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A B S T R A C T

Learning from continuously evolving data is critical in real-world applications. This type of learning, known as
Continual Learning (CL), aims to assimilate new information without compromising performance on prior
knowledge. However, learning new information leads to a bias in the network towards recent observations,
resulting in a phenomenon known as catastrophic forgetting. The complexity increases in Online Continual
Learning (OCL) scenarios where models are allowed only a single pass over data. Existing OCL approaches that
rely on replaying exemplar sets are not only memory-intensive when it comes to large-scale datasets but also
raise security concerns. While recent dynamic network models address memory concerns, they often present
computationally demanding, over-parameterized solutions with limited generalizability. To address this long-
standing problem, we propose a novel OCL approach termed “Bias Robust online Continual Learning (BRCL).”
BRCL retains all intermediate models generated. These models inherently exhibit a preference for recently
learned classes. To leverage this property for enhanced performance, we devise a strategy we describe as ‘uti-
lizing bias to counteract bias.’ This method involves the development of an Inference function that capitalizes on
the inherent biases of each model towards the recent tasks. Furthermore, we integrate a model consolidation
technique that aligns the first layers of these models, particularly focusing on similar feature representations.
This process effectively reduces the memory requirement, ensuring a low memory footprint. Despite the
simplicity of the methodology to guarantee expandability to various frameworks, extensive experiments reveal a
notable performance edge over leading methods on key benchmarks, getting continual learning closer to
matching offline training. (Source code will be made publicly available upon the publication of this paper.)

1. Introduction

CONTINUAL Learning (CL) has emerged as a pivotal paradigm in ma-
chine learning, aiming to enable models to learn from data over time
without forgetting previously acquired knowledge [1,2]. However, a
persistent challenge in CL is a phenomenon known as catastrophic
forgetting [3], where models tend to overwrite old knowledge as they
acquire new information. To address this, recent efforts, including
softmax separation [4], bias correction [5], and knowledge distillation
[1,2,6–8] have been developed to recalibrate the bias dynamics between
older and newer classes. More competitive performance is shown by the
approaches that consider updating the model by a balanced set of old
and new tasks [9,10]. The landscape of CL has been evolving towards
towards online settings [9,11,12] where models learn all information in
a single pass through the data, referred to as Online Continual
Learning (OCL) [13]. In OCL, it is imperative that models assimilate

new information efficiently in one pass without the luxury of revisiting
old data. Conventional CL approaches are not suitable in online sce-
narios, as they typically involve multiple passes over the data for model
update [14] or buffer update to incorporate more representative ex-
emplars, ensuring distinct decision boundaries after successive updates
[4,15,16]. Such practices inherently demand the retention of prior
training datasets, making them memory-draining and impractical in
contexts with data privacy constraints [17].

The challenge intensifies as models encounter new training data.
When the influx from newer tasks significantly outnumbers that of
previous tasks [18], the model’s knowledge tends to skew towards
recent information [2,19,20]. This phenomenon is particularly pro-
nounced when the data from newer tasks significantly outnumbers that
of previous tasks [5], causing the model’s knowledge to skew towards
recent information [2,19,20]. One of the primary reasons is as models
evolve to handle new tasks, implicit modifications in model weights can
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compromise the knowledge of older tasks [21], introducing a bias to-
wards newer classes and exacerbating the forgetting issue [22]. A deeper
investigation by [13] indicates that the fully connected layers, not the
feature extractor, exhibit this bias. With this insight, we hypothesize (i)
the bias in penultimate layers can direct the classification process; while
most efforts focused on alleviating the bias, we propose to take advan-
tage of existing bias which we call bias recency (ii) In this direction,
retaining information from fully connected layers might offer a prom-
ising avenue for preserving knowledge.

Recent feature replay-based CL including DER [23], FOSTER [24],
and MEMO [25] leveraging backbone extension have offered strategies
that significantly improve performance at the expense of computational
efficiency. Generative feature replay, on the other hand, produces data
of old classes in CL procedure [26,27]. However, they present solutions
with limited generalizability, especially on large-scale datasets [17]. We
argue that constantly adapting a single network for generative replays
fails to sustain OCL in the long run. This limitation is highlighted by
recent research demonstrating that deep learning models, gradually lose
their ability to adapt to new tasks, when applied in continual learning
settings, As a result, the network’s plasticity deteriorates over time,
causing it to perform no better than shallow networks, unless variability
is continually injected into the network [28]. This insight suggests that
instead of relying on a single backbone network, employing dynamic
networks could offer a more robust solution, especially in large-scale
continual learning scenarios.

We argue that the bias inherited from each network indicates its
preference for recent tasks. We sought to develop a method that draws
on these insights and presents the Bias Robust online Continual Learning
(BRCL) framework in this paper. In our exploration, we first highlight
how the inherent bias in a network’s backbone can serve as a unique
metric for model selection (Fig.1). We term this strategy “using bias
against bias” enabling the inference function to pinpoint the most
discriminative network. Second, since storing all networks along the CL
procedure can strain memory constraints, we propose a model consoli-
dation approach to store a subset of networks. Our evaluations of BRCL
on popular CL benchmarks in an online setting have yielded impressive
performance, particularly with large-scale datasets such as ImageNet-1
K. The contribution of this paper can be summarized as:

• We propose a novel BRCL framework to address the pervasive
catastrophic forgetting problem in OCL.

• We develop an inference function leveraging the inherent bias in CL
networks.

• The integration of an efficient consolidator allows the framework to
further reduce the memory footprint.

• In contrast to SoTA works in dynamic networks, our purpose is to
introduce a simple framework that maintains expandability to
various dataset sizes and models.

2. Related work

Rehearsal-based strategy. Methods in this category use a memory
buffer for exemplar storage during training. However, a fixed-size
memory buffer quickly fills with large-scale data, leaving fewer samples
for older classes and causing class imbalance [1,11,12,29–32]. Some
newer methods allow memory update but may still exclude older classes
[9,20]. These methods often neglect task specificity, especially with
random sampling updates [11,12,20]. Zhang et al. [33] proposed a
Bayesian framework that incorporates full experience replay, and uti-
lizes a sparse network approach, to manage memory usage. Addition-
ally, adjusting model parameters or stored exemplars [1,15,34] requires
revisiting older data, by continuous resampling [35] making this strat-
egy non-optimal for online data processing.
Regularization-based methods. These algorithms impose re-

strictions when updating weights in a neural network by approaches
including penalizing existing loss functions [36–38] or introducing new
ones to the algorithm, such as cross-distilled loss in [1], and less-forgetting
loss in [7]. Other existing methods apply gradient modification during
optimization [39,40], and employ additional layers, e.g., another soft-
max for old classes [4] or a linear layer for bias removal [5]. Some
studies have incorporated knowledge distillation [1,8,15] and attention-
based distillation [41] to tackle catastrophic forgetting issues and
imbalance problems in CL. Studies by [42,43] argued an inherent lim-
itation in regularization approaches and proved that they could not
learn the correct solution without task label inferences.
Feature replay. Feature replay methods [44–48] have made sig-

nificant strides in enhancing performance with limited memory buffers.
These methods, while innovative, often skirt the strict protocols of on-
line learning. For instance, FOSTER [24] and MEMO [25] rely on
retaining input data, which can be infeasible in real-time or privacy-
sensitive scenarios. Generative feature replay [26,27] leverages gener-
ative models to simulate features, thus reducing memory needs. How-
ever, its efficacy hinges on the generative model’s quality. Although
several follow-up works [49–52] persist in advancing this domain, they
confront enduring challenges. Among these, the representation drift and
the generation of high-fidelity samples across a broad spectrum of tasks
stand out as particularly persisting obstacle, specially when it comes to
scaling to large-scale datasets.

3. Methodology

3.1. Background

The OCL problem discussed in this paper is restricted to one single
pass over the data. The model shall be trained continually in a dataset
D = {(x, y)|x ∈ X, y ∈ Y}, where x ∈ X and y ∈ Y is the image and its
label. Training occurs post-completion of each task, this involves several
mini-batches of data {(x, y)}, the model waits for task to conclude before
updating. We strictly follow the online class incremental learning setup
[13] where and task labels or any task-indicating strategy is not pro-
vided, i.e., single-head setting is applied. More specifically, given a data
batch D = {D1,D2, …,DM} under M unknown distributions, our aim is
to incrementally learn and optimize the network ϕ(x; θ) parameterized
by θ for data seen so far. We follow the same local i.i.d. assumption that
the i-th task distribution for Di is stationary. Therefore, given a mini-
batch

{(
xi, yi

)}
∈ Di, OCL is defined as:

Fig. 1. Overview of the proposed BRCL in runtime. BRCL reserves a set of
trained networks ϕ1, ϕ2, …, ϕM obtained in the incremental training stage.
When test data arrives, the Inference function evaluates the confidence score to
identify the competent feature extractor (ϕ1 in this example). In our method,
feature representations rather than raw data are stored, which reduces memory
footprint substantially, especially for large-scale datasets.
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ϕi←ϕi−1,Di ∪ ε1:i−1; (1)

where εi is a small exemplar set sampled from Di. The utilization of
exemplar set in the memory does not circumvent the one-pass require-
ment as long as this exemplar set is not updated after the model has seen
the task. Exemplars are selected and retained during the initial pass
through the data for a given task, and stored in memory, for future
training stages. This approach avoids additional passes over the training
data and ensures compliance with the OCL protocol [13].

3.2. Exemplar selection

The exemplar selection employs the herding algorithm [53], as uti-
lized in iCaRL [15], while adapting it for an online continual learning
setting. Unlike the original iCaRL method where exemplar sets can be
updated after training on each class, in our approach, once an exemplar
set for a class is determined, it remains fixed. Hence, h(.) is the function
that selects η exemplars from the set of feature vectors F based on their
proximity to the mean of feature vectors f , formulated as μj = 1

|Fj|

∑
f∈Fj f

for each class j.

εj = h
(
Fj, μj, η

)
. (2)

Note that we use superscripts to index different tasks, and subscript
to denote classes.

3.3. Network generation

If we store an instance of the frozen model ϕi after training on Di, and
we repeat this step every time we learn a new task, we can incrementally
learn M networks Φ =

{
ϕi}, i ∈ [1,M], where each ϕi rely solely on ϕi−1

and exemplars seen so far ε1:i−1. Algorithm 1 shows the procedure to
produce the network set Φ.

Algorithm 1. Training and validation of BRCL.

3.4. Bias-robust framework

The proposed BRCL is motivated by two well-recognized phenomena
in OCL, i.e., knowledge drift and weak generalization due to
depending on a single model.
Knowledge Drift. In OCL, the imbalance data problem occurs at

each training stage when the majority class from Di has abundant data
points to shift the weights towards the new class, while old classes have
the minority data samples from D1:i−1. This phenomenon is highlighted
in Fig. 2 which shows the softmax scores of four networks after the
model was incrementally trained on four tasks and tested on samples
from Task 1. We can see that the softmax scores drop by a large margin
after only four tasks. In particular, ϕ1 presents the highest score over all
the other models. The reason is the imbalance problem arises during

training: when data from new classes significantly overshadows that of
older ones, resulting in (1) penalizing logits associated with older clas-
ses, including their bias term in the softmax layer [4] (2) overwhelming
decision boundary of minority classes by majority classes with more
discriminative margins [18]. Fig. 3 visualize this problem by showing
the transformation of the feature space for Task 1 as the model un-
dergoes training on subsequent tasks. The progressive blurring of class
boundaries in the feature space is a manifestation of the knowledge drift
issue, highlighting the bias recency in the continual learning framework,
where the model’s updates are dominated by newer classes, leading to a
degradation of the feature representations for earlier classes. Please note
that Figs. 2 and 3 are independent visualizations as they have different
numbers of classes in each task.
Weak generability. While Φ is trained sequentially with the

incoming data, existing OCL approaches often rely on a single feature
embedding or network for all tasks. A single model may struggle to
capture complex representations or adequately replay features across
diverse classes, leading to compromised performance. Fig. 3 illustrates
how the compact and well-separated clusters associated with robust
class representations generated by ϕ1 become increasingly interspersed
and less defined in subsequent models. The overlap of features between
different classes can result in increased confusion for the model, sug-
gesting a weakening of the model’s generalization ability for previously
learned classes as new information is incorporated. This becomes
problematic when applied to large-scale datasets.

To handle the mentioned complications, we propose utilizing all
networks trained incrementally during runtime. Given that each
network is inherently biased towards its most recent task, examining
these biased scores could lead us to an optimal network for a given test
batch. As evidenced by Fig. 2, we hypothesize that the score corre-
sponding to the correct label could be used as an inference, particularly
if that label is associated with the most recent task. We can formulate the
inference function framework to optimize the network selection, which
consists of:

• A set of networks Φ =
{

ϕi}, where each ϕi produces a distinct
feature map tailored to its corresponding dataset Di.

• The inference function I m designed to select the most suitable
networks from Φ based on our proposed metric.

As outlined in Section 3.1, the first module can be constructed by
storing the set of networks, Φ Fig. 1. The following section will delve
into the architecture of the inference framework and the metrics used for
model selection. As indicated in Fig. 2, while a bias towards recent tasks
can cause performance deterioration of older tasks in a single network
scenario, we argue that it can make a reliable metric for task inference
using the associated network. If a test sample’s correct label is part of a
recent task, its softmax score is likely to be the highest by the network
that was just trained on it. We exploit this behavior to gauge the con-
fidence level of each model, thereby selecting the most reliable one for a
given task. To ensure that the confidence levels indicated by the softmax
scores accurately reflect the certainty of the predictions, we employ
temperature scaling, a post-hoc calibrature technique that adjusts the
softmax scores without altering the models’ accuracy. Temperature
scaling, as outlined by Guo et al. [54], involves dividing the logits by a
temperature parameter T before applying the softmax function. This
approach effectively calibrates the confidence levels of the model’s
predictions, making them more representative of the true likelihood of
the correctness. The modified softmax score vector for a class c ∈ C in
network ϕi is thus defined as:

sic = Softmax
(
ϕi(x; θ)

/
T

)
; (3)

where Softmax(.) : R di→[0, 1]
di and T > 1 is the temperature param-

eter, with T = 1 recovering the original softmax probabilities. Parameter
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T softens the softmax output by increasing its entropy aiming to
distribute the confidence levels more evenly across the classes. As T
increases beyond 1, the model’s output probabilities edge towards a
state of uniform uncertainty. As T approaches infinity (T→∞), the
output probabilities trend towards maximum uncertainty wherein each
class’s probability moves closer to being 1/∣C∣, where ∣C∣ is the number
of classes. On the opposite end, lowering T closer to 0 would theoreti-
cally sharpen the distribution, converging on absolute certainty for a
single class, although such a scenario is avoided by keeping T greater
than 1. Value of T is found empirically. This approach ensures that while
the confidence across classes becomes more balanced, the model’s pre-
dictive accuracy remains unaffected since the adjustment does not alter
the class with the highest softmax score.

We define the inference function I f to select the network ϕi ∈ Φ that
maximizes the temperature-scaled softmax score for a test sample x ∈

Xtest as:

I f (x, Φ) = argmax
ϕi∈Φ

(

max
c∈C

(
sic

)
)

. (4)

Incorporating temperature scaling as a calibration technique is
especially crucial in our context, where accurate representation of
confidence is essential for selecting the most competent network for a
given ask.

The entire training and validation procedure of BRCL is explained in
Algorithm 1.

3.5. Model consolidation

The proposed BRCL framework maintains multiple networks (M in
total), which could lead to significant memory overhead compared to
using a single network. We aim to decrease memory consumption by
eliminating the need to store one backbone network for each task, a
strategy utilized by DER [23] and critiqued in works like MEMO [25].
MEMO’s analysis challenges the necessity of a backbone per task,
particularly from a memory-efficiency standpoint, suggesting omitting
layers that undergo lower gradient changes could be a more efficient
approach. However, MEMO’s findings also highlight certain limitations.
Firstly, their approach yields significant benefits primarily when a vast
number of classes are introduced in the initial task, which may not be
feasible or practical in all scenarios. On the other hand, the generaliz-
ability of the gradient shifting measurement could vary across different
network architectures. Additionally, the process of determining which
layers to retain or remove, as suggested by their method, could indeed
be time-consuming and computationally intensive. Finally the proposed
memory saving approach amounts to 22% and ends up having 78% of
DER’s memory consumption. BRCL tries to overcome these limitations,
by proposing an approach that is not only more generalized across
different network architectures but also avoids the intensive process of
layer-wise evaluation for memory efficiency. By doing so, we aim to
provide a more universally applicable solution in OCL, particularly for
scenarios with diverse and varying datasets. Hence, we introduce a

Fig. 2. Illustration of bias in ϕ1 : ϕ4. x-axis shows networks and tasks addressed by each network, and y-axis is the average softmax score by ϕ1 : ϕ4, given a batch of
n test samples. The 3rd class in Task 1 is the ground truth. In the test, when ϕ1 is selected, the highest softmax score comes from the 3rd class as expected, which will
be selected for classification purposes. This advantage has been amplified due to the bias of ϕ1 towards Task 1. In ϕ2 : ϕ4 the bias towards other tasks will diminish
the score and mislead classifiers.

Fig. 3. Visualization of saturation of feature space related to Task1 across continual learning steps. Each subplot illustrates the 2D-tSNE embedding of Task1 features
extracted from the models ϕi after training on Task i incrementally, i ∈ {1,2, 3,4}. It is observed that as the model is evolving, the originall distinct class clusters
become progressively less discernible.
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consolidation algorithm to remove redundant networks and reduce
memory consumption. The redundancy can be quantified through the
similarities between feature spaces of ϕi(D) and ϕj(D). Intuitively, if
feature maps learned from ϕi and ϕj are statistically similar, both net-
works will yield comparable performance on the same dataset D; hence,
the newer model can retain the knowledge from the previous task and it
can be used to substitute the older model. Our consolidation strategy
focuses on removing older networks associated with previous tasks to
conserve memory. Fig. 4 illustrates MaximumMean Discrepancy (MMD)
[55] values between features learned by ϕi and ϕj on CIFAR100
(normalized), which can be computed through:

MMD
[

ϕi
(

∪
k≤i

Dk; θfc
)

, ϕj
(

∪
k≤i

Dk; θfc
) ]

; (5)

where θfc indicates the last fully connected layer of the network, and j ≥

i indicates the values in the upper diagonal region of the matrix.
In Fig. 4, the MMD values along the same row indicate the diver-

gence between feature representations generated from the same un-
derlying data. We observe that as wemove from left to right along a row,
the MMD distance between feature representations tends to increase.
This increase is more pronounced when more tasks are added to the
model; which can be attributed to the networks specializing on the
current task at hand with abundant available data. It seems since the
network was initialized with the first task, its distribution stays aligned
with the first task after training on multiple tasks, that’s why we don’t
see much diversion in the first row in comparison to last rows. This in-
spires us to keep fewer networks at the beginning but more at a later
stage. This observation motivates us to develop a consolidation algo-
rithm, detailed Algorithm 2. Briefly, the algorithm compares the current
model ϕi and its r preceding models. If their MMD distance falls below a
threshold δ, we remove the preceding models and retain the current one.
Both r and δ are tunable parameters, allowing for different subsets of
models to be selected.

Algorithm 2. Model Consolidation.

4. Experiments and results

This section explains the datasets, metrics, experimental settings,
implementation details, results, and analysis.

4.1. Datasets

We evaluate our method and recent SOTA methods on three popular
CL visual datasets, including:

• CIFAR100 [56]. It contains 100 classes. For each class, 500 images
are used for training and 100 for testing. The image size is 32× 32.

• mini-ImageNet [57]. As a mini version of ImageNet, it contains its
first 100 classes. For each class, 1200 images are used for training
and 100 for testing. The image size is 256 × 256 with a center crop of
224× 224.

• ImageNet-1 K [57]. This dataset contains 1000 classes. For each
class, 1200 images are used for training and 100 for testing. The
image size is 256 × 256 with a center crop of 224× 224.

Both mini-ImageNet and ImageNet-1 k are divided to 10 Incremental
tasks of 10 and 100 classes respectively.

4.2. Metrics

In addition to the classification accuracy, we use four CL evaluation
metrics [13,14,17,58], as explained below:
End Incremental Accuracy (EIA). Let aij ∈ [0,1] denote the top-1

test accuracy on the j-th task after the training concludes on the i-th
task (j ≤ i ≤ M). EIA is then defined as aMj , which provides a snapshot of
the model’s performance after all tasks have been learned.
Average Incremental Accuracy (AIA). Since the accuracy is

continually updated in the OCL setting, to capture the historical varia-
tion of all tasks, we define AIA as the average of incremental accuracies
up to the final task M:

AIA =
1
M

∑M

j=1
aMj . (6)

Average Final Forgetting (AFF). Forgetting provides a measure of

Fig. 4. Feature discrepancy distribution generated by MMD. Where each row
represents a task Di of CIFAR100 dataset and each column denotes the ϕj used

for extracting features of Di. Therefore each cell shows ϕj
(
Di; θfc

)
where j ≥ i.

Since data is trained incrementally, ϕj has not seen Di>j, that’s why the lower
diagonal section is empty. Darker color represents higher discrepancy, while
lighter color shows closer feature distribution.
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the model’s ability to retain knowledge from previous tasks. For the j-th
task, final forgetting evaluates the decline from the peak accuracy to its
final accuracy after learning the last task. Hence, AFF aggregates the
model’s forgetfulness as:

AFF =
1

M − 1
∑M−1

i=1
max

j

(
aij − aMj

)
, j ≤ i. (7)

A lower AFF indicates stronger retention of knowledge across tasks.
Average Learning Accuracy (ALA). OCL involves learning tasks

sequentially, where learning plasticity can be compromised by model’s
stability. We define the plasticity measure based on ALA, which evaluates
the capability of the model to learn new information [58] and Forward
Transfer (FWT) [14] to quantify how continual learning is helpful in
learning a task. ALA, therefore, is defined as:

ALA =
1
M

∑M

i=1
aii. (8)

Backward Transfer. To gauge the impact of learning new tasks on
the performance of older tasks, we adopt the BackWard Transfer (BWT)
metric in this experiment following the setup in [59]. Given the top-1
test accuracy aij on the j-th task after concluding the training on the i-
th task, BWT is defined as follows:

BWT =
1

M − 1
∑M

i=2

1
i

∑i

j=1

(
ai
i − ajj

)
. (9)

A larger value for BWT indicates better retention of performance on
earlier tasks when learning new tasks, providing a comprehensive view
of a model’s adaptability in learning continually.

4.3. Baselines

We compare BRCL with leading online, dynamic networks, and off-
line methods explained in the following. For iCaRL [15], following [13],
we modified the original MemoryUpdate technique to use reservoir
sampling [60], making it apt for online scenarios. The modified iCaRL is
denoted as iCaRL*.MIR introduces a new strategy for retrieving samples
from buffer to optimize information transfer [30]. A-GEM [20] (a more
efficient version of GEM [19]) aims to prevent forgetting by constraining
the parameter update using samples in the memory buffer. ER [12] is a
replay-based effective method that leverages reservoir sampling to up-
date and random sampling to retrieve from the memory. GDumb [9]
estimates parameter importance from gradients computed for the cur-
rent task and adjusts learning rates accordingly.

Regarding feature replay-based methods, DER [23] expands a new
backbone for facing new tasks and introduces effective auxiliary loss.
FOSTER [24] optimizes the memory consumption by limiting to only
one backbone. By combining gradient boosting with the teacher-student
model, FOSTER aims to leverage the strengths of both approaches.
MEMO [25] decouples the feature maps from the middle layers of the
network, where specialized blocks assimilate deep-layer features and
generalized blocks learn common task features.

We also compare against various baselines, including: LUCIR [7] and
BiC [5] which tackle bias very effectively; Mn-T with Feedback-based
Exemplar Selection that prefers samples in boundary of feature map
[34]; iTAML [61] and DML [62] as two strong meta-learning baselines.
In particular, DML uses a distillation loss to encourage the network to
learn representations in align with older tasks. For a fair comparison,
with offline methods that revisit historical data, we keep our online
framework but use an image-set priori. Conferring from Eq. (10), a
higher n translates to more samples of the same label in the test batch
and thus results in enhanced accuracy. We set n = 5 only in this
experiment.

4.4. Implementation details

We use two A100 GPUs and PyTorch libraries for model training and
evaluations. Moreover, ResNet-32 was applied as the backbone for
CIFAR100, and ResNet-18 for both mini-ImageNet and ImageNet-1 k. In
addition, temperature value is set to T = 1.8 for all experiments on
CIFAR100, since this value resulted in highest confidence score in
softmax scores; while, for ImageNet datasets T is set to 1.6. The exper-
iments on all three datasets start with an initial learning rate of 0.1 and
weight decay of 0.1, every 30 epochs. CIFAR100 is trained with 160
epochs and both ImageNet datasets 70 epochs. All experiments use a
fixed value of 20 exemplars per class in the batch unless otherwise
specified. For CIFAR100, we apply three task divisions: 5, 10 and 20. For
mini-ImageNet and ImageNet-1 k datasets, we divide the dataset into 10
tasks, with 10 and 100 classes per task, respectively. We start the in-
cremental process from the beginning throughout all experiments
(base = 0) to simulate the online data processing scenario in an online
fashion.

4.5. Evaluation results

Comparisons with online Baselines. Evaluation on the CIFAR100
dataset (Table 1) shows that BRCL and its exemplar-free variation BRCL
(ε = 0) consistently outperform online baselines in all metrics and task
settings. The largest performance gap is seen in the 5-incremental-tasks
setting in EIA and AIA. Our framework successfully balances stability
and plasticity, as indicated by reduced forgetting (AFF) and improved
learning ability. For mini-ImageNet dataset with 10 incremental tasks
(Table 2), BRCL and BRCL (ε = 0) outperform the strongest baseline,
Gdumb, by margins of 19.4% and 13.9% in end incremental accuracy.
On the large-scale ImageNet-1 K dataset (Table 3), our methods indicate
gain over all baselines. Though the accuracy in terms of EIA and AIA
remains competitive, forgetting and learning ability sets our proposed
methods apart. Even our exemplar-free variation, demonstrates an
acceptable performance throughout all metrics.
Comparisons with Feature Replay Baselines. Table 2 shows that

feature replay methods consistently perform closely across all evalua-
tion metrics. BRCL is successful in mitigating average forgetting in all
CIFAR100 task divisions. While DER takes the edge on 10 and 20 in-
cremental tasks, BRCL outperforms all baselines in 5 tasks setting. In the
case of mini-ImageNet, BRCL outperforms DER, FOSTER and MEMO in
all evaluation metrics. On the other hand, BRCL (ε = 0) indicates the
highest plasticity of 77.9%. Evaluation of the large-scale ImageNet-1 k
dataset reveals a robust performance for our proposed methods. It
achieves a 0.5% increase in average incremental accuracy (AIA) and
minimizes forgetting to 5.1%, while maintaining a high plasticity.
Notably, BRCL (ε = 0) surpasses all online baselines and FOSTER while
operating in an exemplar-free setting.
Comparisons with Offline Baselines. For a more comprehensive

analysis we decided to include comparisons with offline and meta-
learning CL methods. Though the proposed inference model is not
trained on any data, its function is similar to that of a meta-learner in
meta-learning CL methods. Fig. 5 summarizes our experiments against
selected offline and meta-learning approaches. As indicated before, in
this experiment only, we use an image-set priori of n = 5 same-label
samples. As indicated in 5a and 5c, BRCL consistently outperforms
other baselines on mini-ImageNet. In the case of ImageNet-1 K, depicted
in 5b and 5d, all methods initially performwell. However, as the number
of tasks increases, our proposed methods widen the performance gap
with the baselines, showing a robust performance in large-scale data.
Conventional methods experience performance degradation due to the
accumulation of bias. In contrast, our proposed methods effectively
manage this bias, thereby maintaining a consistently higher perfor-
mance as the number of tasks increases.
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4.6. Memory footprint

Continual learning inherently involves a trade-off between memory
consumption and performance, a concept echoed by recent works
including [17]. An inclusive assessment needs to take memory footprint
into account to avoid skewed evaluations based on different resource
utilization. Table 4 outlines the memory requirements for the CIFAR100,
mini-ImageNet, and ImageNet-1 K datasets, configured with 10 incre-
mental tasks. To avoid redudancy we report only best performing
method in each category of benchmarks; for example, DML [62] is the
select method in Meta-learning benchmarks. The memory size (MB) is
detailed in terms of the resources needed for training sets, exemplars,
and model parameters, with a summarization in the Total Storage col-
umn. The number of parameters (#P), is also provided to understand the

size of parameters networks(s) store in total. The networks used for
training CIFAR100 and ImageNet datasets are ResNet-32 and ResNet-18,
respectively, for all methods ensuring consistency in the evaluation
framework. Finally, we report the model’s accuracy using Average End
Accuracy (AIA) to give an indication of performance alongside the
memory footprint.

For our proposed method and it’s variation we are using 10 incre-
mental tasks, therefore, model consolidation is not used. In Online
methods, the model doesn’t require accessing “train set” after training is
completed on a particular task, hence doesn’t need storing the train set;
therefore, Memory Size is noted asNot Required (NR). Memory Size (MS)
in megabytes is divided into Train set, Exemplar set and Model Size
(network parameters required storage) and finally the column Total
Storage shows the summation. In addition number of parameters, #P (in
million), based on each method’s architecture is shown. ResNet-32 is
utilized for training all methods on CIFAR100, and ResNet-18 for
training on the two ImageNet datasets. Last, the accuracy in terms of
average end accuracy (AIA) is reported in last column. When it comes to
memory consumption, online methods consume 10 MB less memory
than our BRCL (ε = 0) on CIFAR100 but consume 57 MB and 2641 MB
more on mini-ImageNet and ImageNet-1 K datasets.

In our analysis, we investigate the efficacy of methods using a radar
plot (Fig. 6) indicating accuracy via EIA and AIA, and their retention
capabilities by AFF and BWT. Additionally, we take into account the
overall memory usage, which includes the combined requirements of
exemplar storage and network parameters. To effectively visualize and
compare the performance of various methods in radar plot, a series of
data transformations were required. These transformations were
essential to address the distinct ranges and negative values and to ensure
a balanced representation of each metric. Accuracy metrics, EIA and AIA
remains unchanged. Backward transfer values (BWT) are negative for all
methods, the value range is shifted by subtracting each value from the
absolute value of most negative one. For metrics like memory storage
and forgetting index (AFF), where lower values are better, we inverted
the values to ensure a coherent interpretation where higher values
uniformly indicate superior performance. Finally the values are
normalized within each metric. The area encompassed by each method’s
plot serves as an indicator of its relative efficacy, with larger areas
denoting enhanced performance.

BRCL is implemented in two configurations: (i) maintaining 20 ex-
emplars per class from preceding tasks (ε = 20) and (ii) an exemplar-
free variant, where no exemplars are retained for training subsequent
tasks (ε = 0), allowing to explore the trade-offs inherent to exemplar
usage. All methods use 20 exemplars per class across CIFAR100, mini-
ImageNet, and ImageNet-1 K datasets with 10 incremental tasks. From
the visual clarity standpoint, the radar plot cannot show all the baseline
methods discussed in this paper;therefore, Gdumb is selected as the best
performing method among online methods; in addition, DER and MEMO

Table 1
Results (%) on CIFAR100 dataset with three settings 5,10 and 20 incremental tasks. The performance is reported based on EIA, AIA, AFF, and ALA. [↑] indicates higher
is better and [↓] indicates lower is better. Bold and underline highlight the best and second best, respectively. The horizontal line separates online and feature replay
baselines and our proposed methods. BRCL (ε = 0) indicates the exemplar-free variabtion of BRCL where no exemplars are stored from previous classes. Model
consolidation strategy is NOT used for our methods in this experiment.

Method 5 Inc. Tasks 10 Inc. Tasks 20 Inc. Tasks

EIA [↑] AIA [↑] AFF [↓] ALA [↑] EIA [↑] AIA [↑] AFF [↓] ALA [↑] EIA [↑] AIA [↑] AFF [↓] ALA [↑]

iCaRL*(CVPR’17) 28.4 41.0 15.0 44.9 25.8 38.8 15.2 48.8 15.2 30.3 38.4 44.5
MIR (NIPS’19) 15.8 40.6 45.1 44.1 14.9 31.7 45.0 41.2 12.1 17.3 58.6 27.4
AGEM (ICLR’19) 12.9 26.9 59.1 38.3 7.58 19.5 66.8 33.5 4.1 13.6 73.6 27.5
ER (arXiv’19) 15.6 27.3 46.3 36.8 24.3 32.8 59.4 41.7 12.8 18.2 59.3 30.7
Gdumb (ECCV’20) 36.3 49.2 10.3 55.8 29.7 42.4 14.2 52.7 16.5 33.3 16.1 42.9
DER (CVPR’21) 58.4 67.8 11.4 73.9 54.1 62.2 26.3 68.9 44.0 55.1 30.8 63.8
FOSTER (ECCV’22) 52.7 64.6 34.1 70.1 46.4 53.7 35.9 64.3 36.4 53.4 38.7 64.0
MEMO (ICLR’23) 53.4 65.4 21.3 71.0 48.1 58 29.7 64.5 39.2 52.8 34.1 60.1
BRCL 58.8+0.04 68.1+0.3 7.3−3 74.5+0.6 53.7–0.4 63.5+1.3 6.3–7.9 67.4–1.5 43.4–0.6 54.0–1.1 4.3–11.8 61.9 −2.1

BRCL (ε = 0) 54.3 65.7 13.0 71.1 44.4 57.3 14.5 68.1–0.8 28.6 40.4 15.4–0.7 53.4

Table 2
Results (%) on mini-ImageNet (10 Inc. Tasks). The performance is reported
based on EIA, AIA, AFF, and ALA. [↑] indicates higher is better and [↓] indicates
lower is better. Model consolidation strategy is NOT used for our methods in this
experiment.

Method EIA [↑] AIA [↑] AFF [↓] ALA [↑]

iCaRL* 42.4 57.2 13.4 60.1
MIR 32.5 46.1 32.0 55.5
AGEM 25.0 30.3 56.8 47.8
ER 41.3 58.1 50.4 61.0
Gdumb 44.6 59.9 17.6 62.9
DER 63.2 72.0 6.8 76.2
FOSTER 60.4 69.4 8.8 76.0
MEMO 60.8 71.1 8.5 77.2
BRCL 64.0 +0.8 72.2 +0.2 6.5 −0.3 76.6 −0.6

BRCL (ε = 0) 58.5 67.1 12.4 77.9 +0.7

Table 3
Results (%) on ImageNet-1 K (10 Inc. Tasks). The performance is reported based
on EIA, AIA, AFF, and ALA. [↑] indicates higher is better and [↓] indicates lower is
better. Model consolidation strategy is NOT used for our methods in this
experiment.

Method EIA [↑] AIA [↑] AFF [↓] ALA [↑]

iCaRL* 11.9 26.3 18.7 35.4
MIR 16.5 45 26.1 49.5
AGEM 8.2 15.4 70.5 20.1
ER 11.6 22.7 36.6 33.9
Gdumb 12.5 24.5 20.2 36.6
DER 58.2 68.5 7.4 74.8
FOSTER 43.7 60.9 10.5 70.6
MEMO 57.2 67.8 7.3 74.4
BRCL 58.7 +0.5 68.7 +0.2 5.1 −2.2 76.0 +1.2

BRCL (ε = 0) 55.9 65.9 12.8 72.8
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as the best benchmarks in feature replay methods.
The radar plot offers a multi-faceted visualization of performance

trade-offs. a few observations can be made: Gdumb the select single-
network candidate, shows the least memory usage for CIFAR100.
However, its memory advantage decreases with larger datasets, sug-
gesting that maintaining compressed network information could be
more effective for knowledge retention than using raw exemplars alone.

While accuracy (AIA & EIA) remains competitive, forgetting (AFF) and
backward transfer (BWT) highlight the differences between the bench-
marks. In MEMO’s performance, we can see while the approach at-
tempts to economize on memory usage by sharing shallow feature
blocks, it suffers significantly in backward transfer. This trade-off results
in a reduction in memory consumption but at a considerable cost to the
model’s ability to retain knowledge.

(a) mini-ImageNet (b) ImageNet-1K (c) mini-ImageNet (d) ImageNet-1K

Fig. 5. Performance comparison in terms of accuracy % (AIA). Comparison of BRCL and BRCL(ε = 0) with offline methods(a and b) and meta-learning methods(c
and d).

Table 4
Memory consumption comparison of selected online, feature replay, and meta-learning methods. For performance report, we show the best-performing method in each
category, which is Gdumb, DML and DER. “MS” indicatesMemory Size in MB. “#P” represents parameters (million) used in inference. Required storage is reported for
Train Set, 20 Exemplars per class,Model Size, and their Total. ResNet-32 network is used for training on CIFAR100 and ResNet-18 for ImageNet datasets. All methods are
training with 10 incremental tasks across all datasets. There are two configurations for BRCL in the last two rows, (1) 20 exemplars per class similar to all baselines, (2)
exemplar-free variation. Model consolidation is not used in this experiment.

Method Dataset MS (Train Set) MS (Exemplar) Model Size Total Storage #P(M) AIA(%)

Gdumb(Online) CIFAR100 NR 5.85 MB 1.8 MB 7.6 MB 0.46 42.4
mini-ImgNet NR 287 MB 25.5 MB 312 MB 11.2 59.9
ImageNet-1 k NR 2871 MB 25.5 MB 2896 MB 11.2 44.1

DER (Feature replay) CIFAR100 146 MB 5.85 MB 17.6 MB 23.5 MB 4.60 62.2
mini-ImgNet 17,227 MB 287 MB 255 MB 542 MB 111.7 72.0
ImageNet-1 k 172,265 MB 2871 MB 255 MB 175,391 MB 111.7 68.5

DML(Meta-learning) CIFAR100 146 MB 5.85 MB 1.8 MB 154 MB 0.46 71.3
mini-ImgNet 17,227 MB 287 MB 25.5 MB 17,539 MB 11.2 76.3
ImageNet-1 k 172,265 MB 2871 MB 25.5 MB 175,151 MB 11.2 72.2

BRCL (ε = 20) CIFAR100 NR 5.85 MB 17.6 MB 23.5 MB 4.60 60.7
mini-ImgNet NR 287 MB 255 MB 542 MB 111.7 71.7
ImageNet-1 k NR 2871 MB 255 MB 3126 MB 111.7 70.4

BRCL (ε = 0) CIFAR100 NR NR 17.6 MB 17.6 MB 4.60 57.3
mini-ImgNet NR NR 255 MB 255 MB 111.7 67.1
ImageNet-1 k NR NR 255 MB 255 MB 111.7 65.9

Fig. 6. Mutlidimensional Evaluation of Continual Learning Methods. Comparative analysis of different approaches, evaluating them based on five key metrics: End
Incremental Accuracy (EIA), Average Incremental Accuracy (AIA), Average Final Forgetting (AFF), BackWard Transfer (BWT) and Memory Size (MS). MS accounts
for the total storage as indicated in Table 4. For consistency all metrics are normalized. EIA and AIA measures are reported without any transformation. BWT values
are offset; AFF and MS are inverted to show higher is better. Finally BWT, AFF and MS values are normalized. A method’s efficacy is inferred from the surface area it
occupies within the plot. It is important to note that the depicted surface areas represent relative, rather than absolute, performance magnitudes.
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Moreover, the exemplar-free configuration of BRCL (ε = 0) remains
competitive, especially in terms of memory efficiency, making it a strong
candidate for resource-constrained settings. When BRCL operates
without exemplars, it still shows notable performance on larger datasets.
This indicates that the network parameters are capable of keeping fea-
tures information, this is particularly noteworthy for large-scale datasets
like ImageNet-1 K where it shows comparable accuracy and retention
metrics. Overall, the performance of our proposed methods across
different metrics indicates its adaptability and extendability. While
there is no one-size-fits-all solution in CL, BRCL stands out for a
remarkable trade-off between memory efficiency and performance.

This type of visualization aids in understanding the comprehensive
capability of each method, especially when considering the deployment
of continual learning systems in real-world settings where a balance
between memory consumption, accuracy, and adaptability is crucial.
Each method exhibits a distinct trade-off profile between the metrics,
indicating that the choice of method should be tailored to the specific
constraints and goals of the deployment environment, such as available
memory and the importance of minimizing forgetting.

4.7. Time overhead

The process of traversing all stored models during inference in-
creases computational demands. However, this increase is minimal in
practical terms. For instance, using a ResNet18 model to classify an
image of size 128 × 128 on an A100 GPU takes approximately 0.0001 s
(100 microseconds) per image. Even if we multiply this by 10 for
traversing multiple models, the total inference time would be around 1 s
for 1000 images. By using the Consolidation Algorithm 2 to reduce the
number of networks by half, the time overhead decreases further to
approximately 0.5 s. This negligible overhead, especially when
compared to the benefits BRCL framework, naming the minimal
forgetting, highlights the trade-off between memory footprint and per-
formance. As discussed by Zhou et al. [17], there is no “free lunch” in
continual learning, and any performance gains typically come with
increased memory or computation requirements. Our approach, while
slightly increasing the inference time, ensures superior model perfor-
mance in terms of accuracy, plasticity and knowledge retention in large-
scale data settings, making it suitable for applications where these fac-
tors are critical.

4.8. Expandability of BRCL

BRCL introduces a robust yet simple approach for continual learning
in large-scale dataset setting. Our approach innovatively leverages the
inherent bias in a novel way: rather than reducing or correcting it; we
use it to guide the selection of the most appropriate model during
inference. This strategy enhances the system’s ability to retain previ-
ously learned knowledge while adapting to new tasks. As a result, this
method demonstrates significantly less forgetting, in comparison to
baseline approaches.

Moreover, the consolidation strategy (Alg. 2) efficiently manages
memory usage with minimal performance trade-offs. This algorithm sets
a new standard by eliminating the need for a new backbone per task
in Dynamic Networks, leveraging distribution similarity within net-
works. For example, MEMO [25] also uses feature similarly to create a
multi-branch network that decouples general blocks and specializes
network heads for each task. However, the generalizability and trans-
ferability of the generalized blocks heavily hinge on using an expansive
set of base classes to capture feature representations. Another strong
baseline, FOSTER [24] introduces several modules to address the
memory footprint issue: (1) Feature Boosting, which involves freezing
the old model and dynamically expanding new modules, to fit the re-
siduals between the target and the old model’s output (2) Logits
Alignment, for scaling the logits to reduce classification bias between old
and new classes; (3) Feature Compression, for removing redundant

parameters; and (4) Feature Enhancement uses a distillation strategy to
balance the learning of old and new categories. While this method is
effective, it incorporates significant complexity and overhead. In
contrast, BRCL proposes an effective yet straightforward methodology
and further addresses the memory footprint, based solely on feature
similarity without any priories. It is expandable to any backbone
network, including transformers, and scalable across a variety of dataset
sizes.

5. Ablation study and analysis

In this section, we perform experiments to validate the effectiveness
of components of BRCL and their robustness to changes in hyper-
parameters. For this purpose, the CIFAR100 dataset with 20 incremental
tasks is used. Table 5 summarizes the result of ablative experiments.
Inference Model I m. We hypothesize that the inference module

I m is an important component in the success of BRCL. We evaluate our
hypothesis by ablating I m from the model (second row). Therefore the
last network which was trained on all tasks, will be used, similar to
conventional OCL. In addition, there is a significant drop of 11.5% in
AIA and an increase of 28.0% in forgetting. It seems that the learning
ability of the model is also impacted significantly as the ALA has drop-
ped 8.3%.
Similarity threshold δ. We evaluate the performance of BRCL

against different numbers of preserved networks ϕi by adjusting the
similarity threshold δ. Intuitively, more preserved models help BRCL
retain previous knowledge better, yielding higher accuracy. We follow
Algorithm 2, and start from a small value for δ and gradually increase δ.
This will limit the number of networks reserved as the similarity toler-
ance grows. Changing the value of δ in this manner resulted in 20, 12,
10, 8, and 5 networks reserved in Φ. Details of this experiment can be
seen in Fig. 7. A higher δ discarded 15 out of 20 networks and impacted
the performance based on the Average Incremental Accuracy (AIA) by 3%.
Nonetheless, the BRCL with 5 networks reserved, is still better than the
leading OCL approaches.
Test batch size n. In the context of our defined methodology,

particularly Eq.3, we explored the impact of varying the number of text
samples n, all belonging to the same class. The value of n same-label
batches in a validation batch is a decisive metric in the performance
of the model regarding both model selection and class prediction. This is
important because larger samples size can effectively mitigate the in-
fluence of noisy predictions. To quantify this effect, we extend Eq. 10 by
computing an average softmax score over a batch of n samples. For each
network ϕi in the set Φ, and for each data batch {x1, x2, …, xn} of same
class, we calculate the average softmax score as follows:

ŝi =
1
n

∑n

j=1
Softmax

((
ϕi(xj; θ

)/
T

) )
. (10)

The above equation, allows us to determine the consensus decision
across multiple samples, reducing the randomness inherent in individual
predictions. Subsequently, the inference function I m is hypothesized to
provide a more reliable network selection mechanism, especially in
scenarios where the input samples are prone to variability and noise.
Fig. 8 shows the impact of increasing n in performance of CIFAR100 and
mini-ImageNet datasets in terms of AIA(%).

Both graphs show a marked improvement when the number of

Table 5
Ablation study on CIFAR100(20 Inc. Tasks) with 20 exemplars per class.

Method EIA AIA AFF ALA

n = 1, I m, ∣Φ∣ = 20 43.4 54.0 4.3 61.9
n = 1, ∣Φ∣ = 1 33.8 42.5 32.3 53.6
n = 1, I m, ∣Φ∣ = 10 36.1 41.4 35.2 50.1
n = 20, I m, ∣Φ∣ = 20 72.6 77.2 2.9 80.6
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samples with the same label increases from 1 to 2, indicating that even a
small increase in batch size can significantly enhance the reliability of
the classification. For a fair comparison with baselines, we set n = 1 in
all previous experiments including Table 1, Table 2 and Table 3,
except for Comparisons with Offline Baselines IV-E, as explicitly noted in
that section.

The performance could be boosted when n > 1, as shown in Table 5
(last row). Therefore, it is of theoretical interest to determine the lower
bound on the number of successful predictions, denoted by kwithin a set
of n batch size for the expected predictive performance. Given n samples
in a test batch, we are interested in the number of successful predictions,
as this will augment the softmax score, as shown in Eq. 10. Assume the
random variable X indicates the number of successful predictions in a
batch of n samples, then P(X) follows a binomial distribution:

P(X = k) =

(
n
k

)

⋅pky⋅
(
1 − py

)n−k
; (11)

where py is the (expected) prediction accuracy of an individual predic-
tion, py is assumed to be constant across all trials within the batch. We
expect a larger k to result the average softmax score for a test batch to
facilitate the proposed inferencing. The expectation E (X) = npy implies
the expected value of X is linear in n and py. Since py is mainly deter-
mined by the network performance, adjusting the batch size n offers a
lever to affect E (X). Empirical observations from CIFAR100 and mini-
ImageNet datasets exhibit a pronounced increase in predictions perfor-
mance at smaller batch sizes (e.g., n = 1, 2, 5,10) with a tendency to-
wards plateauing as n reaches and exceeds 10. As n becomes larger, the
ratio kn begins to converge to py, signifying a stabilization in the
amplification effect provided by the larger batch sizes. Drawing from the
aforementioned discussion, it is evident that the value of k is contingent
upon the batch size n and the inherent success probability py of the

network’s predictions. An empirical lower bound for k, which is crucial
for obtaining dependable predictions, can be approximated as k ≥ 20py.
It is important to note that this lower bound may vary with different
datasets and the network’s performance, as represented by py.

5.1. Discussion

This paper introduces a framework for OCL that takes performance,
memory consumption and knowledge retention into account. The
offered model is simple yet generalizable to other datasets and network
architectures. This method, leverages an existing property in all
continual learning models, known as bias to guide the inference model.
The consolidation strategy enables our framework to dynamically allo-
cate memory resources and prioritize crucial information retention from
earlier tasks, practically achieving a harmonious balance between
learning new information and retaining previously acquired knowledge.
This approach contributes to the scalability of BRCL, offering a practical
solution for handling large datasets. Extensive experiments using variety
of metrics are implemented to evaluate the proposed framework. The
multi-faced radar plot is recommended as a tool to evaluate different
approaches, using a set of metrics to show the dominant strength of each
method. By demonstrating the effectiveness of dynamic and memory-
aware strategies, our work paves the way for OCL models to handle
large-scale data with limited resources. In future work, we can explore
the potential of fusing multiple metrics, as discussed in the multi-sensor
fusion [63], to further improve the model consolidation performance.
While we currently rely on a single MMD distance, incorporating mul-
tiple metrics could provide a more robust solution by capturing different
aspects of the data.

6. Conclusions

In this work, we introduced Bias-Robust class Continual Learning
(BRCL), a simple yet effective framework in Online Continual Learning
(OCL). BRCL employs a two-module strategy to maintain a set of
incrementally learned networks, and to utilize the inherent bias towards
recent tasks to selects the competent network, at inference time. A
standout feature of our proposed approach is its consolidation strategy
to scale memory consumption with minimal computational overhead,
by eliminating networks with closely convergent feature distributions.
This strategy manages available resources and helps maintain an equi-
librium, crucial in OCL environments where the model must adapt to
new data. Additionally, the exemplar-free variation of BRCL shows
competitive performance and is distinguished by its raw-data-free
strategy, well-suited for applications with privacy concerns. Extensive
experiments using a comprehensive array of metrics was conducted to
benchmark our proposed framework against current state-of-the-art
methods.
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