈ G : ·1 f |Â(³)| f ·2

}

as well as the resulting quantity

∑

´


 ∑

³1+³2+···+³k=´

1∆(³1) · 1∆(³2) · · ·1∆(³k)




2

,

for various choices of k.

We proceed to explain our approach for proving Theorem II.8.

Let us focus only on the second claim, which we recall states

essentially the following. Suppose that a large set A ¦ F
n
q ,

|A| g 2−d|Fn
q |, fails to be self-regular:

∥A ⋆ A∥k g 1 + ε.

Then we can find an affine subspace V ¦ F
n
q of codimension

at most poly(d, k, 1/ε) giving the density increment

ïV,Að g 1 + Ω(ε).

For simplicity we also focus only on the case k = 2 and ε = 1;

this case is already nontrivial and sufficient to illustrate the

main obstacles and how they will be overcome.

Our starting point is to instead look for something stronger: a

“density increment”

ïV,A ⋆ Að g 1 + Ω(1).

This is a key “leap of faith” in the proof, in the sense that

we cannot offer a reason to expect (a priori) that this should

be possible, even assuming that our original task is possible.

However, we note that, firstly, it is certainly sufficient by

a simple averaging argument. Secondly, if this approach is

indeed workable it would be quite nice from a mechanical

perspective, as we start with an assumption on the density

function A ⋆A (i.e., that ∥A ⋆A∥2 g 2), and we now seek a

conclusion about the same object: ïV,A ⋆ Að g 1+Ω(1). This

is in contrast to the typical structure of an inverse problem –

considered generally to be fairly difficult – where we make

an assumption on A ⋆ A and seek a conclusion regarding A;

by taking this approach, we can suppress the fact that we

are secretly working on an inverse problem at the outset. To

elaborate on the averaging argument, we have

ïV,A ⋆ Að = ïA ∗ V,Að = E
x∈V
a∈A

A(x+a) = E
a∈A

[
E

x∈V+a
A(x)

]
,

so if ïV,A ⋆ Að g 1 + Ω(1) then we must have a density

increment ïV ′, Að g 1+Ω(1) onto some fixed affine subspace

V ′ = V + a.

We pause to consider whether our new goal is at least

analytically plausible. By this, we mean that we ask if we

can at least obtain

ïF,A ⋆ Að g 1 + Ω(1)

for some high-entropy density function F – one with ∥F∥∞ f
2poly(d) – without asking that F have any particular additive

structure. Ideally, we would also not need to appeal to the

additive structure of our density D = A ⋆ A, and instead, we

see what can be said just from the basic analytic facts D g 0,

∥D∥1 = 1, ∥D∥2 g 2, and ∥D∥∞ f 2d. One can check

that the best choice of F satisfying such an entropy constraint

on ∥F∥∞ will be (essentially) the uniform density over some

super-level set of D. However, there is also a simple choice

which is already quite satisfactory, F = D:

ïD,Dð = ∥D∥22 g 4.

So, what we are asking for is at least analytically plausible –

there is a high entropy density function F witnessing D ≫ 1
– and our task is to argue that we may take F to have a high

degree of additive structure.

A. Sanders’ invariance lemma

To motivate our next step, we consider the following lemma

due to Sanders regarding the translation-invariance of the con-

volution of two large sets A∗B. Sanders obtains this lemma by

combining the Croot-Sisask lemma [CS10], Chang’s inequality

[Cha02], and some additional Fourier-analytic arguments. The
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specific formulation given below does not appear explicitly in

his work, so we include a proof in the appendix.22

Lemma A.5 (Sanders’ invariance lemma [San12b]). Suppose

A,B ¦ F
n
q are sets of sizes |A| g 2−d|Fn

q | and |B| g
2−k|Fn

q |. Fix a bounded function f : Fn
q → [−1,+1]. Then,

for any ε g 2−k, there exists a linear subspace V (possibly

depending on f ) with codimension at most O(dk3/ε2) satis-

fying

|ïV ∗A ∗B, fð − ïA ∗B, fð| f ε.

We suggest the following interpretation of this result. It is

“almost” saying that A ∗ B is close in statistical distance to

V ∗ A ∗ B for some large subspace V , in light of the dual

characterization of the 1-norm distance:

∥D −D′∥1 = max
f :Fn

q →[−1,+1]
ïD −D′, fð .

However, it is not quite this strong since the subspace V
is allowed to depend on the dual witness f . Under this

interpretation, the lemma can be productively compared with

Chang’s inequality via the Fourier-analytic identity

(V ∗A ∗B)(x) =
∑

³∈V ⊥

Â(³)B̂(³)e³(−x).

The importance of Sanders’ lemma for us can be captured

succinctly by the following immediate consequence. We state

it in terms of the notation defined by Eq. (1) and Eq. (2)

in Section II, which we repeat here for the reader’s conve-

nience.

∥f∥⊥,r := max
affine subspace V⊆F

n
q

Codim(V )fr

ïV, fð ,

∥f∥∗,k := max
B,C⊆G

∥B∥∞,∥C∥∞f2k

ïB ∗ C, fð .

Corollary A.6. Let d g 1 and ε ∈ [2−d, 1]. For any bounded

function f : Fn
q → [0, 1], we have

∥f∥⊥,d4/ε2 g ∥f∥∗,d −O(ε).

That is, Sanders shows us how to bootstrap a high-entropy

density function F with mild additive structure witnessing

ïF, fð g µ into a reasonably high-entropy density function F ′

with strict additive structure witnessing ïF ′, fð g µ − O(ε).
Sanders applies this fact to the difference-set indicator func-

tion f := 1A−A to obtain his solution to the Approximate

Bogolyubov Problem (Theorem I.11): indeed, we clearly have

∥1A−A∥⋆,d = 1, as witnessed by A ⋆ A itself.

Inspired by this, we might hope (possibly naively) that we

could apply such an argument to the function f = A ⋆ A, as

we have noted already that

ïA ⋆ A,A ⋆ Að g 4,

22See however [San12b, Appendix: Proof of Theorem 11.1] or [Lov15] for
some similar statements.

and so ∥A ⋆ A∥∗,d g 4. Certainly this is not permitted by

Sanders’ lemma as stated, since A ⋆ A is not a bounded

function, but we can for example try to see what can be learned

by applying Sanders’ lemma to various approximate level-set

indicator functions

f(x) = 1(·1 f (A ⋆ A)(x) f ·2) .

For the sake of discussion, let us consider the following

(purposefully slightly vague) notion. Say that “F robustly

witnesses D ≫ 1 + ·” if (firstly)

ïF,Dð g 1 + ·,

and additionally that F witnesses a deviation of such magni-

tude typically, rather than just on average. Certainly we would

include the following exemplary case: if

ïF,1Sð g 1− ·/2,

where

S = {x : D(x) g 1 + 2·}

and · f 1/2; in this case we indeed have

ïF,Dð g (1 + 2·) ïF,1Sð g 1 + ·.

In light of Sanders’ invariance lemma, we see that to reach

our goal it suffices to find some large sets B,C ¦ |Fn
q | of

sizes |B|, |C| g 2−poly(d)|Fn
q | such that the convolution B ∗C

robustly witnesses A⋆A ≫ 1+Ω(1). Indeed, if we can show

that

∥f∥∗,k g 1− ·/2

where

f(x) = 1((A ⋆ A)(x) g 1 + 2·) ,

for some k f poly(d) and some · g Ω(1), then we can apply

Corollary A.6 with ε = Θ(·) to find a large affine subspace

with

ïV,A ⋆ Að g (1 + 2·) ïV, fð g 1 + Ω(1).

B. Finding a robust witness

We proceed to consider the problem of finding a robust witness

to A ⋆ A ≫ 1 + Ω(1) of the form B ∗ C. It is tempting to

check if simply F = A⋆A is already a good robust witness for

itself. For general density functions D obeying only ∥D∥2 g 2
and ∥D∥∞ f 2d this is certainly not the case: for example

it is not hard to arrange that for uniformly random x, D(x)
corresponds to some random variable X ∈ [0, 2d] with E[X] =
1 and E[X2] = 4 and yet

E [X · 1(X g 1)] f O(1)

22d
.

We can consider whether the additive structure of D = A⋆A
rescues us from this example. Upon checking some extreme

examples, such as when A a subspace of density 2−d, or A is

a random set of density 2−d, this looks initially promising; in

both cases the function F = A ⋆ A is a reasonably robust

witness of A ⋆ A ≫ ∥A ⋆ A∥2. However, the following
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third example, which we call the “planted subspace” example,

shows this is not the case in general.

Example A.7 (Planted subspace). Consider a set A ¦ F
n
2 of

the form

A = (W ∪ C)× F
n−d
2 ,

where C ¦ F
d
2 is a random set of size |C| f |Fd

2|1/10
and W ¦ F

d
2 is a subspace of size |C|3/4.

It is likely that |C +C| ≈ |C|2, |W +C| ≈ |C|7/4, and (very

roughly speaking) that

RW∪C ≈ RW +RC +RW,C ≈ |W | · 1W + 1C+C + 1W+C .

Suppose this is the case, and consider the random variable

Z := RW∪C(y),

where y ∼ RW∪C .23 We have

E[Z] =

∑
x RW∪C(x)

2

∑
x RW∪C(x)

≈ |C|9/4 + |C|2 + |C|7/4
|C|6/4 + |C|2 + |C|7/4

≈ |C|9/4
|C|2

= |C|1/4,
and yet

P(Z f O(1)) ≈ 1− |C|6/4
|C|2 = 1− |C|−1/2.

This example shows that it is possible that the majority of

the contribution to ∥A ⋆ A∥2 is attributable to some additive

structure within A ⋆ A which is strong but rare, and we will

need to work somewhat harder in order to detect it.

Let us consider once again whether what we ask for is at least

plausible analytically: that we can find a high-entropy density

function robustly witnessing D ≫ 1+Ω(1) whenever ∥D∥2 g
2 and ∥D∥∞ f 2d. Again, the best choice of witness F given

a constraint on ∥F∥∞ would be some super-level set of D.

However, we consider a simple choice which is already quite

satisfactory. We denote by D∧k the density function which is

proportional to Dk; namely

D∧k(x) :=

(
D(x)

∥D∥k

)k

. (4)

In what follows we refer to this density function as the

“degree-k compression” of D. Since ∥D∥k g ∥D∥1 =
1, it follows that compressions satisfy the entropy-deficit

bound

∥D∧k∥∞ f ∥D∥k∞ f 2dk.

Compressions D∧k also robustly witness D ≫ (1 −
ε)∥D∥k.

23That is, y ∈ Fd
2 is a random variable with pdf proportional to RW∪C .

Proposition A.8 (Compressions escape sub-level sets). Let

D : Ω → Rg0 be a density function on some arbitrary finite

set Ω, and let k g 1. Consider the sub-level set

S := {x ∈ Ω : D(x) f (1− ε)∥D∥k} .

We have
〈
D∧k,1S

〉
f (1− ε)k E[1S ] f e−εk.

Alternatively, consider

S′ :=

{
x ∈ Ω : D(x) f c · ∥D∥1+

1

k−1

k

}
.

We have 〈
D∧k,1S′

〉
f ck−1.

Proof. Bound Dk ·1S f (1−ε)k∥D∥kk ·1S pointwise and then

take the expectation. Alternatively, we may bound Dk ·1S′ f
ck−1 · ∥D∥kk ·D pointwise and use E[D] = 1.

We apply this to our current situation for some choice of k g
2, noting that ∥D∥k g ∥D∥2 g 2. We find that it suffices to

choose some k f O(1) to get a (high-entropy) robust witness

to D ≫ 1 + Ω(1), as desired.

Importantly for us, for integral values of k, degree-k compres-

sions of a convolution D = A⋆A also retain a certain amount

of additive structure. More specifically, we will soon see that

the fact that 〈
(A ⋆ A)∧k,1S

〉
f ·,

entails the following consequence: that there is some subset

A′ ¦ A, of size |A′| g 2−O(dk)|A|, such that

ïA′ ⋆ A′,1Sð f O(·).

More specifically, A′ is of the form

A′ = A ∩ (A+ s1) ∩ (A+ s2) ∩ · · · ∩ (A+ sk−1)

for some choice of additive shifts si. Thus we can obtain a

robust witness to A ⋆ A ≫ 1 + Ω(1), which has the form

A′ ⋆ A′, as desired.

We offer the following interpretation of this. Taking multiple

additive perturbations of the set A and considering their

common intersection is sufficient to “uncover” or “reveal”

the additive structure hidden within A. This technique has

been used in some form by various works in the existing

literature; we call it “sifting”, and in this work we develop

some refinements to it.

C. The Pre-BSG Lemma and the sifting lemma

Let us consider the following lemma due to Schoen [Sch15],

which we state in the density formulation.

Lemma A.9 (Schoen’s Pre-BSG Lemma). Let A be subset

of a finite abelian group G of size |A| g ¶|G|. Consider the

sub-level set

S :=
{
x ∈ G : (A ⋆ A)(x) f c · ∥A ⋆ A∥22

}
.
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There is a subset A′ ¦ A with

ïA′ ⋆ A′,1Sð f 16c

and
|A′|
|G| g 1

3¶
2 · ∥A ⋆ A∥22 g 1

3¶
2.

Specifically, A′ is of the form

A′ = A ∩ (A+ s)

for some s ∈ G.

We call this the “Pre-BSG Lemma” as it can be considered

as a sort of soft, analytic precursor to the Balog-Szemerédi-

Gowers lemma – indeed, Schoen shows that it readily implies

the following.

Lemma A.10 (Balog-Szemerédi-Gowers [Sch15]). Suppose

that A ¦ G has

E(A) =
∑

x∈G

RA(x)
2 = »|A|3.

Then there is a subset B ¦ A with

|B −B| f O(»−4|B|)

and

|B| g Ω(»|A|).

The name “Pre-BSG Lemma” is certainly ahistorical, however

in a sense it is fairly appropriate in spirit: the technique used to

prove it (sifting) is also the technique Gowers uses to prove his

own combinatorial precursor-lemma ([Gow01, Lemma 7.3])

from which he deduces (a form of) the BSG Lemma.

We remark on a peculiar feature of the Pre-BSG Lemma. It

is a tool that is useful for studying both sparse and dense

subsets24 of a finite abelian group G, which we roughly

delineate as the regimes |A| f |G|1/2 and |A| g |G|1/2. This

is in contrast to e.g. other tools such as Chang’s inequality,

which says nothing interesting regarding sparse sets, or the

BSG Lemma itself which says nothing interesting regarding

dense sets except in some very extreme cases.25 While the

density-formulation of the Pre-BSG Lemma stated above is

technically equivalent26 to the counting-measure formulation

stated in [Sch15], translating between the two settings is a

nontrivial exercise in bookkeeping and for studying sparse sets

A ¦ G one would much prefer to work from Schoen’s original

formulation. It is possibly better for practical purposes even

to consider the tool as “conceptually different” as it applies to

the two settings.

24Certainly it seems to have seen more applications to the study of sparse
sets (via the BSG Lemma). However, see e.g. Sanders’ work [San10] where
he applies a (chronologically earlier) variant to the study of dense sets.

25Indeed, for a set of size |A| = δ|G|, consider the ratio κ = E(A)/|A|3.
We have κ = δ∥A ⋆ A∥22 ∈ [δ, 1]. In our present context, we consider A to
have noticeable additive structure already when ∥A ⋆ A∥2 g 1 + Ω(1); in
contrast the BSG Lemma above is not better than the trivial bound |A−A| f
|G| f δ−1|A| unless ∥A ⋆ A∥2 g δ−3/8.

26That is, equivalent in the case of finite groups G.

One can check that Schoen’s Pre-BSG Lemma, together with

the plan laid out above, is sufficient to obtain a density

increment

ïV,Að g 1 + Ω(1)

from an assumption such as

∥A ⋆ A∥22 g 27.

To obtain a density increment from milder assumptions of the

form ∥A ⋆ A∥k g 1 + ε, we turn to the following.

Lemma A.11 (Sifting lemma – simplified version). Suppose

A ¦ G has size |A| = ¶|G|. Fix a nonnegative function f :
G → Rg0 and an integer k g 2. Suppose that

〈
(A ⋆ A)∧k, f

〉
= ·.

Then there is a subset A′ ¦ A with

ïA′ ⋆ A′, fð f 2·

and
|A′|
|G| g 1

2¶
k.

Specifically, A′ is of the form

A′ = A ∩ (A+ s1) ∩ (A+ s2) ∩ · · · ∩ (A+ sk−1)

for some shifts si ∈ G.

Combining this with the plan laid out above suffices to prove

Theorem II.8; it remains only to prove the sifting lemma and

to work out the quantitative details. We note that as stated

this claim is incomparable with Schoen’s Pre-BSG Lemma

– indeed, it says nothing interesting regarding sparse sets

A ¦ G because of the size guarantee on A′ – but it does

suffice for the applications considered in this work. With some

extra effort one can derive a version of the sifting lemma

which leads to the following strict improvement which may be

useful elsewhere; we state it below in the counting-measure

formulation.

Lemma A.12 (Extended Pre-BSG Lemma). Suppose A is a

finite subset of an abelian group G with

Ek(A) =
∑

x∈G

R−
A(x)

k = »|A|k+1

for some integer k g 2. Consider the sub-level set

S :=
{
x ∈ G : R−

A(x) f c · » 1

k−1 · |A|
}
.

There is a subset A′ ¦ A with

1

|A′|2
∑

a,b∈A′

1S(a− b) f 2ck−1

and

|A′| g 1
2»|A|.
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D. The Croot-Sisask lemma

For a point p ∈ G, define the shift operator Tp by

(Tpf)(x) := f(x− p).

This operation can be equivalently described as convolution

of f with the point-mass density at p (and hence it commutes

with other convolutions). For a density B, we define the linear

operator TB analogously: (TBf)(x) := (B ∗ f)(x).
Lemma A.13 (Croot-Sisask lemma). Let G be a finite abelian

group, and suppose A,A′ ¦ G are such that

|A| g 2−d|A+A′|,
which is in particular the case if simply A′ = G and |A| g
2−d|G|. Fix an even integer k g 2. and a function f : G →
Rg0 such that ∥f∥k f 1 (which is in particular the case if f
maps into [0, 1]). For any ε ∈ [0, 1], there exists a set S ¦ A′

of size at least

|S| g 2−O(kd/ε2)|A′|
such that for any points p, p′ ∈ S,

∥Tp−p′A ∗ f −A ∗ f∥k f ε.

Consequently, for any integer t and any point p ∈ tS − tS,

∥TpA ∗ f −A ∗ f∥k f tε.

Proof. Fix an integer ℓ ∈ N which is somewhat larger than

k. We consider the idea of approximating A ∗ f by a random

“sketch”

s(a1, a2, . . . , aℓ) :=
1

ℓ

ℓ∑

i=1

Tai
f

If each ai is drawn independently from A, then E[Tai
f ] =

A ∗ f , and the vector-valued Khintchine inequality (proved

below for even k) gives

E
a
∥s(a)−A∗f∥kk = E

a

∥∥∥∥∥
1

ℓ

ℓ∑

i=1

(Tai
− TA)f

∥∥∥∥∥

k

k

f
(
k

ℓ

)k/2

·∥f∥kk,

So by a Markov inequality, the chance that ∥s(a)−A∗f∥k g
2
√

k
ℓ is at most 2−k.

Now, we seek a simultaneous approximation of TpA ∗ f =
TA+pf for all points p ∈ A′ by some sketches

s(y) = s(y1, y2, . . . yℓ) :=
1

ℓ

ℓ∑

i=1

Tyif,

this time allowing y ∈ (A+ A′)ℓ instead of just a ∈ Aℓ. We

say that y is a plausible sketch for TA+pf if yi ∈ (A+ p) for

all i. We say that y is a good sketch for TA+pf if

∥s(y)− TA+pf∥k f 2

√
k

ℓ
.

By the same argument as above, for every p, at least a fraction

(1− 2−k) of the sketches which are plausible for TA+pf are

in fact good for TA+pf .

Now we form a bipartite graph on the vertex-set A′×(A×A′)ℓ,
including the edge (p, y) whenever s(y) is a good sketch for

TA+pf . We wish to find a sketch s(y) on the right side which

is simultaneously good for as many points p as possible, and

we will do so by a pigeonhole argument:

• Vertices on the left side have degree at least 1
2 |A|ℓ.

• We have the following relationship between the average

degrees of both sides (DL, DR), the sizes of the vertex-

sets of both sides (NL, NR), and the total number of

edges E:

DL ·NL = E = DR ·NR.

• Thus, DR g DL

NR
·NL g 1

2

(
|A|

|A+A′|

)ℓ
|A′|.

So, we can find a fixed sketch s(y) on the right adjacent to a

large set of points S ¦ A′ on the left, meaning that s(y) is

a good sketch for every p ∈ S. Since TA+pf are all close to

s(y), they are all close to each other:

∥TpA ∗ f − Tp′A ∗ f∥k = ∥TA+pf − TA+p′f∥k
f ∥TA+pf − s(y)∥k + ∥s(y)− TA+p′f∥k

f 4

√
k

ℓ

for all p, p′ ∈ S. To conclude, note that since ∥Txg∥k = ∥g∥k
for any function g and any point x, we have

∥TpA ∗ f − Tp′A ∗ f∥k = ∥T−p′(TpA ∗ f − Tp′A ∗ f)∥k
= ∥Tp−p′A ∗ f −A ∗ f∥k .

Setting ℓ = 16 · k/ε2 gives the desired parameters.

Proposition A.14 (Vector-valued Khintchine inequality). Let

k g 2 be an even integer. Let v1, v2, . . . , vℓ ∈ R
m
g0 be some

independent vector-valued random variables with means µi :=
E[vi]. Suppose that

E ∥vi∥kk := E


 1

m

∑

j∈[m]

vi(j)
k


 f M

for all i. Consider the average

v :=
1

ℓ

ℓ∑

i=1

(vi − µi)

of the (centered versions of) the vi’s. We have the following

bound on the average value of ∥v∥kk:

E
[
∥v∥kk

]
f
(
k

ℓ

)k/2

M.

Proof. By re-scaling we may assume M = 1. We may also

assume µi = 0 for all i, since E ∥vi−µi∥kk f E ∥vi∥kk for k g
2. Define the k-wise dot product of some k vectors ui ∈ R

m

by

u1 · u2 · · ·uk := E
j∈[m]

u1(j)u2(j) · · ·uk(j).
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Now, we compute

∥v∥kk = E
(i1,i2,...,ik)∈[ℓ]k

vi1 · vi2 · · · vik

Upon taking the expectation of this quantity, any term which

contains a certain random variable vi only once in the dot

product becomes zero. For the remaining terms, we can bound

E[vi1 · vi2 · · · vik ] f
k∏

j=1

(
E ∥vij∥kk

)1/k f 1.

So we reduce to the combinatorial problem of counting the

number of tuples i ∈ [ℓ]k which have no unique entries.

Let T (k, ℓ) denote this quantity. We can bound this number

recursively as follows: Consider the first entry i1 of such a

tuple. There must be some ij with i1 = ij ; we consider all

the possibilities for this, then remove the first and j-th entry

from the tuple, and then count the number of tuples in [ℓ]k−2

which have no unique entries. This argument gives the bound

T (k, ℓ) f k · ℓ · T (k − 2, ℓ) f · · · f (kℓ)
k/2

.

So overall we have

E
[
∥v∥kk

]
f (kℓ)

k/2

ℓk
=

(
k

ℓ

)k/2

.

E. Sanders’ invariance lemma

Lemma A.15 (Sanders’ invariance lemma, restated). Suppose

A,B ¦ F
n
q are sets of sizes |A| g 2−d|Fn

q | and |B| g
2−k|Fn

q |. Fix a bounded function f : Fn
q → [0, 1]. Then, for any

ε g 2−d, there exists a linear subspace V (possibly depending

on f ) with codimension at most O(kd3/ε2) satisfying

|ïV ∗A ∗B, fð − ïA ∗B, fð| f ε.

More specifically, we have the pointwise bound
∣∣∣∣∣∣
E

a∈A
b∈B

f(x+ v + a+ b)− E
a∈A
b∈B

f(x+ a+ b)

∣∣∣∣∣∣
f ε

for all v ∈ V and x ∈ F
n
q .

Proof. We seek a large linear subspace V such that

∥TvA ⋆ f −A ⋆ f∥k f ε

2

for all v ∈ V . We note that this suffices, since

|ïTxB, TvA ⋆ f −A ⋆ fð|
f ∥TxB∥1−1/k

1 ∥TxB∥1/k∞ ∥TvA ⋆ f −A ⋆ f∥k
f 2∥TvA ⋆ f −A ⋆ f∥k

for any x ∈ F
n
q . First we apply the Croot-Sisask lemma

to obtain a large set S of shifts Tp which leave A ⋆ f
approximately unchanged: ∥Tp−p′A ⋆ f − A ⋆ f∥k f · for

all p, p′ ∈ S where · is some parameter we will pick later.

We can obtain

|S| g 2−O(kd/·2)|Fn
q |.

Continuing on, let’s write g := A ⋆ f for brevity. We now

describe how to pick the linear subspace V . First, consider

the large spectrum of S:

Spec1/2(S) :=
{
³ ∈ F

n
q : |Ŝ(³)| g 1

2

}
.

We let W := Span(Spec1/2(S)). By Chang’s inequality for

vector spaces over finite fields (proved below), the dimension

of W is at most O(kd/·2). Finally, we let V := W⊥.

Consider the density function D = S ⋆ S, and let X denote

the t-iterated convolution D ∗D ∗ · · · ∗D. We have

X(x) =
∑

³

|Ŝ(³)|2te³(−x),

and in particular for any ³ ̸∈ W , we have |X̂(³)| f 2−2t. We

note that

(V ∗X ∗ g −X ∗ g)(x) = −
∑

³ ̸∈W

X̂(³)Â(³)f̂(³)e³(−x).

Thus

∥V ∗X∗g−X∗g∥∞ f 2−2t

√∑

³

|Â(³)|2
√∑

³

|f̂(³)|2 f 2−2t·2d.

Finally, we estimate

∥g − V ∗ g∥k
f ∥g −X ∗ g∥k + ∥X ∗ g − V ∗X ∗ g∥k + ∥V ∗X ∗ g − V ∗ g∥k
= ∥g −X ∗ g∥k + ∥X ∗ g − V ∗X ∗ g∥k + ∥V ∗ (X ∗ g − g)∥k
f 2 ∥g −X ∗ g∥k + ∥X ∗ g − V ∗X ∗ g∥∞
f 2t· + 2d−2t,

and

∥Tvg − V ∗ g∥k = ∥g − T−vV ∗ g∥k
= ∥g − V ∗ g∥k
f 2t· + 2d−2t,

which together give a bound on ∥Tvg − g∥k. Choosing t :=
O(d) and 1/· := O(t/ε), we obtain the desired error bound.

The resulting bound on the codimension of V is O(kdt2/ε2) =
O(kd3/ε2).

Lemma A.16 (Chang’s inequality for vector spaces over Fq).

Suppose A ¦ F
n
q has size |A| g 2−d|Fn

q |, where d g 1. Then

any subset of linearly independent vectors L ¦ Specε(S) has

size at most

|L| f 4d/ε2.

Proof. Suppose ³1, . . . , ³ℓ ¦ Specε(S) are linearly indepen-

dent. Let ci := Â(³i), and consider the auxiliary function

f(x) :=
ℓ∑

i=1

ci · e³i(−x).

On one hand we have

ïA, fð =
ℓ∑

i=1

ci E
x∈A

e³i
(−x) =

ℓ∑

i=1

|Â(³i)|2.
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On the other hand (choosing k = d) we can bound

ïA, fð f ∥A∥1−1/k
1 ∥A∥1/k∞ ∥f∥k = 2d/k · ∥f∥k f 2 · ∥f∥k.

Now, since the vectors ³i ∈ F
n
q are linearly independent, the

complex random variables defined by Xi := e³i
(x) (where x

is uniformly random in F
n
q ) are in fact mutually independent.

So by a Khintchine inequality, ∥f∥k f
√
k · ∥f∥2 =

√
k ·√∑

i |Â(³i)|2. We conclude that

ε2 · ℓ f
ℓ∑

i=1

|Â(³i)|2 f 4k = 4d,

and so ℓ f 4d/ε2.

Proposition A.17 (Proposition V.7, restated). For a real-

valued random variable X and k g 1, we use the notation

∥X∥k :=
(
E |X|k

)1/k
.

Suppose X is such that

• E(X − 1)k g 0 for all odd k ∈ N, and

• ∥X−1∥k0
g ε for some even k0 g 2 and some ε ∈ [0, 1].

Then, for any integer k′ g 2k0/ε,

∥X∥k′ g 4−1/k′

(1 + ε) g 1 +
ε

2
.

Proof of Proposition V.7. We wish to show that EXk′ g
1
4 (1 + ε)k

′

. We express

EXk′

= E(1 + (X − 1))k
′

=
k′∑

k=0

(
k′

k

)
· E(X − 1)k

g
∑

k even
k0fkfk′

(
k′

k

)
· εk.

Towards understanding this quantity we apply the following

trick. We introduce a uniform random variable ¸ ∈ {+1,−1}
and consider the value E[(1 + ¸ε)k

′

]. On one hand this value

is of course

E
¸
(1 + ¸ε)k

′

= 1
2 (1 + ε)k

′

+ 1
2 (1− ε)k

′

.

It can be expressed also as

E
¸
(1 + ¸ε)k

′

=
k′∑

k=0

(
k′

k

)
E[¸k]εk =

∑

k even
0fkfk′

(
k′

k

)
εk;

we conclude that

∑

k even
0fkfk′

(
k′

k

)
εk g 1

2 (1 + ε)k
′

.

At this point, let us normalize by (1 + ε)k
′

so that we can

proceed via a probabilistic interpretation: we are interested in

the probability of a certain event concerning a random variable

k ∈ N drawn according to a binomial distribution with k′ trials

and success-probability p = ε
1+ε :

k ∼ Bin

(
k′,

ε

1 + ε

)
.

In particular, we are interested in the chance that both

1) k is even, and

2) k g k0.

So far, we have calculated that the chance that k is even is

at least a half. In addition, it is known that a median of a

binomial distribution Bin(k′, p) is at least +pk′, [KB80]. Since

k0 f εk′/2 f εk′/(1 + ε), we also have that the chance that

k g k0 is at least a half. One might then suspect that the

probability that both events occur simultaneously should be

roughly at least 1/4; the following calculation confirms this.

Suppose t f εk′/2 is an odd natural number. We have

P(k = t) =
k′ − (t− 1)

t
· ε · P(k = t− 1)

g k′ − t

t
· ε · P(k = t− 1)

g
(
2

ε
− 1

)
· ε · P(k = t− 1)

g P(k = t− 1) ,

and so

P(k is even and k < k0) f 1
2 · P(k < k0) f 1

4 .

We infer that

P(k is even and k g k0) g 1
2 − 1

4 = 1
4

and so

EXk′ g 1
4 · (1 + ε)

k′

.

Equivalently,

(
EXk′

)1/k′

g 4−1/k′ · (1 + ε).

To conclude, one can check that

4−ε/4 · (1 + ε) g 1 +
ε

2

for ε ∈ [0, 1
2 ].
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