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Abstract. Large-scale interaction between the three tropical

ocean basins is an area of intense research that is often con-

ducted through experimentation with numerical models. A

common problem is that modeling groups use different ex-

perimental setups, which makes it difficult to compare re-

sults and delineate the role of model biases from differences

in experimental setups. To address this issue, an experimen-

tal protocol for examining interaction between the tropical

basins is introduced. The Tropical Basin Interaction Model

Intercomparison Project (TBIMIP) consists of experiments

in which sea surface temperatures (SSTs) are prescribed to

follow observed values in selected basins. There are two

types of experiments. One type, called standard pacemaker,

consists of simulations in which SSTs are restored to obser-
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vations in selected basins during a historical simulation. The

other type, called pacemaker hindcast, consists of seasonal

hindcast simulations in which SSTs are restored to observa-

tions during 12-month forecast periods. TBIMIP is coordi-

nated by the Climate and Ocean – Variability, Predictability,

and Change (CLIVAR) Research Focus on Tropical Basin

Interaction. The datasets from the model simulations will be

made available to the community to facilitate and stimulate

research on tropical basin interaction and its role in seasonal-

to-decadal variability and climate change.

1 Introduction

Interaction between the tropical basins on interannual to

decadal timescales has seen increased interest in recent

decades. This is partly due to the growing awareness that

this interaction substantially influences variability in all three

tropical basins (Cai et al., 2019; Wang, 2019) and that it may

also shape the way in which the climate system reacts to

radiative forcing, particularly that associated with changing

greenhouse gas concentrations (Kosaka and Xie, 2013; Li et

al., 2016). Furthermore, there is evidence that the linkages

between the three tropical basins will change under global

warming, leading to the emergence of new processes in the

climate system, such as the tropical Atlantic influence on

El Niño–Southern Oscillation (ENSO; Rodriguez-Fonseca et

al., 2009; Martin-Rey et al., 2014; Polo et al., 2015; Wang et

al., 2024a) or that of the Indian Ocean on ENSO (Wang et

al., 2024b).

Research on interbasin interaction has undergone several

phases. In the 1970s and 1980s, many researchers focused

on understanding the mechanisms of ENSO in the tropical

Pacific and the air–sea coupling that underlies it (e.g., Bjerk-

nes, 1969; McCreary, 1976; Rasmusson and Carpenter, 1982;

McCreary and Anderson, 1984; Philander, 1985; Zebiak and

Cane, 1987). Over time, there was increasing interest in how

ENSO influences other terrestrial and oceanic regions around

the world (e.g., Bjerknes, 1969; Horel and Wallace, 1981;

Karoly, 1989; Kiladis and Diaz, 1989; Enfield and Mestas-

Nuñez, 1999; Klein et al., 1999; Diaz et al., 2001; Alexan-

der et al., 2002). During this stage, the focus was on re-

mote influences from the tropical Pacific to other regions.

At the same time, other tropical ocean regions received in-

creasing attention, which led to the discovery and analysis of

other tropical variability patterns, such as the Atlantic Zonal

Mode (AZM; Moore et al., 1978; Hastenrath and Heller,

1977; Merle, 1980; reviews by Lübbecke et al., 2018; Richter

and Tokinaga, 2021), the Indian Ocean Basin Mode (IOBM;

Chambers et al., 1999; review by Schott et al., 2009), and the

Indian Ocean Dipole (IOD; Saji et al., 1999; Webster et al.,

1999; review by Schott et al., 2009). Several variability pat-

terns in the subtropics also became more prominent, such as

the Atlantic Meridional Mode (AMM; Hastenrath and Heller,

1977; Chang et al., 1997; reviews by Xie and Carton, 2004,

and Chang et al., 2006a), the Benguela Niño (Shannon et al.,

1986; review by Oettli et al., 2021), the Ningaloo Niño (Feng

et al., 2013; review by Tozuka et al., 2021), and the North Pa-

cific Meridional Mode (NPMM; Chiang and Vimont, 2004;

review by Amaya, 2019), to name a few. Increasingly, the

question arose as to what extent variability in those remote

regions was independent of ENSO and whether it could in-

fluence the evolution of ENSO (see Chang et al., 2006a, for a

review, and Fig. 1 for a schematic). Thus, there was a grow-

ing interest in how the tropical oceans interact and how these

interactions may contribute to improved seasonal predictions

of oceanic variability patterns and their impacts over land

(Keenlyside et al., 2019).

In addition to interannual variability patterns, such as

ENSO, AZM, and IOD, there are also decadal and mul-

tidecadal variability patterns, both in the tropics (e.g., the

Tropical Pacific Decadal Variability TPDV; see Power et

al., 2021, and Capotondi et al., 2023, for a review and the

decadal IOD as reported in Ashok et al., 2004, and reviewed

by Han et al., 2014) and the extratropics (e.g., the Pacific

Decadal Oscillation PDO; Zhang et al., 1997; Mantua and

Hare, 2002; review by Newman et al., 2016) and the At-

lantic Multidecadal Variability (AMV; Kushnir, 1994; re-

views by Keenlyside et al., 2015, and Zhang et al., 2019).

Due to their long timescales and extratropical locations, the

latter patterns may influence other basins through different

pathways (e.g., Ruprich-Robert et al., 2017). The associated

background changes may also modulate the way in which

ocean basins interact on shorter timescales (Yu et al., 2015;

Martin-Rey et al., 2015; Kajtar et al., 2018; McGregor et

al., 2018; Drouard and Cassou, 2019). In addition, suppress-

ing tropical basin interaction (TBI) in numerical experiments

has been found to shift ENSO variability to lower frequen-

cies (e.g., Kajtar et al., 2017; Kido et al., 2022; Bi et al.,

2022; Zhao and Capotondi, 2024). It should also be noted

that some of the interannual variability patterns of interest

have considerable variance at decadal timescales. These in-

clude the central Pacific El Niño (Sullivan et al., 2016) and

the AMM (e.g., Chang et al., 2006a). Thus, the decadal and

longer timescales are of interest to the study of TBI, but the

observational record is short when low-frequency variability

is the focus. The limited sample size of decadal-scale events,

such as the AMV, as well as the existence of dedicated sen-

sitivity experiments in the Coupled Model Intercomparison

Project Phase 6 (CMIP6) Decadal Climate Prediction Project

(DCPP; Boer et al., 2016), have motivated us to focus the

proposed experiments on interannual timescales while still

considering the role of decadal modulation of remote influ-

ences, e.g., that of the equatorial Atlantic on ENSO (Fig. 2).

To study TBI, observational analysis is an obvious tool.

Unfortunately, the observational record is relatively short, as

mentioned above, with about 60–70 years of reliable data.

For ENSO, e.g., this translates into roughly 20–30 events,

and even fewer if only major events are considered. Given the
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Figure 1. Schematic illustrating the interaction of selected tropical variability patterns, i.e., ENSO (El Niño–Southern Oscillation), AMM

(Atlantic Meridional Mode), AZM (Atlantic Zonal Mode), IOD (Indian Ocean Dipole), and IOBM (Indian Ocean Basin Mode). The arrows

illustrate the directionality of the influence and are not necessarily representative of the actual interaction pathways. The AZM-to-ENSO

influence, e.g., could be through atmospheric equatorial Rossby waves, as suggested by the arrow, or atmospheric equatorial Kelvin waves

(not indicated). The solid red arrows show well-established influences, while the dashed yellow arrows show influences that are under debate

or inconsistent. The shading shows topographic heights (m) from the Earth topography 5 min grid (ETOPO5; National Geophysical Data

Center, 1993), with ocean areas set to zero.

Figure 2. Running correlation of the June–July–August (JJA) ATL3

SST and the following December–January–February (DJF) Niño

3.4 SST using a 21-year sliding window for the period 1870–2021.

The SST is from the CMIP6 amip experiment (see Sect. 3). Correla-

tion significance at the 95 % level is indicated by the thick-blue-line

segments. The significance test evaluates the null hypothesis that

the correlations are due to chance, using bootstrapping with 10 000

samples generated by randomly reshuffling 1-year blocks (Wilks,

1997). The figure suggests a strengthening of the equatorial Atlantic

influence on ENSO since the 1970s, as suggested by Rodriguez-

Fonseca et al. (2009), and a potential weakening at the end of the

analysis period. Some of the experiments proposed for TBIMIP can

address the potential dependence of such modulations on changes

in background state, SST anomaly patterns, and radiative forcing.

considerable event-to-event diversity of ENSO (e.g., Tim-

mermann et al., 2018), it is clear that the length of the ob-

servational record is a serious limitation when addressing in-

terbasin interaction, particularly for statistical analysis and

causality assessments. The event-to-event diversity increases

further when considering the variability patterns in all three

tropical ocean basins. A La Niña event, for example, may

be accompanied by a positive AZM event in one year, by a

negative IOD in another, and by a combination of a positive

AMM and a positive IOD in yet another. Thus, every year in

the observational record features its own unique constellation

of variability patterns in the three ocean basins, rendering the

seemingly long 70-year observational record insufficient for

disentangling the complex interactions. This is only compli-

cated by the long-term changes in radiative forcing during

the observation period.

Paleo-proxies can substantially extend the data record

available for analysis and have been used in the study of TBI

(e.g., Cobb et al., 2001; Leduc et al., 2007). Proxy data, such

as the water isotope ratio, however, must be converted into

variables of interest using a number of assumptions, which

can contribute to uncertainties. Furthermore, the temporal

resolution of such records may not always be high enough to

resolve the variability patterns of interest, particularly when

data for a particular season are desired. There is also uncer-

tainty associated with the dating of proxies. Finally, the spa-

tial coverage is sparse, particularly in the tropical Atlantic.

Climate model experiments offer several advantages, such

as long simulations (1000 years or more) under steady ra-

diative forcing, as is the case for the preindustrial control

simulations of CMIP6 (Eyring et al., 2016). In addition, cli-

mate model simulations allow experimentation, such as pre-

scribing sea surface temperatures (SSTs) in one basin and

analyzing the response in other basins. This avenue of in-

vestigation has been pursued by many groups, and numer-

ous papers have been published (see Cai et al. (2019) for a

review). Some of these studies, however, have arrived at di-

verging results. There is, e.g., disagreement on the role of

the tropical Atlantic in influencing ENSO evolution, as il-

lustrated by the composite of positive AMM events (Fig. 3),

based on the SST from ERA5 (Hersbach et al., 2023). Some

studies argue for a strong influence (e.g., Rodriguez-Fonseca

et al., 2009; Ding et al., 2012; Ham et al., 2013a, b; Martin-

Rey et al., 2015), others for a limited influence (Exarchou et

https://doi.org/10.5194/gmd-18-2587-2025 Geosci. Model Dev., 18, 2587–2608, 2025
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Figure 3. ERA5 SST anomalies in the northern tropical Atlantic

(NTA; 40–10° W, 10–20° N; green line) and Niño 3.4 (blue line) re-

gions, composited on positive AMM events, which are defined here

as SST anomalies in the NTA region exceeding 0.8 standard de-

viations in March–April–May. The years 1979, 1980, 1981, 1983,

1987, 1988, 1997, 1998, 2005, and 2010 are selected by this crite-

rion. Values significant at the 95 % level are marked by dots (note

that none of the Niño 3.4 values is significant). The composite

shows that NTA events tend to be preceded by El Niño events,

a well-known remote impact of ENSO (indicated by the curved

red arrow; Enfield and Mayer, 1997). Furthermore, there are weak

La Niña conditions in the winter following the peak of the posi-

tive AMM event. This has been interpreted as the NTA influenc-

ing ENSO (dashed curved red arrow; Ham et al., 2013a, b), but

some studies have challenged this, including Zhang et al. (2021),

who suggest that the apparent influence stems from a misinter-

pretation of ENSO’s intrinsic phase reversal (i.e., El Niño events

tend to be followed by La Niña, regardless of any tropical Atlantic

SST anomalies; curved grey arrow). The experiments proposed for

TBIMIP will allow evaluation of the importance of the NTA influ-

ence on ENSO.

al., 2021; Richter et al., 2021; Richter et al., 2023; Zhao and

Capotondi, 2024), while some other studies dismiss this in-

fluence as a statistical artifact (Zhang et al., 2021; Jiang et

al., 2023). Both the atmosphere and ocean allow for inter-

action pathways through material flow and waves, and these

pathways have no built-in directionality. That is, if the Pacific

can influence the Atlantic, then the Atlantic can influence the

Pacific. However, given the size of the Pacific basin and the

amplitude of ENSO, it is valid to question the importance of

outside influences on ENSO. This is one of the motivations

for the TBI experiments described here.

There is also an enduring conundrum as to why the strong

ENSO signal in boreal winter has a robust influence on

the northern tropical Atlantic in spring (Enfield and Mayer,

1997) but an inconsistent influence on the adjacent equato-

rial Atlantic in summer (Chang et al., 2006b; Lübbecke and

McPhaden, 2012). While some robust impacts on the equa-

torial Atlantic have been identified (Tokinaga et al., 2019;

Jiang et al., 2023; Richter et al., 2024), it is still not fully un-

derstood why the major 1982–1983 and 1997–1998 El Niños

Figure 4. Anomalous SST (shading; °C) and 10 m winds (vec-

tors; reference 1.5 m s−1) averaged over May–June–July (MJJ) for

(a) 1983 and (b) 1998. The fields are from ERA5 (Hersbach et al.,

2023; note that SST is not an assimilated variable but a blend of

various observational products). The remnants of the very strong

1982–1983 and 1997–1998 El Niño events are evident in the warm

tropical Pacific SST anomalies. In the equatorial Atlantic, in con-

trast, SST anomalies have the opposite sign during those 2 years.

were followed by negative and positive AZM events, respec-

tively (Fig. 4). Finally, the relationship between ENSO and

the IOD has been probed in various climate model exper-

iments, and these have arrived at conflicting results, with

some arguing for an IOD that is mostly independent of ENSO

(e.g., Behera et al., 2006), one that may even influence ENSO

(Behera and Yamagata, 2003; Luo et al., 2010), and others an

IOD that is largely controlled by ENSO (e.g., Stuecker et al.,

2017a). Recent work has also indicated that different flavors

of the Indian Ocean Basin mode can alter the decay of El

Niño events (Wu et al., 2024).

There are at least two reasons why different models may

provide conflicting results. One is that experiments by differ-

ent groups follow different protocols. This may include the

way in which perturbations are implemented in the model

code, but also different simulation and analysis periods. The

other one is that systematic model errors (e.g., due to the

use of different convective parameterizations) substantially

influence the outcome of such experiments. Since such er-

rors differ widely across models, the outcome of two sensi-

tivity experiments conducted with different models can yield

conflicting results, even if they follow the same protocol.

The proposed experiments can be categorized as “pace-

maker” experiments, in which the atmospheric surface heat

flux is modified to constrain the model SSTs to follow obser-

vations. Hereafter, we will refer to this simply as SST restor-

ing. The overarching goal of the pacemaker experiments pro-

posed for TBIMIP is to gain a deeper understanding of TBI

and its potential role in seasonal-to-decadal predictions. This
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includes a better understanding of the pathways involved and

their relative importance. Much of the interest in TBI stems

from its potential to increase the skill of seasonal predictions,

particularly that of ENSO and its global impacts. Quantify-

ing the contribution of TBI to prediction skill is therefore one

of the major goals of the TBI experiments, and a subset of the

experiments is dedicated to this goal.

2 Justification for the Tropical Basin Interaction

Model Intercomparison Project (TBIMIP)

While many experiments have been performed to explore

TBI, these have followed varying experimental protocols,

which makes it difficult to compare results, as discussed in

Sect. 1. This was one of the major motivations for propos-

ing an intercomparison project in which all models follow

the same experimental protocol. Based on such coordinated

experiments, it will be possible to evaluate the model depen-

dence and robustness of the pathways of TBI.

Many general circulation model (GCM) intercomparison

projects have been established, and their output is publicly

available in many archives, most notably those of CMIP,

which are hosted by the Earth System Grid Federation

(ESGF). This prompts the question of whether there is a

need for yet another intercomparison study. We first note

that, while a wide range of intercomparisons have been per-

formed, none of them has been dedicated to TBI on inter-

annual timescales. The DCPP component of CMIP6 features

some experiments that are related to TBIMIP. That project,

however, focuses on decadal variability, while TBIMIP fo-

cuses on interannual variability. Since the AMV is one of

the most pronounced patterns on decadal scales and longer

timescales, most DCPP experiments are designed to exam-

ine AMV impacts. As such, they examine the impacts of

AMV-related SST anomalies, which evolve slowly and ex-

tend into the high latitudes. The only experiment that par-

tially overlaps with TBIMIP is the DCPP Tier-3 experiment

“dcppC-pac-pacemaker”, in which SSTs in the tropical Pa-

cific are restored to observations. In addition to only one

model having performed this experiment, the DCPP’s focus

on decadal timescales means that the settings are not ideally

suited to exploring interannual TBI. The Global Monsoons

Model Intercomparison Project (GMMIP; Zhou et al., 2016)

also features one experiment that is related to TBIMIP. In

hist-resIPO, SST anomalies are restored to observations in

the central and eastern tropical Pacific. Four models in the

CMIP6 archive have completed this experiment, but the pro-

tocol differs from that of TBIMIP. Importantly, there are no

corresponding experiments for the tropical Atlantic and In-

dian oceans. We thus believe that the TBIMIP experiments

proposed here offer a unique opportunity to explore TBI and

its role in climate variability. Due to its seasonal prediction

component, TBIMIP will also offer an up-to-date dataset for

comparing the prediction skill of state-of-the-art prediction

systems.

While the proposed TBIMIP experiments are distinct from

the DCPP experiments, they may provide complementary in-

formation regarding the role of tropical processes in decadal

climate variability. Further synergy with existing CMIP6 ex-

periments is provided by the use of the existing CMIP6 ex-

periment “historical” as the reference for one subset of the

proposed experiments, as explained in Sect. 3. This elimi-

nates the need to run a separate control simulation, thereby

reducing TBIMIP’s computational load. It also allows com-

parison with the numerous experiments that are derived from

historical and that are available in the CMIP6 archive, such

as the single forcing experiments in the Detection and At-

tribution Model Intercomparison Project (DAMIP; Gillett et

al., 2016).

3 Experiment design of TBIMIP

Here we describe the key details of the experi-

ment design. The full description can be found at

https://www.clivar.org/sites/default/files/documents/TBI_

CoEx_design.pdf (last access: 5 December 2024) or

https://doi.org/10.5281/zenodo.13864935 (Richter, 2024a).

A summary of the Tier-1 and Tier-2 experiments is given

in Table 1. Potential Tier-3 experiments are discussed in

Appendix A1.

As in other MIPs, the experiments are grouped into three

tiers, with Tier 1 having the highest priority. Experiments in

this tier use the anomaly-restoring technique, while experi-

ments in Tier 2 use full-field restoring to observations. Tier 3

is currently left to future additional experiments, which may

be suggested by analysis of the Tier-1 and Tier-2 experi-

ments. Several suggestions for such experiments are given

in Appendix A1. Both Tier 1 and Tier 2 are divided into

two sets, or branches, of experiments. The first branch con-

sists of standard pacemaker experiments, which are continu-

ous integrations over the historical period from 1982 to 2021

(starting from 1870 is recommended), with SST restoring in

selected basins. The second branch consists of pacemaker

hindcasts for the period 1982–2021. These are initialized sea-

sonal predictions with SST restoring in selected basins. (We

note that we use “hindcast” in the sense of “reforecast”, i.e.,

seasonal prediction experiments that are initialized from past

observations.) Examples of such experiments can be found in

the literature (e.g., Keenlyside et al., 2013; Luo et al., 2017).

Participating groups can choose to perform only one of the

two branches or both. For a given branch, however, all exper-

iments should be performed.

Since the Tier-1 experiments use anomaly restoring, the

SST target has to be calculated as the model SST climatol-

ogy plus observed SST anomalies. The base period for calcu-

lating both the climatology and the anomalies is 1982–2019.

The model climatology must be calculated from the reference

https://doi.org/10.5194/gmd-18-2587-2025 Geosci. Model Dev., 18, 2587–2608, 2025
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Table 1. Overview of the TBIMIP experiments. The latitudes refer to the core restoring regions. These are tapered off poleward over 10°

buffer zones.

Branch 1: standard pacemaker Branch 2: pacemaker hindcast

Name Description Name Description

Tier 1 TBI-hist-ctrl Reference experiment: coupled ocean–atmosphere TBI-hind-ctrl Hindcast experiment for the period 1982–2021

simulation with radiative forcing from historical (up to 2014) with ocean initialization in February (mandatory), May, August,

and ssp585 (2015–2021). If historical has already been and November (recommended). Depending on the initialization method,

performed, only extension from 2015 to 2021 is needed. there may be a need for a separate control experiment.

See the experiment design for details.

TBI-pace-P-anom Pacemaker experiment with SST restoring in the tropical TBI-hind-P-anom Restore SST anomalies in the tropical Pacific Ocean

Pacific Ocean (15° S–15° N). The restoring target is the to the lead-time-dependent model climatology plus

model SST climatology plus observed SST anomalies. observed anomalies during the forecast period.

TBI-pace-A-anom Like TBI-pace-P-anom but for the tropical Atlantic Ocean TBI-hind-A-anom Like TBI-hind-P-anom but for the tropical

(10° S–10° N) Atlantic Ocean

TBI-pace-I-anom Like TBI-pace-P-anom but for the tropical Indian Ocean TBI-hind-I-anom Like TBI-hind-P-anom but for the tropical

(15° S–15° N) Indian Ocean

Tier 2 TBI-hind-ctrl As in Tier 1

TBI-pace-P Like TBI-pace-P-anom but restoring full-field SST observations TBI-hind-P Like TBI-hind-P-anom but restoring full-field observations

TBI-pace-A Like TBI-pace-A-anom but restoring full-field SST observations TBI-hind-A Like TBI-hind-P but for the tropical Atlantic Ocean

TBI-pace-I Like TBI-pace-I-anom but restoring full-field SST observations TBI-hind-I Like TBI-hind-P but for the tropical Indian Ocean

Tier 3 Reserved for future experiments Reserved for future experiments

simulation, which is TBI-hist-ctrl for the standard pacemaker

and TBI-hind-ctrl for the pacemaker hindcast. For Tier 2, in

contrast, the target SST is taken directly as the full-field ob-

servations.

The standard pacemaker experiments (branch 1) use the

CMIP6 historical experiment as their control simulation.

Groups that did not participate in CMIP6 should follow

the CMIP6 protocol to perform the equivalent of historical.

The radiative forcing is available via the ESGF website at

https://pcmdi.llnl.gov/CMIP6/Guide/modelers.html (last ac-

cess: 8 December 2024). Where a preindustrial control simu-

lation (e.g., piControl in CMIP6) exists, a random year from

that simulation should be chosen to initialize the control sim-

ulations. The CMIP6 forcing for the historical experiment

is only available until 2014. It is suggested to use the ra-

diative forcing from the ssp585 experiment for the period

2015–2021. However, since the radiative forcing does not

vary much across scenarios for the first few years, any of

these scenarios will be acceptable (Bi et al., 2022).

Three pacemaker experiments are requested, one for each

of the tropical Pacific Ocean, the tropical Atlantic Ocean,

and the tropical Indian Ocean. In each of these experiments,

SSTs are restored to the target SSTs in the restoring region

(10° S–10° N for the Atlantic Ocean and 15° S–15° N for the

Pacific and Indian oceans; see Sect. 4.3 for a justification

of the narrower restoring region in the Atlantic). The restor-

ing is linearly tapered to zero over a 10° buffer zone to the

north and south of the core restoring region. The restoring

timescale should be 15 d over a 50 m layer. The target SST is

based on the boundary conditions of the CMIP6 amip exper-

iments (Durack and Taylor, 2016) but extended to Decem-

ber 2022 (Paul Durack, personal communication, 2023). The

amip SST boundary conditions, in turn, are derived from the

Hadley Centre Sea Ice and Sea Surface Temperature dataset

Figure 5. The basin mask to be used for the TBIMIP experiments.

See the section on “Data and code availability” for how to obtain the

data. The tropical Indian Ocean (TIO), the tropical Pacific (TPAC),

and the tropical Atlantic (TATL) are indicated by yellow, blue, and

red shadings, respectively. The core restoring regions are demar-

cated by horizontal lines and the transition zones by opacity gra-

dients. Note the narrower meridional width of the tropical Atlantic

restoring region.

(HadISST; Rayner et al., 2003) from January 1870 through

October 1981 and the NOAA Optimum Interpolation SST

(OISST) version 2 (Reynolds et al., 2002) from November

1981 through December 2022.

Masking has to be used to limit the SST restoring to the

target basin. The restoring regions, including the tapering

zones, are illustrated in Fig. 5. The core integration period

for the standard pacemaker experiments is 1982–2021, but

starting from 1870 is recommended to allow for more robust

analysis. The experiments should be initialized from the con-

trol simulation (CMIP6 historical or equivalent) and use the

same radiative forcing. A minimum of 10 ensemble members

is recommended. The method for generating perturbed en-

semble members is left to the modeling groups. One simple

method is to slightly perturb the initial atmospheric temper-

atures.
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The pacemaker hindcasts (branch 2) are hindcast experi-

ments with SST restoring in a selected basin. The control ex-

periment is a standard hindcast experiment. Many modeling

groups may already have performed a hindcast experiment.

Those who do not must first complete this before performing

the pacemaker hindcast experiments.

The technique for initializing the hindcasts (data assimi-

lation, etc.) is left to the modeling groups. While the initial-

ization method may influence the forecast skill and spread,

it is not expected to strongly affect relative changes in the

pacemaker experiments, although future experiments should

test this. The minimum requirement is one initialization on

1 February of each year from 1982 through 2021. Each inte-

gration should be at least 12 months long. Additionally, ini-

tializations on 1 May, 1 August, and 1 November are recom-

mended. Finally, 1 March initializations may be useful for

assessing prediction skill in the equatorial Atlantic, due to

the seasonality of the AZM.

Three pacemaker hindcast experiments are performed, one

for each basin. The initialization method should be the same

as for the control hindcast. The restoring region and strength

are the same as for the standard pacemaker experiments in

branch 1. The SST restoring starts with the initialization and

is maintained throughout the forecast period. As for the stan-

dard pacemaker experiments, a minimum of 10 ensemble

members is recommended.

4 Climate model pacemaker experiments

4.1 Basic concept and rationale

At the heart of TBIMIP are coupled ocean–atmosphere ex-

periments with SST restoring in selected target regions. Typi-

cally, the restoring target is a time-varying observed SST dis-

tribution, where SSTs will follow observations in the target

region. In the wider sense of the meaning, pacemaker exper-

iments can also restore to idealized SST distributions, such

as a composite El Niño event, or a seasonal climatology. The

general idea behind these pacemaker experiments is to exam-

ine the response of the atmospheric circulation and the sub-

sequent impacts on the climate system outside the restoring

region. A well-known example is the pacemaker experiment

of Kosaka and Xie (2013), which examined how the global

surface temperatures respond to prescribing SST in the cen-

tral and eastern tropical Pacific. In particular, Kosaka and Xie

(2013) were interested in how the tropical Pacific influences

the evolution of the global temperature trend. Another exam-

ple would be a pacemaker experiment in which SSTs are re-

stored to observations in the tropical Atlantic in order to ana-

lyze the impacts of the tropical Atlantic on ENSO variability

(e.g., Ding et al., 2012; Keenlyside et al., 2013; Exarchou et

al., 2021; Liu et al., 2023). Such pacemaker experiments ask

the question to what extent the climate system will follow

the observed evolution if one of its components is forced to

follow observations. Tropical SSTs are an obvious candidate

for this kind of intervention due to their strong influence on

the atmospheric circulation. Other fields, however, can also

be subjected to intervention, such as the surface wind fields

(e.g., Richter et al., 2012; Ding et al., 2014; Gastineau et al.,

2019; Voldoire et al., 2019), which have a strong impact on

the ocean circulation and the surface enthalpy flux.

4.2 Methodology for SST restoring

There are several methods for constraining SST to follow a

target time series. Below we list three potential methods, but

we recommend using method (2).

1. Temperature nudging inside the ocean model. SST cor-

responds to the temperature of the uppermost vertical

level of the ocean component. One approach is there-

fore to add a correction term to the temperature equa-

tion of the ocean model that nudges the SST toward

the target value. The strength of the term is propor-

tional to the difference between the target and model

SST. This approach is akin to ocean data assimilation

and has been employed in TBI studies (e.g., Ding et

al., 2012; Chikamoto et al., 2016) and for the initializa-

tion of prediction experiments (Keenlyside et al., 2005;

Keenlyside et al., 2013).

2. Surface heat flux term. The top ocean level interacts

with the atmospheric model component through a cou-

pler routine (e.g., Craig et al., 2017), which regulates the

exchange of fluxes between the atmosphere and ocean.

Another approach for modifying SSTs is therefore to

manipulate inside the coupler routine the heat flux that

goes into the ocean, which is the method recommended

for the TBIMIP experiments. The heat flux in tropical

regions consists of four components: net surface short-

wave radiation, net surface longwave radiation, latent

heat flux, and sensible heat flux. Of these, sensible heat

flux is usually chosen for adding the restoring flux (e.g.,

Kosaka and Xie, 2013).

3. Modifying SSTs “seen” by the atmospheric model. Be-

cause the flux coupler controls the SSTs that are “seen”

by the atmospheric component, one can modify only

this value, thereby “tricking” the atmosphere into re-

acting to a temperature that is different from the actual

ocean SST. This approach leaves the ocean component

completely unchanged (Richter and Doi, 2019). Fur-

thermore, it allows the SSTs to exactly follow a given

distribution (as far as the atmosphere is concerned),

rather than approximating it through correction terms.

A potential drawback is that this can lead to very un-

realistic heat fluxes into the atmosphere (Wang et al.,

2005).

Method (2) is recommended because it is commonly used

and because it allows SST restoring of variable strength,
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rather than the prescribed SSTs of method (3). It should also

be easier to implement than method (1), which requires mod-

ification of the ocean model thermodynamic equation.

4.3 Considerations when modifying the surface heat

flux

When constraining SSTs using the surface heat flux method,

as recommended for the TBIMIP experiments, several issues

need to be considered.

First, one has to decide on the strength of the restoring

flux. The ocean mixed layer is an important concept to con-

sider because it is the layer that rapidly adjusts to the surface

forcing. In the tropical oceans, a typical value for the mixed-

layer depth (MLD) is 50 m. Using this as a reference MLD,

and based on the temperature difference between the actual

and target SSTs, one can calculate the flux that is needed to

achieve the target SST over a certain timescale:

F = (Tt − Tm)ρCp
MLD

τ
, (1)

where F is the correction heat flux [W m−2], Tt is the tar-

get SST [K], Tm is the model SST [K], ρ is the density

of seawater [kg m−3], Cp is the heat capacity of seawater

[J K−1 kg−1], MLD is the mixed-layer depth [m], and τ [s] is

the restoring timescale. Thus, the heat flux needed increases

with the deviation of the model SST from the target SST, the

MLD, and the inverse of the restoring timescale. It is clear

from Eq. (1) that an instantaneous adjustment (τ = 0, i.e.,

perfect agreement with the target SST) would require an infi-

nite heat flux. One must therefore compromise between cor-

respondence to the target SST and a surface heat flux that is

not overly disruptive. In the literature, a wide range of restor-

ing timescales has been used. The SINTEX-F1 seasonal pre-

diction model (Luo et al., 2005) uses restoring timescales

from 1 to 3 d over 50 m as a simple data assimilation scheme

for its forecasts. At the other end of the spectrum, restoring

timescales of 30–60 d over 50 m are used for decadal vari-

ability experiments, such as the CMIP6 DCPP. The IPSL

decadal forecast system uses SST nudging and a restoring

timescale of 30 d as an assimilation scheme (Servonnat et al.,

2015).

So, what are the reasons for not using short restoring

timescales even though they allow for the highest correspon-

dence to the target SST? There are two main reasons. First,

for short restoring timescales, the heat fluxes required can

lead to very unrealistic changes in the ocean circulation. Be-

cause the heat flux is absorbed in the top layer first, the imme-

diate temperature response could lead to unrealistic changes

in vertical stability and, consequently, vertical mixing. Sec-

ond, overly strong restoring can lead to unrealistic behavior

in regions where SST is primarily driven by the surface heat

fluxes, rather than driving them (Frankignoul, 1985; Frankig-

noul et al., 1998). This applies not only to extratropical re-

gions, but also regions of the Indian Ocean, western Pacific

Ocean, and northern tropical Atlantic Ocean (Klein et al.,

1999; Alexander et al., 2002; Wang et al., 2000). In that case,

strong restoring can affect the lead–lag relationship of SST

and surface heat fluxes and even change the sign of this re-

lationship, as has been shown in the context of AMV pace-

maker experiments. This, in turn, can lead to an inconsistent

large-scale response where the SST-mediated changes in sur-

face fluxes produce unrealistic diabatic atmospheric heating

and teleconnection patterns (Ding et al., 2014). In particular,

some studies suggest that the role of the subtropical North

Atlantic may have been overestimated in experiments that

performed SST restoring there (Kim et al., 2020; O’Reilly et

al., 2023).

Figure 6 examines the influence of SST restoring strength

by showing the lead–lag relation between SST and surface

enthalpy flux (SHF) for several regions that range from the

subtropical North Atlantic (Fig. 6a) to the equatorial Atlantic

(Fig. 6d; see the figure caption for area definitions). ERA5 is

compared to CMIP6 simulations with the MRI-ESM2-0 cli-

mate model from three different experiments: historical, with

full ocean–atmosphere coupling; hist-resAMO (part of GM-

MIP), with relatively weak SST restoring (60 d over a 50 m

layer) in the AMO region (core restoring region 5–65° N,

65–5° W, with 5° buffer zones in the meridional and zonal

directions); and amip, with SST completely fixed. For both

the reanalysis and the model simulations, the analysis period

is 1979–2014. In all three off-equatorial regions (Fig. 6a–c),

ERA5 shows the highest positive correlation when SHF leads

SST by 1 month, indicating that SHF anomalies are driving

SST anomalies (Frankignoul et al., 1998). The lowest nega-

tive correlation occurs when SHF lags SST by 1 month, with

low values for the contemporaneous correlation. This behav-

ior is reproduced well by the MRI-ESM2-0 historical simu-

lations. This correspondence to ERA5 is slightly decreased

in the hist-resAMO simulation, presumably due to the in-

terference from the SST restoring. In the amip simulation,

however, there are negative correlations for both SHF lead-

ing SST and SHF lagging SST, indicating that the model at-

tempts to damp the SST anomalies at all times. This contrasts

with both the reanalysis and the other model simulations and

strongly suggests that the SST prescription disrupts the rela-

tion between SHF and SST.

In the equatorial Atlantic (Fig. 6d), conversely, there are

no categorical differences across the four datasets, with both

the reanalysis and the simulations showing negative corre-

lations that are lowest around the contemporaneous corre-

lation. This indicates that the ocean circulation drives SST

anomalies, while the atmosphere damps them through SHF

anomalies.

Given that SST restoring can lead to unrealistic fluxes out-

side the deep tropics, as suggested by Fig. 6, it is advisable to

limit the meridional width of the restoring region. We there-

fore restrict the core restoring region from 10° S to 10° N in

the tropical Atlantic and from 15° S to 15° N in the tropi-

cal Pacific and Indian oceans, with 10° transition zones in
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Figure 6. Lead–lag correlation of anomalous SST and surface enthalpy flux (SHF; the sum of sensible and latent heat flux) for −6 to

+6 months, with SHF leading SST for negative lags. Positive correlations indicate that positive SST anomalies are associated with SHF

anomalies in the ocean. The data are from ERA5 (green line) and the MRI-ESM2-0 CMIP6 model for the experiments historical (blue

line), hist-resAMO (orange line), and amip (brown line). The analysis period is 1979–2014 for all of the datasets. Filled circles indicate

correlations that are significant at the 95 % confidence level. The individual panels show the following area averages: (a) subtropical North

Atlantic (subtropical NAtl; 40–10° W, 20–30° N), (b) northern tropical Atlantic (NTA; 40–10° W, 10–20° N), (c) equatorial North Atlantic

(eq. NAtl; 40–10° W, 5–10° N), and (d) ATL3 (20–0° W, 3° S–3° N).

each hemisphere. The smaller meridional extent of the trop-

ical Atlantic restoring region is motivated by the fact that

deep convection is more confined around the Equator there

and by studies indicating unrealistic fluxes in the subtropi-

cal North Atlantic when SSTs are restored there (Kim et al.,

2020; O’Reilly et al., 2023).

An important choice to make is whether to use full-field or

anomaly SST restoring. In full-field restoring, the target SST

field is the total observed SST, i.e., the observed SST clima-

tology plus the observed SST anomaly. In anomaly restoring,

on the other hand, the target is the model climatology plus the

observed SST anomaly. The advantage of anomaly restoring

is that it preserves the model SST climatology in the restor-

ing region, so that it remains consistent with the climatology

outside the restoring region, thus reducing the effect of sharp

gradients. In the equatorial and southern tropical Atlantic,

models tend to have a pronounced warm bias (e.g., Richter

and Tokinaga, 2020). Under such circumstances, prescribing

the observed climatology will reduce the average SST in the

region and may fundamentally change the way in which it

interacts with other basins. Anomaly restoring therefore of-

fers a way of avoiding undesirable side-effects of the SST

intervention. One potential disadvantage in the context of a

multimodel intercomparison is that the total prescribed SST

values will be different for every model. This may make it

more difficult to compare results across models. In addition,

the method requires some consideration of how to calculate

the target SSTs. To illustrate this, we introduce a few equa-

tions. The total model SST can be written as the sum of a

climatology and an anomaly Tm = T m +T ′
m, where the over-

bar denotes the seasonally varying climatology and the prime

denotes the anomaly. Likewise, the total observed SST can be

written as To = T o +T ′
o. For anomaly restoring, the restoring

target is the sum of the model climatology and the observed

anomaly: Tt = T m + T ′
o. An energy imbalance can occur in

the model if there is a mismatch between the restoring target

and the model SST of the free-running control simulation:

E = Tt −Tm = T m +T ′
o − (T m +T ′

m) = T ′
o −T ′

m. If this im-

balance accumulates over the integration period, it can po-

tentially change the SST distribution outside the restoring

region and adversely affect the outcome of the pacemaker

experiment. Such an imbalance can occur if the base period

(used for the calculation of the climatology) is different be-

tween the model and observations, due to the warming trend
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during the historical period. It is therefore important to use

a consistent base period when calculating the restoring tar-

get. Even with the same base period, however, an imbalance

can occur if the base period is much shorter than the integra-

tion period. As an example, consider a case where we define

the base period as 1982–2019 but perform the pacemaker ex-

periment over the period 1870–2021. Both the model and

the observed SST anomalies are calculated relative to the

same 1982–2019 base period: T ′
m = Tm − T

(1982→2019)

m and

T ′
o = To − T

(1982→2019)

o , where, without loss of generality,

we neglect the seasonal dependence of the climatology. The

time-integrated imbalance then becomes

∫ t2

t1

Edt =

∫ t2

t1

(T ′

o − T ′

m)dt =

∫ t2

t1

(To − Tm)dt

−

∫ t2

t1

(T
(1982→2019)

o − T
(1982→2019)

m )dt, (2)

where t1 and t2 denote the integration period of the pace-

maker experiment. Noting that the second term on the right-

hand side of Eq. (2) is constant, and dividing by the integra-

tion period, we obtain

E
(t1→t2)

= T
(t1→t2)

o − T
(t1→t2)

m

−

[

T
(1982→2019)

o − T
(1982→2019)

m

]

. (3)

If the integration period is equal to the base period

(t1 = 1982, t2 = 2019), the imbalance equals zero. Nontriv-

ial imbalances can arise when the integration period is sub-

stantially longer (e.g., 1870–2021, as in our example) and if

the difference between the model and observed SST substan-

tially changes over the longer period. In other words, prob-

lems arise when the simulated and observed SST trends are

substantially different. We test this for a few selected models

participating in the CMIP6 historical experiment (Fig. 7a),

using as the observational reference the CMIP6 amip SST,

which is derived from HadISST and OISST (see Sect. 3).

The area average of SST over the tropical Pacific varies sub-

stantially across the models, with the warmest model being

almost 1.5 °C warmer than the coldest model and the obser-

vations roughly in the middle. This bias spread, however, is

of no concern for our experiments because the bias itself does

not enter into the energy imbalance. The important question

is whether the gap between a given model and the obser-

vations varies substantially over time. We therefore remove

the time mean and re-plot the SST evolution (Fig. 7b). The

curves are now more closely spaced, suggesting that the bias

of a given model does not vary substantially over time, al-

though the well-known trend overestimation at the beginning

of the 21st century is evident (Kosaka and Xie, 2013; Wills

et al., 2022; Beverly et al., 2024). We conclude that using

a shorter base period should not lead to major imbalances,

though this should be evaluated carefully for each model.

Calculating the imbalance (term E in Eq. 3) yields the values

Figure 7. SST (°C) averaged over the tropical Pacific (entire basin

width, 30° S–30° N) for the reference (CMIP6 amip SST) and seven

models from the CMIP6 historical experiment, as indicated by the

legend in the upper left of each panel. For the models, the lines rep-

resent the average over all the respective ensemble members. The

panels show (a) the full-field SST and (b) the deviation of the full-

field SST from its 1870–2014 time average for each dataset.

shown in Table 2, where, unlike in Eq. (3), the shorter base

period is 1977–2014 (rather than 1982–2019), because this is

readily available in the CMIP6 historical simulations.

Following the above analysis, we define 1982–2019 as

our base period. Using this relatively short base period for

TBIMIP is motivated by the fact that it is a subset of the mini-

mum period requested for all TBIMIP simulations. Thus, this

period should be available to all participating groups. In par-

ticular, the pacemaker hindcast experiments (see Sect. 3) will

only be performed for the period 1982–2021, meaning that a

longer base period would not be possible for those experi-

ments.

When restoring SSTs in a particular ocean basin, one has

to consider not only the meridional extent but also the zonal

extent of the restoring region. For the tropical Atlantic, the

American and African coastlines provide an obvious choice

for a basin mask. The boundary between the tropical Pacific

and Indian oceans is not as obvious because the Indonesian

Throughflow is a porous boundary. Some previous exper-
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Table 2. Imbalance (K) incurred by using a base period (1977–2014) that is much shorter than the integration period (1870–2014) when

calculating the model climatology and observed anomalies (see Eq. 3 for an explanation) in historical simulations of seven CMIP6 models,

as indicated in the top row.

Model CanESM5 CESM2 CNRM-CM6-1 EC-Earth3 FGOALS-f3-L GISS-E2-1-G IPSL-CM6A-LR

Imbalance (K) 0.24 0.04 0.01 0.12 0.10 0.03 0.15

(term E in Eq. 3)

iments have avoided this problem by excluding the entire

western tropical Pacific (e.g., Kosaka and Xie, 2013). For

TBIMIP, we choose to extend the tropical Pacific region all

the way to the Maritime Continent, according to the basin

mask provided by the World Ocean Atlas (Locarnini et al.,

2010). Some modifications were performed to simplify the

basin mask (Fig. 5). This mask is publicly available. See the

“Data and code availability” section for how to obtain the

data.

4.4 Drawbacks of pacemaker experiments

While pacemaker experiments are a useful tool for under-

standing the interaction between the tropical basins, they also

have potential shortcomings.

1. The infinite heat source problem. SST restoring can

lead to a potentially infinite heat source or sink. The

larger the difference between the restoring target and

the model SST, the larger the heat flux that has to

be pumped into the ocean or atmosphere (see Eq. 1).

This adjustment flux is a purely mathematical entity

and therefore not bounded by any energy constraints.

In practice, this issue will be more prominent when full-

field restoring is used and when there are large model bi-

ases. Even in anomaly-restoring experiments, however,

this issue can arise in regions where the atmosphere ex-

erts an important influence on the ocean, such as in the

subtropics. In such regions, the underlying assumption

of SST pacemaker experiments that the SSTs drive the

atmosphere is less valid, which can lead to unrealistic

results, as discussed in Sect. 4.3.

2. Shift in the model dynamics. The intervention in the

model dynamics may perturb the simulation to such

an extent that it fundamentally alters the basic flow. In

that case, interpretation of the results may be difficult.

Again, this factor will be more important when full-field

restoring is used.

3. Insufficient model fidelity. If the simulated variability

patterns are substantially different from those observed,

it may be difficult to draw conclusions about nature.

One example would be the seasonal preference of vari-

ability patterns. ENSO, for example, is known to have

its peak in boreal winter and models are known to

struggle with reproducing this seasonal synchronization

(Stein et al., 2014; Liao et al., 2021). If a model ENSO

peaks in summer, for example, this may have serious

repercussions for how it interacts with other basins. One

of the reasons for TBIMIP is to study exactly this model

dependence.

4. Incomplete decoupling of basins. While the goal of

TBIMIP is to study the influence of individual basins on

the climate system, this separation into individual basins

cannot be completely successful. The SSTs one pre-

scribes in the tropical Atlantic Ocean or Indian Ocean,

for example, implicitly contain some impact from the

tropical Pacific because ENSO has contributed to shap-

ing them. It is therefore not possible to completely iso-

late the influences of individual basins, and this should

be borne in mind when analyzing the output from pace-

maker experiments. When assessing impacts on pre-

dictability, for instance, it has been shown that ex-

periments with relaxation toward observations greatly

overestimate ENSO forecast skill because of the built-

in presumed perfect evolution of the stochastic noise-

driven component of SSTs as well as the aforemen-

tioned ENSO effect on remote SSTs (see the discussion

in Zhao et al., 2024).

5. Reliability of the observations. In addition to (1)–(4),

which are limitations inherent to the modeling ap-

proach, there is also the problem of the reliability of

the observations used to design the restoring target. This

is mainly an issue for the pre-satellite era, when SST

measurements mostly relied on shipboard observations.

Thus, this issue can potentially affect the pacemaker ex-

periments if they are extended beyond the satellite ob-

servation period. Results from this period will have to

be treated with caution.

Despite the caveats listed above, we do believe that pace-

maker experiments are a valuable tool for gaining a deeper

understanding of TBI.

5 Participation

The participation of multiple modeling groups is essential for

the success of any MIP. At the time of writing, several groups

already completed the experiments, as detailed in Table 3.

The participation of additional groups is greatly welcomed.

https://doi.org/10.5194/gmd-18-2587-2025 Geosci. Model Dev., 18, 2587–2608, 2025



2598 I. Richter et al.: The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)

The minimum requirement is the completion of at least one

branch (standard pacemaker or pacemaker hindcast) of the

Tier-1 or Tier-2 experiments. For the standard pacemaker

branch, this consists of the control historical experiment and

one experiment for SST restoring in each tropical basin. The

minimum integration period is 1982–2021. Assuming 10 en-

semble members, the minimum simulation time is 4 exper-

iments × 10 ensemble members × 40 years per simulation,

which equals 1600 simulation years. This reduces to 1200

simulation years if a historical simulation is already avail-

able.

For the pacemaker hindcast experiments, the minimum re-

quirement is one control hindcast experiment and one SST

intervention experiment for each basin. The minimum hind-

cast period is 1982–2021, with at least one initialization per

year (on 1 February) that is integrated for 12 months into

the future. Thus, the minimum simulation time is 4 experi-

ments × 10 ensemble members × 1 forecast initialization per

year × 1 year per forecast × 40 years, which again equals

1600 simulation years.

The output variables that should be archived are listed in

Table 4. They are grouped into three levels, with level 1 being

the minimum requirement, level 2 desirable, and level 3 op-

tional. The variable names follow the CMIP nomenclature,

which can be found here: https://clipc-services.ceda.ac.uk/

dreq/mipVars.html (last access: 19 May 2024). All variables

need to follow the CMIP conventions, including the variable

name and output format (“cmorization”). Vertical pressure

levels for 3D atmospheric variables should follow the stan-

dard CMIP format (hPa), i.e., 1000, 925, 850, 700, 600, 500,

400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10, 5, and 1,

with a reduced number of levels for daily data, as indicated

in Table 4.

One variable that is only found in a few of the CMIP6 ex-

periments is hfcorr, which is the heat flux term applied to re-

store SST to the target value. This is an important diagnostic

for examining the potential energy imbalance created by the

heat flux correction and is also a measure of how much the

ocean SST would diverge from the target SST if left unper-

turbed, i.e., the degree to which the ocean–atmosphere sys-

tem resists the SST restoring. In many models, outputting

this variable will require code modifications. Note that this

variable should be separate from the sensible heat flux or

latent heat flux variables, even though it may eventually be

added to one of these in the flux coupler.

We are aiming to make the model output available to

the community through the CMIP6Plus project (https://

wcrp-cmip.org/cmip6plus/, last access: 19 May 2024), which

has been set up to bridge the interim period between CMIP6

and CMIP7. There will be an embargo period during which

data will be available only to participating groups and mem-

bers of the Climate and Ocean – Variability, Predictability,

and Change (CLIVAR) TBI Research Focus. During this pe-

riod, we will perform a quality check of the data and some

initial analysis. After the embargo is lifted, the data will be

made available to the community, just like other CMIP6 data.

Under the current timeline, this is anticipated to happen in

mid-to-late 2025.

6 Discussion of complementary approaches to

investigating TBI

The experiments of TBIMIP were conceptualized by the

CLIVAR Research Focus on Tropical Basin Interaction.

These experiments are useful for probing the interaction be-

tween the tropical ocean basins but also have their limita-

tions, as discussed in Sect. 4.4. TBIMIP should therefore be

viewed as one tool for understanding TBI, rather than deliv-

ering a definitive answer. Indeed, the CLIVAR Research Fo-

cus on Tropical Basin Interaction is involved in a range of ac-

tivities aimed at fostering observational and paleo-proxy re-

search, as well as the use of conceptual models and statistical

analysis. Below, we therefore discuss additional approaches

to complementing the output from TBIMIP, with the aim of

highlighting ongoing research efforts and encouraging future

experimentation and analysis.

Held (2005) advocated for the use of a hierarchy of models

to advance understanding of the climate system, with mod-

els ranging from conceptual to highly complex. Subsequent

studies have elaborated on this concept (e.g., Jeevanjee et al.,

2017; Stuecker, 2023). The recharge oscillator (Jin, 1997)

can be considered a prime example of a conceptual model

and is one of the simplest models capable of reproducing

observed ENSO behavior. Initially designed for the tropical

Pacific only, this model has been extended to include interac-

tions with other regions (Jansen et al., 2009). Most recently,

Zhao et al. (2024) presented an extended recharge oscillator

with remarkable ENSO prediction skill. This model is being

made available to the community and should be a useful tool

for studying TBI. Its low complexity will facilitate the inter-

pretation of experimental results.

Another simple approach to modeling the climate system

is a linear inverse model (LIM; Hasselmann, 1988; Penland

and Magorian, 1993). While typically somewhat more com-

plex and less amenable to intuitive physical understanding

than the recharge oscillator, LIMs offer a rich framework

of analysis tools, such as optimal precursors (Penland and

Sardeshmukh, 1995) and principal oscillation patterns (Has-

selmann, 1988; von Storch et al., 1995). Recently, LIMs were

modified to allow for the study of TBI (Zhang et al., 2021;

Alexander et al., 2022; Kido et al., 2022; Jin et al., 2023;

Zhao et al., 2023; Zhao and Capotondi, 2024). The technique

involves splitting the LIM operator matrix into submatrices

that represent the interaction between two basins and then

selectively setting those submatrices to zero. The interbasin

LIM developed by Kido et al. (2022) will be made available

to the community.

Intermediate complexity models (ICMs) are situated

halfway between conceptual models and GCMs. The Cane–

Geosci. Model Dev., 18, 2587–2608, 2025 https://doi.org/10.5194/gmd-18-2587-2025



I. Richter et al.: The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) 2599

Table 3. Status of the TBIMIP experiment execution as of February 2025. Unless explicitly noted, the status refers to Tier 1 experiments.

“pmaker hindcast” and “hindcast” stand for the pacemaker hindcast branch, and “standard pmaker” and “standard” stand for the standard

pacemaker branch of the experiments (see Sect. 3).

Model Center Type of experiment Status

CESM2 US NSF NCAR Hindcast + standard Completed

CESM2 SCSIO, China Tier-2 experiments Completed

NorCPM University of Bergen Hindcast + standard Completed

SINTEX-F2 JAMSTEC Pacemaker hindcast Completed

MIROC6 JAMSTEC, University

of Tokyo/NIES

Hindcast + standard Ongoing

ACCESS-CM2 CSIRO, Australia Standard pacemaker In preparation

IPSL-CM6A-LR IPSL, France Standard pacemaker Completed

Table 4. Minimum requirements for output variables of the TBIMIP experiments in all three tiers and for both branches. The CMIP vocab-

ulary for variable names is used. Variables that may not be included in the standard output of models are marked with an asterisk. If not

indicated otherwise, monthly means are requested.

2D atmosphere 3D atmosphere 2D ocean 3D ocean

Level 1 ts, uas, vas, pr, ps, psl,

hfls, hfss, rsus, rsds,

rlus, rlds, rlut, rsdt,

rsut, tauu, tauv, cld, tas,

sfcWind, hfcorr∗

ta, ua va, wap, zg, hus zos, tos, hfcorr, z20∗

(depth of the 20 °C

isotherm)

thetao

Level 2 daily mean: ts, uas, vas,

pr, ps, ua200, va200,

wap500

uos, vos, mlotst, tauuo,

tauvo, hcont300; daily

mean: zos, uos, vos,

z20

uo, vo, wo, so

Level 3 mrso, prw, huss, hurs,

sic, snd; daily mean: ta,

ua, va, wap, zg, hus

(reduced levels: 850,

500, 200, 100, 50 hPa)

cl, tntmp∗ (diabatic

heating); components

of tntmp∗ (latent,

sensible, shortwave,

longwave)

msftbarot, msftmz,

hfbasin; daily mean:

sos; ocean heat budget

terms∗

rhopoto ocean heat

budget terms∗

Zebiak (CZ) model (Zebiak and Cane, 1987) consists of

a reduced-gravity ocean and a shallow-water-equation at-

mosphere component, the latter based on the work of Gill

(1980). While originally developed for the tropical Pacific

to study and predict ENSO, it has also been adapted for the

tropical Atlantic (Zebiak, 1993). A CZ model for the inter-

action between the three tropical ocean basins could be an

important addition to the study of TBI, as it would bridge the

gap between conceptual models and GCM experiments.

Another example of an ICM is the SPEEDY model de-

veloped by Molteni (2003). The code of this model is avail-

able to the community and has been used by a number of

researchers to study TBI (e.g., Sun et al., 2017; Molteni

et al., 2024). The SPEEDY model can be used as a stan-

dalone AGCM or can be coupled to either a slab ocean model

(Molteni et al., 2024) or a full-complexity ocean model (Rug-

gieri et al., 2024). The advantage of this type of model is that

the atmospheric component is very fast compared to state-of-

the-art climate models, allowing one to perform more than

100 years of simulation in 24 h on a single CPU while re-

producing observed large-scale climate variability similar to

state-of-the-art models. This computational efficiency advan-

tage remains even when coupled to complex ocean mod-

els (Kucharski et al., 2016a, b). Indeed, in Kucharski et

al. (2016b), several previously proposed ways of tropical At-

lantic mode forcing of Pacific climate variability have been

revisited from interannual to multidecadal timescales in en-

sembles of century-long pacemaker experiments. The rela-

tive simplicity of the model code allows modifications that

may be used to efficiently test hypotheses for TBI.

Towards the complex end of the spectrum, GCM experi-

ments with idealized boundary conditions, such as simplified
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geometries or SST patterns, or idealized narrowband forc-

ing timescales (e.g., Su et al., 2005; Stuecker et al., 2015,

2017a, b; Stuecker, 2018), may offer a way of increasing our

understanding of TBI. Recently, Dommenget and Hutchin-

son (2025) performed TBI experiments with idealized land–

sea configurations. A twin Pacific configuration, for instance,

highlighted clearly how tropical basin interaction can lead to

synchronized and highly amplified variability in the tropical

oceans. This concept helps to understand how tropical basin

interaction develops in simplified setups and how it trans-

forms into more complex, less obvious interaction in more

realistic setups. The output from these experiments will be

made available to the community. Another form of idealized

GCM experiments consists of restoring SSTs to climatology

in a specified region, which allows exploration of how the

absence of certain variability patterns, such as ENSO, influ-

ences the atmospheric circulation (Richter and Doi, 2019)

and remote basins (Kataoka et al., 2018; Liguori et al., 2022).

Machine learning (ML), in particular deep learning, is in-

creasingly being used to predict interannual climate variabil-

ity (e.g., Ham et al., 2019; Zhou and Zhang, 2023). While

ML is often seen as the epitome of a black-box approach

impervious to human understanding, there are efforts being

made to remedy this problem (e.g., Gibson et al., 2021; Bom-

mer et al., 2024), such as identifying predictors (Shin et al.,

2022) or using ML to discover prediction equations via sym-

bolic regression (Brunton et al., 2016; Najar et al., 2023).

Such approaches may also be useful for the study of inter-

basin interaction, by identifying key regions and pathways

influencing another basin or by devising simple models of

TBI.

In addition to deep learning, there are other nonlinear sta-

tistical approaches. One of them is complex network anal-

ysis, which has been applied to various TBI-related topics,

such as identifying teleconnections of the Indian summer

monsoon (Di Capua et al., 2020) and the linkage between the

tropical Atlantic and Pacific (Karmouche et al., 2023). Other

methods that can be brought to bear on TBI include gener-

alized event synchronization analysis (Mao et al., 2022) and

analog models (Ding and Alexander, 2023).

Common to all the conceptual models and statistical meth-

ods described above is that they are, to a large extent, data-

driven. Some conceptual models like the recharge oscillator

may be created using physical understanding but eventually

require fitting of their parameters to observations, because

these cannot be derived from first principles. Thus, all these

models require training and validation on the limited obser-

vational data record (see the discussion on the length of the

available data record in Sect. 1).

The number of adjustable parameters is quite limited for

conceptual models like the recharge oscillator, but it rapidly

grows with the complexity of the model, with deep learn-

ing known to be data-intensive. This may be another obsta-

cle standing in the way of ML being applied to climate sci-

ences and the study of TBI. While the observational record is

short and confounded by changing radiative forcing, long cli-

mate simulations under steady radiative forcing are available.

These climate simulations are subject to systematic errors, as

discussed in Sect. 1, and therefore training data-driven mod-

els on GCMs may have its limitations. On the other hand, ML

and conceptual models trained on GCM output may help to

understand the behavior of GCMs and the way in which they

portray TBI. Thus, tools like the recharge oscillator, LIMs,

and/or ML models could be used to augment the results of

GCM experiments.

We conclude that many tools are available for analyzing

TBI, all with their own strengths and weaknesses. Optimally

combining these tools is a difficult task but crucial for gaining

a deeper understanding of TBI. Fostering the development of

such tools and their application to TBI is one of the priorities

of the CLIVAR Research Focus on Tropical Basin Interac-

tion. We hope that the coordinated GCM experiments will be

one useful contribution to this goal.

7 Summary

Interaction between the tropical basins is a crucial com-

ponent of the climate system. A deeper understanding of

TBI holds the key to improved predictions of subseasonal

to decadal climate variability and to projecting how this

variability will change under greenhouse gas forcing. The

TBIMIP introduced here aims to make progress in this di-

rection through a set of multimodel coordinated GCM exper-

iments. As shown in Sect. 6, there are alternative and com-

plementary approaches using conceptual models and statis-

tical approaches. The strength of GCM experiments lies in

their comprehensive depiction of the climate system, which

allows analysis of the physical mechanisms of TBI, thus con-

tributing to our understanding. Furthermore, GCMs are pri-

marily based on fundamental physical laws and, thus, unlike

data-driven models, are not limited by the relatively short ob-

servational data record. While GCMs are subject to biases,

the multimodel approach will allow assessment of the influ-

ence of these model biases on the model results. In addition

to offering a rich dataset for the analysis of TBI and its un-

derlying mechanisms, TBIMIP will allow us to quantify the

importance of individual pathways. This should contribute to

a deeper understanding of TBI and to reconciling conflicting

results of previous studies. By making the datasets from the

experiments available to the community, we hope to stimu-

late research in this important area.

Appendix A

A1 Additional experiments under discussion for Tier 3

The experiments to be performed for Tier 3 have not been

determined yet. The outcomes from the experiments in Tiers
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1 and 2 inform the decision process. Some experiments cur-

rently under discussion are briefly summarized below.

A1.1 TBI-pace-X-clim

X stands for P, A, or I. These experiments are similar to TBI-

pace-X but restore to the observed climatology in the basin

of interest. This could serve as an additional reference to the

TBI-pace-X experiments.

A1.2 TBI-pace-X-clim-mod

These experiments are like TBI-pace-X-clim but restore to

model climatology. They have been performed with the

ACCESS-CM2 model.

A1.3 TBI-pace-AI

This restores the Atlantic and Indian oceans simultaneously

to study their combined effect.

A1.4 TBI-pace-Pwedge

This is similar to TBI-pace-P but gradually narrows the

restoring region towards the western Pacific, resulting in a

wedge that is centered on the Equator, like the restoring re-

gion used by Kosaka and Xie (2013). This avoids restoring

in the northwestern tropical Pacific, a region which may host

variability distinct from ENSO.

A1.5 TBI-pace-X20

These experiments are like TBI-pace-X but widen the restor-

ing region to 20° S–20° N, with linear tapering to 30° S and

30° N. This would test the remote influence of subtropical

SST anomalies.

A1.6 TBI-hind-X20

These experiments are like TBI-hind-X but widen the restor-

ing region to 20° S–20° N, with linear tapering to 30° S and

30° N.

A1.7 TBI-pace-X-1d

These experiments are like TBI-pace-X but use very strong

SST restoring with a timescale of 1 d over a 50 m layer. This

would test whether the restoring timescale plays a crucial

role in the strength of remote impacts.

A1.8 TBI-hind-X-1d

These experiments are like TBI-hind-X but use very strong

SST restoring with a timescale of 1 d over a 50 m layer.

A2 Restoring fields

The target for the SST restoring is the CMIP6 amip SST

boundary conditions available at https://esgf-node.llnl.gov/

search/input4mips/ (last access: 18 January 2025) (variable

tosbcs). The current version is 1.1.9, which extends to De-

cember 2022. Please use this version. These monthly mean

boundary conditions are centered on the middle of each

month and should be linearly interpolated to the model time

step. They are specifically modified such that the monthly

mean observed value is recovered from the model output. See

here for details: https://pcmdi.llnl.gov/report/pdf/60.pdf (last

access: 19 May 2024).

Code and data availability. The ERA5 data were obtained from

https://doi.org/10.24381/cds.6860a573 (Hersbach et al., 2023).

ETOPO5 was obtained from the National Geophysical Data Cen-

ter (1993), NOAA, at https://doi.org/10.7289/V5D798BF. The

CMIP6 model datasets are available from the ESGF at https://

esgf-node.llnl.gov/search/cmip6/ (Eyring et al., 2016). The amip

SST boundary conditions are available from the ESGF web-

site at https://aims2.llnl.gov/search/input4mips/ (Durack and Tay-

lor, 2016) by setting “MIP Era” to CMIP6Plus and the vari-

able name to tosbcs, version 1.1.9. The HadISST and OISST, on

which the amip SST is based, can be obtained from https://www.

metoffice.gov.uk/hadobs/hadisst/data/download.html (Rayner et al.,

2003) and https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html

(Reynolds et al., 2002), respectively. The basin mask used to cre-

ate Fig. 5 can be found at https://doi.org/10.5281/zenodo.13865022

(Richter, 2024b). Note that the meridional restoring width to be used

in the TBIMIP experiments is not indicated in this dataset.

The code to produce the figures can be found at

https://doi.org/10.5281/zenodo.14000123 (Richter, 2024c).
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