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ABSTRACT

In recent years, the application of deep convolutional neural networks (DCNNs) to medical image segmentation
has shown significant promise in computer-aided detection and diagnosis (CAD). Leveraging features from
different spaces (i.e. Euclidean, non-Euclidean, and spectrum spaces) and multi-modalities of data have the
potential to improve the information available to the CAD system, enhancing both effectiveness and efficiency.
However, directly acquiring data from different spaces across multi-modalities is often prohibitively expensive
and time-consuming. Consequently, most current medical image segmentation techniques are confined to the
spatial domain, which is limited to utilizing scanned images from MRI, CT, PET, etc. Here, we introduce an
innovative Joint Spatial-Spectral Information Fusion method which requires no additional data collection for
CAD. We translate existing single-modality data into a new domain to extract features from an alternative space.
Specifically, we apply Discrete Cosine Transformation (DCT) to enter the spectrum domain, thereby accessing
supplementary feature information from an alternate space. Recognizing that information from different spaces
typically necessitates complex alignment modules, we introduce a contrastive loss function for achieving feature
alignment before synchronizing information across different feature spaces. Our empirical results illustrate the
greater effectiveness of our model in harnessing additional information from the spectrum-based space and
affirm its superior performance against influential state-of-the-art segmentation baselines. The code is available

at https://github.com/Auroradsy/SIN-Seg.

1. Introduction

Medical image segmentation is a critical component in the fields of
biomedical science research and clinical diagnosis. Its goal is to delin-
eate regions of interest (ROIs) that possess significant diagnostic and
therapeutic value for treating physicians and radiologists. The advent
of computer-aided detection/diagnosis (CAD) systems has facilitated a
unified platform for analyzing vast amounts of medical-specific imag-
ing data. (i.e. MRI, CT, Microscopy, PET, etc) Within this framework,
deep neural networks (DNNs) based models have showcased their value,
offering precise segmentation outcomes and reducing the time burden
traditionally associated with manual analysis.

Despite the impressive achievements of DNNs [1-6], intrinsic chal-
lenges remain to the methodologies currently in medical image segmen-
tation. Medical images, acquired through various specialized devices,
are designed to accentuate particular features or abnormalities, often
requiring extra interpretative expertise of radiologists to achieve pre-
cise diagnosis. A typical CAD system that operates on images from a
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single type of information, without integrating such expert insight, risks
overlooking critical information. Multi-modal learning in medical image
analysis [7] can harness the strengths of diverse imaging modalities—
such as MRI, CT, and PET to improve diagnostic accuracy over single-
modality data. However, collecting multi-modal data for a single subject
using different imaging devices is time-consuming and expensive in
practical situations. Even though MRI devices can produce images in
multiple modalities by capturing different sequence scans in a single
session, potentially enhancing diagnostic effectiveness [8], such scan-
ning processes require skilled radiologists or technicians and involve
setting up various MRI contrast media. This is not only time-intensive
but also incurs significant costs. Moreover, multiple imaging modalities
require patients to be exposed to radiation from MRI devices. Typical
MRI imaging is diagnosis-oriented, and regular MRI images aim at spe-
cific requirements and are captured under particular sequences.

To address this issue, we propose a novel spectrum space-based
Joint Spatial-Spectral Information Fusion model (SIN). Prior researchers
[9,10] have illustrated the benefits of spectrum domain learning, par-
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ticularly in edge detection—a critical element of segmentation tasks.
These studies have established the validity and significance of spectral
information from the frequency domain in augmenting image contrast
and delineating abnormalities and pathological regions. Spectral in-
formation is particularly pivotal in MRI, CT, and microscopy, such as
frequency sequence-related imaging, where it reveals highly distinctive
features of the same segmentation target under varied spectral-related
settings during data acquisition [11]. Specifically, high-frequency fea-
tures may be overlooked in the spatial domain, whereas these features
are more readily extracted in the spectral domain [10].

Our SIN model innovatively harnesses both spectral and spatial do-
main information, synthesizing features from these two spaces. It com-
prises two primary components: an offline discrete cosine transform
(DCT) module and an online trainable feature alignment module, both
of which are embeddable and compatible with every encoder-decoder-
based segmentation architecture and maintain the end-to-end attributes.
The DCT transformation is color-sensitive and microscopy images are
captured under RGB color space, unlike other medical images which are
in the gray-scale color space. For those three channel-based microscopy
images, we implement a space transformation from the RGB color space
to the YCbCr color space, leveraging the fact that the feature is more sen-
sitive to changes in brightness than color changes, resulting in a more
efficient form of further image processing.

Furthermore, more feature modalities [12] and larger parameter-
based models [13] could enhance the performance of models. However,
aligning features from disparate domains or modalities, each rooted
in different spaces presents a significant challenge, often necessitating
complex modules for integration [14,15]. In this study, our proposed
model does not target solving multimodal feature fusion challenges so
we designed our model with fewer parameters to be used for feature
alignment. To overcome this, we introduced a contrastive learning strat-
egy to align the features inspired by CLIP [16].

In summary, our main contributions to this paper can be shown as
follows:

» We propose a novel dual information extraction framework for fus-
ing the information both from the spectral and the spatial feature
space.

We introduce a low-dimension flattened strategy for the informa-
tion from different feature spaces, combined with a simple con-
trastive loss for feature alignment which does not need extra pa-
rameters.

We verify our proposed model on multiple datasets from differ-
ent medical imaging devices, involving a brain tumor segmenta-
tion dataset [17] and a heart segmentation dataset [18] both from
MRI devices, a liver segmentation dataset [19] captured under CT
devices, and a cell segmentation dataset [20] from different mi-
croscopy imaging methods. We compared our proposed framework
with 8 influential single UNet and Transformer-based baselines to
show the superiority. We also highlight its effectiveness and poten-
tial for advancing medical image analysis under other comprehen-
sive analysis experiments.

2. Related work

In this section, we briefly review the previous works in three different
aspects highly related to our works. First, we introduce the improve-
ment of the backbone model. Then, how spectral information shows its
significance and potential in the computer vision tasks. Finally, some
previous works about how to combine and take advantage of different
feature spaces with alignment strategies are illustrated.

2.1. Foundation models for medical image segmentation

Semantic segmentation is always a crucial task for the computer vi-
sion domain. FCN [1]] is the first research that introduced Convolutional
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Neural Network (CNN) for segmentation. Then, UNet [2] took advan-
tage of the encoder-decoder-like architecture, initially introduced for
biomedical image segmentation, and revolutionized the field of med-
ical image analysis. Its unique design, characterized by a symmetric
downsample and upsample path, combined with a skip connection al-
lows for precise localization and context capture, resulting in highly
effective performance in the medical image domain. Based on such a
powerful foundation model, researchers proposed numerous advanced
segmentation frameworks. Zhang, et al. [21] introduced a hard attention
mechanism to UNet and utilized the superiority of ResNet, proposing
Res-UNet. Then, Att-UNet [22] was designed with a gate module for
soft attention calculation to enhance the performance of the original
UNet. Zhou, et al. [23] and Valanarasu, et al. [24] also proposed novel
models based on UNe. Then, TransUNet [25] introduced a vision trans-
former (ViT) [26,27] after a down-sample which could combine the
spatial semantic and the local semantic in consideration in the hidden
space. Additionally, researchers [28,29] modified the ViT structure and
showed the significance of a new Transformer-based foundation model
in medical image segmentation.

2.2. Spectral information

Conventional computer vision algorithms mainly consider the im-
age analysis in the spatial space, i.e. the RGB or Gray-Scale images
which are easily recognized by human eyes. However, the information in
such space could obscure lots of detailed features. Some research works
[30,31] have found that when processing a visual scene, animals have
more wavebands than humans because of their unique ability to spot
the features in the spectral domain. Therefore, the significant semantic
information is easier to extract in such a feature space, and utilizing
the transformed features in the spectral space is a sufficient method
to compress the images, [32,33,10] and also design lighter networks
[34-36] themselves. It is also natural to take advantage of the spec-
tral information for designing the attention pipelines. Qin, et al. [37]
found that many works have used global average pooling (GAP) as an
unquestionable preprocessing method for designing channel attention
mechanisms. A potential problem is that different channels may have the
same mean value, while their corresponding semantic information may
be completely different, which creates the problem of insufficient atten-
tion information. They proved that GAP is a special case of DCT, which is
equivalent to the lowest frequency component of DCT and is generalized
to the frequency domain, proposing a multi-spectral channel attention
framework. Meanwhile, FRCU-Net [38] also incorporates a Laplacian
transformation-based method to compute attention and enhance feature
calibration, resulting in improved performance compared to the vanilla
UNet [2]. FSDR [39] introduced a novel attention pipeline based on the
spectral space for forcing the network to learn more intrinsic semantic
features and achieve a more generalizable model. Additionally, spectral
space could be highly beneficial on some low-level vision scene tasks
[40,41], implementing the DCT or Wavelet transformation. XNet [42]
effectively integrates high-frequency and low-frequency features using
Wavelet transformation, demonstrating superior performance in medi-
cal image segmentation under both fully and semi-supervised learning
paradigm.

2.3. Feature alignment

Humans perceive the world through different organs, and more in-
formation could train more powerful neural networks. Nevertheless, the
information in the different spaces always obstacles each other before
aligning into the same feature space. For naive feature fuse, e.g. Con-
catenation is always considered, and it is widely used in residual block,
skip-connection, and related fusion situations. Under such an operation,
multiple feature maps are spliced together in the depth dimension to
obtain a richer representation of features. For example, in encoders and
decoders, low-level features and high-level features are spliced, which
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Fig. 1. An overview of the off-line DCT transformation module in the SIN model for RGB space. First, an RGB image is converted to the YCbCr domain. Then the
YCbCr image is divided into small image patches with a channel-wise normalization (CN). Next, a DCT transformation is implemented on image patches. Finally, the
coefficient cube for the whole image is generated from frequency-based flattened (F2) and frequency-wise normalization (FN) operations.

improves the decoder’s perceptual ability. However, concatenation-like
fusion methods are not trainable, which pressures other learnable blocks
to handle the feature fusion. Multimodal learning fields often meet
such problems [43,44]. Autonomous driving [45] is a typical computer
vision task that requires multi-modal features. In the ordinary road
environment with traffic lights, traffic cones, etc., relying on informa-
tion from a single modality is insufficient while fusing features from
RGB, LiDAR, Text, et al. Tan, et al.. [46,14] attempted to introduce
multimodal-learning in the medical image segmentation task by using
different medical imaging devices on an organ and utilizing the infor-
mation from different modalities. Unfortunately, the complex modules
used to handle the feature fusion challenges consumed too much compu-
tational memory. Contrastive learning [47,48] is a simple and efficient
method to align and merge data or feature maps from different feature
spaces. Inspired by multimodal contrastive learning, we introduce a sim-
ple contrastive learning strategy to achieve feature alignment without
extra parameters.

3. Methodology

In this section, we present our proposed SIN model which introduces
the spectral information and integrates it with spatial information for
segmentation tasks. We first propose a novel off-line DCT transforma-
tion module in Fig. 1 to convert the image from the spatial space to the
spectrum space. We then introduce a trainable alignment module with
a simple contrastive loss function to align the features yielded from the
spectral space and the spatial space as well. Finally, we illustrate the
whole segmentation framework (named SIN-Seg) in Fig. 2 with our pro-
posed SIN model and the loss functions for brain tumor segmentation
tasks.

3.1. Off-line DCT transformation

3.1.1. RGB images pre-processing

Microscopy Imaging always generates into the RGB space, which is
not suitable for conducting DCT transformation directly on RGB im-
ages (denoted as X RGB), Instead, we first transform them to the YChCr
space as YCbCr images (denoted as XY C%Cr). This conversion is crucial
for two main reasons: Human Visual Sensitivity: YCbCr separates an
image into luminance (Y) and chrominance (Cb and Cr). Since human
vision is more sensitive to luminance than chrominance, this separation
allows for more effective compression. The luminance channel can be
preserved with higher fidelity, while the chrominance channels can be
compressed more, reducing file size without noticeably impacting im-
age quality. Compression Efficiency: The DCT is more effective in the

746

YCbCr space for compression purposes. It allows for significant data re-
duction in the chrominance components, which is less perceptible to
the human eye while maintaining the crucial details in the luminance
component. After such pre-processing, the color information of lumi-
nance and chrominance is separated into three channels including Y
(i.e., luma or brightness), Cb (i.e., blue-difference chroma), Cr (i.e., red-
difference chroma). The YCbCr transformation leverages the fact that
the human visual system is more sensitive to changes in brightness than
color changes, resulting in more efficient image processing. To imple-
ment the YCbCr transformation, we first normalize image RGB values to
the range of [0, 1] with their own min-max values subjects by subjects
because of the difference intensity scale for different capturing institu-
tions, and then convert the normalized RGB values to the YCbCr color
space as follows:

Y =0.299R+0.587G +0.114B
Cb =-0.169R—-0.331G +0.500B + 0.5
Cr =0.500R—-0.419G - 0.081B +0.5

XYCbCr — 1

where R, G, and B represent the intensity values in the three channels
(i.e., red, green, blue) of RGB images, respectively, while Y, Cb, and
Cr represent the intensity values in the three channels of YCbCr images.
The whole pipeline under RGB space for DCT transformation is shown as
Fig. 1. So that we could get the YCbCr images (i.e., X ;/CC”C’ € RIXWXC
where H and W denote image size, and C denotes the three channels of
such color space) are generated, and the feature map in every channel
will be implemented DCT transformation channel by channel.

3.1.2. Gray-scale images pre-processing

MRI and CT images are inherently grayscale, making them unaf-
fected by variations in luminance and chromaticity. Consequently, there
is no need to convert them to the YCbCr color space, and their origi-
nal intensity representation remains suitable for analysis. Furthermore,
since these images are acquired as 3D volumetric data rather than con-
ventional RGB images, their intensity values do not necessarily conform
to a standardized scale, such as the typical [0,255] range used in digital
imaging. Since these types of datasets are collected by different insti-
tutions from different patients, we normalize them one patient by one
patient with the min-max value of themselves to do subject-wise min-
max normalization (SN), mapping them to the same intensity scale in
the spatial domain. After normalization, we slice all the 3D MRI volumes
into 2D images (i.e., X[%CD € RTXW ‘where H and W denote image size),
and we conduct DCT transformation to convert them into the spectrum
domain for another modality.
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Fig. 2. Diagram of the proposed SIN-Seg framework, including two U-Net encoders for the original image in the spatial space and the DCT coefficient cube embedding
in the spectrum space, respectively. The coefficient cube is first up-sampled and channel adjusted via the shape-alignment process, to make the input shape aligned
to the feature in the spatial space. The features from both encoders are synchronized scale-by-scale. The fused features are then fed forward to the U-Net decoder to
generate the final predicted segmentation masks. A feature alignment is also implemented on the flattened frequency, and spatial latent features are implemented

with the alignment loss.

3.1.3. DCT transformation in patches

Particularly, the DCT transformation is conducted on the 8 X 8
patches of 2D images, to extract more fine-grained features in the spec-
trum domain. The DCT transformation (i.e., X pe € R1x8x8) on every 2D
image patch is computed as follows:

Ni—1Np—1
Xpe iy )= ——= z Z XP (ny, my) -

2
A /(Nl, Nz) n=0 ny=0

a,1a,,c08 |n /i—”_(n] + %)] cos [nz ]2\7_7;("2 + %)] 2
1
L k=
5.t @y, Q=14 V2 0
1, k#0,

where i, j,n,n, are in range of [0,7] so that N; = N, =8, a,;, a,»
are the constant coefficient. To collect the spectrum information along
2D images and patches, the X sc 1s flattened according to the frequency
(F?) from 1 x 8 x 8 to the size of 64 x 1 x 1, while the first number rep-
resents the channel and the last two refer to the length and the width,
and every channel refers to the feature in a different frequency under
the spectrum space. We first group the spectrum information from all
image patches and generate the channel-wise DCT coefficient cube as
X, € ROH/SW 8 gince the intensity value after DCT transformation
would be mapped to a high range of scale in different frequency fea-
ture representations which is difficult for neural networks to handle and
learn, we then implement another frequency-wise normalization (FN)
channel by channel for every DCT coefficient cube and let them in the
range of [0, 1]. Otherwise, the intensity values of the transformed data
cube may range from zero to several million following the DCT trans-
formation. To mitigate the impact of extreme outliers, we apply data
clipping at the 5th and 95th percentiles before performing min-max nor-
malization.

3.2. SIN-Seg with feature alignment
3.2.1. Segmentation framework
As shown in Fig. 2, we utilize U-Net as the backbone of our SIN-Seg

framework. U-Net [2] is a widely used segmentation backbone that has
shown convincing and robust performance on a large variety of medical
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image segmentation tasks. Here we adopt all default configurations used
in the official implementations' with the input of 2D RGB images. Mean-
while, an extra encoder (i.e., the encoder of U-Net) is utilized to embed
the DCT coefficient cube simultaneously. A shape alignment (the SA
block in Fig. 2, combined with a dimension alignment by the Up block
and a channel alignment by the CA block), is operated on the DCT coef-
ficient cube before it goes through the encoder. In the same output scale
of the U-Net encoder, the feature maps of the original image and DCT
coefficient cube are concatenated as a fused feature map.

3.2.2. Feature alignment

We propose a new contrastive alignment module and conduct the
feature alignment after the last down-sample of the U-Net encoder. Par-
ticularly, we first utilize an MLP layer to flatten the feature maps into a
feature band with a size of 1 X 512. Denote the feature band in the fre-
quency domain and spatial domain as F and F, respectively. An align-
ment matrix (AM) can then be constructed as F;,, = F TF e R312512,
Inspired by CLIP [16], who proposed a novel Dual-Modality Learning,
which forces their CLIP model to learn from two modalities: images
and text. It employs two neural networks, one for processing images
and another for processing text. The goal is to map these two differ-
ent types of data into a shared embedding space where they can be
directly compared. This function operates by pulling the embeddings
of matching image-text pairs closer together in the shared space while
pushing non-matching pairs apart. For instance, an image of a dog and
its correct textual description “A dog playing in the park” are pulled
closer, whereas mismatches like the same image with the text “A cat
sleeping” are pushed apart. This means it can understand and catego-
rize images it has never seen during training, based solely on its learned
associations between text and images. For a broader explanation, such
a contrastive training strategy could align the correlated features from
different spaces to be in a shared new feature space, and those un-
correlated features to be pushed away in this new space. In our module,
we assume that the corresponding features (i.e., F ..; and F..;) are
more correlated, while the non-corresponding features (i.e., F ... and

F. . ;) areless correlated. In other words, the diagonal elements in F;,,

! https://github.com/milesial/Pytorch-UNet.
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should be dominated. So that all the non-corresponding features would
be regarded as negative samples while those corresponding features
are positive samples. To this end, a Binary Cross Entropy (BCE) loss
is proposed to achieve this contrastive alignment process, and the loss
function is as follows:

Lpjign(X, X®9B) = BCE(F ;. E). 3)

lign»

where E is a diagonal matrix (DM) with a size of 512 X 512.

Loss function. The loss function for our proposed SIN-Seg framework
consists of two parts, including the segmentation loss and the proposed
feature alignment loss. Following previous methods [49,50], we use
BCE loss and Dice loss together as the segmentation loss. Therefore, the
whole loss function is formulated as:

Llotal = LCE + LDice + Lalign’ (4)
4. Experiments
4.1. Datasets

We use four publically available datasets captured from different
commonly used medical imaging devices, including the NeurIPS CellSeg
2022(CellSeg) dataset [20], the CHAOS-CT abdominal organ segmen-
tation (CHAOS-CT) dataset [19], the medical segmentation decathlon
heart (MSD-Heart) dataset [18], and a brain tumor segmentation dataset
BraTS 2015 [17]in this study.

+ CellSeg: The CellSeg dataset consists of 1000 microscope 2D im-
age slices (i.e., 900 slices training and 100 slices testing) collected
from 10 different organizations. It is a specialized dataset designed
for advancing research in the field of cellular image analysis, aid-
ing in understanding cellular structures and functions. It includes
a wide range of images capturing various types of cells under dif-
ferent imaging conditions. All slices were manually labeled with 11
segmentation regions, such as yeast, adipocyte, brain cell, etc.
CHAOS-CT: The CHAOS challenge (Combined (CT-MR) Healthy
Abdominal Organ Segmentation) is a specialized collection of
medical images designed for the evaluation and development of
computer-aided diagnosis systems, particularly focusing on liver
segmentation. We use the CT part of the challenge dataset, a se-
ries of abdominal CT scans, providing a comprehensive view of the
liver and surrounding organs. These scans are sourced from dif-
ferent patients, offering a diverse range of liver shapes, sizes, and
pathologies. It consists of 2875 CT slices from 40 different patients
collected by the DEU hospital, where the liver regions were manu-
ally labeled by expert radiologists.

MSD-Heart: The MSD-Heart dataset is part of the Medical Seg-
mentation Decathlon (MSD), a comprehensive collection of datasets
aimed at advancing the field of medical image segmentation. Specif-
ically, the MSD-Heart dataset focuses on the segmentation of car-
diac structures from MRI scans. This dataset includes a series of
MRI scans that capture detailed images of the heart. These scans
are sourced from a diverse patient population, encompassing a wide
range of heart shapes, sizes, and pathologies. Such diversity is cru-
cial for developing segmentation algorithms that are robust and
effective across different patient demographics and clinical condi-
tions. It consists of 2272 MRI slices from 30 subjects, where the
experts manually labeled the left atrium.

Brain Tumor Segmentation: The BraTS2015 (Brain Tumor Seg-
mentation 2015) challenge dataset is a significant resource for brain
tumor segmentation. It is a dataset for an annual competition that
focuses on the segmentation of gliomas, a common type of brain
tumor, from multimodal MRI scans. This dataset includes four dif-
ferent MRI modalities: T1, T1-contrast enhanced, T2, and FLAIR
(Fluid Attenuated Inversion Recovery), providing a comprehensive
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view of the tumor and surrounding brain tissues. We used the T2
modality for experiments, including 35 3D MRI images. We gen-
erate 5000 2D image slices from these 3D MRI images for tumor
segmentation, where 80% and 20% of image slices are utilized for
framework training and validation, respectively.

In this study, the effects of subjects’ age, gender, race, or any other vari-
ables on the results are not evaluated since the related information is
not provided by the data provider. Details of the data description and
preprocessing are shown below.

4.2. Implementation details

We first resize each image to a size of 128 x 128 through bilinear
interpolation for network training, with training epochs as 300 and 75
epochs for early stop patience. In order to explore the lower bound con-
tribution of the introduced spectral information, we refrain from using
any data augmentation techniques in all of our experiments. We trained
the module by using the Adam optimizer with a batch size of 20 and
synchronized batch normalization. The initial learning rate was set to
le~3 and decayed by (1 — %)09 with an [, weight decay of Se™.
All experiments were conducted based on PyTorch 1.7.1 and were de-
ployed on a workstation with 2x NVIDIA TITAN RTX GPUs which owns
24 GB memory individually. It is worth mentioning that we didn’t use
all of the memory in two GPUs, the detailed occupied memory could be
found in Fig. 5.

4.3. Baselines and evaluation metrics

We compared our proposed SIN-Seg framework with 8 influential
U-Net and Transformer-based segmentation baselines, i.e., U-Net [2],
UNet++ [23], ResUNet [21], AttUNet [22], UNeXt [24], MedT [28],
MissFormer [29], FRCU-Net [38], XNet [42]. U-Net is a cutting-edge
backbone framework for medical image segmentation, and UNet++,
ResUNet, AttUNet, and UNeXt are four well-performing segmentation
frameworks based on the U-Net backbone. TransUNet, MedT, and Miss-
Former are three models that take advantage of the ViT module, FRCU-
Net and XNet are two prominent models that employ spectrum-based
techniques to enhance medical image segmentation. We adopt two met-
rics to assess the performance of segmentation methods, including the
Dice similarity coefficient (DSC, see as Eq. (5)), which are overlap-based
metrics ranging from 0 to 1 and mean intersection over union (loU, see
as Eq. (6)), while X represents the set of pixels in the first segmenta-
tion (e.g., the algorithm’s output), Y represents the set of pixels in the
second segmentation (e.g., the ground truth). | X NnY| is the cardinality
of the intersection of sets X and Y (i.e., the number of pixels common
to both segmentation). | X| + |Y| are the cardinalities of sets X and Y,
is the cardinality of the union of sets, | X; UY;| is the cardinality of the
union of sets X; and Y; for the i i class (i.e., the total number of pix-
els in both the predicted and ground truth segmentation for that class),
respectively (i.e., the total number of pixels in each segmentation).

_2x|XnY|

DSC = s 5)
X+ 1]
N
1 |X;nY]
mloU = — _ 6
N 21X 07 ©

i=1
4.4. Comparative experiments

Table 1 and Table 2 provides the performance of eight baseline meth-
ods and our SIN-Seg-based on UNet and Transformer respectively. It
shows that our method outperforms all baselines substantially in terms
of both metrics of the dataset. Compared to the results based on U-Net
and TransUNet two foundation models, our proposed fusion framework
could enhance the baseline models and achieve superior segmentation
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Table 1
Quantitative results of different methods on CellSef and MSD-Heart datasets. The best results are shown in bolded font
and the second best results are underlined. The values of DSC and IoU are in percentage terms.

Frameworks CellSeg MSD-Heart
DSCt IoUT HD95] ASD| DSC? IoUt HD95] ASD|

FRCU-Net” 86.17,023 74.33,0.16 223,626 1.30,065 91.09,, 1, 85.13,0.16 5.80,0,5 2.93 045
XNet” 85.63 .56 77.48,. 08 3.17 435 1.92,454 89.10, 46 84.09, 04 4.78 074 2,029,
U-Net 85.56. 954 71.23,039 415,14 2.08, 449 90.63, 14 83.55064 376,040 2.11 4966
UNet++ 83.90, 0, 70.07 085 4.46, 5, 220,068 91.55,485 85.29, 004 6.71 454 5.36,036
ResUNet 84.08,7, 71.29,0.08 9.80,0.40 4415 87.51,040 79.30,0.54 7.62,4013 5.90,0.24
AttUNet 82.50,33 78.25, 160 6.71 053 4.34 059 88.78, 044 83.30,0.40 6.31,024 2.16,4.64
UNeXt 84.48 .49 72.08,0.14 319,033 1.49, 054 7471, 04 73.60,087 5.09,030 3.72,4019
UNet+SINSeg 86.55.0.60 73.16,060 1.67,.4.50 115,959 925009, 88.61,10s 212,96 263034
TransUNet 86.92, 04 74.89,080 5.16,09 2.39,070 73.86,0.44 69.53,0.20 6.10,.66 4.23 010
MedT 84.91 060 76.59,034 312,456 2.02,4.16 81.51,505 76.32,599 2.38.056 245,033
MissFormer 83.14, ) 68 75.084950 3.1 4000 198,026 77524060 75.5510.20 6.62,050 4.36455

TransUNet+SINSeg  89.23,,1,  81.08,05 209,15, 119,05 7870055 752901 215502 229,033

2 Indicates that we use only the architecture of the method without incorporating any extra pre-trained models to
ensure fairness.
b Stands for we only use the fully-supervised setting in our comparison.

Image GT UNet UNeXt UNet++ TransUNet MedT  Ours SIN-Seg

Fig. 3. Visualization of the segmentation results produced by our frameworks and typical baselines on the CellSeg (row 1), CHAOS-CT (row 2), and MSD-Heart (row
3) datasets. * For “Ours SIN-Seg”, it is the predicted results with the UNet as the backbone.

Image GT Ours SIN-Seg UNet UNet++ MedT TransUNet

Fig. 4. Visualization of the representative segmentation results produced by our frameworks and typical baselines on the BraTS dataset. The first column represents
when the lesion is large and the second column illustrates the situation when the tumor is small and discrete distributed. * For “Ours SIN-Seg”, it is the predicted
results with the UNet as the backbone.

results, which shows the importance of introducing spectrum informa- four datasets in Fig. 3 and Fig. 4, our visualization results in two fig-
tion as a complement to spatial information in deep neural networks for ures are both designed based on UNet. For the first three datasets, the
segmentation tasks. We also visualized the segmentation results among visualization results illustrate that the results produced by our SIN-Seg
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Fig. 5. Illustration of the correlation between the model complexity and the performance.

Table 2

Quantitative results of different methods on CHAOS-CT and BraTS datasets. The best results are shown in bolded font
and the second best results are underlined. The values of DSC and IoU are in percentage terms.

Frameworks CHAOS-CT BraTS
DSCt IoUT HD95| ASD|] DSC?t IoUT HD95| ASD]

FRCU-Net" 972105 9366407 313,01 27,03 6990,04 582905 563,00 422,05
XNet” 95.92,100  94M3,5 3290y 218405  T20lgss 663006  Tllin 591,02
U-Net 9770.06s  9387.001 36903 240,05 682500 22210  TTos  572.0m
UNet++ 9630,00, 9355, 466,06 410,055 989100  64.50.07 76l 68202
ResUNet 942805  88.26,05 590,01 465,05 653204  6058,0.0 882,08  8.03,0ss
AttUNet 957705  8935,15 512,03 484, 6692, 638207 822,04 638,00
UNext 95.00,05 915208 77901 618,08 65800y,  65.09,5 10523 1005,
UNet+SINSeg 98.15,0,  95.20,05 266, 2440,  T5.63,0m  T3ldyen 434,05 362,04
TransUNet 95.10,0,  Ilddig 335,01 306,05 6628,03  653T.s  588.0 490,
MedT 94.90,13 90324041  489.055 40624005 694503 642903 6804 6.14,63
MissFormer 9306051  86.54,05 561,02 466,01 6916,  6198,0, 729,05 665,04
TransUNet+SINSeg ~ 9638,0; 934105 426,055 380,04 70850 720605 505,05 418,05

2 Represents that we use only the architecture of the method without incorporating any extra pre-trained models to

ensure fairness.

b Stands for we only use the fully-supervised setting in our comparison.

framework are more similar to the ground truths than those generated
by other typical baselines, especially for some of the detailed edges. Ac-
cording to Fig. 4, we demonstrated two situations from huge tumors and
small with discretely distributed tumors. Our proposed SIN-Seg could
wisely handle two difficult situations in one target subject, which rep-
resents our novel framework can learn intrinsic semantic well.

4.5. Ablation study

We conducted an ablation study on four datasets to evaluate the
necessity and importance of each component in our framework. Ta-

750

ble 3 shows that our SIN-Seg framework improves the DSC and IoU
substantially compared with U-Net by just using pure spatial or spec-
tral information for the dataset, which is due to insufficient information.
Therefore, both spatial and spectral information play important roles in
medical image segmentation. However, a naive combination of the in-
formation from different spaces is also unreasonable. One simple U-Net
model cannot handle two types of information space. Alignment of the
features and mapping them into a shared space for synchronization is
crucial, otherwise, the performance would even be worse. The compari-
son between SINSeg and SINSeg without feature alignment indicates the
contributions provided by the proposed feature alignment loss.
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Table 3
Ablation studies of our proposed SIN-Seg framework on the other three datasets. The best results are shown in bolded font.
Settings CellSeg CHAOS-CT MSD-Heart BraTS
DSC IoU DSC IoU DSC IoU DSC IoU
U-Net+Pure Spatial 85564054 7123403 97704065  93.87.001  90.63.514  8355.06 6825, 5222,
U-Net+Pure Spectrum 752,080 5747,  9526,05,  9246,93  8758,05  82.76,0ss  6598,,3 52470
U-Net+Joint wo Alignment 78.87.060  60.09,3  9635,4 9006,  89.02,,5 82545 5081, 47315
U-Net+SINSeg 86.55,000 316,00 98.15.4 9520, 9250,  88.61,4  75.63.03 731407
TransUNet+Pure Spatial 86.92, 100 748905  9510,05 9144 738604  69.53,05  66.28,03  65.37.04s
TransUNet+Pure Spectrum 73.88, 103 52314950 89.63 047 82.03 5 73.09,0 62 61.30, 4, 542315 53.27 1129
TransUNet+Joint wo Alignment  75.04,,s  6542,050  92.37.15  82.19.05  73.29,15  6536,.0; 6239975  59.19,0ss
TransUNet+SINSeg 8923, 1, 81085 96380, 93415 78705  7529.05 70854 7206,
Table 4 because feature variances, resulting from the inconsistent frequency-
Extra experiments to concern the potential overfitting problem related settings of medical imaging modalities, exist on the segmentation
for proposed SINSeg. ROIs. In fact, we introduce more parameters compared to the other
Datasets Train Validation models, but most of the feature channels in the spectrum space may
DSC ToU DSC ToU be suljplus [35]. I.n the future., we will plan to use an advanced feature
selection mechanism for spatial and spectrum feature spaces.
CellSeg 91.06,055 778,06  86.55,06  73.16,96
CHAOS-CT 974256  96.18.035  98.15,049 952005 . ) L.
MSD-Heart ~ 94.97,93  89.02,955  92.50,99;  88.61 4 CRediT authorship contribution statement
BraT$ 81.26,057 7569041 756303 730447

5. Discussion and limitation
5.1. Discussion

Since our proposed method employs deep convolutional neural net-
works (DCNNs), we conducted additional experiments to discuss some
of the main issues considered with DCNNs. We first explore the poten-
tial overfitting issue by comparing the performance between the training
step and the validation step. According to the Table 4, even though the
validation performances are all lower than on the training step, the gap
is slight which could demonstrate that our proposed SINSeg does not
have an overfitting problem. Meanwhile, the proposed module naturally
introduces more trainable parameters. In order to illustrate the effective-
ness, we plot the correlation between model size and the performance
in Fig. 5. It clearly shows the superiority of our proposed method, when
employing the SINSeg module in the original UNet model, it could al-
ways obtain the best performance in a small size of the occupied GPU
memory. Even though the TransUNet+SINSeg is the biggest model of
all, it is not always the best. We conjecture that it is because of the limi-
tation of the dataset size, that larger models always need a richer dataset
to handle the extra trainable parameters.

5.2. Limitation

Due to the reliance on commonly used medical datasets and the high
cost associated with acquiring larger datasets, assessing the scalability
of our proposed method remains a challenge. Additionally, our study
is limited to the medical image segmentation task. Future work could
explore other critical tasks within the medical domain, such as classifi-
cation, regression, and reconstruction, to fully evaluate the applicability
and effectiveness of our approach.

6. Conclusion

In this paper, we propose a spectrum information-based feature-
enhanced (SIN) model that combines spectrum and spatial information
for different segmentation tasks. Experimental results demonstrate the
effectiveness and superiority of our proposed model. According to our
comprehensive analysis, spectral information plays an important role in
medical image segmentation tasks and should be fully considered. The
semantic features yielded from the spectrum space should be aligned
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