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In recent years, the application of deep convolutional neural networks (DCNNs) to medical image segmentation 
has shown significant promise in computer-aided detection and diagnosis (CAD). Leveraging features from 
different spaces (i.e. Euclidean, non-Euclidean, and spectrum spaces) and multi-modalities of data have the 
potential to improve the information available to the CAD system, enhancing both effectiveness and efficiency. 
However, directly acquiring data from different spaces across multi-modalities is often prohibitively expensive 
and time-consuming. Consequently, most current medical image segmentation techniques are cofined to the 
spatial domain, which is limited to utilizing scanned images from MRI, CT, PET, etc. Here, we introduce an 
innovative Joint Spatial-Spectral Information Fusion method which requires no additional data collection for 
CAD. We translate existing single-modality data into a new domain to extract features from an alternative space. 
Specifically, we apply Discrete Cosine Transformation (DCT) to enter the spectrum domain, thereby accessing 
supplementary feature information from an alternate space. Recognizing that information from different spaces 
typically necessitates complex alignment modules, we introduce a contrastive loss function for achieving feature 
alignment before synchronizing information across different feature spaces. Our empirical results illustrate the 
greater effectiveness of our model in harnessing additional information from the spectrum-based space and 
affirm its superior performance against ifluential state-of-the-art segmentation baselines. The code is available 
at https://github.com/Auroradsy/SIN-Seg.

1. Introduction

Medical image segmentation is a critical component in the fields of 
biomedical science research and clinical diagnosis. Its goal is to delin
eate regions of interest (ROIs) that possess significant diagnostic and 
therapeutic value for treating physicians and radiologists. The advent 
of computer-aided detection/diagnosis (CAD) systems has facilitated a 
unfied platform for analyzing vast amounts of medical-specific imag
ing data. (i.e. MRI, CT, Microscopy, PET, etc) Within this framework, 
deep neural networks (DNNs) based models have showcased their value, 
offering precise segmentation outcomes and reducing the time burden 
traditionally associated with manual analysis.

Despite the impressive achievements of DNNs [1--6], intrinsic chal
lenges remain to the methodologies currently in medical image segmen
tation. Medical images, acquired through various specialized devices, 
are designed to accentuate particular features or abnormalities, often 
requiring extra interpretative expertise of radiologists to achieve pre
cise diagnosis. A typical CAD system that operates on images from a 
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single type of information, without integrating such expert insight, risks 
overlooking critical information. Multi-modal learning in medical image 
analysis [7] can harness the strengths of diverse imaging modalities�-
such as MRI, CT, and PET to improve diagnostic accuracy over single
modality data. However, collecting multi-modal data for a single subject 
using different imaging devices is time-consuming and expensive in 
practical situations. Even though MRI devices can produce images in 
multiple modalities by capturing different sequence scans in a single 
session, potentially enhancing diagnostic effectiveness [8], such scan
ning processes require skilled radiologists or technicians and involve 
setting up various MRI contrast media. This is not only time-intensive 
but also incurs significant costs. Moreover, multiple imaging modalities 
require patients to be exposed to radiation from MRI devices. Typical 
MRI imaging is diagnosis-oriented, and regular MRI images aim at spe
cific requirements and are captured under particular sequences.

To address this issue, we propose a novel spectrum space-based 
Joint Spatial-Spectral Information Fusion model (SIN). Prior researchers 
[9,10] have illustrated the benfits of spectrum domain learning, par
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ticularly in edge detection—a critical element of segmentation tasks. 
These studies have established the validity and significance of spectral 
information from the frequency domain in augmenting image contrast 
and delineating abnormalities and pathological regions. Spectral in
formation is particularly pivotal in MRI, CT, and microscopy, such as 
frequency sequence-related imaging, where it reveals highly distinctive 
features of the same segmentation target under varied spectral-related 
settings during data acquisition [11]. Specifically, high-frequency fea
tures may be overlooked in the spatial domain, whereas these features 
are more readily extracted in the spectral domain [10].

Our SIN model innovatively harnesses both spectral and spatial do
main information, synthesizing features from these two spaces. It com
prises two primary components: an offline discrete cosine transform 
(DCT) module and an online trainable feature alignment module, both 
of which are embeddable and compatible with every encoder-decoder
based segmentation architecture and maintain the end-to-end attributes. 
The DCT transformation is color-sensitive and microscopy images are 
captured under RGB color space, unlike other medical images which are 
in the gray-scale color space. For those three channel-based microscopy 
images, we implement a space transformation from the RGB color space 
to the YCbCr color space, leveraging the fact that the feature is more sen
sitive to changes in brightness than color changes, resulting in a more 
efficient form of further image processing.

Furthermore, more feature modalities [12] and larger parameter
based models [13] could enhance the performance of models. However, 
aligning features from disparate domains or modalities, each rooted 
in different spaces presents a significant challenge, often necessitating 
complex modules for integration [14,15]. In this study, our proposed 
model does not target solving multimodal feature fusion challenges so 
we designed our model with fewer parameters to be used for feature 
alignment. To overcome this, we introduced a contrastive learning strat
egy to align the features inspired by CLIP [16].

In summary, our main contributions to this paper can be shown as 
follows:

• We propose a novel dual information extraction framework for fus
ing the information both from the spectral and the spatial feature 
space.

• We introduce a low-dimension flattened strategy for the informa
tion from different feature spaces, combined with a simple con
trastive loss for feature alignment which does not need extra pa
rameters.

• We verify our proposed model on multiple datasets from differ
ent medical imaging devices, involving a brain tumor segmenta
tion dataset [17] and a heart segmentation dataset [18] both from 
MRI devices, a liver segmentation dataset [19] captured under CT 
devices, and a cell segmentation dataset [20] from different mi
croscopy imaging methods. We compared our proposed framework 
with 8 ifluential single UNet and Transformer-based baselines to 
show the superiority. We also highlight its effectiveness and poten
tial for advancing medical image analysis under other comprehen
sive analysis experiments.

2. Related work

In this section, we briefly review the previous works in three different 
aspects highly related to our works. First, we introduce the improve
ment of the backbone model. Then, how spectral information shows its 
significance and potential in the computer vision tasks. Finally, some 
previous works about how to combine and take advantage of different 
feature spaces with alignment strategies are illustrated.

2.1. Foundation models for medical image segmentation

Semantic segmentation is always a crucial task for the computer vi
sion domain. FCN [1]] is the first research that introduced Convolutional 

Neural Network (CNN) for segmentation. Then, UNet [2] took advan
tage of the encoder-decoder-like architecture, initially introduced for 
biomedical image segmentation, and revolutionized the field of med
ical image analysis. Its unique design, characterized by a symmetric 
downsample and upsample path, combined with a skip connection al
lows for precise localization and context capture, resulting in highly 
effective performance in the medical image domain. Based on such a 
powerful foundation model, researchers proposed numerous advanced 
segmentation frameworks. Zhang, et al. [21] introduced a hard attention 
mechanism to UNet and utilized the superiority of ResNet, proposing 
Res-UNet. Then, Att-UNet [22] was designed with a gate module for 
soft attention calculation to enhance the performance of the original 
UNet. Zhou, et al. [23] and Valanarasu, et al. [24] also proposed novel 
models based on UNe. Then, TransUNet [25] introduced a vision trans
former (ViT) [26,27] after a down-sample which could combine the 
spatial semantic and the local semantic in consideration in the hidden 
space. Additionally, researchers [28,29] modfied the ViT structure and 
showed the significance of a new Transformer-based foundation model 
in medical image segmentation.

2.2. Spectral information

Conventional computer vision algorithms mainly consider the im
age analysis in the spatial space, i.e. the RGB or Gray-Scale images 
which are easily recognized by human eyes. However, the information in 
such space could obscure lots of detailed features. Some research works 
[30,31] have found that when processing a visual scene, animals have 
more wavebands than humans because of their unique ability to spot 
the features in the spectral domain. Therefore, the significant semantic 
information is easier to extract in such a feature space, and utilizing 
the transformed features in the spectral space is a sufficient method 
to compress the images, [32,33,10] and also design lighter networks 
[34--36] themselves. It is also natural to take advantage of the spec
tral information for designing the attention pipelines. Qin, et al. [37] 
found that many works have used global average pooling (GAP) as an 
unquestionable preprocessing method for designing channel attention 
mechanisms. A potential problem is that different channels may have the 
same mean value, while their corresponding semantic information may 
be completely different, which creates the problem of insufficient atten
tion information. They proved that GAP is a special case of DCT, which is 
equivalent to the lowest frequency component of DCT and is generalized 
to the frequency domain, proposing a multi-spectral channel attention 
framework. Meanwhile, FRCU-Net [38] also incorporates a Laplacian 
transformation-based method to compute attention and enhance feature 
calibration, resulting in improved performance compared to the vanilla 
UNet [2]. FSDR [39] introduced a novel attention pipeline based on the 
spectral space for forcing the network to learn more intrinsic semantic 
features and achieve a more generalizable model. Additionally, spectral 
space could be highly benficial on some low-level vision scene tasks 
[40,41], implementing the DCT or Wavelet transformation. XNet [42] 
effectively integrates high-frequency and low-frequency features using 
Wavelet transformation, demonstrating superior performance in medi
cal image segmentation under both fully and semi-supervised learning 
paradigm.

2.3. Feature alignment

Humans perceive the world through different organs, and more in
formation could train more powerful neural networks. Nevertheless, the 
information in the different spaces always obstacles each other before 
aligning into the same feature space. For naive feature fuse, e.g. Con
catenation is always considered, and it is widely used in residual block, 
skip-connection, and related fusion situations. Under such an operation, 
multiple feature maps are spliced together in the depth dimension to 
obtain a richer representation of features. For example, in encoders and 
decoders, low-level features and high-level features are spliced, which 
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Fig. 1. An overview of the off-line DCT transformation module in the SIN model for RGB space. First, an RGB image is converted to the YCbCr domain. Then the 
YCbCr image is divided into small image patches with a channel-wise normalization (CN). Next, a DCT transformation is implemented on image patches. Finally, the 
coefficient cube for the whole image is generated from frequency-based flattened (𝐹 2) and frequency-wise normalization (FN) operations.

improves the decoder’s perceptual ability. However, concatenation-like 
fusion methods are not trainable, which pressures other learnable blocks 
to handle the feature fusion. Multimodal learning fields often meet 
such problems [43,44]. Autonomous driving [45] is a typical computer 
vision task that requires multi-modal features. In the ordinary road 
environment with traffic lights, traffic cones, etc., relying on informa
tion from a single modality is insufficient while fusing features from 
RGB, LiDAR, Text, et al. Tan, et al.. [46,14] attempted to introduce 
multimodal-learning in the medical image segmentation task by using 
different medical imaging devices on an organ and utilizing the infor
mation from different modalities. Unfortunately, the complex modules 
used to handle the feature fusion challenges consumed too much compu
tational memory. Contrastive learning [47,48] is a simple and efficient 
method to align and merge data or feature maps from different feature 
spaces. Inspired by multimodal contrastive learning, we introduce a sim
ple contrastive learning strategy to achieve feature alignment without 
extra parameters.

3. Methodology

In this section, we present our proposed SIN model which introduces 
the spectral information and integrates it with spatial information for 
segmentation tasks. We first propose a novel off-line DCT transforma
tion module in Fig. 1 to convert the image from the spatial space to the 
spectrum space. We then introduce a trainable alignment module with 
a simple contrastive loss function to align the features yielded from the 
spectral space and the spatial space as well. Finally, we illustrate the 
whole segmentation framework (named SIN-Seg) in Fig. 2 with our pro
posed SIN model and the loss functions for brain tumor segmentation 
tasks.

3.1. Off-line DCT transformation

3.1.1. RGB images pre-processing
Microscopy Imaging always generates into the RGB space, which is 

not suitable for conducting DCT transformation directly on RGB im

ages (denoted as 𝑋𝑅𝐺𝐵 ). Instead, we first transform them to the YCbCr
space as YCbCr images (denoted as 𝑋𝑌𝐶𝑏𝐶𝑟). This conversion is crucial 
for two main reasons: Human Visual Sensitivity: YCbCr separates an 
image into luminance (Y) and chrominance (Cb and Cr). Since human 
vision is more sensitive to luminance than chrominance, this separation 
allows for more effective compression. The luminance channel can be 
preserved with higher fidelity, while the chrominance channels can be 
compressed more, reducing file size without noticeably impacting im
age quality. Compression Efficiency: The DCT is more effective in the 

YCbCr space for compression purposes. It allows for significant data re
duction in the chrominance components, which is less perceptible to 
the human eye while maintaining the crucial details in the luminance 
component. After such pre-processing, the color information of lumi
nance and chrominance is separated into three channels including Y
(i.e., luma or brightness), Cb (i.e., blue-difference chroma), Cr (i.e., red
difference chroma). The YCbCr transformation leverages the fact that 
the human visual system is more sensitive to changes in brightness than 
color changes, resulting in more efficient image processing. To imple
ment the YCbCr transformation, we first normalize image RGB values to 
the range of [0,1] with their own min-max values subjects by subjects 
because of the difference intensity scale for different capturing institu
tions, and then convert the normalized RGB values to the YCbCr color 
space as follows:

𝑋𝑌𝐶𝑏𝐶𝑟 =
⎧⎪⎨⎪⎩
𝑌 = 0.299𝑅+ 0.587𝐺 + 0.114𝐵
𝐶𝑏 = −0.169𝑅− 0.331𝐺 + 0.500𝐵 + 0.5
𝐶𝑟 = 0.500𝑅− 0.419𝐺 − 0.081𝐵 + 0.5

(1)

where R, G, and B represent the intensity values in the three channels 
(i.e., red, green, blue) of RGB images, respectively, while Y, Cb, and 
Cr represent the intensity values in the three channels of YCbCr images. 
The whole pipeline under RGB space for DCT transformation is shown as 
Fig. 1. So that we could get the YCbCr images (i.e., 𝑋𝑌𝐶𝑏𝐶𝑟

𝑝𝑐
∈𝐻×𝑊 ×𝐶 , 

where 𝐻 and 𝑊 denote image size, and 𝐶 denotes the three channels of 
such color space) are generated, and the feature map in every channel 
will be implemented DCT transformation channel by channel.

3.1.2. Gray-scale images pre-processing
MRI and CT images are inherently grayscale, making them unaf

fected by variations in luminance and chromaticity. Consequently, there 
is no need to convert them to the YCbCr color space, and their origi
nal intensity representation remains suitable for analysis. Furthermore, 
since these images are acquired as 3D volumetric data rather than con
ventional RGB images, their intensity values do not necessarily conform 
to a standardized scale, such as the typical [0,255] range used in digital 
imaging. Since these types of datasets are collected by different insti
tutions from different patients, we normalize them one patient by one 
patient with the min-max value of themselves to do subject-wise min
max normalization (SN), mapping them to the same intensity scale in 
the spatial domain. After normalization, we slice all the 3D MRI volumes 
into 2D images (i.e., 𝑋2𝐷

𝑝𝑐
∈𝐻×𝑊 , where 𝐻 and 𝑊 denote image size), 

and we conduct DCT transformation to convert them into the spectrum 
domain for another modality.
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Fig. 2. Diagram of the proposed SIN-Seg framework, including two U-Net encoders for the original image in the spatial space and the DCT coefficient cube embedding 
in the spectrum space, respectively. The coefficient cube is first up-sampled and channel adjusted via the shape-alignment process, to make the input shape aligned 
to the feature in the spatial space. The features from both encoders are synchronized scale-by-scale. The fused features are then fed forward to the U-Net decoder to 
generate the final predicted segmentation masks. A feature alignment is also implemented on the flattened frequency, and spatial latent features are implemented 
with the alignment loss.

3.1.3. DCT transformation in patches
Particularly, the DCT transformation is conducted on the 8 × 8

patches of 2D images, to extract more fine-grained features in the spec
trum domain. The DCT transformation (i.e., 𝑋̃𝑝𝑐 ∈1×8×8) on every 2D
image patch is computed as follows:

𝑋̃𝑝𝑐 (𝑖, 𝑗) =
2 √(

𝑁1, 𝑁2
) 𝑁1−1∑
𝑛1=0 

𝑁2−1∑
𝑛2=0 

𝑋2𝐷 (
𝑛1, 𝑛2

)
⋅

𝑎𝑛1𝑎𝑛2𝑐𝑜𝑠

[
𝑛1

2𝜋
∕ ∗ −

(𝑛1 +
1
2
)
]
𝑐𝑜𝑠

[
𝑛2

2𝜋
𝑁2

(𝑛2 +
1
2
)
]

𝑠. 𝑡. 𝑎𝑛1, 𝑎𝑛2 =

{ 1 √
2
, 𝑘 = 0

1, 𝑘 ≠ 0,

(2)

where 𝑖, 𝑗, 𝑛1, 𝑛2 are in range of [0,7] so that 𝑁1 = 𝑁2 = 8, 𝑎𝑛1, 𝑎𝑛2
are the constant coefficient. To collect the spectrum information along 
2𝐷 images and patches, the 𝑋̃𝑝𝑐 is flattened according to the frequency 
(𝐹 2) from 1 × 8 × 8 to the size of 64 × 1 × 1, while the first number rep
resents the channel and the last two refer to the length and the width, 
and every channel refers to the feature in a different frequency under 
the spectrum space. We first group the spectrum information from all 
image patches and generate the channel-wise DCT coefficient cube as 
𝑋̃𝑐 ∈64×𝐻∕8×𝑊 ∕8. Since the intensity value after DCT transformation 
would be mapped to a high range of scale in different frequency fea
ture representations which is difficult for neural networks to handle and 
learn, we then implement another frequency-wise normalization (FN) 
channel by channel for every DCT coefficient cube and let them in the 
range of [0,1]. Otherwise, the intensity values of the transformed data 
cube may range from zero to several million following the DCT trans
formation. To mitigate the impact of extreme outliers, we apply data 
clipping at the 5th and 95th percentiles before performing min-max nor
malization.

3.2. SIN-Seg with feature alignment

3.2.1. Segmentation framework
As shown in Fig. 2, we utilize U-Net as the backbone of our SIN-Seg 

framework. U-Net [2] is a widely used segmentation backbone that has 
shown convincing and robust performance on a large variety of medical 

image segmentation tasks. Here we adopt all default cofigurations used 
in the official implementations1 with the input of 2D RGB images. Mean
while, an extra encoder (i.e., the encoder of U-Net) is utilized to embed 
the DCT coefficient cube simultaneously. A shape alignment (the SA 
block in Fig. 2, combined with a dimension alignment by the Up block 
and a channel alignment by the CA block), is operated on the DCT coef
ficient cube before it goes through the encoder. In the same output scale 
of the U-Net encoder, the feature maps of the original image and DCT 
coefficient cube are concatenated as a fused feature map.

3.2.2. Feature alignment
We propose a new contrastive alignment module and conduct the 

feature alignment after the last down-sample of the U-Net encoder. Par
ticularly, we first utilize an MLP layer to flatten the feature maps into a 
feature band with a size of 1 × 512. Denote the feature band in the fre
quency domain and spatial domain as 𝐹 and 𝐹 , respectively. An align
ment matrix (AM) can then be constructed as 𝐹𝑎𝑙𝑖𝑔𝑛 = 𝐹⊤𝐹 ∈512×512. 
Inspired by CLIP [16], who proposed a novel Dual-Modality Learning, 
which forces their CLIP model to learn from two modalities: images 
and text. It employs two neural networks, one for processing images 
and another for processing text. The goal is to map these two differ
ent types of data into a shared embedding space where they can be 
directly compared. This function operates by pulling the embeddings 
of matching image-text pairs closer together in the shared space while 
pushing non-matching pairs apart. For instance, an image of a dog and 
its correct textual description ``A dog playing in the park'' are pulled 
closer, whereas mismatches like the same image with the text ``A cat 
sleeping'' are pushed apart. This means it can understand and catego
rize images it has never seen during training, based solely on its learned 
associations between text and images. For a broader explanation, such 
a contrastive training strategy could align the correlated features from 
different spaces to be in a shared new feature space, and those un
correlated features to be pushed away in this new space. In our module, 
we assume that the corresponding features (i.e., 𝐹∶,∶,𝑖 and 𝐹∶,∶,𝑖) are 
more correlated, while the non-corresponding features (i.e., 𝐹∶,∶,𝑖 and 
𝐹∶,∶,𝑗 ) are less correlated. In other words, the diagonal elements in 𝐹𝑎𝑙𝑖𝑔𝑛

1 https://github.com/milesial/Pytorch-UNet.
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should be dominated. So that all the non-corresponding features would 
be regarded as negative samples while those corresponding features 
are positive samples. To this end, a Binary Cross Entropy (BCE) loss 
is proposed to achieve this contrastive alignment process, and the loss 
function is as follows:

𝐿𝐴𝑙𝑖𝑔𝑛(𝑋̃, 𝑋𝑅𝐺𝐵) = 𝐵𝐶𝐸(𝐹𝑎𝑙𝑖𝑔𝑛, 𝐸), (3)

where 𝐸 is a diagonal matrix (DM) with a size of 512 × 512.

Loss function. The loss function for our proposed SIN-Seg framework 
consists of two parts, including the segmentation loss and the proposed 
feature alignment loss. Following previous methods [49,50], we use 
BCE loss and Dice loss together as the segmentation loss. Therefore, the 
whole loss function is formulated as:

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝐶𝐸 +𝐿𝐷𝑖𝑐𝑒 +𝐿𝑎𝑙𝑖𝑔𝑛, (4)

4. Experiments

4.1. Datasets

We use four publically available datasets captured from different 
commonly used medical imaging devices, including the NeurIPS CellSeg 
2022(CellSeg) dataset [20], the CHAOS-CT abdominal organ segmen
tation (CHAOS-CT) dataset [19], the medical segmentation decathlon 
heart (MSD-Heart) dataset [18], and a brain tumor segmentation dataset 
BraTS 2015 [17]in this study.

• CellSeg: The CellSeg dataset consists of 1000 microscope 2D im
age slices (i.e., 900 slices training and 100 slices testing) collected 
from 10 different organizations. It is a specialized dataset designed 
for advancing research in the field of cellular image analysis, aid
ing in understanding cellular structures and functions. It includes 
a wide range of images capturing various types of cells under dif
ferent imaging conditions. All slices were manually labeled with 11 
segmentation regions, such as yeast, adipocyte, brain cell, etc.

• CHAOS-CT: The CHAOS challenge (Combined (CT-MR) Healthy 
Abdominal Organ Segmentation) is a specialized collection of 
medical images designed for the evaluation and development of 
computer-aided diagnosis systems, particularly focusing on liver 
segmentation. We use the CT part of the challenge dataset, a se
ries of abdominal CT scans, providing a comprehensive view of the 
liver and surrounding organs. These scans are sourced from dif
ferent patients, offering a diverse range of liver shapes, sizes, and 
pathologies. It consists of 2875 CT slices from 40 different patients 
collected by the DEU hospital, where the liver regions were manu
ally labeled by expert radiologists.

• MSD-Heart: The MSD-Heart dataset is part of the Medical Seg
mentation Decathlon (MSD), a comprehensive collection of datasets 
aimed at advancing the field of medical image segmentation. Specif
ically, the MSD-Heart dataset focuses on the segmentation of car
diac structures from MRI scans. This dataset includes a series of 
MRI scans that capture detailed images of the heart. These scans 
are sourced from a diverse patient population, encompassing a wide 
range of heart shapes, sizes, and pathologies. Such diversity is cru
cial for developing segmentation algorithms that are robust and 
effective across different patient demographics and clinical condi
tions. It consists of 2272 MRI slices from 30 subjects, where the 
experts manually labeled the left atrium.

• Brain Tumor Segmentation: The BraTS2015 (Brain Tumor Seg
mentation 2015) challenge dataset is a significant resource for brain 
tumor segmentation. It is a dataset for an annual competition that 
focuses on the segmentation of gliomas, a common type of brain 
tumor, from multimodal MRI scans. This dataset includes four dif
ferent MRI modalities: T1, T1-contrast enhanced, T2, and FLAIR 
(Fluid Attenuated Inversion Recovery), providing a comprehensive 

view of the tumor and surrounding brain tissues. We used the T2 
modality for experiments, including 35 3D MRI images. We gen
erate 5000 2D image slices from these 3D MRI images for tumor 
segmentation, where 80% and 20% of image slices are utilized for 
framework training and validation, respectively.

In this study, the effects of subjects’ age, gender, race, or any other vari
ables on the results are not evaluated since the related information is 
not provided by the data provider. Details of the data description and 
preprocessing are shown below.

4.2. Implementation details

We first resize each image to a size of 128 × 128 through bilinear 
interpolation for network training, with training epochs as 300 and 75
epochs for early stop patience. In order to explore the lower bound con
tribution of the introduced spectral information, we refrain from using 
any data augmentation techniques in all of our experiments. We trained 
the module by using the Adam optimizer with a batch size of 20 and 
synchronized batch normalization. The initial learning rate was set to 
1𝑒−3 and decayed by (1− 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑒𝑝𝑜𝑐ℎ

𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ )
0.9 with an 𝑙2 weight decay of 5𝑒−4. 

All experiments were conducted based on PyTorch 1.7.1 and were de
ployed on a workstation with 2× NVIDIA TITAN RTX GPUs which owns 
24 GB memory individually. It is worth mentioning that we didn’t use 
all of the memory in two GPUs, the detailed occupied memory could be 
found in Fig. 5.

4.3. Baselines and evaluation metrics

We compared our proposed SIN-Seg framework with 8 ifluential 
U-Net and Transformer-based segmentation baselines, i.e., U-Net [2], 
UNet + + [23], ResUNet [21], AttUNet [22], UNeXt [24], MedT [28], 
MissFormer [29], FRCU-Net [38], XNet [42]. U-Net is a cutting-edge 
backbone framework for medical image segmentation, and UNet + + , 
ResUNet, AttUNet, and UNeXt are four well-performing segmentation 
frameworks based on the U-Net backbone. TransUNet, MedT, and Miss
Former are three models that take advantage of the ViT module, FRCU
Net and XNet are two prominent models that employ spectrum-based 
techniques to enhance medical image segmentation. We adopt two met
rics to assess the performance of segmentation methods, including the 
Dice similarity coefficient (DSC, see as Eq. (5)), which are overlap-based 
metrics ranging from 0 to 1 and mean intersection over union (IoU, see 
as Eq. (6)), while 𝑋 represents the set of pixels in the first segmenta
tion (e.g., the algorithm’s output), 𝑌 represents the set of pixels in the 
second segmentation (e.g., the ground truth). |𝑋 ∩ 𝑌 | is the cardinality 
of the intersection of sets 𝑋 and 𝑌 (i.e., the number of pixels common 
to both segmentation). |𝑋| + |𝑌 | are the cardinalities of sets 𝑋 and 𝑌 , 
is the cardinality of the union of sets, |𝑋𝑖 ∪ 𝑌𝑖| is the cardinality of the 
union of sets 𝑋𝑖 and 𝑌𝑖 for the 𝑖𝑡ℎ class (i.e., the total number of pix
els in both the predicted and ground truth segmentation for that class), 
respectively (i.e., the total number of pixels in each segmentation).

DSC = 2 × |𝑋 ∩ 𝑌 ||𝑋|+ |𝑌 | , (5)

mIoU = 1 
𝑁

𝑁∑
𝑖=1 

|𝑋𝑖 ∩ 𝑌𝑖||𝑋𝑖 ∪ 𝑌𝑖| , (6)

4.4. Comparative experiments

Table 1 and Table 2 provides the performance of eight baseline meth
ods and our SIN-Seg-based on UNet and Transformer respectively. It 
shows that our method outperforms all baselines substantially in terms 
of both metrics of the dataset. Compared to the results based on U-Net
and TransUNet two foundation models, our proposed fusion framework 
could enhance the baseline models and achieve superior segmentation 
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Table 1
Quantitative results of different methods on CellSef and MSD-Heart datasets. The best results are shown in bolded font 
and the second best results are underlined. The values of DSC and IoU are in percentage terms.
Frameworks CellSeg MSD-Heart 

DSC↑ IoU↑ HD95↓ ASD↓ DSC↑ IoU↑ HD95↓ ASD↓

FRCU-Neta 86.17±0.23 74.33±0.16 2.23±0.26 1.30±0.65 91.09±1.12 85.13±0.16 5.80±0.15 2.93±0.45
XNetb 85.63±0.56 77.48±1.08 3.17±0.35 1.92±0.54 89.10±0.46 84.09±1.04 4.78±0.74 𝟐.𝟎𝟐±𝟎.𝟗𝟐

U-Net 85.56±0.54 71.23±0.39 4.15±1.4 2.08±0.49 90.63±1.14 83.55±0.64 3.76±0.40 2.11±0.66
UNet++ 83.90±1.02 70.07±0.85 4.46±0.54 2.20±0.68 91.55±0.85 85.29±0.94 6.71±0.54 5.36±0.36
ResUNet 84.08±0.71 71.29±0.08 9.80±0.40 4.41±0.52 87.51±0.42 79.30±0.54 7.62±0.13 5.90±0.24
AttUNet 82.50±0.33 𝟕𝟖.𝟐𝟓±𝟏.𝟔𝟗 6.71±0.58 4.34±0.29 88.78±0.44 83.30±0.40 6.31±0.24 2.16±0.64
UNeXt 84.48±0.49 72.08±0.14 3.19±0.33 1.49±0.54 74.71±1.04 73.60±0.87 5.09±0.39 3.72±0.19
UNet+SINSeg 𝟖𝟔.𝟓𝟓±𝟎.𝟔𝟎 73.16±0.69 𝟏.𝟔𝟕±𝟎.𝟓𝟎 𝟏.𝟏𝟓±𝟎.𝟏𝟗 𝟗𝟐.𝟓𝟎±𝟎.𝟗𝟏 𝟖𝟖.𝟔𝟏±𝟏.𝟎𝟒 𝟐.𝟏𝟐±𝟎.𝟔𝟎 2.63±0.34
TransUNet 86.92±1.04 74.89±0.80 5.16±0.29 2.39±0.70 73.86±0.44 69.53±0.20 6.10±0.66 4.23±0.19
MedT 84.91±0.60 76.59±0.34 3.12±0.86 2.02±0.16 𝟖𝟏.𝟓𝟏±𝟏.𝟎𝟔 𝟕𝟔.𝟑𝟐±𝟏.𝟎𝟗 2.38±0.56 2.45±0.33
MissFormer 83.14±1.68 75.08±0.50 3.11±0.90 1.98±0.26 77.52±0.60 75.55±0.20 6.62±0.80 4.36±0.55
TransUNet+SINSeg 𝟖𝟗.𝟐𝟑±𝟏.𝟏𝟐 𝟖𝟏.𝟎𝟖±𝟎.𝟐𝟔 𝟐.𝟎𝟗±𝟎.𝟏𝟐 𝟏.𝟏𝟗±𝟎.𝟐𝟎 78.70±0.58 75.29±0.16 𝟐.𝟏𝟓±𝟎.𝟐𝟎 𝟐.𝟐𝟗±𝟎.𝟑𝟑

a Indicates that we use only the architecture of the method without incorporating any extra pre-trained models to 
ensure fairness.
b Stands for we only use the fully-supervised setting in our comparison.

Fig. 3. Visualization of the segmentation results produced by our frameworks and typical baselines on the CellSeg (row 1), CHAOS-CT (row 2), and MSD-Heart (row 
3) datasets. * For ``Ours SIN-Seg'', it is the predicted results with the UNet as the backbone.

Fig. 4. Visualization of the representative segmentation results produced by our frameworks and typical baselines on the BraTS dataset. The first column represents 
when the lesion is large and the second column illustrates the situation when the tumor is small and discrete distributed. * For ``Ours SIN-Seg'', it is the predicted 
results with the UNet as the backbone.

results, which shows the importance of introducing spectrum informa
tion as a complement to spatial information in deep neural networks for 
segmentation tasks. We also visualized the segmentation results among 

four datasets in Fig. 3 and Fig. 4, our visualization results in two fig
ures are both designed based on UNet. For the first three datasets, the 
visualization results illustrate that the results produced by our SIN-Seg 
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Fig. 5. Illustration of the correlation between the model complexity and the performance. 

Table 2
Quantitative results of different methods on CHAOS-CT and BraTS datasets. The best results are shown in bolded font 
and the second best results are underlined. The values of DSC and IoU are in percentage terms.
Frameworks CHAOS-CT BraTS 

DSC↑ IoU↑ HD95↓ ASD↓ DSC↑ IoU↑ HD95↓ ASD↓

FRCU-Neta 97.21±0.81 93.66±0.72 3.13±0.11 2.71±0.39 69.90±0.46 58.29±0.59 5.63±0.91 4.22±0.52
XNetb 95.92±1.01 𝟗𝟒.𝟏𝟑±𝟎.𝟓𝟕 3.29±0.31 𝟐.𝟏𝟖±𝟎.𝟓𝟎 72.11±0.35 66.30±0.64 7.11±0.11 5.91±0.29
U-Net 97.70±0.65 93.87±0.91 3.69±0.32 2.40±0.40 68.25±0.63 52.22±1.90 7.73±0.47 5.72±0.90
UNet++ 96.30±0.61 93.55±1.01 4.66±0.60 4.10±0.35 98.91±0.62 64.50±0.71 7.61±0.58 6.82±0.26
ResUNet 94.28±0.56 88.26±0.39 5.90±0.11 4.65±0.52 65.32±0.47 60.58±0.40 8.82±0.88 8.03±0.45
AttUNet 95.77±0.82 89.35±1.51 5.12±0.31 4.84±0.66 66.92±0.31 63.82±0.78 8.22±0.63 6.38±0.96
UNeXt 95.02±0.35 91.52±0.31 7.79±0.22 6.18±0.53 65.80±0.37 65.19±1.51 10.52±1.36 10.05±0.81
UNet+SINSeg 𝟗𝟖.𝟏𝟓±𝟎.𝟒𝟗 𝟗𝟓.𝟐𝟎±𝟎.𝟓𝟕 𝟐.𝟔𝟔±𝟎.𝟓𝟓 2.44±0.46 𝟕𝟓.𝟔𝟑±𝟎.𝟑𝟎 𝟕𝟑.𝟏𝟒±𝟎.𝟕𝟏 𝟒.𝟑𝟒±𝟎.𝟓𝟗 𝟑.𝟔𝟐±𝟎.𝟒𝟔

TransUNet 95.10±0.31 91.44±0.62 𝟑.𝟑𝟓±𝟎.𝟏𝟑 𝟑.𝟎𝟔±𝟎.𝟕𝟏 66.28±0.36 65.37±0.45 5.88±0.62 4.90±0.39
MedT 94.90±1.32 90.32±0.41 4.89±0.85 4.62±0.23 69.45±0.39 64.29±0.30 6.80±0.21 6.14±0.63
MissFormer 93.06±0.51 86.54±0.31 5.61±0.29 4.66±0.40 69.16±0.81 61.98±0.47 7.29±0.51 6.65±0.83
TransUNet+SINSeg 𝟗𝟔.𝟑𝟖±𝟎.𝟐𝟕 𝟗𝟑.𝟒𝟏±𝟎.𝟓𝟔 4.26±0.75 3.80±0.47 𝟕𝟎.𝟖𝟓±𝟏.𝟎𝟏 𝟕𝟐.𝟎𝟔±𝟎.𝟓𝟓 𝟓.𝟎𝟓±𝟎.𝟑𝟑 𝟒.𝟏𝟖±𝟎.𝟕𝟐

a Represents that we use only the architecture of the method without incorporating any extra pre-trained models to 
ensure fairness.
b Stands for we only use the fully-supervised setting in our comparison.

framework are more similar to the ground truths than those generated 
by other typical baselines, especially for some of the detailed edges. Ac
cording to Fig. 4, we demonstrated two situations from huge tumors and 
small with discretely distributed tumors. Our proposed SIN-Seg could 
wisely handle two difficult situations in one target subject, which rep
resents our novel framework can learn intrinsic semantic well.

4.5. Ablation study

We conducted an ablation study on four datasets to evaluate the 
necessity and importance of each component in our framework. Ta

ble 3 shows that our SIN-Seg framework improves the DSC and IoU 
substantially compared with U-Net by just using pure spatial or spec
tral information for the dataset, which is due to insufficient information. 
Therefore, both spatial and spectral information play important roles in 
medical image segmentation. However, a naive combination of the in
formation from different spaces is also unreasonable. One simple U-Net 
model cannot handle two types of information space. Alignment of the 
features and mapping them into a shared space for synchronization is 
crucial, otherwise, the performance would even be worse. The compari
son between SINSeg and SINSeg without feature alignment indicates the 
contributions provided by the proposed feature alignment loss.
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Table 3
Ablation studies of our proposed SIN-Seg framework on the other three datasets. The best results are shown in bolded font.
Settings CellSeg CHAOS-CT MSD-Heart BraTS 

DSC IoU DSC IoU DSC IoU DSC IoU 
U-Net+Pure Spatial 85.56±0.54 71.23±0.39 97.70±0.65 93.87±0.91 90.63±1.14 83.55±0.64 68.25±0.63 52.22±1.90
U-Net+Pure Spectrum 71.52±0.89 57.47±1.92 95.26±0.52 92.46±0.37 87.58±0.88 82.76±0.58 65.98±1.31 52.47±0.29
U-Net+Joint wo Alignment 78.87±0.60 60.09±1.39 96.35±0.49 90.06±1.61 89.02±1.31 82.54±0.86 50.81±1.84 47.31±2.15
U-Net+SINSeg 𝟖𝟔.𝟓𝟓±𝟎.𝟔𝟎 𝟕𝟑.𝟏𝟔±𝟎.𝟔𝟗 𝟗𝟖.𝟏𝟓±𝟎.𝟒𝟗 𝟗𝟓.𝟐𝟎±𝟎.𝟓𝟕 𝟗𝟐.𝟓𝟎±𝟎.𝟗𝟏 𝟖𝟖.𝟔𝟏±𝟏.𝟎𝟒 𝟕𝟓.𝟔𝟑±𝟎.𝟑𝟎 𝟕𝟑.𝟏𝟒±𝟎.𝟕𝟏

TransUNet+Pure Spatial 86.92±1.04 74.89±0.80 95.10±0.31 91.44±0.62 73.86±0.44 69.53±0.20 66.28±0.36 65.37±0.45
TransUNet+Pure Spectrum 73.88±1.03 52.31±0.89 89.63±0.67 82.03±0.81 73.09±0.62 61.30±1.42 54.23±1.21 53.27±1.29
TransUNet+Joint wo Alignment 75.04±0.18 65.42±0.59 92.37±1.29 82.19±0.88 73.29±1.24 65.36±1.04 62.39±0.78 59.19±0.55
TransUNet+SINSeg 𝟖𝟗.𝟐𝟑±𝟏.𝟏𝟐 𝟖𝟏.𝟎𝟖±𝟎.𝟐𝟔 𝟗𝟔.𝟑𝟖±𝟎.𝟐𝟕 𝟗𝟑.𝟒𝟏±𝟎.𝟓𝟔 𝟕𝟖.𝟕𝟎±𝟎.𝟓𝟖 𝟕𝟓.𝟐𝟗±𝟎.𝟏𝟔 𝟕𝟎.𝟖𝟓±𝟏.𝟎𝟏 𝟕𝟐.𝟎𝟔±𝟎.𝟓𝟓

Table 4
Extra experiments to concern the potential ovefitting problem 
for proposed SINSeg.
Datasets Train Validation 

DSC IoU DSC IoU 
CellSeg 91.06±0.53 77.18±0.62 𝟖𝟔.𝟓𝟓±𝟎.𝟔𝟎 𝟕𝟑.𝟏𝟔±𝟎.𝟔𝟗
CHAOS-CT 97.42±0.68 96.18±0.38 𝟗𝟖.𝟏𝟓±𝟎.𝟒𝟗 𝟗𝟓.𝟐𝟎±𝟎.𝟓𝟕
MSD-Heart 94.97±0.39 89.02±0.58 𝟗𝟐.𝟓𝟎±𝟎.𝟗𝟏 𝟖𝟖.𝟔𝟏±𝟏.𝟎𝟒
BraTS 81.26±0.57 75.69±0.41 𝟕𝟓.𝟔𝟑±𝟎.𝟑𝟎 𝟕𝟑.𝟏𝟒±𝟎.𝟕𝟏

5. Discussion and limitation

5.1. Discussion

Since our proposed method employs deep convolutional neural net
works (DCNNs), we conducted additional experiments to discuss some 
of the main issues considered with DCNNs. We first explore the poten
tial ovefitting issue by comparing the performance between the training 
step and the validation step. According to the Table 4, even though the 
validation performances are all lower than on the training step, the gap 
is slight which could demonstrate that our proposed SINSeg does not 
have an ovefitting problem. Meanwhile, the proposed module naturally 
introduces more trainable parameters. In order to illustrate the effective
ness, we plot the correlation between model size and the performance 
in Fig. 5. It clearly shows the superiority of our proposed method, when 
employing the SINSeg module in the original UNet model, it could al
ways obtain the best performance in a small size of the occupied GPU 
memory. Even though the TransUNet + SINSeg is the biggest model of 
all, it is not always the best. We conjecture that it is because of the limi
tation of the dataset size, that larger models always need a richer dataset 
to handle the extra trainable parameters.

5.2. Limitation

Due to the reliance on commonly used medical datasets and the high 
cost associated with acquiring larger datasets, assessing the scalability 
of our proposed method remains a challenge. Additionally, our study 
is limited to the medical image segmentation task. Future work could 
explore other critical tasks within the medical domain, such as classfi
cation, regression, and reconstruction, to fully evaluate the applicability 
and effectiveness of our approach.

6. Conclusion

In this paper, we propose a spectrum information-based feature
enhanced (SIN) model that combines spectrum and spatial information 
for different segmentation tasks. Experimental results demonstrate the 
effectiveness and superiority of our proposed model. According to our 
comprehensive analysis, spectral information plays an important role in 
medical image segmentation tasks and should be fully considered. The 
semantic features yielded from the spectrum space should be aligned 

because feature variances, resulting from the inconsistent frequency
related settings of medical imaging modalities, exist on the segmentation 
ROIs. In fact, we introduce more parameters compared to the other 
models, but most of the feature channels in the spectrum space may 
be surplus [35]. In the future, we will plan to use an advanced feature 
selection mechanism for spatial and spectrum feature spaces.
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