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Abstract—We show that for some constant 3 > 0, any subset A

of integers {1,..., N} of size at least 9=0(10e M) | N contains a
non-trivial three-term arithmetic progression. Previously, three-
term arithmetic progressions were known to exist only for sets
of size at least N/(log N)'*¢ for a constant ¢ > 0.

Our approach is first to develop new analytic techniques for
addressing some related questions in the finite-field setting and
then to apply some analogous variants of these same techniques,
suitably adapted for the more complicated setting of integers.

I. INTRODUCTION

A 3-progression is a triple of integers of the form (a,a+b,a+
2b), and it is said to be nontrivial if b # 0. It is straightforward
to check that a triple (, z,y) is of this form if and only if
x +y = 2z, and that, in this case, the progression is trivial
only if z = y. We consider the problem of finding a nontrivial
3-progression within a set A C [N] C Z, where we assume
only that the set A has somewhat large density inside [IV].
Regarding this problem, we prove the following.

Theorem 1.1. The following holds for some absolute constant
exponent 3 > 0. Suppose A C [N] has density 6 = |A|/N.
Then, either A contains a nontrivial 3-progression, or else

§ < 2~%og(N)*).

In [Rot53], Roth proved a statement of the same form: that
dense enough sets A C [N] must contain a nontrivial 3-
progression, for density threshold § & 1/loglog N. This was
improved by Heath-Brown and Szemerédi to ¢ ~ 1/log(IN)¢©
for some small ¢ > 0 [HB87], [Sze90]. This bound was
further refined in the works of Bourgain, and Sanders [Bou99],
[BouO8], [Sanl2a] where it is shown that one can take
¢=1/2, ¢ = 2/3, and then ¢ = 3/4. Sanders then obtained
a density-threshold of the form § =~ (loglog N)%/log N
[San11].! This was further sharpened by a factor (loglog N)?
by Bloom and then again by another factor loglog N by
Schoen [Blo16], [Sch21]. The best bound previously available
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is due to Bloom and Sisask [BS20], who show that a set
A C [N] with no 3-progressions must have density

720 )

for some small ¢ > 0. We also refer to Appendix A for a more
detailed discussion of some previous approaches and how our
methods relate to them.

In the other direction, it was shown by Behrend? that for
infinitely many values N there are indeed subsets A C [N]
of density roughly § =~ 9~ log(N)'/2
3-progressions.

which have no nontrivial

More specifically, we establish the following.

Theorem 1.2. Suppose A C [N] has density at least 2%
Then the number of triples (x,y,z) € A3 with x +y = 2z is
at least

20" N2,

Since there are only |A| < N trivial 3-progressions, we
do indeed obtain a nontrivial 3-progression, unless log N <
O(d*?).

We also consider a similar problem where A C IF[; is a subset
of a vector space over some finite field. In this setting, we
prove the following.

Theorem L.3. Suppose A C ¥y has density at least 274 Then
the number of triples (x,y,z) € A3 with x +y = 2z is at
least

¢ OIE P,

As a standalone result, we point out that this theorem is strictly
worse than the state-of-the-art bound, which can be obtained
from algebraic techniques pioneered by [CLP17] and [EG17],
which gave a strong resolution to the cap-set problem. Indeed,
Fox and Lovasz obtain strong bounds for Green’s “arith-
metic removal lemma” by combining the algebraic results of
[KSS18] with some additional combinatorial arguments. In
particular, their results imply the following.

2[Beh46]. See also the works of Elkin [Elk10], Green and Wolf [GW10],
and O’Bryant [O’B11] for some refinements.
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Theorem 1.4 (Special case of Theorem 3 in [FL17]). Suppose
A CFy has density at least 274 Then the number of triples
(,y,2) € A% with x + y = 2z is at least ¢~ D |F7|2.

Instead, our interest in Theorem 1.3 is that we can obtain it
using purely analytic techniques and that these same tech-
niques can then be slightly modified and extended to prove
Theorem [.2. Partially for expository reasons, we devote a
substantial portion of this paper to first addressing the finite
field case. This will allow us to present most of the key ideas
needed to prove our main theorem while ignoring additional
complications arising in the setting A C Z. We also remark
that techniques based on additive combinatorics have found
several applications within computer science (going all the
way back to the paper of [CFL83] who used Behrend’s
construction for a communication protocol to more recent
applications such as [BKM22]). We believe the new analytic
techniques will have other applications.

A. Structural Results in the Finite Field Setting

This section highlights a structural result in the finite field
setting that follows from our analytic techniques but is not
known to follow from algebraic methods. To describe it, we
recall the notation for sumsets:

A+B:={a+b:a€cAbe B}.

For a set A C [, we also use the notation Span™(A) to denote
the minimal affine subspace containing A — that is, Span®(A)
refers to the common intersection of all affine subspaces
containing A, which is itself an affine subspace.

The following structural result says that for any dense set A C
[y, there is a reasonably large subset A" C A, which is tightly
contained in its own span (in a specific technical sense).

Lemma L5 (A large subset tightly contained in its own span).
Fix a parameter T € [O, %] Suppose that A C Fy has size
|A| > 27F?|. Then, there is a subset A’ C A with
1A 140
Span=(47)] = Try[ 9
ii. Codim(Span*(A’)) < O(d®log(1/7)%)

such that |A’ + A’| > (1 — 7)|Span*(A4’)|.

Taken together, conditions (i) and (ii) roughly say simply
that A’ is large: for example, they imply that |A'| >
g~ O(@ 1oe(1/T))|F | However, we are additionally guaranteed
(by (1)) that the density of A’ inside its span is no worse than
the original density of A inside Fy. To unpack the conclusion,
let us write Span*(A’) =: V + 6 for some linear subspace V'
and some shift 8 € Fg. Also let B := A’ — 6. Clearly, we
have Span(B) = V. That is, B is contained in V, and it
also “eventually” generates V: for instance we can surely say
that {Clbl 4+ cobg -+ epby, ¢ € ]Fq,bi € B} = V. On the
other hand, we can compare this to our conclusion, which says
that merely taking

B+B={b1+b2 : bl,bQEB}

is already enough to generate all but a tiny fraction of V: we
have |B+B| > (1-7)|V] and so |[V\(B+B)| < 7|V|.

We proceed to compare this result with some related results
in the literature: Specifically, Sanders’ quasipolynomial Bo-
golyubov—Ruzsa lemma (specialized to the finite field setting)
and the critical technical lemma underlying its proof.

Let us first consider what we’ll call the Bogolyubov—Ruzsa
Problem. We recall the notation for sumsets: 24 denotes A+ A
and tA denotes the set of all sums a; + as + ...+ a; with
a; € A.

Problem 1.6 (Bogolyubov-Ruzsa Problem over 7). Let A C
[, be a set of points in a vector space over a prime field.
Fix t € N and assume that |A + A| < K|A|. Find (or rather,
prove the existence of) an affine subspace V which is as large
as possible and contained in tA.

Note that any sufficiently dense set (i.e., one of size |A| >
K~Fp|) trivially satisfies |A + A| < |F7| < KJ|A], so to
solve the Bogolyubov-Ruzsa problem one must at least handle
the special case of finding a large subspace in tA for all dense
sets A. Furthermore, solving the problem in this special case
is sufficient to obtain very similar parameters for the general
case. The reduction can be summarized as follows: for any ¢ <
O(1), aset A C F} with [A+A| < K|A] can be embedded by
some linear map ¢ from [} into F}" in such way that

e ¢ is injective on A (and indeed, even on tA),
o [¢(A)] > K-OW|Fm|, and
o The set t¢p(A) = ¢(tA) contains an affine subspace V' C
m . . —1 . .
%{ only if the preimage ¢~ (V) is an affine subspace in
[

For a more detailed explanation, see, e.g., the nice description
given in [Lov15]. In light of this reduction to the dense case,
we restrict our attention to the following.’

Problem L7 (Bogolyubov Problem over Fy). Let A C Fy.
Fix t € N and assume that |A| > 27F7|. Find an affine

subspace V' which is as large as possible and contained in
tA.

Regarding this problem, Sanders proves the following.

Theorem 1.8 ([San12b]). Suppose A C Fy has size |A| >
2_d|Fg|. Then there is an affine subspace V. C 4A of
codimension at most O(d") in F.

Sanders’ approach to the Bogolyubov Problem for 4 A is first to
address what we’ll call the Approximate Bogolyubov Problem
for 2A:

3We note that the reduction from the more general Bogolyubov-Ruzsa
problem for vector spaces over prime fields F, to the more specific Bo-
golyubov problem over F), uses the fact that subspaces in F}} can be precisely
characterized as those subsets which are closed under addition — i.e., additive
subgroups. However, it is sensible to consider the Bogolyubov problem itself
over general finite fields [Fy.
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Problem 1.9 (Approximate Bogolyubov Problem over Fy).
Let A C Fy. Fix t € N and assume that |A] > 27%F7|.
Find an affine subspace V which is as large as possible and
is “mostly” contained in tA, in the sense that

[VN(t4)] > 1 -1)V|
for some T as small as possible.

The connection between the Approximate Bogolyubov Prob-
lem for tA and the Exact Bogolyubov Problem for 2t A is due
to the following simple claim.

Claim L.10. Suppose B C Fj is a set with a large intersection
with some linear subspace V: |BNV| > $|V|. Then B+ B

contains V.

Proof. Let € V. We may trivially write x = (z +y) — y
for any element y € V. Consider doing so for a uniformly
random choice of y € V. By a union bound, the chance that
the events x +y € B and —y € B occur simultaneously is
nonzero. O

Sanders provides the following solution to the Approximate
Bogolyubov Problem for sumsets 24 over [y .

Theorem L11 ([Sanl2b]). Suppose A C Fy has size |A| >
2_d|FZ|. Then for any T > 279 there is an affine subspace
V' of codimension at most O(d*/1?) with

[VNnA+A4)]>1-7)V]

It is useful to compare this with our structural result above,
Lemma [.5, which accomplishes something similar in spirit.
Indeed, given A we may find A’ C A and consider its
container V' := Span™(A’), which in our case has codimension
O(d®log(1/7)*). We note that 2V is again an affine subspace
of the same size as V (2V is just a translate of V') which
contains A’ + A’, and that

2VN(A+A)| > 2VNn(A'+A")| = |A+A| > (1-7)2V].

Thus, our result can also be understood as a solution to the
Approximate Bogolyubov Problem for 2A; compared with
Sanders’ solution, we obtain codimension which is moderately
worse in terms of its dependence of the density parameter
d in exchange for substantially improved dependence on the
error parameter 7. This answers a question posed by Hatami,
Hosseini, and Lovett in [HHL18] — they ask whether it is
possible to obtain codimension d°(") log(1/7)°M) for the
Approximate Bogolyubov Problem for 2A4, and we confirm
that indeed it is.

We can also answer a related question posed by Schoen and
Sisask in Section 9 of [SS16]: they ask whether it is possible to
obtain codimension d°") for the Exact Bogolyubov Problem
for 3A, as Sanders does for 4A. The following result confirms
this.
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Corollary 1.12 (Direct corollary of Lemma 1.5). Suppose A C
F? has size |A| > 274|F7|. Then, there is a subset A" C A
with size

—0(d® n
A > g~ |ry|

such that A’ + A’ + A’ is an affine subspace.

Proof. We apply Lemma 1.5 with parameter 7 set slightly
smaller than 27¢. We consider the resulting subset A’ and
affine subspace Span®(A’), which we write as V + 6 for
some linear subspace V' and some shift §. Consider the set
B:=A"— 6 C V. We argue that 3B = V, which proves that
3A’ =V 4+ 30. Indeed, if 3B # V, then there is some z € V
such that the set z— B does not intersect with B+ B. However,
r— BisasetinV of size |x — B| = |B| > 2%V, and we
also have |B + B| > (1 — 7)|V/|, so this is not possible. [J

B. A robust structural lemma

The structural result given in the previous section is in fact
a special case of a more analytically robust variant which we
proceed to describe. We recall the notation

Ra(z) := |{(a1,a2) c A% . a; +as zx}|,

which counts the number of “representations” of z as a
sum of two elements of A. We also consider the alternative
normalization

_ Ra(x)
ra(x) = I

which is normalized as a distribution function on Fy — that
is, erF; ra(x) = 1. Recall that Lemma 1.5 says that for
any dense set A C Fy, there is a reasonably large subset
A’ C A which is tightly contained in its own span, in the
sense that

|A"+ A’| > (1 —7)|Span™(A")].

For the sake of clarity let us write Span™(A’) = V+6 where V
is a linear subspace. We have of course that |[V| = |Span™(A")].
Note that the distribution r 4/ () is supported on the affine sub-
space 2Span™(A’) = V +26. Our robust variant of Lemma 1.5
states that in fact the distribution r 4/ () is very close to the
uniform distribution on V' + 26. The fact that the support of
rar, i.e. A’ + A’, is large follows as a corollary.

To state this result we need the following notion for measuring
closeness of distributions. In what follows, a “distribution”
7 : © — R is a nonnegative function on Q with ) _, 7(z) =
1.

Definition 1.13. Given k > 1 and two distributions m, 7' :
Q — R, define the k-norm divergence of © from © as the
quantity

Soco ln(@) — @)\
Zmeﬂ W/(x)k .
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In the case that 7' corresponds to some flat distribution
m'(z) = ]llss(‘z)’ uniform over some subset S C ), and w
is supported on S, this can be equivalently expressed as

o\ 1/k
( E ) .
zeS

Lemma 1.14 (A robust variant of Lemma 1.5). Fix a constant
€ € (0,1) and a parameter k > 1. Suppose that A C Fy has
size |A| > 274|F7|. Then, there is a subset A’ C A with

7(x)

@)

; lA'| 1AL
I T can] 2 iy 9nd
ii. Codim(Span*(4’)) < O.(d°k*)

such that the distribution 1 a:(x) has k-norm divergence at
most ¢ from the uniform distribution on 2Span*(A’).

We note that Lemma 1.5 does indeed follow as a special case
by invoking Lemma 1.14 e.g. with € = 1/2. This is because,
if 7 is a distribution supported on some set B C B’, and
|B’\ B| > 7|B’|, then the k-norm divergence from 7 to the
uniform distribution on B’ is at least 71/%.

II. TECHNICAL INTRODUCTION

The techniques and applications considered in this work are
centered around the following question. Let A, B, and C' be
subsets of a finite abelian group G of size N, each with size
at least 27¢N. We ask: what sort of generic “pseudorandom”
conditions on the sets A, B, C are sufficient to ensure that the
number of solutions to the equation a+b = ¢, with (a,b,c) €
A x B xC, is off by only a small multiplicative factor (1+¢)
from the the “expected” number, |A||B||C|/N?

We are particularly concerned with the following three con-
ditions on a set A C G, which each attempts to quantify
the ‘“additive pseudorandomness” of A in some capacity.
For concreteness, we will first state the three conditions —
spreadness, regularity, and self-regularity — in the counting
measure. However, we will shortly return to restate each
of them using alternative normalization conventions which
will greatly increase their interpretability. We recall some
standard notations for the number of “representations” of x
as a sum or difference of elements of some sets A and B:
Rap(r) = |{(a,b) € (Ax B) : a+b=ua}|, Ry g(z) =
H{(a,b) e (AxB) : a—b==z}|, Ra(z) := Ra a(z), and
Ry (x) := R} ().

Definition I1.1 ((v,7)-spread). Let A be a subset of Fy. For
v, > 1, we say A is (vy,r)-spread if,
ANV] _ 4]
Vi = [Fg

" ; .
Jor all affine subspaces V' C Fy of codimension at most r.

Our first condition — spreadness — applies only to the case G =
IFZ; however, we will eventually return to consider possible
substitutes for when we are working in a different group.*

4Speciﬁcally, we will consider some alternatives where a Bohr set, or a
generalized arithmetic progression, instead plays the role of the subspace.

Spreadness is important to us because it is easy to obtain, for
instance, by a density-increment argument.

Definition IL2 ((v, k)-regular). Let A be a subset of a finite
abelian group G. For v,k > 1, We say that A is (v, k)-regular
if

Al||B||C
S g o(a) < TAIBIC]
acA |G|

for all sets B,C C G with size at least |B|,|C| > 27F|G|.

Definition IL3 ((v, k)-self-regular). We say that A C G is
(v, k)-self-regular if
AP

Z RZ(x)k < \G\ﬁ

zeG

Our latter two conditions — regularity and self-regularity —
apply to general finite abelian groups. In contrast to spread-
ness, regularity is important to us because it is useful to have,
although it is not clear that it is easy to obtain.

We can summarize the overall argument for our structural
result, Lemma 1.14, into three steps:

1) One can use density increments to obtain spreadness.
This follows from a simple greedy argument and is
formalized in Proposition II.15.

2) One can (informally speaking) obtain regularity from
spreadness. This is a core ingredient of our approach
and is formalized in Theorem II.8.

3) One can obtain strong two-sided bounds on the number
of solutions to a + b = ¢ from regularity. This is
formalized in Theorem II.11.

Points 2 and 3 above can be considered the two main technical
contributions of our work. Taken together, they give the
following answer to the central question described above (for
the setting G = F{). To control the number of solutions
to a+b+c¢c = 0 with a,b,c € A, B,C, to within a
factor (1 £ O(e)) of the expected number |A||B||C|/|G|, it
suffices that any two of the three sets are (1+4¢, poly(d, 1/¢))-
spread.

A. Density formulation

We take a moment to switch to a more “analytic” language
for expressing the three conditions introduced above which
both eases their interpretability and clarifies their importance
for controlling the number of solutions to a + b = c. Here in
the introduction, we avoid an extended discussion of details
regarding, e.g., normalization conventions (a more detailed
description can be found in Section IIT). However, we highlight
the following key points.

o We use the notation | f|x := (]Emeg|f(:c)|k)1/k for

k > 1 and functions f : G — R, as well as ||f|loc :=
maxzeq |f(2)]-

o We consider density functions on GG, which are simply
nonnegative functions F': G — R with ||F||; = 1.
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o Given a set A C @G, we abuse notation and let A(x)
denote the density function which corresponds to the
uniform density on A. Under this normalization, a set
of size |A| = 27¢|G| has corresponding density function
A(x) with ||A]|o = 29.

o Given density functions A(x) and B(z), we consider both
the convolution (Ax B)(z) and the cross-correlation (Ax
B)(z), both of which are again density functions. Indeed,
they are the density functions that are proportional to the
representation-counting functions R4 p(z) and Ry ,(z).

Finally, let us introduce the following notations relevant to
capturing the spreadness and regularity conditions. For non-
negative f : ]FZ — R, we define

‘= max V. 1

||fHL,'r’ VCET < 7f>a ( )
Codim(V)<r

where the maximization is quantified over affine subspaces

V C I of codimension at most r. For nonnegative [ : G —

R, we define

[fllep = (BxC, f), )

max
B,CCG

1 Bllso, I Clloc <2*

where the maximization is quantified over subsets B,C C G
of sizes |B|,|C| > 27%|G|. We can restate each of our three
conditions above in the density formulation.

Definition II.4 (Spreadness — density formulation). We say
that A CFy is (v, r)-spread if

[l L <.

Definition IL.5 (Regularity — density formulation). We say that
Ais (v, k)-regular if

[l <

Definition I1.6 (Self-regularity — density formulation). We say
that A is (v, k)-self-regular if

[AxAllx <7

Generally, for all three conditions, we are most interested in
the regime where v = 1 + ¢ and ¢ is a small constant.

B. Regularity from spreadness; Upper-bounds from regular-
ity

We can also restate our central question in the density formu-
lation as follows.

Question IL7. Let A,B,C C G. Suppose that the corre-
sponding density functions satisfy the (min-)entropy deficit
condition || Allso, || Bllsos [|Clloe < 2¢. What sort of generic
pseudorandom conditions on A(z), B(z),C(x) are sufficient
to ensure that

(AxB,C)=1+0(e),

where € is some small constant?

We note that (basically by definition) imposing the condition
of (1 + &,d)-regularity on the set A is sufficient to obtain
good upper bounds for this question (and also necessary if we
wish to avoid imposing any further conditions on the sets B
and C beyond the given constraints on their sizes) as we have
(Ax B,C) = (A, BxC). Thus, if this quantity is at least
1 + ¢ then the fact that ||A].q > 1 + ¢ is witnessed by the
convolution of C' with —B.

Our first main technical result says that spread sets are
regular.

Theorem IL8 (Structure vs. Pseudorandomness in Fy —
simplified combination of Theorem IV.6 and Theorem IV.10).
Suppose A C F) has size |A| > 27 UF2|. If [ All.x > 1+,
then |AllLy > 1+ % for some r < O.(k7d). Similarly,
if |AxAllx > 1+¢, then |Al|L, > 1+ 5. for some
r < O (k*d%).

We can offer a couple of different interpretations of this result.
Firstly we can interpret it analytically as follows. Suppose the
density function A(z) has a deviation upwards from the uni-
form density function, which can be detected, or “witnessed”,
by some convolution of two large sets (i.e., by a density
corresponding to a rather weak additive structure). Then, the
above theorem says that this deviation can be witnessed almost
as well by the uniform density over a reasonably large affine
subspace (i.e., a set with a very strict additive structure).
Alternatively, we can interpret the contrapositive in the well-
known structure vs. pseudorandomness paradigm. Specifically,
we have the following dichotomy: a given set A is either
pseudorandom, in the sense that it is (1 4 ¢, k)-regular, or
it has some non-negligible amount of additive structure which
can be detected by some large affine subspace V/,

(V.A) > 1+,

and we obtain the resulting density increment of A onto
V:

> (1+3) =

B 8/ |Fg|

We give the following quick summary of the proof of The-
orem II.8 which is intended for experts. Alternatively, a
more detailed overview can be found in Appendix A, which
in particular gives some additional discussion of the tools
involved, as well as an account of how the proof is arrived at
“naturally” as the result of a sequence of observations.

ANV
V]

For brevity, we discuss only the most important claim made
in Theorem IL.8: that ||Ax Al > 1+ Q(1) implies || AL, >
14+9Q(1) for some r < O(k*d*). We will establish the stronger
claim ||[AxA|| , > 1+Q(1), which is sufficient. Our starting
point is the following consequence of Sanders’ invariance
lemma.’

5By this we mean the result one obtains by combining the Croot-Sisask
lemma with Chang’s inequality — an idea which first appeared in the work of
Sanders [San12b]. See Lemma A.15 for the specific form of the result used
here.
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Proposition I19. Let k > 1 and ¢ € [27% 1]. For any
bounded function f : Fy — [0,1], we have

[l L/ = [ fllek = OCe).

Suppose ||A % Al > 1+ 2¢ for some small constant e, and
consider the super-level set indicator

fl@)=1L(AxA)(z) >1+¢).

Our plan is to argue that || f||« » > 1—5 for some k' < O(kd).
From this it follows that

A% All L omasy = (L +e)IfIl L oma4)
>(1+e)(1- %)
> 149(1),

as desired. To argue that we indeed have || f||. »» =~ 1 for some
value &’ which is not too large, we develop the following tool
(which is applicable more generally to any finite abelian group

G).

Lemma IL.10 (Sifting lemma). Suppose A C G has size |A| =
0|G|. Fix a nonnegative function h : G — R>q and an integer
k > 2. Let D(x) denote the unique density function which is
proportional to (A x A)(z)F, and suppose that (D,h) = 1.

Then there is a subset A’ C A with (A’ x A’,h) < 2-n and
147 > 1.5k

|Gl = 2

Applying this to h := 1 — f shows that || f||. o) =~ 1. This
completes the argument; it remains only to prove the sifting
lemma and work out the quantitative details — this is done in
Section IV-A. We remark briefly that the sifting lemma can
be seen as an extension of Schoen’s “Pre-BSG” lemma — this
is discussed in more detail in Appendix C.

C. Strong two-sided bounds from self-regularity

We have seen that spreadness is sufficient to give good upper
bounds for our central question, Question I1.7. However, for
applications, typically, one is more interested in lower bounds
— in particular, in settings where we would like to establish the
existence of solutions. For this we turn to the following: our
second main technical contribution, which says that if A and
B are both self-regular, then A x B is near-uniform.

Theorem II.11 (Strong two-sided bounds from self-regular-
ity). Let A, B be subsets of a finite abelian group G. Suppose
that A and B are both (1 + €, [k/e])-self-regular for some
£ € [0, 1] and some even integer k > 2. Then

|[A* B — 1| < 2e.
In particular, (A x B,C) = 1+ O(¢) for any set C of size
IC| > 277G

Proof. Our first step is to apply the following claim, which
can be proved without much trouble by a slightly nontrivial
application of Cauchy—Schwarz.

Proposition I1.12 (Decoupling inequality). Let A, B be den-
sity functions on a finite abelian group G. For even integers
k € N we have

1A% B =1]lx < |[Ax A= 1]/*[B+B - 1],/

So, it suffices to show that both |4 x A — 1||; < 2¢ and
|IBx B —1||x < 2¢; without loss of generality let us consider
A. We argue that the near-uniformity of A x A follows from
an upper bound on ||AxA||x (with &’ := [k/e]). This follows
by combining two simple claims.

Proposition II.13 (Positive correlation for spectrally positive
functions — restatement of Corollary V.5). Let G be a finite
abelian group, and let f1, fa,..., ft be some real-valued
functions on G which are “spectrally positive.” That is, each of
the Fourier coefficients f;(«) is real and non-negative. Then,
for uniformly random x € G,

Elfi(2)fo() - -- fi(2)] = B[/ (@) E[fo(2)] - - - E[fe(2)] = 0.

Proposition I1.14 (Odd moments — reformulation of Proposi-
tion V.7). Let Z be a real-valued random variable. We use the
notation ||Z|x == E [|Z\k]1/k. Suppose Z has non-negative
odd moments: that is, E[Z'] > 0 for all odd integers t € N.
If |1+ Z||x < 1+ ¢ for some integer k' and some € € [0, ],
then || Z ||, < 2¢ for any even integer k < ek'.

Our density function (A x A)(x) is indeed spectrally positive,
and so is its centering, F' := Ax A — 1. From this we see that
A % A has non-negative odd central moments:

E((Ax A)(z)—1)" = F(z)! >0

for all odd t € N. Since we have assumed the upper bound
|Ax Allgr < 1+ €, we obtain the desired two-sided bound
[|[AxA—1]| < 2e. This proves the first claim. For the second
claim, we can write

(AxB,C)=(1,C)+{(A«xB—-1,0)=1+(A*xB—1,C),
and use a Holder inequality to estimate
[(Ax B = 1,C)[ < [[A* B = 1 [|C[l1+ 2+

1-1/k
< || AxB=1||Cl|Fc)
= A% B —1||y||C|| 1Lk
<2|A* B —1|. O

We remark that it is always possible, for generic density
functions D, to infer some kind of bound on ||D — 1|
from an upper bound ||D||; < 1+ e. However, this generic
bound degrades rapidly as k increases: consider, for example,
a density function which is uniform over some subset of G of
size (1 — ¢)|G|. In this case we have

1

1Dl < [1Dlloe = = ~ 1+¢
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for any k', and yet
1D — 1]l > V%,

So, for our arguments above, it was quite important that there
are no self-convolutions which are shaped in such a way. More
specifically: self-convolutions A x A which have deviations
downwards from 1 must also have deviations upwards from
1 of comparable strength, as measured by the k-norm, for
(roughly speaking) any choice of k. This is what allows us
to efficiently convert our upper bound from Theorem II.8
into a lower bound. It is interesting to contrast this situation
with the discussion surrounding Question A.3 in the appendix.
Specifically, we discuss a formal setting where one can obtain
strong upper-control on the quantity (A x B,C) from the
density-increment method, but it is impossible to obtain any
nontrivial lower bound (A x B,C) > 0.

A review of all the steps. We recall that, as a result of the
combination of all of our observations, one can infer from
the starting assumption (A * B,C) <1 — Q(1) that either A
or B must have a density increment onto some large affine
subspace V. Now that we have seen everything needed for
this, we offer the following summary listing all the steps in
one place.

o Infer by Holder that || A B — 1| > Q(1), for k > d, as
witnessed by C.

o Argue that k-norm distance to uniform is maximized by
considering self-convolutions:
|AxB—1||, < [|Ax A—1||}/?|B+B—1||}/*. Conclude
that either ||[AxA—1|[x > Q(1) or ||BxB—1||x > 2(1);
Suppose ||[Ax A —1]|x > Q(1).

o Argue by spectral positivity that the presence of devia-
tions of A x A downwards from 1 entails the presence
of deviations upwards from 1 of comparable strength.
More concretely: argue that (upon increasing k slightly)
we have ||[Ax A|lx > 1+ Q(1).

e Use sifting to find a convolution A" x A’ witnessing
Il.fll«,0ar) = 1, where

Fi=1AxA>1+0Q(1).

e Use Sanders’ invariance lemma (which is itself powered
by the Croot-Sisask lemma and Chang’s inequality) to
deduce that || f|| | o(asre) = 1.

 Conclude that (V,Ax A) > 1+ Q(1) for some V.

o Conclude that (V' A) > 14+ Q(1) for some V' =V +a.

Let us now outline our plan for the remainder of the pa-
per.

In Section II-D, we discuss the well-known density-increment
framework and describe how it can be used to find a large
subset A’ C A which is spread relative to its span. We use this
to complete the proof our main result for finite field setting:
the structural lemma, Lemma 1.14.

In the middle part of the paper, we develop our main tools
used to prove Theorem II.8 and Theorem II.11: “sifting”

and “spectral positivity,” respectively. Both tools apply to
general finite abelian groups G. We also establish some “local”
variants of these techniques in preparation for later when we
will consider subsets A C 7Z, as well as subsets of cyclic
groups.

o In Section III, we go over some definitions and conven-
tions related to normalization, convolutions, and Fourier
analysis.

e In Section IV, we prove the “sifting lemma”
(Lemma IV.4) and use is to finish the proof of
Theorem II1.8.

« In Section V, we develop the simple tools needed to prove
Theorem II.11. These include various k-norm inequalities
for convolutions and self-convolutions, the latter of which
relies on the notion of spectral positivity.

In the final part of the paper, we consider the setting A C
[N] C Z.

e In Section VI, we give an overview of our plan to
establish the existence of many 3-progressions in the
integer case, discussing what changes must be made to
our approach which handles the finite field case. Most
notably, we consider some potential replacements for the
notion of “spreadness”, where some kind of approximate
subgroup, such as a generalized arithmetic progression
of bounded rank or a Bohr set of bounded rank, instead
plays the role of the subspace of bounded codimension.

e In Section VII, we go over some definitions and basic
properties related to generalized progressions, Bohr sets,
and Freiman homomorphisms. We also introduce a po-
tentially new device related to the notion of a Freiman
homomorphism which we call a “safe” set.

o In Section VIII, we complete our proof that dense sets
A C [N] have many 3-progressions, which relies on tools
including sifting, spectral positivity, safe sets, as well as
a translation-invariance lemma which is due to Schoen
and Sisask.

D. The density-increment framework: completing the proof of
Lemma I.14

In this section we prove our main result for the finite field
setting by combining Theorem II.8§ and Theorem II.11 with
the well-known density-increment approach.

Let us argue that spreadness is a property that is easy to obtain.
Before we begin, we discuss the notion of relative spreadness.
For a set A C IE‘Z contained within some linear subspace V'
of codimension s, let us say that A is spread relative to V if,
upon embedding

ACV =F%

the set is spread in the sense of Definition II.1. Additionally,
suppose that A is contained in some affine subspace V’, which
can be uniquely described as V' = V + 6 for some linear
subspace V and some § € V. Let us say that A is spread
relative to V’ if A — 6 is spread relative to V.
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Now, given a set A C ]Fg of density at least 274 we can
find a large set A’ which is spread (relative to the ambient
space Span™(A’)) by the following simple greedy algorithm.
Let Ag := A. We proceed to describe a nested sequence of
subsets A; C A;_1; let V; = Span®(A;). If the current set A;
is not (14, ) spread (relative to its container V;), then there
must be an affine subspace V' C V;, which has codimension
at most r inside Vj;, such that

|[A; N V'| |Ai]
V'] Vil
We then pass to the subset A, := A; N V’. Since we begin
with a set with density 6y > 27¢, and the density of A; in V;

increases by at least a factor (1 4 €) on every iteration, we
must have density

> (1+¢)

6> (1+e)-274

after ¢ iterations. However, density cannot exceed 1 at any
point. Thus, in the case of € € [0,1], this process must ter-
minate within some number ¢ < d/e iterations; by definition,
this means that the final set A; is (1 + €, 7)-spread inside its
own span. To summarize, by this simple argument, we have
proved the following.

Proposition IL15. Let ¢ € [0,1]. Suppose A C ) has size
|A| > 2’d|FZ|. Then, for some linear subspace V. C Fy of
codimension s < rd/e, and some shift 6 € VL, the subset
A" = AN (V + 0) satisfies the following:
D 51 =
2) The set A'—0 C V is (1+¢,r)-spread inside V = Fy~*
in the sense of Definition II.1.

and

We remark that it is somewhat more common to frame
the structure vs. pseudorandomness approach as a sort of
“branching process”, where at each step, our current set is
either pseudorandom and therefore (possibly by a lengthy
argument) satisfactory, or we find a density increment and
then repeat this argument recursively. Inspired by [BK12] and
[ALWZ20], we find it clarifying to insist that we do all of our
density-incrementing up front and then argue that the resulting
(spread) set must be satisfactory. Ultimately, though, there
does not seem to be a tangible advantage arising from either
viewpoint.

Next, we argue that spreadness of A and B implies near-
uniformity of A x B (simply by combining Theorem I1.8 with
Theorem II.11).

Proposition II.16 (Near-uniformity from spreadness). We
have the following for some absolute constant ¢ > 1. Suppose
A, BC IF'[; are two sets each of size at least 2_‘1\]1"3 , where
d>1. Letr €N, e€0,1], and k > 1 be such that

r > dkt e
If|AllLr <1+eand ||B|lL, <1+c¢, then
JA% B — 1] < 0).

Proof. We argue by the contrapositive. Let € [0,1], and
suppose that
A% B =1k = 1.

By Theorem II.11, this means that either || AxA|[x > 1+Q(n)
or |B* Bl > 1+ Q(n) for some k' < O(k/n); without
loss of generality suppose ||A x Allxr > 1+ Q(n). We use
Theorem I1.8 (or rather, the more specific Theorem IV.6) to
infer that

JAlLLe = 1+ 00)

for some r < M(n) - d*k*, where M (n) < poly(1/n). Since
7 € [0,1] was arbitrary, the result follows. O

By combining the two claims above we easily obtain our struc-
tural lemma stated in the introduction, Lemma I.14.

Proof of Lemma I.14. We are given a constant €, a parameter
k > 1, and a set |A| > 27¢|F7|. Changing & and d only
slightly, we may assume d > 1 and € < 1/4.

We set a parameter 7 € N to be some constant factor larger
than k*d*/e¢. We invoke Proposition 11.15 and consider the
subset A’ = AN (V 4 6) which is (1 + ¢, r)-spread relative to
its span, V' + 6, an affine subspace with codimension at most
rd/e = O(d°k*/e“™!) in F7. By our choice of r, we may
apply Proposition I1.16. So, the distribution

TA/_Q(JJ) = RA;sz(x)

has k-norm divergence from the uniform distribution on V'
bounded by O(e). Equivalently, r4/(x) has O(e) divergence
1

from the uniform distribution on V' +26. Since ¢ € [0, 5] was

arbitrary the result follows. O

Furthermore, our lower bound for 3-progressions in the fi-
nite field setting also follows as a direct consequence of
Lemma I.14.

Proof of Theorem 1.3 from Lemma I.14. Suppose A C [y
has size |[A| > 277|F7|. If ¢ is even, we clearly have |A|*
solutions to x + y = 2z, since 2z = 0 for all z. So, let us
assume that ¢ is odd. We seek to lower bound the number of
3-progressions in A, which is to say the quantity

> Ra(22).

z€A
Our plan is to invoke Lemma [.14, withe = 1/4 and k = d+1,
to obtain a nice subset A’, and then we will count only the
solutions to x +y = 2z with x,y, 2 € A’, and ignore the rest.
For the sake of clarity let us write Span™(A) = V + 6 where
V' is a linear subspace, and consider instead the translated set
B := A’ — 0 C V, noting that translating an entire set does
not change the number of solutions to x +y = 2z with z,y, 2
in the set.

Lemma .14 tells us that the distribution 75 (x) has k-norm
divergence at most 1/4 from the uniform distribution on V.
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This in particular means that the number of points z € V
where
() < 5o
rp(x

T
is at most 27%|V|. Now using the fact that ¢ is odd, we note
that the dilation map z — 2z is a permutation of V, and so

1 27

> re(22) > (IB]—27HV]) AV Z
z€B

where we have used that fact that |B| > 27¢|V| and that
k = d + 1. Overall, we see that

Z Ra(22) > Z Rp(2z)
z€EA 2€B
> 2—O(d)|B|2

_O(a5 14
>q O(d°k )|FZ|2

—_ 9 7
= q Oy, m

III. PRELIMINARIES

A. Densities and normalization

Definition IIL.1. For an arbitrary finite set ), a density
Sfunction on § is simply a non-negative function D : Q — Rxg
normalized so that

z]]EEQ D(I) =1

e Let A C Q) be a subset of size |A| = 4|Q2|. Abusing
notation, we also write

Alr) = 2@ _ {1/6 forz € A

) 0 otherwise

to denote the (re-normalized) indicator function of A.
Under this normalization, A(x) is a density function.

« For any two functions f,g: Q) — R we define (f, g) :=
E.cq f(x)g(x). For any set A we have the probabilistic
interpretation

(4,9) = E Alz)g(z) = E g(a).
We can also apply this more generally to an arbitrary
density function B. Let b ~ B denote a random variable
in ) whose probability distribution is proportional to B.
Then (B, g) has the interpretation

(B,g)= E Blz)g(z) = E g(b).

b~B
Occasionally it will be useful to allow more generally
for complex-valued functions f, g (which can appear e.g.
during some intermediate calculations involving Fourier
expansions of real-valued functions, even if the resulting
quantity must be also real). In this case we insist on the
convention

(f.9) = E T@gx)

941

so that at least when B(z) is real-valued and g(zx) is
complex-valued we still have

(B,g) = E B(x)g(x) =

e For k > 1, we use the notation

1/k
I = (&, lf@1)

LE_9(b)-

and

1£llo = max |f(2)]-

o It is a consequence of Jensen’s inequality that for 1 <
k <k’ and any function f we have

I F1le < Il fller
B. Convolutions

o We specialize the finite set ) from above to be a finite
abelian group G. Given two functions f,g: G — R, we
define their convolution with the following normalization:

(f*g)(x) = ylgcf(y)g(x - )
E f(z—y)g(y)

yeG
ST fw)ele):

y,2€G
y+z=x

1
G|
« For a density function B, we can interpret B * g as

(Bxg)(z):= E By)gl—y)= E g -b).

o For two real-valued function f,g, we define the cross-
correlation f % g as the convolution of f(—x) with g:

(fxg)(z) = yIEEG f(=y)g(z —y) = ygcf(y)g(w +9),
and we have
(Bxg)(z) = E g(z+b).

o If A, B are densities corresponding to (independent)
random variables a,b, then as a consequence of our
normalization conventions, A x B is again a density.
Indeed, it is the density corresponding to the random
variable ¢ + b € G. Similarly, A x B is the density
corresponding to the random variable b — a € G.

o We note the identity (f x g, h) = (f, g x h).

C. Fourier analysis on finite abelian groups

e Let {eq(-) : a € G} denote the set of characters of the
finite abelian group G. Each character is a function from
G to the set of complex numbers of modulus 1. The
product of two characters is again a character: For «, 5 €
G, eq - eg = eqtp. Beyond this, the main important
properties of the characters (for the development of the
Fourier expansion) are

(i) orthogonality: (en,es) = Egeqea(z)eg(z) =
Eseq ea(—2)es(z) = L(a = B), and
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(i) symmetry: e, () = e, ().

In the case that the group G is presented explicitly as
G = Zn, XZn, %+ - - XLy, we can consider the following
concrete description:

T

eo(z) :=exp | 2m: Z %

=t Y
e For a set A C G, we define the fourier coefficients
A = (A = E .
(@) == (4,ea) = E, eala)

(Ae_a) = (A eq) = A(a).
G — R, we define the fourier

« Note that A\(—a) =
o For a function f :
coefficients

fla) = (f.eq) = B SW)ealy).

o We can express any function by its fourier expansion

=Y Fla)eal(~

=
Proof
5 (2 Wea)) cal-2) = S E f)ealvlea )
: 3 ) Beyfaden(-o)
S ity = o)
_ o),

o We have the following fourier-analytic identities for real-
valued functions A(x), B(z), f(z). In general they can all
be verified, with no creativity required, by the following
process: express any function appearing by its Fourier
expansion, expand any products of sums appearing into a
sum of products, and then use the identity E,cq eq(z) =
I(a = 0) to evaluate any expectations

D (A, f) = ¥, Al=a)f(a) = 32, A(@) f(-a)
2) (4 B)(a) = 2o Ala)Bla)eqa (1)

3) (AxB)(z) =3, A(=a)B()ea(—x)

4) (AxA)(z) =3, |A(e)[ea(—2)

5) Al = (A, 4) =3, Iil(Oé)l2

S lA(Q))]

IV. PROOF OF THEOREM I1.8, AND SIFTING

6) [[AxAZ =

A. Sifting lemma

It will be convenient to set aside the following generic argu-
ment.

Proposition I'V.1 (Weighted pigeonhole principle, or “first-mo-

ment method”). Fix some nonnegative numbers g1, gs, . .. Gm
and hy, ha, ... hy,, with ), h; > 0. Let
0= 2221 gi
27;1 hi

and "
DI
m =1
(i) There exists a choice of j € [m| with %J < 7 (and not

of the form % ).
(i) Furthermore, there exists a choice of j with both

g
h*; <2 and h; > u(h)
(iii) More generally, suppose that H, ™ > 0 are such that

> hi >TZh

i:h;>H

Then there is a choice of j with both

% < 2 and h; > H.
Proof. The degenerate case 7 = 0 is easy to handle: we simply
pick the largest value h;. So suppose n # 0 and consider
the first claim. We discard any indices ¢ where both g; =
hi = 0, noting that this does not change the value of . g; or
>, hi. Consider the equality ) . g; = 1), h;. If the desired
conclusion does not hold, we have g; > nh; for all ¢, and so
>:(gi —nh;) > 0, a contradiction. For the second claim, we
apply the first claim to the modified sequence

hg = hi . ]l(hl Z ,u/2) .

For the final claim, we apply the first claim to the modified

sequence
B! = h; - U(h; > H). O

In preparation to make some combinatorial arguments we
briefly switch to the counting measure. This also allows us
to also handle finite subsets A of infinite groups G, noting
that summations such as ) _. Ra(z) are sensible because
R 4 is finitely supported.

Lemma IV.2 (Sifting lemma — counting formulation). Con-
sider

e a finite subset A of an abelian group G,
e a function f: G — R, and
e an integer k > 2.

There is a subset A’ C A with

,|2 Z fla—b) <2-

a,be A’

> Ba()*f(x)
ZmRA(‘r)k

and

Specifically, A’ is of the form
Al(s):=AN(A+s1)N--N(A+sk_1)

for some s = (51,59, -+ ,5,_1) € GFL.
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Proof. For s € GF~1, et

Al(s):=AN(A+s1)N(A+s2)N--N(A+ sk_1).

We wish to understand the quantity

Za,beA’(s) fla—10)
|A’(s)[?

for various choices of s. Define

Y. fla-b)

a,beA’(s)

and

h(s) = |A'(s)[*.
We would like to apply the weighted pigeonhole principle to
find a suitable choice of s, and so we need to compute ) _ g(s)
and ) _h(s). Before we start the computation we point out
ahead-of-time the following combinatorial identities:

Ry(a—b)=|AN(A+a-b)=[(A-a)n(A=-D)
=> Ta_a(t)Las(t)
teG
= Z Tage(a)Lape(b).
teG
We have
D Ra@ @)= > Rala=b)""fla=0)
T a,be A
k—1
= Z <Z ]1A+t ]1A+t b)> f(a - b)
a,be A t
k—1 k—1
= > | IT1ass @) | [T 1ass,®) | fa=0b)
a,be A j=1 Jj=1

2 (]1 ;;;(AH].)(a)) (lm;v;;(Aﬂj)(b)) fla—1)

a,be A
814...8k—1

= >, > fla-b

S15.-35k—1 a,bEA’(s)

=> g(s)

A special case of this same calculation (with f = 1) also gives
YoRa@)F =) h(s)=) |A(s)
Thus we have
D SRVIC D Y 01 (3]
> h(s) >, R(x)*

We remark that in the case that G is finite and A is a
dense subset of size |A| = J|G|, we can obtain a quite
satisfactory conclusion already by applying part (ii) of the

weighted pigeonhole principle. Indeed, for uniformly random
s € G*~1, we have average size

E|4'(s)P = Eh(s)

1 _
=[Gt ZRA(x)k

1
|G|k 2
52k|G|2

> 52k|G|2

E R} ()"
(Ax A)(z)*

However, we consider the following argument which is better
in general. We wish to determine a value M which is as large
as possible and also satisfies
1 /
>3 Z |A(s

>

s:|A(s)| =M

|A'(s)

For any choice of M we have

Y AP <M Z |A'(s)

s:|A(s)|I<M

=M- Z Z Lays, (@) - Lats,(a) - Lays, ,(a)

s a€A
=M - Z Z ]]-Afa(sl) . ILAfa(SQ) e :H-Afa(skrfl)
a€A s

=M -|A~.

This shows that we may take
Yol SAGE S, R @)
AV T AV 1
We conclude by part (iii) of the weighted pigeonhole principle.
O

Remark IV.3. We note that the combinatorial argument above

which shows that
= Z Z Rf,(s)(a:)f(sc)

SRy@) @) =>" > fla—b)

s a,beA’(s)
is in fact valid for any function f. This more plainly means
that we have the identity
k _ —
= Z Ry (x)
S

for the k-th power of R. Given this, we can summarize the
remaining points of the argument as follows.

o Forany f, we can interpret the sum . R,
in two ways: firstly as

Z (Z Ri/(s) (@f(@)

but  also as Y, (ZS Ry (90)) f(z) =
> Ra(2)* f(x).

(S)(x)f(x)
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o For the particular case [ = 1, we may further interpret and

> By (@) = A (s)]%

e If we have a reasonable bound on the size of G|

Al

5l Ax Al > L - 6~

1 1
= 3

{s : |A(s")] # 0}, we can already infer a reasonable

bound on the median value of |A’(s)|?.

One can easily derive a formulation of the extended Pre-

o We also have the identity 3 |A'(s)| = |A|*, which is BSG Lemma for the dense setting which corresponds e.g.
relevant for obtaining a better estimate for the median o either part of Proposition A.8. We consider the following

value of |A’(s)|>.

formulation which is tailored specifically to our intended
application.

Proof of the extended Pre-BSG Lemma (Lemma A.12). We Corollary IV.5 (Sifting a robust witness). Suppose that A C G
apply the sifting lemma straightforwardly to the sub-level set ¢ gize |A| > 274G, and

indicator
@) =1(R3@) < c- k7T -14])
where o
>u Ra(2)
|A[F+T

We check that

ZRE(iv)kf(x) <tk \A|k_1 ZRZ

so indeed

¥, i@ @) _ Y, R @t @)

S.Ra@k o k[AFL
We also have

|AI‘ 2 Zz RZ(I)k 1 K"A|k+1 1

1. =
2 |AF 2 |A|F 2

We proceed to state a density formulation of the sifting lemma
for subsets A C G of a finite groups G with of |A| = 46|G].

‘We use the notation

o= (i)

to denote the unique density function proportional to D*. We

also point out the translation

ZwEG RA k ‘A|k Z A*A

k k
aF T Iok &
Ak
— e B4« A) )"
= 35 1C - A x Al

i =1l.5. 4. O

|A*x Al >1+e¢
for some k > 1 and € > 0. Consider
S:={zxeG: (AxA) <1+¢/2}.
Let € = min{1,e}. There is a subset A" C A with
() (A'x A 1g) <

and

A 27O(dkR) . O(d/)  when e < 1/2
|G| = | 2-©(dk) when ¢ > 1/2.

Proof. Apply the sifting lemma with f := 1g and
;) [k+21g(32/e)/e] when e < 1/2
[k + 20] when ¢ > 1/2. O

The point of the quantity £ = min{1, e} is that for all € > 0,
A > 1 we have

(”i)(l—;) L+ 55

So A’ x A’ above is a robust witness to Ax A > 1+¢/4 with
some room to spare: for

f=1LAxA>1+4¢/2)
we have

(A% Al A x A) > ( ) A AL

Lemma IV.4 (Sifting lemma — density formulation). Consider

e aset AC G of size |A| =
e a function f: G — Rx, and
o an integer k > 2.

There is a subset A’ C A with

(A% A fy<2. <(A*A)’\k,f>

Authorized licensed use limited to: University of lllinois.

Theorem IV.6. Let A C F be a set of size |A| > 27d|IFg ,
where d > 1. Suppose that

JAx Al > 1+
for some k > 1. We have

13
Al > 1+
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for some

 [o(atkt)
"I Ok e 1 dt1g(1/6)4 %)

In either case we also have the related conclusion

when € > 1/2
when e < 1/2.

max
WCF?
dim(W)<r

where Py A := W« A.

|PwA =13 > 7

We note that the latter conclusion here is (qualitatively)
stronger for small e. Indeed, we have || Py A3 = 1+|| Py A—
1|2, and in light of the alternative characterization

Al Ly = max [P Alloo,
WCF

a
dim(W)<r

we have the lower bound

g &
Al Lr > [[PwAlloc > |PwAl2 > /1 + 1~ 1+ 3

for some small subspace W.

Proof. In the case € < 3, we replace k by max{k,1g(1/¢)/c}
for convenience, noting that ||A x Al|x does not decrease as a
result. We consider

F=1(AxA>1+5)

and (using Corollary TV.5) we sift a robust witness A’ x A’
with B

g

(x>0 o
and density |A’|/|G| > 279(@), We apply Sanders’ invariance
lemma (Lemma A.15) to obtain a linear subspace V' with

€ €
2l 53

and codimension r < O(d*k*/2?). We conclude that

(Vx A% A f) > (A% A f) —

(Vs A% A Ak A) > (1+§) (VA% A f)

(9 (-3)

€

>14-.

> 1+ 1
This gives

V', Ax A) > 1 +Z
for some affine subspace V' and
(V! A) 21+ 2
for some V" = V' + a. This proves the first claim.
To prove the latter claim, we depart from the argument above
when we reach
(Ve A % A Ax A) > 1+ Z.
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It is pleasant, although not ultimately crucial, to interpret
this quantity Fourier-analytically. Letting W = V', we can
express

(Vs A %A AxA)

> A ()| A(a)?
acW

1+ Y [A(a

acW
a#0

)P A,

and so we have

> A (@)PA@P > <.
acW
a#0

Using the trivial bound \A\’(aﬂ <1 we infer

> 1At

aceW
a#0

|2>*

and indeed this quantity is the same as ||Py A — 1]|3. O

B. Sifting for general convolutions

We now address the problem of obtaining [|A[|L, > 1+ §
from an assumption ||A||.x > 1+ . To begin with we have
by definition that (A, BxC) > 1+ ¢ for some large sets
|B|,|C| > 27%|G|. We argue that

(A, B+C) = (A% B,C) < 2"/ | A Bl

for any choice of k’. Choosing k' = 41g(e)k/Z gives

|Ax B =271 +¢) > (14) (1+e¢) z1+g.

At this point we argue roughly as before — we just need a vari-
ant of the sifting lemma for general convolutions AxB.

Lemma IV.7 (Sifting general convolutions). Consider

e an abelian group G,

e two finite sets A, B C G,

e a function f: G — R>o, and
o an integer k > 2.

There are subsets A’ C A and B’ C B with

S S fa <2 S Fas@ W
B P S S WP
and S R ()
x
A/ > 1. xz “VA,B
I | — 4 |B|k ’
>, B pla)*
N> 1 Z=x ALV /A
EEE IR
Specifically, A" and B’ are of the form
Al(s)==AN(A+s)N--N(A+sk_1),
B'(s):=BN(B+s)N---N(B+sp_1)
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for some s = (51,89, --5p_1) € GFL,

To prove this we will need one more form of the weighted
pigeonhole principle.

Proposition IV.8 (Continuation of Proposition IV.1).
Under the hypotheses of Proposition 1V.1,

(iv) Suppose that I C [m] and 7 > 0 are such that

> hi >72h

iel
Then there is a choice of j wnh both

&Sﬁandjef.
g T

Proof. Consider the modified sequence h) := h;-1(i € I). O

Proof of Lemma IV.7. For s € GF~1, let
Al(s):==ANn(A+s1)N---N(A+ sg_1),
B'(s):=BN(B+s1)N---N(B+sp_1)

Note that

Ry pla—=0)=|AN(B+a-0)
=[(A=a)N(B-b)|
= Ta_a(t)1p_4(t)

teG

= Z Taye(a

teG

a)lpy(D).

We express

ZRZ,B(x)kf(I)
-X 3 (Tt

a€AbeB t

- Z (ﬂﬂf;f (A+Sj)(a)) ’ (]1 f;ll(B+sj)(b)) - fla—0)

acA
beB
s

DY (s

We apply the weighted pigeonhole principle to the ratio

Dy(s)

Py (s)
to find a suitable choice of s. Specifically, we apply variant
(iv) with some index-set of the form

S={s: |A(s)]|> M, and |B'(s)| > Mp}.
For any choice of M4, Mp we can estimate
> o > A$)|B(s)]
s:s¢gS s:s¢S
<MAZ|B |+MBZ|A’

= MA\B\k +MplAl".

k-1
]13+t(b)> fla—1b)

Choosing
Myt 2 ®s(8) 1l Fap@)
A= 7 |B‘k 4 IBlk s
Mp:=1. 2 ®s(5) _ 1, > Ry p(2)"
4 |A|k 4 |A|k
is sufficient to ensure that
1
Z®1(5)25-2¢1(5). O
seS s

The size guarantees here for A’ and B’ have a pleasant
interpretation in the density formulation. Let G be a finite
group and let A C G be a set of size |A| = §|G|. We have
the translation

Y. Ragl@)f A
|§’|f - ||G|k (A*B)(a:)k
=% |[AxB|} - |G|
> 6k .1a].

Lemma IV.9 (Sifting general convolutions — density formula-
tion). Consider

e a finite abelian group G,

e two sets A, B C G of sizes |A| =
e a function f : G — Rx>q, and

o an integer k > 2.

= 55|G).

There are subsets A’ C A and B’ C B with

(A'x B, f) <2-((AxB)"", f)
and

|A/| 1 k k 1 k

Gl =1 0% [[Ax Bl = § - 04,

B’ i

PR N R

Theorem IV.10. Let A C F? be a set of size |A| > 27%|F7|,
where d > 1. Suppose that

[Allx = 14¢
for some k > 1. We have
€
Al > 1+ 5
for some
O(dk™) when € > 1
T =
O(dkT /€% + dk31g(2/€)*/e®)  when ¢ < 1.

Proof. 1t follows from ||A|.x > 1 + ¢ that for p =
41g(e)k/z +1g(2/€)/Z we have ||Ax Bl|, > 1+ § for some
set of size |B| > 27¥|F7|. From here we argue similarly as
in the proof of Theorem IV.6. This time we suppress some
quantitative details. Let f := 1(AxB >1+¢/4). We sift
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AxB to find a convolution A’xB’ witnessing (A’ x B, f) =~ 1
with [A’| > 279UP)|F?| and |B'| > 2-O*P)|F7|. We apply
Sanders’ invariance lemma to find a linear subspace V' with
(Vx A"« B, f) ~ 1 and codimension r < O(dp-k3p3/&?) =
O(dk?p* /£%). We conclude that (V’, A x B) > 1+ £ for some
translate V' of V' and (V”,A) > 1 + £ for some translate
V"=V'+0b. O

C. Local variants

We proceed to give some local variants of the statements above
which will be needed for setting A C [N] C Z.

Lemma IV.11 (Sifting lemma — a local variant). Consider

e a finite abelian group G,

o aset ACG.

o some additional subsets B,C C G,
e a function f: G — R, and

e an integer k > 1.

There is some choice of s = (s1,52,...,5:) € GF giving rise
to subsets B' C B and C' C C of the form

o« B
o«

=BN(A—-s1)N(A—s2)N---
=CNn(s1—A)N(s2—A)N---

N (A — s) and
N (s — A)

which satisfy

S> o+ <2

> Rp.o(x)Ry ()" f(x)

|B/ |C/| beB’ ceC’ Ew RB,C(.’E)RZ(I')k
and S, Ry () R (2)*
/ ’ 1 B, T ) v 4 (T
BlC'| > L o :

Proof. We express

to find an appropriate choice of s. O

We need the following notation.
Definition IV.12 (Weighted k-(semi)norm). For a density D
on an arbitrary finite set ), and k > 1, we use the notation

£ln = (D1 = (B 1)) "

Corollary IV.13 (Sifting a local robust witness). Consider

e a finite abelian group G of size N,

o a subset A C G of size |A| = 2-4N,

o some additional subsets B,C C G, and
. ]{,‘21,86 [0,1]

Suppose that
||A*A||k’3*c 2 1+ 26,

and define the sublevel-set indicator function
f(@)=1(AxA)(z) <1+e).

For any integer k' > k, there are subsets B' C B and C' C C
with

k/
1 ,
<B’*O’,f>s2-( “) <2.27K/2

1+ 2¢
and
Ll —
[BllC| ~ 2
In particular,
B ICT Ly s
Bl |C] ~ 2

Proof. We straightforwardly apply Lemma IV.11 — it remains

— (0 _ - k
ZRB’C(x)RA(x) N Z Z Ralb+e) - flb+e) to interpret the result. We have
zeG beB ceC
=3 > An(A+b+o)f - fb+e) (B, f) <2 o Rp,c(@) Ry ()" f(2)
bEB cEC T > . Bpo(z)Ry ()"
=S N Aa-vn@A+olt fb+e) _ B (BxCO)(@)(AxA)(@)" f(x)
beB ceC . o < C’,( *A)k'>
E, (BxC
->> (Z nA_b<t>1A+c<t>> o+ <2 B (BrO@ 0+
beEBceC \ ¢ (14 2e)k
k _y 1+e\"
=y > (Z ﬂAt(bﬂtA(c)) flb+c) U2
beB ceC t
and
k k )
= Tas,(b) Lg,—a(e) | f(b+0) 1B'|C"| > —— S " Rp o(z)R5 ()
222 |1l 11 BN 2 g X Reclo) R (@)
=Y (s) L BlC AP
; =g 1 T oF (BxC(AxA))
We then apply variant (ii) of the weighted pigeonhole principle 1 |B||C] | A|2’“/
to the ratio B (s) = 2|G|F Gl G| ’ |GIF
fAs /
B, (s) 3-27%B||Cl,
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where we have used that
(BxC,(Ax A ) = | A% Al puc 2 A% Allf poo 2 1

by assumption. [

V. SPECTRAL POSITIVITY AND k-NORM INEQUALITIES
FOR CONVOLUTIONS

A. A decoupling inequality for convolutions

Proposition V.1 (Fourier interpretation of k-norms). For any
Sunction f: G — R and any even k € N,

k
> I1 Feew.

(al,ag,“.,ak)eGk Jj=1
artogt-Fap=0

171k = E_fla) =

~ k
Proof. Expand the expression (Za f (a)ea(—x)) and take
the expectation. O

Lemma V.2 (Decoupling inequality). Let A, B be density
functions on a finite abelian group G. For even integers k € N
we have

1/2 1/2
1/%1B*B—1|,/%.

1A+ B 1] < [AxA—
In particular,
JAx A =1 < [Ax A - 1]
Proof. We note that for any density A, Ax1 =1xA = 1.
So, the claimed inequality is the same as
[(A=1) % (B -1l
1/2 1/2
< (A=D1 *(A-DIZIB - 1) = (B - 1),/

We prove more generally that for any functions f, g,

1F % gl < N1f* FI21lg * gl

By re-scaling, it suffices® to prove this for ||f % f||x = [|g *
gllkx = 1. We have

E(f*9)(

oo
>

a1,02,...,0F
ajtoag+-4oap=0

IN

k R k
Hfaz Haaz

k
1 ~ 1 -
2 (2 [T 1feor+ 11 |g<az->|2>
P i=1 i=1
1 o1 k
= STl + 5 ool
=1. O

%0ne can check the degenerate case ||f * f||x = O separately. This case
occurs only when f = 0, which can be seen by the calculation || f f||2

[FESIEEDSNITCIE

We remark that this inequality has appeared before in other
works. For example, it is a special case of Lemma 13 in
[Shk17].

B. Spectral Positivity

Definition V.3. Suppose [ : G — R is a function such that
f(«) is real and nonnegative for all o € G. We say that such
functions are “spectrally positive”, and we use the notation

f=0
to denote the fact that f is such a function.
We note that any self-convolution f % f is spectrally posi-

tive:
=Y |f(a)]eal—2) = 0,

acG

(f> )=

and conversely that any spectrally positive function f (x) =
Yo f(@)eq(—x) can be expressed as a self-convolution g * g,

where _
=3 F@ea(-2).

Proposition V4. The set {f : f = 0} enjoys the following
two closure properties.

o (Closure under multiplication.) Suppose f,qg = 0. Then
h(z) := f(z) - g(z) = 0.

o (Closure under centering.) Suppose f = 0, and that D is
a symmetric’ density function. Then

h(z) := f(z) — (D = f)(z) = 0.
In particular, by letting D = 1,

f—E[f] = 0.

Proof. For the first claim, simply express f and g by their
Fourier expansions and expand the product:

> F(B)es(—a) Z 9(8
E

6@/

=3 X 7aw) | cal—z) = 0.

a  \B+p'=a

For the second claim we first note that since D is a density,
for any o we have

D(e)l = | E eal@)| < E_leal@)| = 1;

in fact, this applies more generally to any function D with
|D|l1 < 1. Then we compute

f@)= (D= f)@)=>_ fla)1-D

"By this we mean that D(—z) = D(x).

(@))ea(-z) = 0,
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where we have used that D(—x) = D(z) and so D has Fourier
coefficients D(«) € R. O

Corollary V.5 (Positive correlation for spectrally positive
functions). Suppose

fi,fo,. . fx =0

are some spectrally positive functions on G. Then
Elfifo-- ful = E[fi] E[f2] - - E[fx]-

Proof. In light of the closure property for multiplication, it
suffices to verify this for just two functions. Let f,g > O.
Write g = (g — E[g]) + E[g], and express

(f:9) = (f,9 — Elg]) + E[f] - E[g].

We note that the function F(x) := f(z) - (g(z) — Elg]) is

spectrally positive. In particular,

(f.g —Elg]) = E[F] = F(0) > 0. 0

Corollary V.6 (Odd central moments). Consider a spectrally
positive density D on G. The odd central moments of D are
non-negative. That is,

E (D(z) - DE>0

for all odd integers k € N (and hence for all k € N).

Proof. F(z) = D(z) — 1 »= 0. Also, F(z)*@ =
F(z)F(z)--- F(x) * 0; in particular E[F'] > 0. Alternatively,
consider this as a special case of Corollary V.5. O

The utility of this is due to the following.

Proposition V.7. For a real-valued random variable X and
k > 1, we use the notation
1/k
X1 == (BIXF) .
Suppose X is such that

e E(X —1)* >0 forall odd k €N, and
o | X1, = ¢ for some even ko > 2 and some € € [0, 1].

Then, for any integer k' > 2kg /e,
1 Xl =477 (142) 2 1+ 2.
We note that one can infer a statement of this sort already from
the following observation: for any odd k > ko we have
E(X - 1)) =E|(X = 1)4 [ —E|(X —1)_[* > 0
and
EIX - 1F = E|(X — 1)4[* +E|(X - 1)_[F > &,

so it follows that

k

19
E|(X 1) > 5

From here one can get a reasonable lower bound on some
I X||x e.g. by a basic pruning argument analogous to the proof
of the Paley—Zygmund inequality. However, to obtain nicer
constants we give a somewhat different proof which can be
found in the appendix (see Appendix E).

C. Local variants

We proceed to give some local variants of the statements above
which will be needed for setting A C [N] C Z. We recall the
notation from Definition IV.12,

1k

/
17l = (D17 = (E 1))

Lemma V.8 (Local decoupling inequality). Let G be a finite
abelian group, and suppose D is a spectrally-positive density
Sunction on G. Let (TyD)(x) := D(x — 0) be some translate
of D. For arbitrary real-valued functions f,g on G, and for
all even k € N, we have

”f*g”i,TgD < ||f*f|

In particular, if A is a density function then

[A*A—1llx7,p < [[Ax A= 1|x,D.

kollg*glkp-

Proof. We have

k
(TyD,(f+9)*) =>_De,(0) > [[FB)aB)

Y Bi1+pB2++Br=y1=1

k
<> > DmIIIF®)lEe)

Y B1+B2t+Br=y =1

<2 >

Y BrtPatetBr=r i=1
n 1

= 7<D7(f*f)k>+ 7<D7(g*g)k>
2 2n

for any choice of 77 > 0. Optimizing over 7, we conclude that

(ToD. (f * 9)*) < \/(D.(Fx )/ (D.(gx 9)¥). O

Lemma V.9 (Lower bounds from upper bounds — local
variant). If

|AxA—1|xp>¢

for some ¢ € [0, %] and spectrally-positive density D, then
lAx Ao =1+ =

for some k' < O(k/e).

Proof. Let k be an integer. We note that

D-(AxA-1)*"=D - ((A-1)x(A-1))*
is a spectrally-positive function on G. In particular,
E (A A)@)—1)* = E D@)(A*A)(x)~1)* 20,

So, we may apply Proposition V.7 to the random variable X :=
(Ax A)(x) where x ~ D. O
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VI. FINDING A 3-PROGRESSION IN A C [N] - AN
OVERVIEW

We describe how to modify our approach above to address the
3-progression problem in the setting A C [N] C Z. We recall
our result regarding this problem.

Theorem VI.1 (Theorem 1.2, restated). Suppose A C [N] has
density p > 2=% Then the number of triples (z,y,z) € A3
with x +y = 2z is at least

9-0(d*?) | N2

We review the well-known approximate equivalence of the 3-
progression problem in the setting A C [N] with the same
problem in the setting A C Zy. One may embed A C [N]
naturally inside Zy, say for some N’ =~ 3N, so that (i) the
density of A in its container decreases only slightly and (ii)
we do not obtain any new solutions to

z+y =2z mod N’

which were not present already. The natural reduction in the
other direction is even easier: in this direction, we suffer no
loss in density.

So, it suffices to consider the problem of finding many 3-
progressions in the setting A C Zy, |A| = 27¢N. Ultimately
we will not take quite this approach, but we consider this
setting first as it is more directly comparable with the setting
A CFy. Let us discuss the compact summary of the approach
for Fj; given at the end of Section II-C. All of our steps are,
in fact, more generally applicable to any finite abelian group
G, up until the last point, where we use Sanders’ invariance
lemma to find an increment onto a large subspace. This is
still not a problem: applying a more general form of Sanders’
lemma can readily prove a statement of the following sort.
Suppose A C Zy has noticeably fewer than the expected
number of 3-progressions. In that case, we can obtain a density
increment onto a choice of either (i) some (translate of a) large
Bohr set B of rank at most O(d®), or (ii) some large gener-
alized arithmetic progression P of rank O(d®). The problem
comes when we try to iterate this. Unlike the situation before,
the container-sets B and P are not structurally isomorphic
again to some finite abelian group, so our techniques no longer
apply.® This is not to say that such an approach (i.e., iteratively
seeking density increments onto large approximate subgroups)
does not work, only that we cannot analyze it; indeed, it seems
likely that it should work. To be concrete, we ask the following
technical question.

Question VL.2. Suppose A C B, where B C Zy is a Bohr
set of rank r, and we have local density

Al
— = > 2—d.
2 B| =
8We could still apply them in a literal sense — everything is still a subset
of some finite group G = Zp — but quantitatively our techniques become

trivial because we are constantly comparing to the uniform density function
lonG.

Can it be shown that we must have either (i) at least
27Pol(r) Ly |AJ?

solutions to x +y = 2z with x,y,z € A, or else (ii) a density
increment
|[ANn B'|

|B’|
of A onto some affine Bohr set B' with

> (14 Q1) -

o rank v’ < r + poly(d) and
o size |B'| > 27PN d)|B| 2

Answering this question seems maybe not too far out of
reach, but in this work, we were unsuccessful in developing
sufficiently strong local variants of our techniques that could
address it. A positive answer to this question would surely
give the “right” version of our proof.” Here instead, we will
apply some tricks and cut some corners.

We proceed to discuss the overall structure of the arguments
in the earlier works of Roth and Szemerédi and Heath-Brown
for addressing the 3-progression problem in the integers.
More specifically, we follow the interpretation of these works
given in [Gow(1] and [Gre99]. In what follows, we refer to
the arguments of both works together simply as the ‘“early
approach” (as opposed to the “modern approach” developed
by Bourgain and refined by Sanders, which emphasizes the
use of Bohr sets [Bou99], [Bou08], [San12a]).

In the early approach, one considers an ad hoc passage back
and forth from the setting A C 7Z into various cyclic groups
to facilitate the density increment argument. We outline the
main points.

o We begin with a set A C [N] of size |A| = N which
we are dissatisfied with: it has much fewer than p|A|?
solutions to = + y = 2z with z,y, z € A.

e We consider a sort of “temporary” embedding of A
into some cyclic group Zpy+ where we can do Fourier
analysis. This embedding must be notably more efficient
than the simple one described above. Ultimately, we will
obtain only a small density increment (1 + ) at every
iteration, so we cannot afford to lose a factor 3 repeatedly.
Additionally, we (roughly) need the embedding to be
such that A still has substantially fewer solutions to
z +y = 2z mod N’ than expected, which is in tension
with the previous constraint.

o Given such an embedding, we argue via Fourier analysis
that we may obtain a density increment onto some large
arithmetic progression P C Zpy.

« We must then argue that P can be pulled back to some
“genuine” progression P’ C [N] C Z, so that we
obtain a density increment of A onto P’. This limits the
kind of progressions we can allow in the previous step.

9Moreover, an approach that successfully answers this question would likely
also produce a pleasant analog to our structural result (Lemma 1.14) in the
finite field setting. It is not immediately clear what such an analog should
look like, specifically.
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Finally, we observe that the progression P’ is structurally
isomorphic to the interval [|P’|], which allows us to
iterate the argument.

Let us offer a comment which we find clarifying. There is
an alternative interpretation of this approach where the actual
algorithm is quite simple and natural. The step where we
briefly consider some “virtual” embedding into a cyclic group
can be relegated to the analysis. Let us elaborate. For a set
A C [N] of size |A] = uN, say that a subset A’ C A is
satisfactory if there are roughly at least u|A’|?> solutions to
x +y = 2z with z,y,2z € A’. We can make a conceptual
distinction between the procedure used to find such a subset
and the argument proving that the procedure is successful. In
the context of the above, we note that if we are dissatisfied
with our current subset, the only recourse which is ultimately
available to us is to pass to some restriction A N P onto
a large progression P C 7 where we obtain a density
increment.

Thus, one can give a quite clear description of the algorithm
implicit in the early approach, which need not mention cyclic
groups: While there is a density increment onto some large
progression P C 7 available, take it. Throughout, hold
on to the current container-set P, starting with P = [N],
and measure density relative to it. Once there are no more
increments available: conclude — we have found our candidate
subset A’ C A. From here, it can be considered a separate
matter to argue that A’ is satisfactory: if it is not, we argue
(e.g., by considering a “virtual” embedding into some cyclic
group, if we like) that we could obtain one further increment
— a contradiction.

A natural extension of this simple algorithm is to broaden the
class of allowed container-sets P to include low-rank general-
ized progressions; this is quite analogous to the allowance of
subspaces of codimension larger than one in the setting of Fy'.
This comes morally very close to the algorithm we will use,
and we will also analyze it in much the same way as above: by
making some ad hoc reductions to the setting of finite groups
where our techniques apply. We give a more detailed overview
of our analysis in Section VI-A. For now, we focus on fully
specifying our algorithm.

We will need to consider an algorithm stronger than the one
described above to make up for a specific weakness of our
analysis. Namely, this weakness is related to the last step
in the early approach described above, where we would like
to pull back a progression in a cyclic group to a “genuine”
progression in the integers. This step is already costly for
arithmetic progressions; in the early approach, one obtains a
progression P C [N] no larger than v/N. Indeed, the situation
is only worse for generalized progressions, and it will be
imperative that we somehow avoid such a substantial size
loss.

We will be naturally led to consider the (only mildly) more
general problem of establishing the existence of many 3-
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progressions in a set A C P C 7", where P is some set of the
form P =[]._,[V;] C Z", and again we have density

> 274

=5 >
|P|

and furthermore 7 is assumed to be no larger than d°(1). We
call the set A and its container-set P together a “configu-
ration”. We consider some more liberal implementations of
the density increment framework which would still suffice for
lower bounding the number of 3-progressions in A.

In the broadest sense, whenever we are dissatisfied with A C
P, we would like to establish the existence of some related
configuration A" C P’, possibly lying in a slightly larger-
dimensional space 7", where

« A’ has no more solutions to x + y = 2z than does A,

o the container set P’ is/ still highly structured — in our
setting: of the form [];_,[N/],

o the density of A’ in its container has increased — in our
setting by some constant factor (1 4+ (1)), and

o The size of A’ has not decreased too substantially.

To this end, let us say that A C P is “spread” roughly
when it has no possible “density increments” satisfying the
criteria above (we will settle on a precise formulation shortly).
Then, our procedure for “locating” a satisfactory configuration
A’ C P’ is as follows: while there are any good density in-
crements available, take one of them. Otherwise, our resulting
configuration is spread, and we are left to argue that this forces
it to be satisfactory.

Definition V1.3 (Good increments and spread configurations).
Fix some constants ¢, K € N. Suppose that A C P C 7,
where P is of the form [N1] X [Na] X -+ x [N,], and A has
density
4
Pl

in its container, for some d > 1.

2—d

Let A’ be a subset of A, and let (/j) be a labelling of elements
a € A by points p € P' = [[\_,[N}] C Z"'; that is, ¢ is
some injection ¢ : A — P’

For € > 0, we say that (A',¢) is a (1 + €)-good increment
(or just a “good increment”, suppressing the dependence on
€ in addition to the dependence on c and K) if the following
conditions are satisfied.

1) The labelling ¢ : A’ — Z"" is a Freiman homomorphism
of order 2.
2) We have the density increment
Al

|4 >(1+¢)
> €) —:r.
I 1P|

3) We have bounded dimension growth

r <r4+ Kd°.
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4) We have bounded size loss
lg|A'| > 1g|A| — Kd° — Kr°.

If the configuration A C P has no (1 + €)-good increments,
we say that A is (1 + €)-spread (relative to P).

We see that this quite liberal type of density increment (that
is, one requiring merely a 2-homomorphism) is indeed still
useful for investigation of 3-progressions: if z,y,z € A’
satisfy

$(x) + ¢(y) = 2- d(2) = ¢(2) + ¢(2) (in Z""),

then
r+y=z+2z=2-2(@{nZ").

Thus, the number of 3-progressions does not increase when
we pass from A’ to ¢(A4").

Proposition VI.4 (Passing to a spread configuration). Fix a
choice of constants (c, K, €) quantifying spreadness.

Suppose A C [N] has density at least 2. Then there is a
subset A’ C A and a Freiman 2-homomorphism

¢: A= P'=[Ni] x [No] x --- x [N,] CZ"

such that

o ¢(A') is spread relative to its container P’,
o 7 < O(dtY), and

.gqugN—OQ#ﬂH)

Proof. Let Ay := A and Py := [N]. We consider the
“greedy algorithm” which at each step passes from the current
configuration to some good increment, if one exists. In this
way we produce a sequence of

« configurations A; C P; C Z",
o subsets A, C A; 4, and
« bijections ¢; : A}, — A;

such that in addition, each of the maps ¢; is a 2-
homomorphism. The density of the i-th configuration is at
least

Ail o

> (1 + E)i 2—d Z 26i—d7
|2

and so this algorithm must terminate within n < d/¢ iterations.
We are left with a configuration A,, C P,, which is guaranteed
to be spread. Taking the composition ¢ := ¢, 0¢,_10-- 001
gives a map which is a bijection between A,, and its preimage
¢~ 1(A,) C A, and it is also a 2-homomorphism from the
preimage ¢~1(4,) to Z™.

Since the density never decreases, we can bound 7, simply
by
rp <14n-K(d+1) <O0(d™).
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Since r; < r, for all 7, we can lower-bound the size of A,
simply by
lg|A,| > |A] —n-O(d®+71°)
2 lg |A| _ O(dc2+c+1)

=1gN — O(d +eth). O

With the density-increment framework in place, the task of
proving Theorem I.1 is reduced to the task of proving the
following.

Lemma VLS (Spread configurations have many 3-progres-
sions). For some fixed choice of constants (c, K, €) quantifying
spreadness, the following holds.

Suppose that A C [N1] X [Na] X -+ x [N,] C Z" has density
W relative to its container, and that A is spread relative to its
container. Then there are at least

O Ly |A?
solutions to = +y = 2z with (x,y,z) € A3,

We in fact prove the following more specific formula-
tion.

Lemma VIL6. Suppose A C [N1] X [Ng] x -
has density > 274

x [N,] C Zr

Either the number of triples (x,y,z) € A3 with x +vy = 2z
is at least

T_O(T) iy |A|27

or there is a (1+271%)-good increment (A’, ¢) mapping into
7", specifically with

e 7 <r+0(d®) and
o |A]>r0m .9=0(d?r) . 9—0(d"?) . Al

Given these specific parameters, we obtain Theorem 1.2 by
using essentially the density-increment framework described
above but with some optimizations made to certain de-
tails.

Proof of Theorem 1.2. We begin with a set A C [N] with
density at least 279, We (repeatedly) take any available
(1 + 2719%)-increment specified by a subset which is smaller
than our current set only by a factor =) . 2=0(@") and a
2-homomorphism ¢ into Z" for some dimension 7’ exceeding
the current dimension by only O(d®). After some number
(say n) of such increments, we arrive at some configuration
A, C P, C Z™ for which no further increment is possible,
and indeed, we must have n < O(d). Thus, also we have

e 7, < O(d°) and, noting the asymptotic bound
rplg(rn) < O(d"),
o lg|A,| > Ig|A| —n-O(rylgry) —n - O(d?r,) — n -

O(d'°) > 1g N — O(d*?).
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We apply Lemma VI.6 to the final configuration A,, C P,.
Since we are in the “spread” case, we must find at least

7ﬂ;O(rn) . 2—d . |An|2 > 2—0(d12) ) N2

3-progressions. O

A. Proof overview for Lemma VI.5 and Lemma VI.6

For this overview, let us focus on the one-dimensional case
A C [N], which is sufficient already to illustrate many of the
critical points. Our proof of Lemma VL5 is by contradiction.
We assume that the set A has few 3-progressions (i.e., much
fewer than the “expected” number, roughly |A|?/N), and we
then show that A cannot be spread by exhibiting a density
increment satisfying the four criteria in Definition VI.3: We
obtain a new configuration via a (i) Freiman 2-homomorphism
with (ii) increased density, (iii) bounded dimension growth,
and (iv) bounded size loss.

Our strategy is to make ad hoc reductions to the setting
where A is instead a subset of a finite group G, where our
techniques apply. For example, it follows readily from our
prior arguments that if A C Zy has density p > 27¢, and
the number of 3-progressions in A deviates substantially from
the expected number, then we get a density increment onto
some generalized arithmetic progression P C Zy.

Lemma VL7 (Structure vs. Pseudorandomness in Zpy -
special case of Lemma VIIL.4). Consider A C Zy of size
|A| > 274N.

Suppose that
JA* A= 1], > Q).

Then there exists a (proper) generalized arithmetic progression
P C G, with

e rank at most r SFQ)(k4d4) and
o size |P| > 2704 N

such that
(P, A) > 1+ Q(1).

That is, we get a set P C Zy with density-increment

AN P 4]
2 1+

of the form

pP= {a—l—iq-xi D x; € [Ni]}
i=1

with size |[P| = N1 Ny - -- N, > 27P(dF) |y,

So, to describe our tentative plan in detail: we plan to embed
A C [N] into Zy via the obvious embedding ¢ : © — x
mod N, and then to find a density increment onto some subset
d(A)NP. Welet A’ = ¢~ (p(A)NP) = ANng¢~1(P) C [N]
be the preimage. We then compose with the simple Freiman
homomorphism ¢’ which takes points p € P to their “label”
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(‘/'L.17-’1:27-..,$T) c [Nl} X [NQ] X -+ X [NT} g ZT' (See
Example VIL12). Then, we hope that the pair (A’,¢’ o ¢)
gives us our desired density increment.

There are two distinct issues to address. Firstly, we need to
ensure that upon embedding into Zy, the density ¢(A)
¢(A) does indeed deviate substantially from 1 at sufficiently
many points that we can apply Lemma VI.7. Secondly, we
must ensure that the embedding ¢ : A’ — Zy is a 2-
homomorphism.

Although both issues must be addressed, the first should be
considered less serious, as explained next. By our assumption
that A has few 3-progressions, we have that the number of
representations R4 (22) of 2z is much smaller than |A|?/N for
most points z € A. For simplicity, let us assume the R4(2z)
is very small for all points z € A (and, indeed, it is not hard
to reduce to this case). For z € [N], we have

(@(A) x (A))(¢(x)) = %RM)(M%))
N

AP

We need to avoid the “unlikely” case that identifying each z
with 2+ N results in close approximation Ry (4)(é(7)) ~ %
for all but a very tiny number of points z. One has considerable
flexibility in applying various ad hoc tricks to avoid this case.
For example, one can choose to instead embed into Zy- for
any choice of N’ € [N, (14 d)N] for some small parameter &
— for the sake of discussion, say < 1/100. This gives up a
small amount of density in the short term, but it is acceptable
to do so to satisfy the hypothesis of Lemma V1.7 since, in the
end, we can still obtain an overall increase in density. Another
trick one can consider is first passing to some restriction ANJ

for any reasonably large interval I C [N] with density, say
ANTI/|T] > (1 - 1/100)u.

N

We briefly sketch some details of the specific ad hoc reduction
used here. We assume, at only a negligible-factor loss in the
density, that A is in fact entirely contained within the interval
U :=[20N, N] C [N]. Additionally we assume we are in the
“nice” case where a reasonably large fraction of A lies in the
interval M = (5,4 + 0N): say |[An M| > Q(6) - |A]. If
we are not in the nice case, we note that by using ideas in
Section VII-D we can pass to a restriction of A to some fairly
large interval such that the restriction becomes “nice” (relative
to that interval).'?

The point of these two intervals (the “upper-portion” U and the
“middle slice” M of [IN]) is that they are designed specifically
so that if xz,y € U and z € M then

r+y =2z mod N

10Tn the one-dimensional case, it would follow already from the fact that
A is spread relative to U that A must be “nice”. However, the connection
between density upper-bounds on structured sets to density lower-bounds on
structured sets degrades when we pass to the general case A C [Ni] X
[N2] % - - - X [Ny]. In contrast, the idea of using translation-invariance remains
quantitatively efficient.
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only if
T4y =2z

In particular, we obtain Ry4)(¢(22)) = Ra(22) for all z €
M, so the convolution ¢(A) * ¢(A) is indeed much smaller
than 1 on all the points ¢(2z) € Zy with z € AN M. Since
there are at least (279N such points, we can conclude that,
say,

6(A) * 6(4) ~ 1] > 5

for some k < O(d), as desired. Looking ahead, we note that
in the general case of A C [Ny] X [N3] X - - - x [N,], we intend
to essentially apply this same trick independently in each of
the r coordinates, but with parameter § ~ 1/100r.

Now we discuss the second key issue: can we ensure that the
embedding ¢ : A’ — Zy is in fact a 2-homomorphism? A
notable feature of our approach is that we do not try to ensure
that the embedding ¢ : A — Zy is a 2-homomorphism with
respect to our original set A — this seems difficult to accom-
plish without conceding an unacceptable amount of density.
Instead, we intend to exploit the fact that we only care about
the behavior of ¢ on its restriction to A’ C A. Our starting
point is the following formalization of a commonly-used trick
(see Example VII.13), used to embed problems in Z into Zy.
Suppose I C Z is an interval of size |I| < N/t. Then the
natural embedding ¢ : [ — Zy is a t-homomorphism.

Usually, this trick is applied before the embedding. Typically,
one picks a specific interval I, considers the restriction A N1,
and embeds this restriction into Z . In contrast, we would like
to delay making a specific choice of interval for as long as pos-
sible. We proceed as follows. Consider the natural embedding
¢ : [N] = Zy. We embed A into Zy and invoke Lemma VI.7
to find a density-increment p/ = |¢(A) N P|/|P| > (1 +
Q(1))p, where P is a generalized progression of rank at most
poly(d). Now consider A’ = ¢~ 1(p(A)NP)=AN¢op~1(P),
and also consider some partition [N] = I; U I, U I3 of [N]
into three intervals each of size roughly N/3. It must be the
case that one of the densities p) := |A’ N I;|/|I;] is at least
as large as p’; let us start to modify the basic plan laid out
above and set A” := A’ N I,.

We now have that the embedding ¢ : A” — Zy is a 2-
homomorphism, as desired, which nearly completes the proof.
As stated, a small issue with this plan is that now the container
of $(A”), ¢(I;)NP, is no longer necessarily a generalized pro-
gression. Certainly, this container-set, which is the intersection
of a progression of rank 1 and a progression of rank r, still has
a large amount of additive structure. One way to continue here
is to partition PN¢(I;) into a small number of (still reasonably
low-rank) generalized progressions and further restrict onto
one of them — this would suffice to complete the proof (for
the one-dimensional case A C [N]). This gives a good idea of
how we plan to address the second key issue. In the actual
proof, we proceed somewhat differently: we mix the idea
described here involving the intervals Iy, I, Is into the proof
of Lemma VI.7, which works with a low-rank Bohr set B as

an intermediate step before arriving at a low-rank progression
P inside some translate of B. Compared with generalized
progressions, Bohr sets are nicer because the intersection of
two Bohr sets is again a Bohr set, which explains how we
avoid the small issue encountered above. We note that for the
general case of A C [N7]x[Na]X---x[N,], our corresponding
generalization of the trick here involving the intervals I, Io, I3
is developed and formalized in Section VII-E. See in particular
Definition VII.16, which defines the notion of a “safe” set, and
Proposition VII.17, which provides a reasonably large, safe
Bohr set for Zy, X Zn, X -+ X Zn,..

VII. PRELIMINARIES FOR 3-PROGRESSIONS IN THE
INTEGERS

A. Generalized arithmetic progressions

Definition VIL.1 (Generalized progression). In an abelian
group G, a generalized arithmetic progression (or just a
“progression”) is a set of the form

P:{a—l—Zcwai L € [Ni]}
i=1

for some elements a,cy, - ¢, € G. We say that the number r
is the “rank” of G.

In the case that every point p = a + Y.,_,¢;-x; € P is
represented only once in this form (i.e. the case when |P| =
N1 Ns--- N,), we say that P is a “proper” progression. Since
we will be interested only in proper progressions in this work,
we often omit the qualifier “proper”.

B. Bohr sets

Definition VIL2 (Bohr set). Let G be a finite abelian group
with character group G. A Bohr set of rank 1 in G is a set of
the form

freG: @) —1<p)

for some character v € G and some p > 0, which we call the
radius. A Bohr set of rank 7 is a set in G describable as the
intersection of at most r such sets.

Given a set I' C G, we use the notation
Bohr(T', p)
to denote the rank |U'| Bohr set

{zr€G : |y(x)—1| <pforall y€T}.

The following is an example of a simple connection between
progressions and Bohr sets which we’ll make use of at a few
points.

Example VIL3 (A centered interval is a Bohr set). Consider
the rank-1 Bohr set in Zy corresponding to the character
el = ((E — eQﬂ'Z'I/N)'.

Bohr({e1},p) = { € Z : [*"F — 1] < p}.
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For any given p € [0,1], this set is simply some interval
[-m,m] C Zn with
< =<

=3
1

P
2
C. Properties of Bohr sets

Given a Bohr set B = Bohr(T, p), we denote the dilation of
B by 6 by
Bs := Bohr(T, dp).

We note the straightforward sumset inclusion

B+ Bs C Bi4s.

A convenient fact about Bohr sets and their dilations is that
we can easily give some good approximate bounds on their
size.

Proposition VIL.4 (Bohr set size estimates [TV06, Section
4.4)). Suppose B = Bohr(I',p) C G is a Bohr set of rank
IT'| = 7 and with p € [0,2]. We have the size estimates

- B> (£)" 6]
e |Bs| <6"|B|, and
e forany § €0,1],

Bs| > (3)"|BI.

The “doubling” estimate
|B + B| < |Bs| <6"|B|

shows that B is in some sense an “approximate subgroup” —
it is (quantitatively) nearly closed under addition, assuming
that one considers the factor 6" to be small. In settings where
this factor cannot be considered small, it can be useful to
consider instead a slightly different quantification of approx-
imate closure under addition, which motivates the following
definition.

Definition VILS (Regular Bohr set). A Bohr set B of rank r
is regular if, for all § € [0, 73],

|B1+s5|
—— <1412
|B|
and Bis)
1-6
—— >1-12r6.
|B|

The point here then is that we have the “doubling” esti-
mate

|B + Bs| < |Biys| < 2|B|

for 6 < 1/12r. Compared to the bound above, we have
removed the exponential dependence on r in the doubling
constant at the cost of an exponential-in-r factor loss in the
size of one of the summands, which is more acceptable in
certain contexts.

Fortunately, regular Bohr sets are easy to obtain:

Proposition VIL.6 (Regularizing a Bohr set [TV06, Section
4.4)). Given a Bohr set B, there is some 6 € [%, 1] so that Bs
is regular.

Ultimately, our interest in Bohr sets in cyclic groups is due
to the fact that large Bohr sets are guaranteed to contain a
generalized progression which is still fairly large.

Proposition VIL.7 (Large progression in a Bohr set [TV06,
Proposition 4.23]). Let G be a cyclic group of size N, and let
Let B = Bohr(T', p) C G be a Bohr set with

o rank || <r and
e radius p € [0, 1].

Then B contains a (proper) progression P of rank r and size

1P| > (#)TN.

D. Translation invariance for approximate subgroups

Proposition VIL.8 (Smoothing an approximate subgroup). Let
A, B be finite subsets of an abelian group G. Here we would
also like to allow for infinite groups, so in the present context
we switch to the counting measure: we define the distribution
functions

. WA(LL') = l‘A‘élI)’
o wp(x) = ]l‘BTélz).

We define the convolution of distributions ma * mp according
to the counting measure,

(ma*7p)(x) = Z me(y)TA(T —Y),
yeG

so that the convolution of two distributions is again a distri-
bution (i.e. ) (ma * wg)(x) = 1).
Suppose S is a finite set in G which contains the difference-set
A — B. Then, for all x € A, we have the identity
1
S|
More generally, if v is any distribution supported on B, then
still for all x € A we have

(71'5 *WB)(.%') =

1

(s #¥)(x) = 157

Proof. We count the number of pairs (s,b) € S x B for which
s+b=uwx.

Z]l(s—i—bzx):Z]l(sEz—B)
5, s€S
= 1SN (z— B)
— |z - B]
= |Bl,
sincex — B C A— B C S for any x € A. So we do in fact

have
| B 1

(ms xmp)(z) = m = @
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whenever x € A.

Now we consider the case of general v supported on B. We
note that v may be expressed as a convex-combination of flat
distributions supported on B — that is, we may write

V= g/[ﬂ—B’]

with respect to some probability distribution over subsets B’ C
B. Then the claim follows from our previous argument since
S still contains A — B’ for every such B’:

1

5]
for x € A. O

(s xv)(z) = El(ms * mp)(2)] =

Corollary VIL9 (Strong one-sided approximation). Let
A,B,S C G, where S O A—B. Suppose that |S| < (1+9)|A|
for some 6 > 0. Then for any nonnegative function f : G —
R>o and any distribution v supported on B,

(mg*v, f) > (1+0)"" (ma, f).

Proof. For every point € A, we compare 74(z) = a7 With
(rg xv)(z) = ﬁ O
Corollary VII.10 (Smoothing a regular Bohr set). Suppose B
is a regular Bohr set of rank v in a finite abelian group G.
Then, for any nonnegative function f on G,

(Bi4s* Bs, f) > (1 —126r) (B, f) .

Proof. We note that —Bs = Bs and B1y5s 2 B+ Bs. If 6 >
1/12r then the claim is trivial. Otherwise, we have |By4s| <
(1 4 1267)|B|, and so |B|/|Bis+s| > (1 +126r)~1 > 1 —
1207, O

E. Freiman homomorphisms

Definition VIL.11 (Freiman Homomorphism). Suppose we
have a set A C G where G is an abelian group, and G’
is another abelian group. A map

o A= G

is said to be a Freiman homomorphism of order t if, for any
T1,%2,...,2: € A and y1,y2, ...,y € A,

P(x1) + -+ o) = oY1) + -+ + d(ye)
implies
it T =y Y

In particular, a linear map ¢ : G — G’ is a t-homomorphism
on A if and only if ¢ is injective on the sumset tA.

While not immediate, it is easy to check (by making a trans-
lation) that a t-homomorphism ¢ is also a t’-homomorphism
for ¢’ < t; in particular any Freiman homomorphism ¢ must
at least be an injection. We also point out the trivial property

that if ¢ : A — G’ is a t-homomorphism, and A" C A, then
the restriction of ¢ to A’ is also a t-homomorphism.

We use the following simple Freiman homomorphism of-
ten.

Example VIL.12 (Labelling a proper progression). Let
pP= {a—l—Zcr:pi D, € [Ni]} aye
i=1

be a (proper) progression, and define the map
¢: P — [N1] x [Ng] x --- x [N,] CZ"
by

o(p) = (1,2, ..., Tp).

This map is a Freiman homomorphism of all orders.

Proof. The only potentially tricky point is that ¢ is actually
well-defined, which is true only because P is proper. Besides
. [ . t 1
this, it is clear that equality of sums of vectors ) 1@ =

23:1 y? within Z" implies the equality

r T
a+Y (@l tai+ootal) =a+ Y eyl HyE++yl)
i=1 i=1

in G. O

The following is a formalization of a standard trick used
(e.g. in [GowO01]) to reduce questions regarding t-progressions
in the integers to some corresponding questions regarding t-
progressions in Zp . The trick itself is so simple that it is often
presented without any corresponding formalization. However,
in preparation for some more complicated extensions which
can no longer be reasonably handled “by inspection”, we work
out the details here with some care.

Example VII.13 (Embedding an interval). Define the natural
map
¢ : [N } — 7 N
by
¢(x) =2 mod N.

Let I = [a,a + m] C [N] be some interval with

m < —.
t

Then the map ¢ is a Freiman t-homomorphism when restricted
to I.

Proof. The sumset tI C Z is contained in I’ = [ta,ta + tm)].
Let z,y € I'. If x = y mod N, this means that N divides
the distance |z — y|. However, this distance is at most

(ta+tm) —ta < N.

So in fact we must have |x — y| = 0. O
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It will turn out to be convenient for us if we could find a more
“intrinsic” formulation of this trick, in the sense that we would
like to find a formulation which refers to a nice set S C Zy
rather than a nice set I C [N]. For instance, we might wish
to say that ¢ is such that if S is any interval in Zy with
length at most N/t, then the map ¢ is a t-homomorphism on
the pullback ¢~!(S) C [N]. This statement is in fact false
(already for t > 2), which is witnessed by the example S =
{-1,0,1} C Zy: under our map, this set has preimage

¢~'(9) = {1} U{N -1, N},

and now the sumset ¢~ (S) + ¢~ *(S) contains two multiples
of N: both N and 2N. This demonstrates alarmingly the
importance of certain “implementation details” of linear maps
between groups in the present context which can often be
safely ignored in other contexts.

We can however make the following simple observation that
the behavior of the family of sets in [IN] obtainable from
preimages of intervals in Zy is not unboundedly bad; in the
terminology of [GowOl1], [Gre99], an interval in Zy corre-
sponds to a union of at most two “genuine” intervals:

Observation VIL14. Fix the map ¢ : [N] — Zy defined by
¢(x) =z mod N. Define the family of “intervals of size m”
in Zn by

Fm={a+¢(m]) : a€Zy}."
For any I € F,,, the pullback I' = ¢p=1(I) is either

e an interval I' = [a,b] C [N] of size |I'| = m, or
o the union of two intervals: specifically I' = [1,b]U][a, N],
with b <m and a > N —m.

We record the following immediate consequence of Exam-
ple VIL.I3 and Observation VII.14 — this statement shows
that it is possible to obtain the “intrinsic” formulation of
Example VII.13 we were looking for, so long as we are willing
to concede a small fraction of points in [N].

Proposition VIL.15 (A safe setin Z ). Fix the map ¢ : [N] —
Zy defined by ¢(x) = x mod N. Fix a parameter § € (0, 3],
and define the “upper portion” of [N] by

U=[0N,N] C [N].
Suppose I C Zy is some interval'? of size |I| < 6N, and that
t<1/6.

Then, for any translation by some a € Zpy, ¢ is a t-
homomorphism on the set

"I +a)NU.

Proof. Using the characterization in Observation VII.14, we
see that the set ¢~ 1(I+a)NU is in fact equal to some interval'?

"Note that we recover the same family if we instead consider sets a +
¢(I) C Zn where I = [a,b] C [N] is any other interval of size |I| = m.

12See Observation VII.14 for what is precisely meant by this.

131t may be equal so the “trivial” interval () — this case is also fine.

in [N] of size at most §N. This is the case considered in
Example VII.13, so the claim follows. O

We introduce the following definition to capture this phe-
nomenon in general.

Definition VIIL.16 (t-safe set). Consider two abelian groups
G,G' and a subset A C G. Fix an injection ¢ : A — G. We
say that a set B C G’ is “t-safe” with respect to ¢ if, for
every translation 6 € G', the restriction

p: AN H(B+0)— G
is a Freiman homomorphism of order t.

By a simple generalization of Proposition VIL.15, we can
describe a highly structured, reasonably large set which is
safe with respect to the natural embedding of [0N7, N7] x
[0Ng, No|x -+ X [0N,, N, ] into Zn, X Zn, X - - - X LN,

Proposition VIL.17 (A safe set in Zy, X Zpn, X -+ X Zp,.)-
Fix some natural numbers N1, No,...N, and a parameter
J € (0, %] Consider the set [N1] X [No] x -+ x [N,] C Z",
and define the “upper portion” of this set:

U .= f[[éNZ, Nz]
i=1

Fix the map ¢ : [N1] X [Na| X -+ X [N,.] = G = Zn, X Zn, X
-+ X Zn, defined by

¢(x) =2 mod (N1, Na,...

For i = 1,2,....7r, let m; < O6N;, I; =
I; mod N; C Zy,, and let

B:=By x By x - X B,.

Ift < 1/0, then B (and hence also any translate of B) is
t-safe with respect to the restriction ¢ : U — G. That is,
the natural embedding ¢(x) = x mod (N1,Na...,N,) is a
t-homomorphism on the set

¢ (B+0)NU

for any translation o € G.

Proof. We note that ¢~ Y(B +0) N U = [[_, ¢; " (B; +
6;) N [0N;, N;], and we apply Proposition VIL.I5 on each
coordinate. To finish, we use the easily verifiable fact that
if 1 : A1 — G7 and ¢35 : As — G are both Freiman t¢-
homomorphisms, then the map from A; x As to Gi X Gs
given by

(w1, 22) = (O1(21), P2(x2))

is also a Freiman ¢-homomorphism. O
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VIII. PROOF OF LEMMA VI.5 AND LEMMA V1.6

Lemma VL5 follows straightforwardly from the following
three claims, which are proved in this section. Here, for
easier reading we present a slightly informal formulation of
each one, suppressing some minor details. The more specific
Lemma VI.6 follows from the details found in the correspond-
ing complete formulations.

Proposition VIIL.1 (Informal version of Proposition VIII.10:
passing to a “nice” configuration). Suppose A C [N;]x [Na] x
-+ X [N, is a spread configuration with density 1. Then either
A has at least
—owm AP

G|

3-progressions, or there is a large subset of A which is
Freiman 2-isomorphic to a “nice” configuration A’ C P’ =
[N{] x [NS] x - -+ x [N]] with the assurance that

o A’ C P’ is only slightly less spread, and
o |A'] >rOM4]

Proposition VIIL.2 (Informal version of Proposition VIII.9:
embedding a “nice” configuration). Suppose A C [Nj] X
[No] x -+« x [N,] is a “nice” configuration with density
w > 279 Then (firstly) the group G = Zn, X Zin, X - X L,
must be cyclic. Let ¢ be the natural embedding ¢ : A — G.
Then we have

[6(A) * p(A)|lk,Bx5 > 1+ Q(1)

for some k < O(d) and some regular Bohr set B which

e has rank v and radius p ~ 1/r, and
o is 2-safe with respect to the embedding ¢ : A — G.

Lemma VIIL.3 (Informal version of Lemma VIII.4: obtaining
a density increment). Suppose A is a subset of a cyclic group
G with density ;1 > 2~% and let B be a regular Bohr set with
rank v and radius p = 1/r. If

[Ax Allg, 5 = 1+ Q(1),

then
|AN P|

1P|

> ([1+Q1)p
for some generalized progression P which

e has rank v < r + poly(k, d),
o has size |P| > 2PV A Q| and
o is contained in some translate B + 0.

Proof of Lemma VI.6.. Let Ag = A and rq = r. In the case
that A has at least 5
—om 1A

1P|

3-progressions, we are done. Otherwise, we apply Proposi-
tion VIIL.10 with ¢ = 27°. Either this immediately supplies us
with the desired density increment, or else we obtain a subset

A}y C Ap and a 2-homomorphic bijection ¢; : Aj — A3 C Py
where

o Pr=[p1] X [pa] X -+ x [p,] CZ",
. |A1| > T_O(T)‘A0| and 7 <1,
o Ay C Py is d-nice with 5 > § > Q(1/r), and

A
o Ly = I\P11|| > (1 — 55)/1,
We apply Proposition VIIL9. Letting ¢o : A1 — A2 C G be

the natural embedding into the group G = Z,, X Z;, x --- X
Ly, , we have

|[Ag * Azllk. B« > 1+ i

for some & < O(d) and some large regular Bohr set B which is
2-safe with respect to ¢5. Applying Lemma VIIL.4, we obtain
a subset

A/Q =A NP
where P; is some proper progression which

o has rank 73 < r + O(d®),

e has size |Ps| > r=0() . 2-0(@*) . 9-0(d") .||,
e is contained in some translate B + 6, and

o provides the density increment

g = |Aa N Ps

| P
(14 35) i
(I+3) (- 5w
(14 25) p

As the density does not decrease, we note also that

(AVARAVARIVS

Ay > O 9—0(d?r) 2—O(d1°)|A2‘_

Since A, C P; C B + 0, the map ¢» is a 2-homomorphism
when restricted to ¢ ' (A5).

Finally, we let ¢35 : P3 — Z" be the simple Freiman
homomorphism described in Example VII.12 and we arrive
at our final configuration

As = ¢3(Ay) C ¢3(P3) C 7.

Letting ¢ := ¢p3 0 pg 0 ¢y and A’ := ¢~ 1(A3), we obtain the
desired increment (A’, ¢). O

A. Obtaining a density increment

Lemma VIIL.4 (Structure vs. Pseudorandomness in Zy —
local variant). Consider

e a cyclic group G.

e a subset A C G of size |A| > 279G,

e a regular Bohr set B = Bohr(T', p) of rank |T| =,
e keN, and

e a constant'* gq € [0,1].

14We allow the implied constants in the O-notation here to depend on .
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If
|A* Allk, s > 1+ €0,

then there is a (proper) generalized progression P, contained
in some translate B + 0, with

o rank ' <r+ O(k*d*) and
o size |P| > pr . p=O(r) . =Odkr) . 9-0(’k) . .
and such that
|[ANP| g0\ |A|
> (14 20) 2L
2 (%) g

We will need the following translation-invariance lemma due
to Schoen and Sisask.

Lemma VIILS (Special case of [SS16, Theorem 5.4]). Con-
sider

a finite abelian group G,
subsets X, Y C G,
a regular Bohr set B = Bohr(T', p) C G with rank |I'| =

/r-’
e an indicator function f : G — {0,1}, and
e £ € [0, 1]
If
Y + B| < 24|Y|
and

| X +Y + B| <2°|X|,
then there is a Bohr set B’ = Bohr(IV, p') C B such that

(X*Y)x f)(b) = (X *Y)* f)(0)| < e forallbe
B,

o B’ has rank r' <140 (ds?/e* + dslog(1/¢)?/e?), and

o B’ has radius p' > p-c-27°/2/(r?").

In particular,
(Dx XY, f) = (X«Y, f)|<e

for any density function D supported on B’.

It is maybe not immediately clear that this is indeed a special
case of Lemma 5.4 of [SS16], so we elaborate. We assume
familiarity with the statement as it appears in [SS16]. Let L C
G denote the support of our indicator function f = 1. The
key point is that for our formulation here, one can observe
that the only values of f which can possibly play any role are
those values f(z) for which z is “near” zero — more accurately:
z € X +Y + B. This assertion makes use of the fact that we
indeed have 0 € B, sothat X +Y C X +Y + B. Thus, it
makes no difference for us to insist that L C X +Y + B —
that is, to replace f by f-1x.y+p. Given this, the remaining
translation between the statements is straightforward: we apply
their Lemma 5.4 with S = B. Their sets A, M, L correspond
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to our sets Y, X, —L. Their parameters 1, K correspond to our
parameters 2%, 2¢. Their lemma provides a bound on

]E —
zeXf(x+y+z+b) ;gf@+y+d
yey yeyYy

for all b € B’ and all z € G, whereas we seek to control this
difference only at the single point z = 0.

Proof of Lemma VIII.4. By assumption we have
(B% B,|Ax A") = (B, B * (A% A)*) > (1 +¢p)".

We set 69 = €(/100r, and pick & € [0p/2,d0] so that Bs is
regular. We apply Corollary VIIL.10 to get
(Biys* Bs, Bx (Ax A)F) 2 (1+e9)",

yielding

(Buys + B, B (Ax A))F =142,
It follows that for some fixed § € Bj,s, the translate C' :=
—B + 0 = B + 0 satisfies

(Bs#C(Ax ) =142,

By (possibly) increasing k& only slightly we may assume that
21—e0k/4 < 2752 Let € = £¢/4 and apply Corollary V.13
to get dense subsets X C C and Y C Bjs, both with relative
density at least 294 such that

(X*v.f) <,
where
f(@) =1 (AxA)(z) <1+e).
Now, we invoke LemmaZVIH.S with sets X, Y and with Bohr
set B, for some 7 € [%, 2], to get a final Bohr set
B' = Bohr(I'",p') C B,

full of translations which leave X * Y approximately fixed,
in the limited sense that they have little effect on the value
(X #Y, f). We then pass to a large progression P C B’ with

w*X*Kﬁgi,
Since
Y + B,| < |Bs + By| < |Bsis2| < 2|Bs| < 20(dk)|Yl7
and

| X +Y + B,| < |(B+0)+ Bysis]
= |B + Bss2|
< |Bitsazl
< 2|B| < 20UR) | x|,

we obtain a Bohr set B’ with parameters

o rank 7’ <7+ O(d*k*) and
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o radius p’ > p-r—OW) . 2-0(dk)

and a progression P C B’ C B with parameters

o rank 7’ =7+ O(d*k*) and
o size |P| > pr’ - p~ O . 2-Odkr) . 9=O(d’k?) . N,

Since (P x X x Y, f) < e/4, it must be the case that (P’, f) <
/4 for some translate P’ of P. Recalling the definition of f,
we obtain the lower-bound

(P A% A) > (1 - Z) (14e)>1+ g
Again, it follows that

3 €0
Pl A>14+-=1+—
(P A) 2145 =1+,

for some further translate P” of P’, which concludes the proof
since P” is itself a progression with the same size and rank
as P. O

B. Embedding a nice configuration

Definition VIIL6. Fix a parameter § > 0. For an interval
I = [a,b] C Z, the “upper portion” of I is the subset

U:=la+250b—a)l]
and the “middle slice” of I is the subset

M:=[a+3(b—a)+1,a+ (3 +0)(b—a).

The point of these ad hoc definitions is that if we consider an
interval I = [N] C Z, if z,y € U and z € M, then

r+y=2z mod N

only if
r+y=2z

This can be checked by inspection: since z + y,2z € [2N],
the only way we can have N dividing |z + y — 2z| while
|z +y— 22| # 0 is that |x +y — 22| = N. The sets U and M
are designed specifically so that (for any choice of § € [0, 1])
this is not possible.

Definition VIIL7. Fix a parameter § > 0. For some intervals
I, CZ, and a cube P = H:Zl I; C7Z", the “upper portion”
of P is the subset
v=]U:
i=1

and the “middle slice” of P is the subset
i=1

We note the density lower-bounds
Ul

Plsa—28)7>1-
P )

M|

Pl =

20r,

Q(8)".

Definition VIIL.8 (Nice configuration). Consider a configu-
ration A C [N1] X [N3] X -+ x [N,] C Z" with density

A
N1N2...NT'

Consider a parameter § < 1/2r, and let v,m denote the
vectors

v=(lG+M LG +3
(L5 ]

We say the configuration is (d)-nice if

1) Ny, No,...
including 2,

2) A is in fact contained within the upper-portion U =
[T;—1[26N;, Ni],

3) Given bt/ € Z" drawn uniformly at random from
[—m1,mq] X [-ma,ma] X -+ X [—=m,., m,], we have
the following “weighted” density lower-bound in the
middle-slice:

, N, are some distinct prime numbers not

—p >E_
bIE/[]lA(U—!-b b)]_2

4) We have a uniform bound on the number of representa-
tions of any point 2z:

I
2z) < = - |A].
max Ra(22) < - 4

Proposition VIIL.9 (Embedding a nice configuration). Sup-
pose A C [Nq] X [Ng] x --- x [N,] C Z" is a d-nice
configuration with density

_ A 9

Ni{Ny---N, =
Let ¢ be the natural map from Z" to the group G = Zn, X
Zn, X -+ X Ln, given by ¢(x) == mod (N1, Na,...,N,).
Then, there is an even integer k < O(d) and a Bohr set B =
Bohr(T', p) C G such that

|#(A) * ¢(A)||k,Bxp > 1+ %
where the Bohr set B

e has rank |T'| =r,

o has radius p > Q(9)

o is regular, and

e is 2-safe with respect to the restricted map ¢ : A — G.

Proof of Proposition VIIL.9. In light of Lemma V.8 and
Lemma V.9, it suffices to establish the following: the existence
of a 2-safe regular Bohr set B (with adequate rank and radius)
such that, for some translate D = Ty(B + B),

l$(A) * &(A) = 1lk.p > 5
for some even integer k < O(d). For any z € AN M, where

S [N N r
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we have by construction that

|A?
R 2 =RA(22) < ——.
That is, we have not increased the number of representations
of 2z as a sum of two elements in A by allowing equality mod
(N1, Na, ..., N,). After re-normalizing to a density function
we obtain

(6(A) * B(A)) (26(2)) = @Ram(w(z)) <

-

for such z. Let v,m € Z" be the vectors in Definition VIILS,
and let b, b’ be uniformly random points drawn from the cube

Chp = [—ma,m1] X [-mg,ma] X -+ X [=m,,m,| CZ".

We note that by construction we always have v+b—00' € M.
It follows (from this and the third criterion for niceness in
Definition VIIL.8) that 2¢(v + b — ') has a non-negligible
chance of being a point where ¢(A)*p(A) differs substantially
from uniform, so

k
B | (9042 6(4) (20(0) + 20(6) - 20(6)) ~ 1
>3t (),
still for any choice of k. Define the set
B :={2¢4(b) : be Cn} C ¢(2C,,) CG.

By Proposition VII.17, this set is 2-safe with respect to the
restriction

o:U—QG,

and since A C U it is also 2-safe with respect to the further
restriction ¢ : A — G.

We apply essentially the observation in Example VIIL.3 to say
that B is in fact describable as a Bohr set of the group G =
Zn, X LNy X+ -XZN,.Indeed, fort = 1,2,...,rleta; € Zny;,
be the multiplicative inverse of 2 mod N;. Now consider the
set of characters I" consisting of

"Yi C T e?friaia:i/Ni

for: =1,2,...,r. As in Example VIIL.3, we can say that

B = Bohr(T, p)

for some choice of p > £2(d). Additionally, due to the simple
structure of B we can verify directly that it is regular:

| Bigl < (1+ 20)" |B| < (1+nr)|B|

and
|Biy| > (1= 20)"|B| > (1 —nr) | B

forn <1/r.

Thus, we have that for the density D = T_54(,)(B x B),

(D, 6(A) % ¢(A) — 1[F) > 2-(@+D) . (3)

961

Now choose k large enough that 2(?+D/k < 2 5o that we get

16(A) * B(A) — 1|x.p = (D, [6(A) * p(A) — 1]/

S 9—(d+1)/k 3

(AVA!
N[ =
I

C. Obtaining a nice configuration

Proposition VIIL10. Fix a constant ¢ € (0, 11—0] and let § :=
g/2r. Suppose A C [N1] x [Na] x -+ x [N,] is a configuration

with density . Then, either A has at least
r—O0) o |A\2

solutions to x +1y = 2z with (z,y, z) € A3, or we can obtain
a subset A’ C A and a Freiman homomorphism (of all orders)
¢: A" — P CZ" with

o size |A'| > 794
o rank v’ <,

s

and such that we obtain either: (i) a (0)-nice configuration
with density

;A
= >(1-5
W= > ( €) s

or (ii) a configuration which is not necessarily nice but has
increased density:

€

W o> (1 + 7) .

2
Proof. Essentially the idea is to consider the restriction of A
to some subcube of the form P’ = [[;_,[a;,a; + p; — 1]
for some distinct primes p; each roughly of size §V;. From
here it is easy enough to just translate the whole configuration

(ANP’) C P"down to [];_, [p;] — such a translation is clearly
a Freiman homomorphism of all orders.

To ensure that we can make such a choice of primes we use
the fact that the number of primes in any interval [n/2,n]
is at least Q(n/logn) — this fact follows from the prime
number theorem, but such a lower bound also follows from
substantially more elementary arguments such as Erdos’ proof
of Bertrand’s postulate.

Without loss of generality suppose that Ny > Ny > --- > N,.
We wish to make a choice of distinct odd primes p; €
[0N;/2,0N;]. Let ny be the smallest natural number such
that, for any n > ng, the number of primes p € [n/2,n]
is at least » + 1. It is the case that ng is at most O(lcf;‘l’fg’;),
although we note it would be fine for us even just to say that
ng < roW 1t 0N, > ng then clearly we can make such
choice of primes p; — otherwise, we will need to “fix” A in
the coordinates i corresponding to size-lengths N; which are

too small. Specifically, we pass from A to the subset

A'={a€A:a =z},

15We allow the implied constants in the O-notation here to depend on &.
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where we choose © € [N,] so that the size of A’ is maximized.
This results in no loss in density:

AL 1Al
NiNy---N,_1 = NiNy---N,

and only a small loss in size:

A2 (L) 14] 2 W) 4.

With the last coordinate fixed, the projection map ¢ : Z" —
Z7~ ! is clearly a Freiman homomorphism of all orders on the
set A’. Continuing in this way, we may assume (at the cost
of only a factor 7~9(") loss in size, and no loss in density)
that we begin with a configuration A C []_,[N;] where r has
only decreased and that there are some distinct prime numbers

€ [0N;/2,0N;] for i =1,2,...,r

At this point we pause to apply a pruning step to address
niceness criterion number four. Let A’ C A be the subset of
points z € A with

Ra(22) < 'ER( z).

z€EA

By a Markov inequality, |A’| > (1 — ¢/4)|Al, and so A’ has

density ¢/ > (1 —e/4)p.

We now consider the restriction of A’ to some subcube
P,:=a+ [p1] x

[p2] x -+ x [p-] CZ".

Let U, denote the corresponding upper-portion of this cube.
Our plan is to set

A" =A'NU,

for some choice of a € Z", and our final configuration will
be (a translation of) A” C P,. Let

U= (L(g )le L( +3)p2),- o L5+ 3)pel)

o m= (L3P1J L3P2J LngJ)’
and define

B = [-my,mq] X [-ma,ma] X -+ X [-m,,m,] CZ".

We consider the quantities

(a) = ‘AH‘—EH()
Ml ‘Ua‘ _ueUa AU
and
" L , Y
Uy (a) == b,bI'EeBILA (a+v+b-=10").

We note that we may assume that

1 (@), py(a) < (1+ )’

for all translations a € Z" — otherwise we are done immedi-
ately as we would obtain a density increment either onto some
U, or onto some translate of B:

p'>(1+e)1—e/dp > (1+e/2)pu.
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We consider a uniformly-random translation a drawn from the

set
[_plaNl] X [_p27N2] X X [_prvN'r‘] g VAR

Applying Proposition VIL.8 (or more specifically, its Corol-
lary VIL.9), it follows that both of the expectations E[u! (a)]
and E[uf(a)] are at least

(L48)7"w > (1= or)u’ > (1—2/2)p.

We can now apply a Markov inequality to the (nonnegative)
random variables

— O

Xi(a):=(1+¢) o

and N
Xo(a) = (1+¢) — "2(,“)

to conclude that there is a nonzero probability that we choose
a translation a simultaneously satisfying

Xl(a),Xg(a) S 35,

or rather
(i (a), s (a) > (1 —4e)p’

Finally, we note that

w._ A
| Pa|
_ U] A"
[Pl U]
> (1—¢/2)pi(a) = (1 —/2)(1 —4e)(1 —e/4)p
= (1=5e)p

and

Rav(22) < Ra/(2x)

|A| ZRA (22)

for all z € A”. To conclude, we note that the quantity on the
right hand side is at most “-|A”|, except in the case that

ST Ra(22) > i JAAY] 2 00 AP,
z€EA
i.e., the case that A has many 3-progressions. [
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APPENDIX

In this section, we compare our techniques for controlling
the number of solutions to a + b = ¢ with some previous
approaches, and we compare our conditions for quantifying
“additive pseudorandomness” with some analogous conditions
considered by other works.

Additive energy. We begin by discussing the notion of “ad-
ditive energy”, which is a good central measure of additive
structure to keep in mind as it can be easily compared with
everything else we discuss. For a set A C G the additive
energy of A is the quantity E(A) = > ., R;(x)?, which is
also the same as the number of solutions to a1 —as = a3 —ay
with a; € A. It is always between |A|? and |A|3. It can be
expressed in the density formulation as the quantity
Els

rlAx Al

B =g
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Thus, for k = 2 our “self-regularity” condition corresponds
simply to some bound on the additive energy.'® For sufficiently
dense sets, there is a different lower bound which improves
on the trivial bound E(A) > |A|?%: it is always the case that
E(A) is at least |A|*/|G|. The bounds

[AI*/IG] < B(4) < |AP

translate gracefully to the following equivalent bounds on || A%
Al|3. By Jensen’s inequality and Young’s inequality,

1=[|AxAllf < [|A* Al < [|A]3.

Note that set of size |A| = 27¢|G| corresponds to a density
function with ||A||2 = 2¢. More generally, the bounds above
apply to any density function A(z).

It is a typical sort of problem in additive combinatorics
to prove something nontrivial about the ‘“additive structure”
of A when E(A) is “large”. In some contexts this means
that F(A) only slightly less than maximal: for instance if
E(A) > LA, or perhaps E(A) > |A]3>~1/1° In the present
work, we are interested in what can be said about A given
that the additive energy is only slightly greater than minimal:
for instance if || A x A3 > 1+ . Thus, the alternative
normalization ||A x A||2 of the additive energy is a natural
choice for this setting.

The Roth-Meshulam argument. We review the classical
Roth-Meshulam argument ([Rot53], [Mes95]) in the case of
[, and discuss its relation to the present work. For an additive
character

o Fy—C,

we consider the corresponding Fourier coefficient!’

A(e) = E ea(®) = {Aeca).

We note that, for any set A, E(O) =

Ve 1, and generally that
[A(a)] < 1.

In the Roth-Meshulam argument, the key quantity for measur-
ing the additive pseudorandomness of a set A is the size of
its largest nontrivial Fourier coefficient:

max |121\(oz)|

a€lfy

a#0
The overall argument can be summarized compactly as fol-
lows.

Proposition A.1. Let A, B,C C Fy be sets of size at least
27|F7|.

D) If|AllL1 <1+ ¢ then

AQ)| < 2e.
rgggl (a)] <2

16Similarly, for k& > 2 our self-regularity condition is simply a bound on
the higher-order energy >, R (z)*® which is also a well-studied concept;
see e.g. [SS13].

17See Section III for details regarding definitions and normalization con-
ventions related to the Fourier expansion.

2)

(4,85 C)=1) < max | A(@)]-| B[ C]l2 < max | A(a)]-2"

Proof. For a linear subspace W, let Py, denote the projection
operator

Py : f—= W f.

We note that the quantity || A||, , can be equivalently charac-
terized as
1Al L = 1P Allos- (3)

max
wcC

q

dim(W)<r

We also note that for a function

= Z g(a)ea(—

acly

=Y Ao

aceW

we have
(Pw A)(

Fix some « # 0, and let W be some one-dimensional subspace
containing it. We have
[A()] = [(PwA —1,eq) | < [[PwA—1|x.

To finish, we use the basic fact that for any density function
F’

[F =1l = 2[1(F=1)+l1 < 2[(F =1+ lloc = 2([|Flloc —1).

This proves the first claim. For the second claim we make the
following calculation.

(A, B*C) = 1] < > |A(a)||B(a)||C()]

a#0

< rgz})dA zﬁ: HC

< max |A(a Z Z|5(5) 2
o7 E E

= IQ%M(@)\ [1Bll2/IC]l2-

Thus, the overall structure of the argument very much resem-
bles our own: to begin, there is a “primitive” pseudorandom
condition (spreadness with respect to subspaces of codimen-
sion one), which can be ensured by a density increment argu-
ment. Then there is an intermediate pseudorandom condition
(i-e. a bound on max,o |A(a)l),
from spreadness, and secondly is sufficient to directly control
the quantity (A, B x C') when B and C' are large.

We note another similarity to the present work. Consider the
following Fourier-analytic interpretation of the additive energy
of A:

lAx Al =1+ |A()*
a#0

=14[AxA—1]|3.
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It is well known that (for very large sets A) a bound on
maxao |A(a)| is roughly equivalent to a bound on [[Ax A —
2

1|5:

n 4 < n 4
max | A(a)]* < %A(an

< max |A\(a)\2 : Z ‘A\(B)F
a#0 8

_ N2 . 2
= max [A(a)"-[| ]

Thus, another reasonable summary of the Roth-Meshulam
argument is that for very large sets A, B, C,

o ||[Ax A2 can be controlled by ||A||1 1, and
e (A, B« C) can be controlled by ||A *x A||2.

The Bloom-Sisask physical space argument. In [BS19],
Bloom and Sisask show (in particular) how to obtain param-
eters for the cap-set problem very near to those given by the
Roth-Meshulam approach, but with arguments working almost
exclusively in physical space (rather than Fourier space). This
is a notable similarity to the present work, where we make
very little use of any “quantitative” Fourier analysis.'® In
particular, the Bloom-Sisask physical space argument more
closely resembles our approach than any other prior work.
We offer the following interpretation of their argument (as it
applies to the problem of controlling the quantity (A x B, C),
for sets A,B,C C Fj of density 274, by a spreadness
assumption).

There are three steps. Firstly: the plan is to control (4 * B, C)
by obtaining a bound on the key quantity ||A * B — 1|,
for some k = d. This is precisely what is done also in our
work, and already it distinguishes the approach from many
others, which consider instead some key quantity describable
in Fourier space. Secondly, Bloom and Sisask argue (by a com-
bination of the Croot-Sisask lemma'® and Chang’s inequality)
that ||A x B — 1|| is similar to ||V * A % B — 1]|, for some
large subspace V. Thus, if

[A% B — 1] = Q(1)

then
[V«AxB—1| > Q1)

for some V of codimension r < 2d+0(ogd+logk) The final
point is that such deviation from 1 is impossible if A and B
are both spread. Specifically, we apply the claim given below
with D :=V x A and D’ := V % B (noting that V xV = V).
Overall, the Bloom-Sisask physical space argument shows that

18We implicitly rely on a small amount of quantitative Fourier analysis
through our use of Lemma A.15, whose proof relies on Chang’s inequality.
Besides this, our remaining Fourier-analytic arguments (i.e., regarding the
decoupling inequality and spectral positivity) are “qualitative”.

19The version of the Croot-Sisask lemma used is notably more efficient in
its dependence on the error parameter than, e.g., Lemma A.13. The parameters
involved in this alternative version are more subtle and it can be convenient
to handle the cases, say, ||A * Bl|x < 10 and ||A * B||x > 10 separately.

if | (A, BxC) — 1] > Q(1), then either ||A||L, > 1+ Q(1)
or |Bl|L, > 1+ (1), for some

r< 2d+0(log d) )

Proposition A.2. Let D and D’ be density functions on a
finite abelian group G. For € > 0, if

then
|ID* D' —1]|oo <€

Proof. The pointwise upper bound D * D’ — 1 < ¢ follows
easily by averaging: ||D % D'||oc < [|[D|loc < 1 4 €. Now
consider the pointwise lower bound. If € > 1, such a bound
is trivial, so suppose € < 1. We have

0<(14+e—D)*x(1+e—D")
=(1+e)?-201+¢e)+DxD’
=—-14+e2+DxD,

and so
Ds«xD>1—¢?>1—c¢. O

Understanding the power of density increments. Let us say,
only in the context of the present section, that a set A C Fy
of size |A| = 274|F7| is simply “spread” if

7"<d+1>>

nlogn

Il < 1+0<

for all » < n/2. One can check that this corresponds to the
condition that A has “no strong increments” considered by
Bateman and Katz [BK12] within their regime of interest:
namely d = ©(logn). We are interested in this specific choice
of parameters essentially because it represents the limit of what
can be reasonably obtained by a generic density increment
argument.”’ Given this definition, we consider the following
substantially more concrete variant of Question I1.7.

Question A.3. Suppose A,B,C C Fy are sets of size at
least 2~%|F7|. For what values of d can we deduce that the
number of solutions to a + b+ ¢ = 0 is within a factor 2 of
|A||B||C|/|Fy|, from an assumption that

(1) one,
>i1) two, or
(iii) three

of the sets are “spread” (in the specific sense described
above)?

We note that Gowers asks essentially part (i) of this question
in a blog post [Gow11]. More accurately, he asks only about
when we can deduce the existence of at least one solution. The
Roth-Meshulam argument described above is relevant here: it

20We do not intend this as any kind of formal claim.
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requires only a spreadness assumption on the single set A.
Given that A is spread, it tells us that

%B%»JKOC“”W)

nlogn

and so it provides the following positive answer regarding (i):
to ensure that
(A,BxC)e L2,

a spreadness assumption on just A is sufficient, for values of
d up to
d=lgn—c

where c is some constant. We consider the following example
which shows that for this question, the answer obtained from
the Roth-Meshulam argument is actually best-possible, despite
the fact that it makes use only of a bound on ||A| L 1. Let
d =lgn, and consider?'

A= (F§\ {0}) x P3¢ C F}

and
B:= {0} x F3~¢ C Fy.

We have B+ B = B and (A, B B) = 0. One can check
that A is indeed spread simply because, for any 7,

1 1
A < || Allso = ~1+—.
Al < oo = 5 ~ 1+ =
That is, A has no strong increment onto a large affine subspace
in particular because it has no strong increment onto a set of
any kind. Thus, for

d>lgn,

it is not possible to control (A, B * C) by assuming spreadness
for just A; this fully answers the question of Gowers. However,
we point out that the situation changes dramatically if we
assume spreadness for just A but ask only for upper bounds.
Then the Roth-Meshulam argument is no longer optimal, and
indeed, in Theorem II.8 we show that k-regularity follows
from 7-spreadness for r = k’d. In particular we have
that (A, B+ C) < 2 whenever A is “spread” for d up to
roughly
d~n'/?

Summary for Question A.3. We summarize what we under-
stand regarding Question A.3.

o Ford <lgn—0O(1), the Roth-Meshulam argument shows
that a spreadness assumption on just A is sufficient to
ensure (A, B+ C) € [$,2]. Moreover, only a bound on
|A]|l L1 is needed.

e For d > lgn, a spreadness assumption on just A does
not ensure (A, BxC) >0

o Fordg n'/9, a spreadness assumption on just A ensures
(A,BxC) <2

21 The same example can be constructed over other small fields by consid-
ering F}, x Fy~* with ¢ = n.

o For d < n'/?, a spreadness assumption on A and B

ensures (A * B,C) € [3,2].

The Fourier sum of cubes measure. Recall the esti-

mate

[(A,B+C) = 1] < 3 |A(@)]|B(a)|C(a)

a#0
which was used in the Roth-Meshulam argument. A sensible
approach for part (iii) of Question A.3, and one which is very
natural from a Fourier-analytic perspective, is to depart from
the earlier argument and treat this quantity more symmetrically
by considering

Y 1A@)||B(e)]|C(a)]
a#0
1/3 1/3 1/3
Y 1A Y 1B Y 1C@)P
a#0 a#0 a#0

This shows that a bound of, say,

Yo A@P <3

a#0
on the sum of cubes of nontrivial Fourier coefficients is
sufficient to control (A x B, C'), if we assume such a bound it
for all three sets. Indeed, this was the approach taken in the
work of Bateman and Katz on the cap-set problem ([BK12]),
who show that

> A

a#0
is sufficient to infer that A has density increment onto a large
affine subspace, for values of d up to d = (1+c¢) lgn for some
small constant ¢ > 0, notably breaking the technical barrier
described above.

PP =)

It has on occasion been taken as the obvious starting point for
any sort of analytic approach to the 3-progression problem to
begin with the assumption »° |A(e)> > (1) and then
to see what we can conclude about A. In light of this, it is
interesting to note that even in view of our work it seems still
unclear whether that approach is viable for obtaining strong
bounds. Specifically, we ask the following technical question
— we don’t know of any specific application related to its
resolution, but it seems interesting from a technical perspective
for trying to better understand the relation between the Fourier-
analytic approach with various “physical space” techniques
such as the Croot-Sisask lemma and sifting.

Question Ad. Let A C G be a set of size |A| > 279G)|.
Suppose that
> 1A
a#0
Does it follow that
[AxA—1]x = Q1)
Sor some k < poly(d)?

P >Q(1).
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We make two remarks regarding this. Firstly, the answer is
affirmative if we instead start with, say, the stronger assump-
tion

> A0 = Q).

a#0

In this case we can write Aa)® = (Ax A —1,B),
where B(z) = A(—z), and bound this approximately by
||[A*A—1||4. Secondly, we note a connection in the opposite
direction. For even & € N we have the Fourier-analytic

interpretation

a1taz+-+ap=0
ai;éO

[ AxA=1]1§ = [A(cn) P Aaz) -

Applying Young’s inequality to this gives
1—4
lAx A=1] < | Y 1A(a)Pres
a#0
Finally, we can remark (at least superficially) on a connection
between our self-regularity condition and another key quantity
considered both in the work of Bateman and Katz as well as

the work of Bloom and Sisask ([BK12],[BS20]). For &k € N
we have the alternative Fourier-analytic interpretation

1A% AllZE = ((Ax A)F, (Ax A)F)
:zﬁ: Z

ajtaztotap=p
By comparison, the authors of the aforementioned works
consider various sets of the form

A:{aeG : mglﬁ(a)\ﬁnz}

2

| A1) P|A(az)[? - | Alc) 2

as well as the resulting quantity

XX

B \eatazt-tar=p8

Ia(oq) - 1a(az) - Lalox) |

for various choices of k.

We proceed to explain our approach for proving Theorem II.8.
Let us focus only on the second claim, which we recall states
essentially the following. Suppose that a large set A C Fy,
|A| > 274|F?|, fails to be self-regular:

A% Allp > 1+e.

Then we can find an affine subspace V' C [y of codimension
at most poly(d, k,1/¢) giving the density increment

(V,A) > 1+ Q(e).

For simplicity we also focus only on the case k = 2 and € = 1;
this case is already nontrivial and sufficient to illustrate the
main obstacles and how they will be overcome.

| Aew)|”.

Our starting point is to instead look for something stronger: a
“density increment”

(V,Ax A) >1+Q(1).

This is a key “leap of faith” in the proof, in the sense that
we cannot offer a reason to expect (a priori) that this should
be possible, even assuming that our original task is possible.
However, we note that, firstly, it is certainly sufficient by
a simple averaging argument. Secondly, if this approach is
indeed workable it would be quite nice from a mechanical
perspective, as we start with an assumption on the density
function Ax A (i.e., that ||[Ax All2 > 2), and we now seek a
conclusion about the same object: (V, Ax Ay > 14+(1). This
is in contrast to the typical structure of an inverse problem —
considered generally to be fairly difficult — where we make
an assumption on A x A and seek a conclusion regarding A;
by taking this approach, we can suppress the fact that we
are secretly working on an inverse problem at the outset. To
elaborate on the averaging argument, we have

(V,AxA) = (AxV,A) = E A(z+a)= E [ E
eV a€A [x€V +a

Aw)|.
acA
so if (V, A% A)
increment (V', A)
V=V +a.

1+ Q(1) then we must have a density

>
> 1+Q(1) onto some fixed affine subspace

We pause to consider whether our new goal is at least
analytically plausible. By this, we mean that we ask if we
can at least obtain

(F, A% A) >1+Q(1)

for some high-entropy density function F' — one with || F||oc <
2proly(d) _ without asking that F have any particular additive
structure. Ideally, we would also not need to appeal to the
additive structure of our density D = A x A, and instead, we
see what can be said just from the basic analytic facts D > 0,
Dy = 1, | D]l > 2, and || D~ < 2% One can check
that the best choice of I satisfying such an entropy constraint
on || F||o will be (essentially) the uniform density over some
super-level set of D. However, there is also a simple choice
which is already quite satisfactory, F' = D:

(D,D) =|D3 = 4.

So, what we are asking for is at least analytically plausible —
there is a high entropy density function F' witnessing D > 1
— and our task is to argue that we may take F' to have a high
degree of additive structure.

A. Sanders’ invariance lemma

To motivate our next step, we consider the following lemma
due to Sanders regarding the translation-invariance of the con-
volution of two large sets AxB. Sanders obtains this lemma by
combining the Croot-Sisask lemma [CS10], Chang’s inequality
[Cha02], and some additional Fourier-analytic arguments. The
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specific formulation given below does not appear explicitly in
his work, so we include a proof in the appendix.’’

Lemma A.5 (Sanders’ invariance lemma [San12b]). Suppose
A,B C F} are sets of sizes |A| > 279|F}| and |B| >
27F[F|. Fix a bounded function f : F} — [—1,41]. Then,
for any € > 27, there exists a linear subspace V (possibly
depending on f) with codimension at most O(dk?/e?) satis-
fying

{(V+«AxB,f)—(Ax B, f)| <e.

We suggest the following interpretation of this result. It is
“almost” saying that A x B is close in statistical distance to
V % A % B for some large subspace V, in light of the dual
characterization of the 1-norm distance:

(D-D', f).

max

ID = D'y =
f:]Fg—>[—1,+l]

However, it is not quite this strong since the subspace V'
is allowed to depend on the dual witness f. Under this
interpretation, the lemma can be productively compared with
Chang’s inequality via the Fourier-analytic identity

(VxAxB)(x)= Y A(a)B(a)ea(—).

aeVL

The importance of Sanders’ lemma for us can be captured
succinctly by the following immediate consequence. We state
it in terms of the notation defined by Eq. (1) and Eq. (2)
in Section II, which we repeat here for the reader’s conve-
nience.

= V,
A1l affine suiﬁ?}iﬁ VCF? V. 1)
Codim(V)<r
[flov= max  (BxC.f).

1 Blloo, I Clloe <2*

Corollary A.6. Let d > 1 and ¢ € [2%, 1]. For any bounded
function f : ¥y — [0,1], we have

IfllLasje2 = [[fll+,a = OCe)-

That is, Sanders shows us how to bootstrap a high-entropy
density function F' with mild additive structure witnessing
(F, f) > ~ into a reasonably high-entropy density function F’
with strict additive structure witnessing (F”, f) > v — O(e).
Sanders applies this fact to the difference-set indicator func-
tion f := 1,4_4 to obtain his solution to the Approximate
Bogolyubov Problem (Theorem I.11): indeed, we clearly have
14— 4llx,a =1, as witnessed by A x A itself.

Inspired by this, we might hope (possibly naively) that we
could apply such an argument to the function f = A x A, as
we have noted already that

(Ax A, Ax A) > 4,

22See however [San12b, Appendix: Proof of Theorem 11.1] or [Lov15] for
some similar statements.
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and so ||A x A||.q > 4. Certainly this is not permitted by
Sanders’ lemma as stated, since A « A is not a bounded
function, but we can for example try to see what can be learned
by applying Sanders’ lemma to various approximate level-set
indicator functions

f(@) = Um < (Ax A)(x) <n2).

For the sake of discussion, let us consider the following
(purposefully slightly vague) notion. Say that “F' robustly
witnesses D > 1 + n” if (firstly)

(F,D)>1+mn,

and additionally that F' witnesses a deviation of such magni-
tude typically, rather than just on average. Certainly we would
include the following exemplary case: if

(F,1g) >1—1n/2,

where
S={z: D(z)>1+2n}

and 1 < 1/2; in this case we indeed have

(F,D) > (1+2n) (F,15) > 1 +7.

In light of Sanders’ invariance lemma, we see that to reach
our goal it suffices to find some large sets B,C C [Fy| of
sizes | B|,|C| > 27pol¥(d) |F5 | such that the convolution B *C
robustly witnesses A+ A > 1+ €(1). Indeed, if we can show
that

£l =1 =mn/2

where
f@) =1U(AxA)(x) =1+ 2n),

for some & < poly(d) and some 7 > (1), then we can apply
Corollary A.6 with ¢ = ©(n) to find a large affine subspace
with

(V, A% A) > (1420) (V, f) > 1+ Q(1).

B. Finding a robust witness

We proceed to consider the problem of finding a robust witness
to Ax A > 1+ Q(1) of the form B * C. It is tempting to
check if simply F' = A% A is already a good robust witness for
itself. For general density functions D obeying only || D|s > 2
and || D]l < 27 this is certainly not the case: for example
it is not hard to arrange that for uniformly random z, D(x)
corresponds to some random variable X € [0, 2%] with E[X] =
1 and E[X?] = 4 and yet

o)

ELX-1UX > 1) < 7

We can consider whether the additive structure of D = Ax A
rescues us from this example. Upon checking some extreme
examples, such as when A a subspace of density 27¢, or A is
a random set of density 2%, this looks initially promising; in
both cases the function /' = A x A is a reasonably robust
witness of A x A > ||A x A|2. However, the following
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third example, which we call the “planted subspace” example,
shows this is not the case in general.

Example A.7 (Planted subspace). Consider a set A C Fy of
the form
A= (WuUC)xFy 4,

where C C T4 is a random set of size |C| < |Fg|'/10
and W C  F¢ is a subspace of size |C[*/“
It is likely that |C + C| ~ |C?,
roughly speaking) that

W +C| = |C|"*, and (very

Rwuc = Rw + Rc+ Rwe = |[W|- 1w + Lot + Lwyc.

Suppose this is the case, and consider the random variable

Z = RWUC(y)7

where y ~ Ryyuc.”> We have
2
> Bwuc(z)

et +er+ )

Ol +|C]2 + O/
|C|9/4

TICP

=[],

and yet
|C‘6/4

P(ZSO(U)“1*W

=1-|C|7"/2

This example shows that it is possible that the majority of
the contribution to ||A x A||2 is attributable to some additive
structure within A x A which is strong but rare, and we will
need to work somewhat harder in order to detect it.

Let us consider once again whether what we ask for is at least
plausible analytically: that we can find a high-entropy density
function robustly witnessing D > 1+Q(1) whenever | D||z >
2 and || D||s < 2¢. Again, the best choice of witness F' given
a constraint on ||F||. would be some super-level set of D.
However, we consider a simple choice which is already quite
satisfactory. We denote by D\* the density function which is
proportional to D¥; namely

DM (z) = (ﬁggﬁi)k.

In what follows we refer to this density function as the
“degree-k compression” of D. Since ||D|x > ||D|p =
1, it follows that compressions satisfy the entropy-deficit
bound

“4)

1Dl < 1D]5 < 2.

Compressions D\* also robustly witness D >
)Pk

1 -

BThat is, y € F¢ is a random variable with pdf proportional to Ry yc:-

Proposition A.8 (Compressions escape sub-level sets). Let
D : Q — Rxq be a density function on some arbitrary finite
set ), and let k > 1. Consider the sub-level set

S:={reQ: D)< (1—-¢)|D|k}-
We have
(DM 1g) < (1—e)*E[1g] < e .

Alternatively, consider
S = {x €N : Dx)<ec- D||,t+’“} .

We have
<DN“,115/> < 1

Proof. Bound D*-1g < (1—¢)*||D||k-15 pointwise and then
take the expectation. Alternatively, we may bound D¥ - 15 <
c*=1.||D||¥ - D pointwise and use E[D] = 1. O

We apply this to our current situation for some choice of k >
2, noting that ||D|| > ||D||2 > 2. We find that it suffices to
choose some k£ < O(1) to get a (high-entropy) robust witness
to D> 1+ Q(1), as desired.

Importantly for us, for integral values of k, degree-k compres-
sions of a convolution D = A% A also retain a certain amount
of additive structure. More specifically, we will soon see that
the fact that

<(A * A)/\ka ]lS> <n,

entails the following consequence: that there is some subset
A’ C A, of size |A’| > 279Wk)| 4], such that

(A'x A" 15) < O(n).
More specifically, A" is of the form
A/:Aﬁ(A+S1)O(A+32)ﬂ"'ﬂ(A—f—Sk_l)

for some choice of additive shifts s;. Thus we can obtain a
robust witness to A x A > 1 + Q(1), which has the form
A’ x A’, as desired.

We offer the following interpretation of this. Taking multiple
additive perturbations of the set A and considering their
common intersection is sufficient to “uncover” or ‘“reveal”
the additive structure hidden within A. This technique has
been used in some form by various works in the existing
literature; we call it “sifting”, and in this work we develop
some refinements to it.

C. The Pre-BSG Lemma and the sifting lemma

Let us consider the following lemma due to Schoen [Schl5],
which we state in the density formulation.

Lemma A.9 (Schoen’s Pre-BSG Lemma). Let A be subset
of a finite abelian group G of size |A| > §|G|. Consider the
sub-level set

Si={xcG: (AxA)x) <c-|AxA|2}.
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There is a subset A’ C A with
(A" % A, 1g) < 16¢

and A
IlEl > %52 A% All5 > %(52-

Specifically, A" is of the form
A'=AN(A+s)
for some s € G.

We call this the “Pre-BSG Lemma” as it can be considered
as a sort of soft, analytic precursor to the Balog-Szemerédi-
Gowers lemma — indeed, Schoen shows that it readily implies
the following.

Lemma A.10 (Balog-Szemerédi-Gowers [Schl5]). Suppose
that A C G has

E(A) =Y Ra(x)’ = s|A]%.

zeG
Then there is a subset B C A with

|B - B| < O0(x~*|B|)

and
|B| > Qx| A)).

The name “Pre-BSG Lemma” is certainly ahistorical, however
in a sense it is fairly appropriate in spirit: the technique used to
prove it (sifting) is also the technique Gowers uses to prove his
own combinatorial precursor-lemma ([Gow0Ol, Lemma 7.3])
from which he deduces (a form of) the BSG Lemma.

We remark on a peculiar feature of the Pre-BSG Lemma. It
is a tool that is useful for studying both sparse and dense
subsets* of a finite abelian group G, which we roughly
delineate as the regimes |A| < |G|'/2 and |A| > |G|*/2. This
is in contrast to e.g. other tools such as Chang’s inequality,
which says nothing interesting regarding sparse sets, or the
BSG Lemma itself which says nothing interesting regarding
dense sets except in some very extreme cases.””> While the
density-formulation of the Pre-BSG Lemma stated above is
technically equivalent?® to the counting-measure formulation
stated in [Schl5], translating between the two settings is a
nontrivial exercise in bookkeeping and for studying sparse sets
A C G one would much prefer to work from Schoen’s original
formulation. It is possibly better for practical purposes even
to consider the tool as “conceptually different” as it applies to
the two settings.

24Certainly it seems to have seen more applications to the study of sparse
sets (via the BSG Lemma). However, see e.g. Sanders’ work [San10] where
he applies a (chronologically earlier) variant to the study of dense sets.

ZIndeed, for a set of size | A| = §|G/, consider the ratio k = E(A)/|A|3.
We have k = §||Ax A||2 € [§,1]. In our present context, we consider A to

One can check that Schoen’s Pre-BSG Lemma, together with
the plan laid out above, is sufficient to obtain a density
increment

(V.A) 2 1+9Q(1)
from an assumption such as
1A A3 > 27,

To obtain a density increment from milder assumptions of the
form ||A* Al|x > 1+ ¢, we turn to the following.

Lemma A.11 (Sifting lemma — simplified version). Suppose
A C G has size |A| = 6|G|. Fix a nonnegative function f :
G — R>¢ and an integer k > 2. Suppose that

((Ax A" )y =
Then there is a subset A’ C A with
(A% A" f)y <2
and
Al

> 15k
|G| ~ 2

Specifically, A’ is of the form

A =AN(A+s1)N(A+s)N---N(A+ sp_1)
for some shifts s; € G.

Combining this with the plan laid out above suffices to prove
Theorem II.8; it remains only to prove the sifting lemma and
to work out the quantitative details. We note that as stated
this claim is incomparable with Schoen’s Pre-BSG Lemma
— indeed, it says nothing interesting regarding sparse sets
A C G because of the size guarantee on A’ — but it does
suffice for the applications considered in this work. With some
extra effort one can derive a version of the sifting lemma
which leads to the following strict improvement which may be
useful elsewhere; we state it below in the counting-measure
formulation.

Lemma A.12 (Extended Pre-BSG Lemma). Suppose A is a
finite subset of an abelian group G with

Ex(A) =) Ry(2)* = wA*

zeG

for some integer k > 2. Consider the sub-level set
S = {xEG : R;(x)gc'mﬁ~|A|}.
There is a subset A" C A with

1
Z Is(a—b) <2cF 1

[A|?

have noticeable additive structure already when ||A x Alj2 > 1 4+ Q(1); in abed’
contrast the BSG Lemma above is not better than the trivial bound |A— A| < and
|G| < 61| A| unless ||Ax Aljz > §3/8.
26That is, equivalent in the case of finite groups G. |A/| > %H|A|.
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D. The Croot-Sisask lemma
For a point p € G, define the shift operator T}, by

(Tp)(x) = flz —p).

This operation can be equivalently described as convolution
of f with the point-mass density at p (and hence it commutes
with other convolutions). For a density B, we define the linear
operator T analogously: (Tsf)(z) := (B * f)(z).

Lemma A.13 (Croot-Sisask lemma). Let G be a finite abelian
group, and suppose A, A’ C G are such that

Al > 279 A + A,

which is in particular the case if simply A’ = G and |A| >
2=4|G|. Fix an even integer k > 2. and a function f : G —
R such that || f||x < 1 (which is in particular the case if f
maps into [0,1]). For any ¢ € [0,1], there exists a set S C A’
of size at least

|S‘ > 2—O(kd/e2)|A/|

such that for any points p,p’ € S,
|Tp—pr Ax f—Ax fll, <e.
Consequently, for any integer t and any point p € tS —t.5,
T, Ax f—Axfl, <te.

Proof. Fix an integer ¢ € N which is somewhat larger than
k. We consider the idea of approximating A x f by a random

“sketch”
1 Y
72 Tuf
i=1

If each a; is drawn independently from A, then E[T,, f] =
A x f, and the vector-valued Khintchine inequality (proved

below for even k) gives
k
k/2
k
<(3)

k
So by a Markov inequality, the chance that ||s(a) — A f||x >

2\/§ is at most 27,

Now, we seek a simultaneous approximation of T,A x f =
T4pf for all points p € A’ by some sketches

s(ar,az,...,ap) =

L

P> TS

i=1

E [ls(a)~As/|[f = E

l
1
s(y) = s(y1,y2,--ye) = 5 > T, f,
=1

this time allowing y € (A + A’)? instead of just a € A*. We
say that y is a plausible sketch for Ta, f if y; € (A+p) for
all . We say that y is a good sketch for T4, f if

159) = Taspflle < zﬁ.

By the same argument as above, for every p, at least a fraction
(1 —27%) of the sketches which are plausible for T4, f are
in fact good for T4y, f.

Now we form a bipartite graph on the vertex-set A’ x (Ax A’)",
including the edge (p,y) whenever s(y) is a good sketch for
Ta4pf. We wish to find a sketch s(y) on the right side which
is simultaneously good for as many points p as possible, and
we will do so by a pigeonhole argument:

o Vertices on the left side have degree at least 5|A[".

o We have the following relationship between the average
degrees of both sides (D, DR), the sizes of the vertex-
sets of both sides (Ny, Ng), and the total number of

edges E:
Dy -Np=FE=Dpg-Ng.
¢
. ThllS, DR Z %}L%~NL Z % (%) ‘A/|

So, we can find a fixed sketch s(y) on the right adjacent to a
large set of points S C A’ on the left, meaning that s(y) is
a good sketch for every p € S. Since T4, f are all close to
s(y), they are all close to each other:

||T;DA ¥ f =Ty Ax f”k = ||TA+pf - TA+p’fHk

S Tarpf = sl + 15(y) = Tarp flI;

K
<4y/7
—\/;

for all p,p’ € S. To conclude, note that since ||T.g]lx = |9«
for any function g and any point x, we have

||T:DA* f _Tp’A*f”k = HTfp’(TpA* f _Tp’A*f)
= [|Tp—p Ax f—Ax ],

[P

Setting £ = 16 - k/c? gives the desired parameters. O

Proposition A.14 (Vector-valued Khintchine inequality). Let
k > 2 be an even integer. Let vy, v2,...,v; € R, be some
independent vector-valued random variables with means j1; :=
E[v;]. Suppose that

1 .
E[lvill} :=E ooy Z vi(i)*| <M
j€[m]

for all i. Consider the average

Y4

> (i — )

i=1

V=

~ | =

of the (centered versions of) the v;’s. We have the following
bound on the average value of ||v||%:

s < (5) " ue

Proof. By re-scaling we may assume M = 1. We may also
assume 1; = 0 for all 4, since E ||v; — ;||¥ < E ||, ||} for k >
2. Define the k-wise dot product of some k vectors u; € R™
by

jeﬂfjm] uy (f)ua(d) - - - uk(f)-

U1 - U+ U 1=
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Now, we compute

k
v||g = E Viy * Vg * " Vg
Pl =, B O 0 v
Upon taking the expectation of this quantity, any term which
contains a certain random variable v; only once in the dot
product becomes zero. For the remaining terms, we can bound

k
1/k
Efvs, - viy -+ - v3,] H E v, lI7) " < 1.

So we reduce to the combinatorial problem of counting the
number of tuples i € [/]¥ which have no unique entries.
Let T'(k,£) denote this quantity. We can bound this number
recursively as follows: Consider the first entry ¢; of such a
tuple. There must be some i; with i; = i;; we consider all
the possibilities for this, then remove the first and j-th entry
from the tuple, and then count the number of tuples in [¢]*~2
which have no unique entries. This argument gives the bound

Tk 0) <k-0-T(k—2,0)<--- < (ko).
So overall we have
KO)R/2 1o\ k/2
Bllol) < S9—=(3) - =

E. Sanders’ invariance lemma

Lemma A.15 (Sanders’ invariance lemma, restated). Suppose
A,B C F} are sets of sizes |A| > 279|F7| and |B| >
27k|Fg\. Fix a bounded function f : ¥y — [0, 1]. Then, for any
e > 274 there exists a linear subspace V (possibly depending
on ) with codimension at most O(kd?/&?) satisfying
[(VxAxB,f)— (A% B, f)| <e.

More specifically, we have the pointwise bound

aleEAf(erv+a+b)faIEEAf(x+a+b) <e
beB beB

JorallveV and x € Fy.

Proof. We seek a large linear subspace V' such that
€
ITyA* f—Ax fllr < 3
for all v € V. We note that this suffices, since

(TuB, TyAx f — Ax f)|
< | TBIl YT BILF I T A% = Ax flk
< 2||TUA*f— A*f||,C

for any « € Fy. First we apply the Croot-Sisask lemma
to obtain a large set S of shifts 7}, which leave A x f
approximately unchanged: ||T,—,y A x f — A * f|lx < n for
all p,p’ € S where 7 is some parameter we will pick later.
We can obtain

S| > 27O/ 7).
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Continuing on, let’s write g := A x f for brevity. We now
describe how to pick the linear subspace V. First, consider
the large spectrum of S:

Spec, ;5(S) := {a €T : |S(a)] > %}.

We let W := Span(Spec, /(5)). By Chang’s inequality for
vector spaces over finite fields (proved below), the dimension
of W is at most O(kd/n?). Finally, we let V := W=,

Consider the density function D = S x .S, and let X denote
the t-iterated convolution D x D * - -- * D. We have

Z |S(a)] ea(~2),

and in particular for any o ¢ W, we have |X(a)| < 272 We

note that
(VxXxg—Xxg)(x ZX 2 f) o(—2).

agW

Thus

[V Xxg—X5g|loo < 2%\/2 |A() \/Z )2 < 27294,

Finally, we estimate

lg —V =gl

Slg— X xgll, F1Xxg =V X xgll, + |V Xxg—Vxg|,
=g =X gl + I X*xg =V Xxgl, +|V*(Xxg—9g)l
<2g—Xxgll +[[Xxg—V*Xxgl

< 2t + 2472,

and

1Tvg =V xgll, = llg = T-V x gll,,

=llg— Vgl
S Qt'r] _|_ 2d—2t7

which together give a bound on ||T,g — g||,. Choosing t :=
O(d) and 1/ := O(t/e), we obtain the desired error bound.
The resulting bound on the codimension of V is O(kdt?/&?) =
O(kd? [<2). O

Lemma A.16 (Chang’s inequality for vector spaces over F,).
Suppose A C ¥y has size |A] > 2_‘1\]1‘73 , where d > 1. Then
any subset of linearly independent vectors L C Spec_(S) has
size at most

|L| < 4d/e%.

Proof. Suppose as,...,op C Spec,(S) are linearly indepen-
dent. Let ¢; := A(«;), and consider the auxiliary function

= Zc,pem(f

i=1
On one hand we have
¢

ZCZ E €a; (

=1

(A, f) =

4
= Y1ty
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On the other hand (choosing k = d) we can bound
k
(A F) < AT IAIZEIF e = 2% (1 £lle < 2+ 1 £l

Now, since the vectors «; € Fy are linearly independent, the
complex random variables defined by X; := e, (z) (where z
is uniformly random in Fy) are in fact mutually independent.

So by a Khintchine inequality, || f|lx < V& - | fll2 = Vk -
)y | A(cy;)|2. We conclude that
é o~
<Y |A(n) P < 4k = 4d,
i=1
and so ¢ < 4d /&2, O

Proposition A.17 (Proposition V.7, restated). For a real-
valued random variable X and k > 1, we use the notation
1/k
X[l == (E]X]5)
Suppose X is such that

o E(X —1)* >0 forall odd k €N, and
o | X—1|x, > € for some even ko > 2 and some € € [0, 1].

Then, for any integer k' > 2kg /e,

| Xl =477 (142) 2 1+ 2.

Proof of Proposition V.7. We wish to show that E X K>
1(1+¢)". We express
EXF =E(1+ (X —1)"
k,

CE(X —

(}) -2 -

=0

> -V,

> > (5)

k even

Towards understanding this quantity we apply the following
trick. We introduce a uniform random variable 6 € {+1,—1}

ko <k <Kk’
and consider the value E[(1 4 6)*']. On one hand this value
is of course

E(1+ o) = L1+ )" +1(1—2)¥.

o

It can be expressed also as
K a k' k1K K" Lk
E(1+46 = E[0%]e" = ;
o - E (e - 5 (0
k=0 k even
0<k<Kk'
we conclude that
k' 1
Z ( i > " > 5(1+ e)*.
k even
0<k<Kk
At this point, let us normalize by (1 + ¢)* so that we can
proceed via a probabilistic interpretation: we are interested in
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the probability of a certain event concerning a random variable
k € N drawn according to a binomial distribution with &’ trials
and success-probability p =

1+ E>

In particular, we are interested in the chance that both

g .
14+¢°

k ~ Bin (k’

1) k is even, and
2) k> k.

So far, we have calculated that the chance that k is even is
at least a half. In addition, it is known that a median of a
binomial distribution Bin(%’, p) is at least | pk’ | [KB80]. Since
ko < ek’/2 <ek'/(1+ €), we also have that the chance that
k > kg is at least a half. One might then suspect that the
probability that both events occur simultaneously should be
roughly at least 1/4; the following calculation confirms this.
Suppose t < £k’/2 is an odd natural number. We have

E—-(t—-1
P(k t):%-e-l@(k:t—l)
k —t
e Plk=t—-1)
<—1) e-Plk=t-1)
>Pk=t—-1),
and so
P(k is even and k < ko) < % Pk < ko) < %.
We infer that
P(kis even and k > ko) > 3 — + = +
and so ) )
EX* >1.14¢)".
Equivalently,

’ 1/kl ’
(EX’“ ) >4~V (14 e).
To conclude, one can check that
47/ (1 +€) 21+§

for £ € [0, 3]. O
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