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Abstract

Most existing classification methods aim to minimize the overall misclassification
error rate. However, in applications such as loan default prediction, different types
of errors can have varying consequences. To address this asymmetry issue, two pop-
ular paradigms have been developed: the Neyman-Pearson (NP) paradigm and the
cost-sensitive (CS) paradigm. Previous studies on the NP paradigm have primarily
focused on the binary case, while the multi-class NP problem poses a greater challenge
due to its unknown feasibility. In this work, we tackle the multi-class NP problem
by establishing a connection with the CS problem via strong duality and propose two
algorithms. We extend the concept of NP oracle inequalities, crucial in binary clas-
sifications, to NP oracle properties in the multi-class context. Our algorithms satisfy
these NP oracle properties under certain conditions. Furthermore, we develop practi-
cal algorithms to assess the feasibility and strong duality in multi-class NP problems,
which can offer practitioners the landscape of a multi-class NP problem with various
target error levels. Simulations and real data studies validate the effectiveness of our
algorithms. To our knowledge, this is the first study to address the multi-class NP
problem with theoretical guarantees. The proposed algorithms have been implemented
in the R package npcs, which is available on CRAN.

Keywords: multi-class classification, Neyman-Pearson paradigm, cost-sensitive learning, du-
ality, feasibility, confusion matriz.



1 Introduction

1.1 Asymmetric classification errors and an example in loan de-
fault prediction

Classification is one of the central tasks in machine learning, in which we train a classifier
on training data to accurately predict the labels of unseen test data based on predictors.
In practice, we rarely achieve a perfect classifier that can correctly classify all the unknown
data. There are different types of errors that a classifier can make. In binary classification
with classes 1 and 2, denote the predictor vector X € X C RP and the label Y € {1,2}.
For any classifier ¢ : X — {1,2}, we usually define type-I error Ry = Pxy—1(¢(X) #
1) and type-II error Ry = Pxy—2(¢(X) # 2), where Px|y—; represents the probability
measure induced by the conditional distribution of X given Y =k, k =1 or 2. The overall
misclassification error can be viewed as a weighted sum of type-I and type-II errors.

In many classification approaches, classifiers are designed to minimize the overall mis-
classification error. However, in many scenarios, different types of errors can have varying
degrees of consequences, rendering the overall misclassification error minimization inappro-
priate. One such example is loan default prediction, where a default borrower is denoted as
class 1 and a borrower who pays the full amount on time as class 2. In this context, making
a type-I error, i.e., misclassifying a default borrower as a non-default borrower and lending
money to them, is typically more serious than making a type-II error, i.e., misclassifying a
non-default borrower person as a default one and refusing to lend money to them. In such
cases, the criterion of overall misclassification error minimization may need to be revised.
Consequently, researchers developed two paradigms — the Neyman-Pearson paradigm and
the cost-sensitive learning paradigm — to address this error asymmetry. In the following two

subsections, we introduce these paradigms separately.



1.2 Neyman-Pearson paradigm

The Neyman-Pearson (NP) paradigm changes the classical classification framework by pri-
oritizing different types of errors differently. In binary classification, the NP paradigm seeks

the classifier ¢ that solves the following optimization problem

min - Byy-a(6(X) #2)

st Pxpy=1(o(X) # 1) < ay, (1)

with a given target error level oy € [0, 1].

There have been many studies on the binary NP paradigm, and researchers have devel-
oped many useful tools to solve problem (1). Cannon et al. (2002) initiated the theoretical
analysis of NP classification. Scott and Nowak (2005) proved theoretical properties of the
empirical error minimization (ERM) approach, including the so-called NP oracle inequal-
ities. Scott (2007) combined two types of errors to measure the performance under the
NP paradigm. Rigollet and Tong (2011) transformed the original problem into a convex
problem through some convex surrogates. They solved the new problem and proved that
the optimal classifier could successfully control the type-I error with high probability. Tong
(2013) tackled this problem by combining the Neyman-Pearson lemma with the kernel den-
sity estimation and developed the so-called plug-in method, which enjoys the NP oracle
inequalities. Zhao et al. (2016) extended the NP framework into the high-dimensional case
via naive Bayes classifier, where the number of predictors can grow with the sample size.
More recently, Tong et al. (2018) proposed an umbrella NP algorithm that can adapt to
any scoring-type classifier, including linear discriminant analysis (LDA), support vector
machines (SVM), and random forests. Using order statistics and some thresholding strat-

egy, the umbrella algorithm can provide high probability control for all classifiers under



some sample size requirements. Tong et al. (2020) further studied both parametric and
non-parametric ways to adjust the classification threshold for an LDA classifier, which were
proved to solve (1) with NP oracle inequalities. More recently, Wang et al. (2021) intro-
duced an LDA-based NP classifier that does not depend on sample splitting. Scott (2019)
proposed a generalized Neyman-Pearson criterion and argued that a broader class of trans-
fer learning problems could be solved under this criterion. Li et al. (2020) first connected
binary NP problems with CS problems and proposed a way to construct a CS classifier
with type-I error control. Xia et al. (2021) applied the NP umbrella method proposed by
Tong et al. (2018) into a social media text classification problem. Li et al. (2021) proposed
a model-free feature ranking method based on the NP framework. The works we list may
be incomplete. We refer interested readers to the survey paper by Tong et al. (2016) and
another recent paper discussing the relationship between hypothesis testing and NP binary
classification by Li and Tong (2020).

However, all the works mentioned above primarily focus on the binary NP paradigm.
In many real-world scenarios, for example, the loan default prediction problem, there may
be more than two possible outcomes, such as default, fully paid, and late payment but not
default. Controlling errors under certain target levels in the multi-class scenario is a less
explored yet more practically relevant problem. In this paper, we consider such a multi-
class classification problem and propose algorithms to solve it under the NP paradigm.
Suppose there are K classes (K > 2), and we denote them as classes 1 to K. The training
sample {(x;,y;)}, are i.i.d. copies of (X,Y) C X ® {1,..., K}, where X C RP. Denote
i = P(Y = k) and we assume 7} € (0,1) for all k’s. Also denote w* = (7},...,7%)T. To
formulate a multi-class NP problem, we need to extend the two types of errors in binary

classification to the multi-class case. We now introduce two possible formulations.

e Mossman (1999) and Dreiseitl et al. (2000) extended binary receiver operating char-



acteristic (ROC) to multi-class ROC by considering Px|y—x(¢(X) # k|Y = k) as the
k-th error rate of classifier ¢ for any k € {1,..., K'}. Then the NP problem can be

constructed to minimize a weighted sum of {Px|y—x(¢(X) # k)}, while controlling

Px|y:k(¢(X) 7é k) for ke A Q {]., .. ,K}

e Another way is to consider the confusion matrix I' = [I';x] k x -, where I'yy, = Py jy—i(0(X) =

r) for r # k (Edwards et al., 2004). Then we can formulate the NP problem as
minimizing a weighted sum of {Pxy—¢(¢(X) = r)}X,_, while controlling T, for

(r,k) € AC [K]® [K].

To begin, we focus on the first formulation, which aims to minimize a weighted sum of
{Pxjy=k(¢(X) # k)}j—, and controls Pxy_,(¢(X) # k) for k € A, where A C {1,...,K}.
The more general confusion matrix control problem is more complicated and will be dis-
cussed in Section S.2 of the supplementary materials due to space constraints. We formally

present the Neyman-Pearson multi-class classification (NPMC) problem as

mdin J(¢) = ZwkIP’X|Y:k(¢(X) # k)

st Pxyn(@(X) £ k) <o, keA 2)

where ¢ : X — {1,..., K} is a (measurable) classifier, a; € [0,1], wg > 0, S0 wp =11,
and A C {1,..., K'}. The linear combination format of the objective function J(¢) is chosen
for ease of interpretation. Here, wy represents the “cost” of misclassifying an observation
from class k. If we set wy, = 7} for all k, then J(¢) equals the overall misclassification error
rate P(¢(X) # Y). Furthermore, our analysis and proposed algorithms can be extended
to the case of J(¢) = maxpg Pxjy—r(¢(X) # k), which represents the worst performance

among classes not in A 2, and the details can be found in Section S.3 in the supplements.

'This is without loss of generality as we can always normalize the weights {wy}5_ | by Zle Wy.
2We thank one of the reviewers for pointing this out.

5



The formulation of (2) is closely connected to the distributional hypothesis testing prob-
lem with a composite null hypothesis consisting of finite arguments. For example, suppose

T ~ some distribution P and we would like to

that we have collected data X, = (z1,...,2,)
test Hy : P € {PW}E vs. Hy : P =PEFD, The goal is to find the optimal deterministic
testing function ¢ : X,, — {0,1} that maximizes the statistical power P+ (p(X,,) = 1)
and controls the type-I error rate under level a, i.e., max;—;.x P® (¢(X,,) = 1) < a. These
two problems are interconnected, and both necessitate control over multiple errors. However,
there are some intrinsic differences between these two problems. First, in the hypothesis
testing problem, P*) is known, whereas in the NP problem (2), the distribution of X given

Y = k is unknown. Second, multiple P(*)’

s belong to the same null hypothesis Hy, inher-
ently constituting a binary problem. Consequently, the hypothesis testing problem is always
feasible. However, in the NP problem (2), K classes are distinct and are associated with
potentially different target control levels ay’s, rendering it a multi-class problem where fea-
sibility is not guaranteed (as elaborated later). More comparisons between the hypothesis
testing and NP problems can be found in Li and Tong (2020). Additional discussions will
be provided in Section S.1.4 of supplementary materials.

Previously, there have been few works on solving the NPMC problem. Landgrebe and
Duin (2005) proposed a general empirical method to solve the NPMC problem, which relies
on the multi-class ROC estimation. Our work tackles the NPMC problem by linking it
with the cost-sensitive learning problem (to be introduced), which is partly motivated by
their approach. However, there are notable differences between our work and theirs. First,
their algorithm requires a grid search to determine the appropriate cost parameters. When
dealing with a large number of classes K and demanding high accuracy, the computation
cost will be too high to be affordable. Despite the efficient multi-class ROC approxima-

tion via decomposition and sensitivity analysis proposed in a later work (Landgrebe and

Duin, 2008), it remains somewhat restrictive without a formal connection to a cost-sensitive



learning problem. Our algorithms connect the NPMC problem to cost-sensitive learning by
duality and search the optimal costs in cost-sensitive learning by a direct optimization pro-
cedure, which is much more straightforward than their method. Second, their approach
lacks theoretical guarantees, whereas we prove the multi-class NP oracle properties for our
methods under certain conditions. More recently, Ma et al. (2020) developed a regularized
sub-gradient method on non-convex optimization problems, which can be applied to solve
the NPMC problem with specific linear classifiers with non-convex losses. Their method is
only suitable for linear classifiers with certain loss functions, while our methods are adapt-
able to any classification method. To our knowledge, our work is the first to solve the
NPMC problem via cost-sensitive learning techniques with theoretical guarantees.
Compared to the binary NP problem (1), the multi-class version (2) is significantly
more challenging to solve. One of the major challenges lies in the fact that the binary NP
problem (1) is always feasible (in the most extreme case, all observations can be classified
to the class whose error rate is to be controlled) while the problem (2) can be infeasible.
To provide readers with insight into how feasibility interacts with target error levels and
the conditional distribution of X given Y, let’s consider a simple example: a 3-class NPMC
problem with X|Y =k ~ N(puy, I,) for k =1,2,3, A= {1,2}, and the target levels ay, as.
Even in this basic setup, characterizing the feasibility condition remains challenging because
problem (2) encompasses all deterministic classifiers. However, thanks to our Theorem 1 (to
be introduced in Section 3.1), we can derive the following lemma, which explicitly provides

the feasibility condition.

Lemma 1 The 3-class NPMC problem (2) with X|Y = k ~ N(w, I,) for k = 1,2,3,

A ={1,2}, and the target levels ay, s € [0, 1], is feasible if and only if

lar = pala > @711 — ag) + @71 — ),



where @1 is the inverse CDF function of N(0,1).

We observe a trade-off between a; and as given gy and po, indicating that we cannot
make both arbitrarily small. In general, it is difficult to characterize the feasibility condition

on the joint distribution of (X,Y") for the NPMC problem (2).

1.3 Cost-sensitive learning

As discussed in Section 1.1, cost-sensitive learning (CS) provides another approach to ad-
dressing asymmetric errors in classification. There are two types of cost-sensitive learning
problems where the cost is associated with features or classes, respectively (Fernandez et al.,
2018). Here, we focus on the second type, where the cost is associated with different classes.
Ling and Sheng (2008) further divided methods dealing with this type of CS problem into
two categories: direct and meta-learning methods. Direct methods design the algorithm
structure for specific classifiers, e.g., support vector machines (Katsumata and Takeda,
2015), k-nearest neighbors (Qin et al., 2013), and neural networks (Zhou and Liu, 2005).
Meta-learning methods create a wrapper that converts an existing classifier into a cost-
sensitive one. Instances of this type of approach include rescaling (Domingos, 1999; Zhou
and Liu, 2010), thresholding (Elkan, 2001; Sheng and Ling, 2006; Tian and Zhang, 2019),
and weighted-likelihood methods (Dmochowski et al., 2010), among others.

Similar to the multi-class NP problem, there are also two ways to formulate the multi-
class CS problem. One is to consider per-class error rates Pxy—p(¢(X) # k|Y = k) for
k=1,..., K, and the other one is to consider the confusion matrix. In this paper, we would

like to connect (2) to the following cost-sensitive (CS) multi-class classification problem

min Cost(¢) = > miePxy—r(d(X) # k), (3)

where ¢ : X — {1,..., K}, 7t =P(Y = k), and {c;}XX, are the costs associated with each
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class. The relationship between the NPMC problem with the confusion matrix control and
the CS problem will be discussed in Section S.2 of supplementary materials.

The following lemma shows that CS problem (3) has an explicit solution.

Lemma 2 Define classifier ¢* : @ — arg max, {c;Py|x—(Y = k)} 3. Then ¢* is an optimal

classifier of (3) in the following sense: For any classifier ¢, Cost(¢*) < Cost(¢).

1.4 Multi-class NP oracle properties

In this section, we extend the NP oracle inequalities proposed in Scott and Nowak (2005)
to the multi-class case for problem (2). We call them the multi-class NP oracle properties.
Algorithms satisfying these two properties satisfied are desirable. For any classifier ¢, we

denote Ri(¢) = Px|y=r(o(X) # k).

Multi-class NP oracle properties for the NPMC problem:

(i) If the NPMC problem is feasible and has an optimal solution ¢*, then the algorithm

outputs a solution (ﬁ that satisfies

(a) Ri(d) < ai, + Op(e(n)), Vk € A:;

~

(b) J(¢) < J(¢") + Op(es(n)),
where €(n) and €;(n) — 0 as n — oo.

(ii) Denote the event that the algorithm indicates infeasibility of NPMC problem given

{(x;, )}, as G,. If the NPMC problem is infeasible, then P(G,) — 1, as n — oc.

It is important to remark that multi-class NP oracle properties can only guarantee an
“approximate” control for problem (2), in the sense that the actual error rate could fluctuate

around the target level, and the scale of fluctuation vanishes with high probability as the

3If there is a tie, let ¢*(z) be the smallest index within the tie.



sample size n — oo. This form is motivated from the NP oracle inequalities in the binary
case used in literature (e.g., Cannon et al., 2002; Scott and Nowak, 2005; Scott, 2019; Kalan
and Kpotufe, 2023, 2024). Therefore, our goal is to obtain a classifier ¢ which can control

Pxy=r(¢(X) # k) around oy, with high probability for all k& € A.

1.5 Organization

We organize the rest of this paper as follows. In Section 2, we develop two algorithms to solve
the NPMC problem (2), denoted as NPMC-CX (ConveX) and NPMC-ER (Empirical Risk),
respectively. In Section 3, we show that NPMC-CX enjoys multi-class NP oracle properties
under Rademacher classes, and NPMC-ER satisfies multi-class NP oracle properties under
a broader class of models, as long as the model can fit the data well enough. We validate
the effectiveness of our approaches via simulations and real data experiments in Section
4. Section 5 summarizes our contributions and points out a few potential future research
directions. Due to the page limit, some additional discussions, extra numerical results, and

all the proofs are provided in the supplementary materials.

1.6 Notations

Before closing the introduction, we summarize the notations used throughout this paper.
For any set D, |D| represents its cardinality. For any real number a, |a] denotes the

maximum integer no larger than a. Define the non-negative half space in R? as R}, = {x =

(z1,...,2,)7 € (RU{+00})? : min; z; > 0}. For a p-dimensional vector & = (x1,...,z,)7,
its fo-norm is defined as ||z|s = ?:1 sz For a p x p matrix A, Apax(A) and Apin(A)

represent its maximum and minimum eigenvalues, respectively. We mean A is positive-
definite or negative-definite by writing A > 0 or A < 0, respectively. For a function

[+ X = R where X is some metric space, we define its sup-norm as || fjcc = supgex | f()]-
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For the empty set (), we define mingey f(x) = +00. For two non-zero real sequences {a, }°°

and {b,}>°,, we denote sup,, |a,/b,| < oo by a, < b,. For two random sequences {a,}°,

and {b,}°°,, a, = Op(b,) indicates that for any ¢ > 0, there exists a positive constant
M such that sup,, P(|a,/b,| > M) < e. We use P and E to represent probabilities and
expectations. Sometimes we add subscripts to emphasize the source of randomness. For
example, Py|x—(Y = k) means the probability of Y = k given X = x. Ex means the

expectation is taken w.r.t. the distribution of X. If there is no subscript, we mean the

probability and expectation are calculated w.r.t. all randomness.

2 Methodology

2.1 The first algorithm: NPMC-CX

Before formally introducing our first algorithm, we would like to derive it through heuristic

calculations. For problem (2), consider its Lagrangian function as

LA o) = > wiPxy—(6(X) £ k) + Y (wi + M) Pxjy—i(6(X) £ k) = > ey

k¢ A keA keA

== wiPxy—($(X) = k) = Y (w0 + MN)Pxy=r(d(X) = k) + Y _wp+ Y M1 — ),

k¢t A keA keA

(4)

where A = {Ax}rea. Then, the dual problem of (2) can be written as

max min L(\, ¢). (5)

|A|
Aeril ¢

We can see that (5) looks for a lower bound of the objective function in (2), i.e., sup, g4l
+
ming L(A, ¢) < infyee Zsz1kaXIY:k(¢(X) # k), where € includes all feasible classifiers

for problem (2). We often call this fact as weak duality. In many cases, the exact equality
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holds, which is called strong duality. Under strong duality, (2) and (5) can be seen as two
different approaches to address the same problem. If one has an optimal solution, the other
one will have an optimal solution as well. If the original NPMC problem (2) is infeasible,
then (5) must be unbounded from above, and vice versa. Another key observation is that,
for a given A € ]R'f', looking for ¢ that minimizes L(A, ¢) in (4) effectively translates into

a CS problem (3) with costs

(A, ") =

(wk + )\k)/ﬂ';;, ke A

This observation motivates our first algorithm, where we endeavor to solve the more tractable
CS problem (5) to address the more challenging original problem (2).

To derive our first algorithm, let’s rewrite (4) as

LA, ¢) = —Ex [cs) (A7) - Pyix (Y = (X)) + > we+ Y M(1— ay).

ke A

Then by Lemma 2, we can define

&y @ — argmax{cy(X, )Py x—o (Y = k)} € argmin L(A, ¢), (6)
k ¢

G(A) = minL(X,¢) = L(X. ") (7)

Therefore, on the population level, we can find A which maximizes G(), then plug A into
(6) to obtain the final classifier. On the other hand, due to weak duality, since the objective
function in (2) is no larger than 1 when it’s feasible, we must have SUP) gl G(A) < 1.
Thus, if sup, crlA G(A) > 1, the original NP problem (2) must be infeasible.

In practice, there is no access to L(A, ¢) and G() since we do not know the true model.
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We estimate L(, ¢) by training data as

L 0) = = 3 ot A7) Prirea (V= 0@ + Y we+ 3 Mell = aw), - (8)

k=1 ke A

where

ck(A7 7/'\l') -

(wk + )\k)/ﬁ'k, ke ./4,
7y = ng/n with ny = #{i : y; = k}, ®# = {7}, and I@nx is the estimated conditional
probability. @y| x can be obtained from any function class by fitting the data, and we do

not impose any conditions on it here. Here are two examples.

e For a parametric example, we may use the data to fit a multinomial logistic regression
model and obtain the estimates of (K — 1) contrast coefficients {3%*) }5=! with B*) ¢

- ex T 3(k) 3

e For a non-parametric example, we may use the k-nearest neighbors (KNN) to obtain
the estimate @Yl x—z. Given such an « and the number of the nearest neighbors kg, we
can use the proportion of training observations of class k among ko nearest neighbors

to « as an estimate @yp(:m(Y = k).

Similar to Lemma 2, it is easy to show that one of the optimal classifiers that minimize

LEX(X, ¢) for a given X is

O : @ — arg max{cy(A, fr)@yp(:m(Y = k)} € argmin LX(X, ). 9)
k ¢
Denote
G = GNPy, ) = min LA, ¢) = LN, 6), (10)
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which is a well-defined function of A given [/E;)y| x and 7r. Similar to (5), we solve

max min ZCX(A,qb) = max ZCX()\,QBA) = max @CX()\) (11)
Aerl @ AerA AeriA

to find solution 5\, then plug it in (9) to obtain the final solution gZA)j\ to the original NPMC
problem (2). On the other hand, considering the estimation error, if sup, g4 @CX(A) > 146
+

with a small positive constant §, we declare that the NPMC problem (2) is infeasible.

Algorithm 1: NPMC-CX
Input: training data {(x;,y;)}",, target upper bounds of errors a, the weighting

vector of objective function w, a function class M to estimate Py x, a
small constant § > 0
Output: the fitted classifier gZA> or report the NP problem as infeasible

1 @y| x, 7 < the estimates of Py x (chosen from M) and 7* on training data

(@i, vi) }iey

2 if sup, _iu GOX(A; Py|x, @) < 1+ 0 then

+ ~ ~
3 A€ arg A, g4 GX(N; Pyx, 7) (12)
4 Report the NP problem as feasible and output the solution

¢f(:c) = arg maxk{ck(j\, fr)@yp(:m(Y =k)}
5 else

‘ Report the NP problem as infeasible

(=)

7 end

Note that GCX(A) is a concave function (as we will show in Proposition 1), which implies
that the optimization problem (12) is convex. Therefore, we refer to the algorithm above as
NPMC-CX, summarized in Algorithm 1. It is worth noting that GX(\) is also a piecewise
linear function on leu. In practice, despite the concavity of @CX()\), the common convex
optimization methods are difficult to apply due to the difficulty in calculating the gradient
of @CX(A) w.r.t. A. Instead, we implement the optimization step via direct search methods
like the Hooke-Jeeves method (Hooke and Jeeves, 1961) and Nelder-Mead method (Nelder
and Mead, 1965). More implementation details will be described in Section 4 and Section

S.4 of the supplementary materials.
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2.2 The second algorithm: NPMC-ER

In Section 2.1, we introduced an estimator (8) for the Lagrangian function (4). In the
literature on NP classification, a more popular estimator is constructed using empirical error
rates on a separate data set (Landgrebe and Duin, 2005; Tong, 2013). In this section, we
develop a new algorithm, NPMC-ER, based on a different estimator for (4) using empirical
error rates. We will compare NPMC-CX and NPMC-ER both theoretically (Section 3) and
empirically (Section 4). Some take-away messages will be summarized in Section 5.

For convenience, throughout this section, we assume the training sample size to be 2n.
Consider the following procedure. First, we divide the training data randomly into two
parts of size n: Dy = {(a;,y:) 1=, and Dy = {(x;,y:)}7%, 1. D1 will be used to calculate
the value of ZER(A, ®) (to be defined), and Dy will be used to estimate @y‘ x and . We
estimate (4) on Dy = {(@i, )iy = {{("0”)} % H by

)

PF0) = = w3 100l = B) = Y+ A > 10(al) = )

k¢ A ke A
K

+ Zwk + ZAk(l — ak),
k=1 ke A

where {(a:§’“),y§’“))};$1 are the observations from class k£ in D;. Then, similar to (11), we

solve

A € argmax L*}(X, dy), 4
Aer

where ggA is defined as in (9) while [/P\>y| x and 7t are calculated by data in Dy. Define

GER(A) = GV Py, %) = LR, da). (13)

Note that in NPMC-CX, given any A, é)\ is a minimizer of ZCX(A, ¢) w.r.t. any classifier

4This X is different from the X estimated in NPMC-CX. We ignore the superscript for simplicity.
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¢. In contrast, for NPMC-ER, given A, we still define ¢ as in (9), which is not necessarily
a minimizer of LER(X, ¢), and GER(A) is not necessarily equal to SUP gl ming LER(X, ).
The remaining steps are the same as NPMC-CX.

The reason we do not define ¢y as arg min,, ZER(A, ¢) is that there might be many (even
infinitely many) minimizers, leading to instability in the estimated model. This issue often
arises when fitting models via minimizing the training error. For instance, rescaling all
coefficient components in logistic regression does not change the classification results and

error rates.

Algorithm 2: NPMC-ER
Input: training data {(x;,y;)}?",, target upper bound of errors a, the weighting

vector of objective function w, a search range R > 0, a function class M to
estimate Py|x, a small constant § > 0

Output: the fitted classifier qg or report the NP problem as infeasible

[u

Randomly divide the whole training data (and reindex them) into

Dl UD: = {(mu%)}z 1 U{(wuyz) i=n+1
IF’y|X, 7 < the estimates of IF’Y‘X (chosen from M) and 7* on Dy = {(x;, y:) }7 11
3\ arg maXAeR‘f‘,IIAlloosRG R(X; IP’Y‘X, 7r), where GER is estimated on

D}\: {A(wzvyz) 1 (14)
if GFR(A) <1+ 6 then

Report the NP problem as feasible and output the solution
o(x) = arg max, {cp (X, T)Pyx=o(Y = k)}

6 else

N

'S

[}

‘ Report the NP problem as infeasible

BN

8 end

We name the second algorithm NPMC-ER because it uses the empirical error to estimate
the true error rate, and we summarize it as Algorithm 2. Similar to GX(X) defined in (10),
GER(X) in (13) is also a piecewise linear function of A. However, it is not necessarily concave.
Similar to NPMC-CX, we use the direct search method to conduct the optimization step
(14) in practice. Note that since GER(A) is not necessarily concave, for technical reasons,

we need to restrict the search range of the best A to a bounded region. Hence, compared
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to NPMC-CX (Algorithm 1), there is an additional argument representing the search range
R in NPMC-ER (Algorithm 2). The condition on R in the theoretical analysis will be
described in the next section. The empirical results are not very sensitive to the choice of

R, and we pick R = 1000 in all numerical studies.

3 Theory

In this section, we delve into the theoretical properties of the two algorithms introduced in
Section 2. We begin with Section 3.1, where we establish sufficient and necessary conditions
for strong duality, shedding light on the circumstances under which it holds. Sections 3.2 and
3.3 are dedicated to presenting the theoretical foundations of NPMC-CX and NPMC-ER,
respectively. In Section 3.4, we undertake a theoretical comparison of the two algorithms,
unearthing additional insights that encompass discussions on the assumptions and other
essential properties of NP algorithms. The additional details omitted in this section can be

found in Section S.1 of the supplementary materials.

3.1 Checking strong duality and feasibility

As described in the heuristic arguments in Section 2.1, strong duality between the original
NPMC problem (2) and the dual problem (5) is vital for our algorithms to work well.

Therefore, we formalize the requirement of strong duality through the following assumption.

Assumption 1 (Strong duality for the NPMC problem) It holds that

inf J(¢) = sup G(N),

pe |A|
AeR

where € includes all feasible classifiers for the NPMC' problem (2). If € # (), the infimum

[A|
+

over ¢ € € is achievable, and the supremum over A € R} can be attained at a finite .
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There are various sufficient conditions for strong duality in literature, e.g., Slater’s con-
dition (Luenberger, 1997; Boyd and Vandenberghe, 2004). However, most of them are
applicable only to convex problems, while the original NPMC problem (2) is not necessarily
convex. The following theorem elucidates a tight relationship between the feasibility of
the induced classifier from the dual CS problem (5) and the strong duality in the NPMC

problem (2).

Theorem 1 (Sufficient and necessary conditions for NPMC strong duality) Suppose

{X|Y = k}E | are continuous random variables (i.e. have Lebesque density).

(i) When the NPMC problem (2) is feasible, the strong duality holds if and only if there
ezists A0 = {)\,(CO)};CGA such that @3, is feasible for the NPMC problem (2), i.e.,

Pxjy—r(d3o (X) # k) < oy for all k € A.

(11) Suppose Py x—a(Y = k) > a > 0 for a.s. x (w.r.t. the distribution of X) and
all k € A. When the NPMC' problem (2) is infeasible, the strong duality holds (i.e.,
SUP gl G(A) is unbounded from above) if and only if for an arbitrary X € ]R'j:ll, oy is
infeasible for NPMC problem (2), i.e., 3 at least one k € A such that Px|y—i(¢3(X) #

k) > .

Building upon Theorem 1, we derive the following corollary, which proves to be very

useful in practical assessments of feasibility and strong duality.

Corollary 1 Suppose {X|Y = k}X | are continuous random variables (i.e. have Lebesque

density). The following equivalences hold:

(i) The NPMC problem is feasible, and strong duality holds < 3 a finite A* € arg Max, gl G(N)

and @3- 18 feasible;
(ii) The NPMC problem is infeasible, and strong duality holds < 3 an infinite X* and
G(X*) = +oo;
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(i1i) e The NPMC problem is feasible, and strong duality fails = For any A* € arg MaX, p A G(A),

N* is infinite > or X* is finite but ¢%. is infeasible, and G(X*) < 1;

e For any A* € argmax, .4 G(X), \* is infinite or X* is finite but ¢3. is infeasible,
+

AER
and G(A*) < 1 = strong duality fails, and the NPMC problem can be either

feasible or infeasible;

(iv) e The NPMC problem is infeasible, and strong duality fails = For any X* €
arg max, _pia| G (), A" is infinite or X* is finite but ¢3. is infeasible, and G(X*) <
+

+00.

e Forany X* € argmax, _pia G(X), X" is infinite or X* is finite but ¢}. is infeasible,
+

and 1 < G(X*) < +00 = strong duality fails, the NPMC' problem is infeasible.

Corollary 1 establishes a connection between NPMC strong duality and feasibility with
the optimal A* and the value of G(A*). In practice, A* and G(A*) can be estimated by
A and GX(A) from NPMC-CX or A and GER(X) from NPMC-ER. The equivalences in
Corollary 1 can then be used to assess whether feasibility and strong duality hold. Due to
space constraints, further details are provided in Section S.1.1 in the supplements, while

related empirical results will be discussed in Section 4.

3.2 Analysis on NPMC-CX

It is well-known that regardless of the primal problem, the Lagrangian dual function is
always concave (Luenberger, 1997; Boyd and Vandenberghe, 2004), implying that G(A) in
(7) is concave w.r.t. A. For NPMC-CX, the empirical version G(X) in (10) is a concave

function as well, making (12) a convex optimization problem.

Proposition 1 G(A) and GX(X) are concave and continuous on ]R'fl.

When we say infinite A*, we refer to a sequence {(A*)™}%_ st. (A, — oo,
limyy, 00 G((A*)M) = SUPy A G(X) exists and is denoted as G(A*).
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Suppose we estimate Py|x—(Y = k) with a function class M that can be indexed by
an index 3 € B, where B is some metric space. Suppose the data dimension p is fixed.

To prove the NP oracle properties of NPMC-CX, we impose the following assumptions.

Assumption 2 (Model consistency) max; E@yp((Y =k)—Pyx(Y=F)|—=0asn—

Q.

Assumption 3 (Strict concavity) G(A) is continuously twice-differentiable at X* and

V2G(X*) < 0, where X\* = arg A, 4l G(A) is unique.

Assumption 4 (Rademacher classes) The function class for estimating conditional prob-

ability M = {{@Y|X=m(y = k; B)}<, : B € B} has a vanishing Rademacher complexity

I~ =
a = E — iPyix=—z, (Y = k; — 0,
CRaa(n) = max Sup | ;e yix=ae( B)| =0
as n — 0o, where € = (€y,...,€,)T is a vector of independent Rademacher variables.

Assumption 5 (Margin condition) Denote the function characterizing the decision bound-
ary of class k as gp(x) = (AN, )Py |x=e(Y = k) — maxj{c;( A, )Py |x=o(Y = j)},

where X* = argmax, 14 G(A) is unique. It holds that
+

Pxjy— X)<7)s7
Inax xy=k(lep(X)| < 7) S 77,

with some 7 > 0 and any non-negative T smaller than some constant C' € (0, 1).

Remark 1 Assumption 2 ensures that the conditional probability can be accurately esti-
mated. Assumption 3 is motivated by the second-order information condition used in proving
MLE consistency (Wald, 1949; Van der Vaart, 2000).

Algorithm 4 restricts the model complexity °. Many parametric model classes fulfill

this condition, such as the multinomial logistic model with bounded coefficients when Px

6More precisely, such a restriction also depends on Px because E is w.r.t. all the random ness.
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has second-order moments. Additionally, certain non-parametric classes also satisfy this
requirement, such as Lipschitz function classes with ]IA”Y‘ x=z(Y = k;B) Lipschitz in  when
Px is supported on a bounded set of RP. Note that the function class M does not necessarily
correspond to the underlying true model, and we do not require the true model to belong to
a Rademacher class.

Assumption 5 is commonly referred to as “margin condition” in literature (Audibert and
Tsybakov, 2007; Tong, 2013; Zhao et al., 2016), and it requires most data points to be away
from the optimal decision boundary. In many cases, this assumption can lead to convergence
rates faster than Op(n='/?). Previous binary NP classification papers such as Tong (2013),
Zhao et al. (2016) and Tong et al. (2020) do not require it when arbitrary convergence rates
are acceptable. Besides, it is often employed with an opposite condition called “detection
condition” (Tong, 2013; Zhao et al., 2016; Tong et al., 2020) to aid in accurately estimating
the optimal classification threshold. Here, we do not need such a detection condition, but
Assumption 5 is crucial and required to hold.

More discussions can be found in Section S.1.3 of the supplementary materials.

Next, we establish that NPMC-CX satisfies the multi-class NP oracle properties under

the conditions above.

Theorem 2 (Multi-class NP oracle properties of NPMC-CX) NPMC-CX satisfies

multi-class NP oracle properties in the following senses.

(i) When the NPMC problem (2) is feasible, if Assumptions 1-5 hold, and § 2 [Rgaa(n)+
maxy, ]E@Y‘X(Y =k)-Pyx(Y = k:)|]w2, then there exist a solution ¢* and a constant

C > 0 such that

_2v(1+9)

m]?XPORk(?%)_Rk((b*)' > 1) Sexp{—Cnr"/T}+77 "7 m;iXE @le(y =k) - Pyix(Y =k)|,
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when 1> 7 2 [C’Rad(n) -+ maxy E@nx(y =k) —Pyx(Y = k)HWQ.

(i1) When the NPMC problem (2) is infeasible, if Assumptions 1, 2 and 4 hold, and ¢ 2,
[ RRada(n)+maxy, E|@y|X(Y = k)—Pyx(Y = k)|] 1/2, then there exists a constant C' > 0

such that
P (GX(X) < 1+ 6) S exp{~Cn} + maxE [Prix(¥ = k) = Prix(¥ = #)].

where § is an input parameter in Algorithm 1.

Remark 2 Observe that J(¢) — J(¢*) is a linear combination of {Ry(®) — Ru(¢*)}E,.

Hence, when the NPMC problem (2) is feasible,

~ ~

Ri(¢) — ar, < Ri(¢) — Ri(¢7) < Op(e(n)), Vk € A,

J(9) — J(¢") < Op(e(n)),

where e(n) = n7/4 + (maxg B[Py (Y = k) = Pypc(Y = B)) 7 4 (Caa ()72 = 0.

Theorem 2 verifies multi-class NP oracle properties as defined in Section 1.4.

3.3 Analysis on NPMC-ER

One advantage of NPMC-ER over NPMC-CX is that it does not require EADy| x=z(Y = k) to
belong to a Rademacher class. We will explain the intuition in the next subsection.

Unlike NPMC-CX, for NPMC-ER, the empirical dual function G(X) in (13) is not nec-
essarily concave. This discrepancy arises from the “mismatch” of EER(A7¢) and qg)‘. As
discussed in Section 2.2, given A, ¢y is not necessarily a minimizer of LER(X, ¢), leading to
a dual function not of the “max-min” type and hence not necessarily concave. Nonetheless,

the multi-class NP oracle properties still hold under similar conditions.
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Theorem 3 (Multi-class NP oracle properties of NPMC-ER) NPMC-ER satisfies multi-

class NP oracle properties in the following senses.

(i) When the NPMC problem (2) is feasible, if Assumptions 1, 2, 8 and 5 hold, 6 > n=7/4,
and R > ||X*||loc with X* = argmax, a1 G(A), then there exist a solution ¢* and a
+

constant C' > 0 such that

_2v(1+79)

mSXPﬂRk((ZS)—Rk((ﬁ*N > 1) S exp{—Cnr* T} 47773 max Pyix(Y = k) = Pyx (Y = k)|,

when 1> 1 > n~7/4,

(ii) When the NPMC problem (2) is infeasible, if Assumptions 1 and 2 hold, § > n=/*,

and R satisfies sup x| <p G(A) > 1+ 0, then there exists a constant C' > 0 such that
P (@ER(S\) <1+ 6) Sexp{—-Cn} + m]?X]E @Y‘X(Y =k)-Pyx(Y =k)|,

where § is an input parameter in Algorithm 1.

Analyzing similarly in Remark 2, we conclude that Theorem 3 confirms the multi-class
NP oracle properties of NPMC-ER. As discussed in Section 2.2, because @ER()\) is not
necessarily concave, for technical reasons, we can only search for optimal A within a bounded
region |[Al|oc < R where R > 0 is a constant. On the other hand, to ensure that this search
region covers the true optimal A* (when the NPMC problem is feasible) or is large enough
to find a large G(A) value (when the NPMC problem is infeasible), we need to ensure that
R is not very small, leading to the conditions R > [[A*||o and supjy;_<pG(A) > 1+ in
(i) and (ii), respectively. The empirical results are not very sensitive to the choice of R, and

we set R = 1000 in all numerical studies.
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3.4 Comparison of NPMC-CX and NPMC-ER from theoretical
perspective

We now summarize the difference between the two algorithms from theoretical perspectives.

e Both NPMC-CX and NPMC-ER exhibit NP oracle properties under certain condi-

tions.

e NPMC-CX assumes the function class used to estimate the posterior Py x—(Y = k)
has a vanishing Rademacher complexity, while NPMC-ER does not impose such a
restriction. This distinction arises because NPMC-CX utilizes all training data simul-
taneously, necessitating control over model complexity for certain uniform convergence
results. In contrast, NPMC-ER leverages sample splitting, creating independence that
only requires pointwise convergence instead of uniform convergence, regardless of the
model class considered. Further details are available in the corresponding proofs pro-

vided in supplementary materials.

4 Numerical Experiments

We demonstrate the effectiveness of NPMC-CX and NPMC-ER through a simulation ex-
ample and a real data study on loan default prediction. All numerical experiments were
conducted using R. Our proposed algorithms, NPMC-CX and NPMC-ER, have been im-
plemented in the package npcs (https://CRAN.R-project.org/package=npcs). In the
simulations, we vary the training sample size n from 1000 to 9000 with an increment of
2000, while keeping the test sample size fixed at 20,000. Without specific notice, each
setting in both simulations and real data studies is repeated 500 times. Due to space con-
straints, we provide additional numerical results and more implementation details, including

the choice of tuning parameters in Section S.4 of the supplementary materials. All the code
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is available at https://github.com/ytstat/NPMC.

4.1 Simulation

Consider a three-class independent Gaussian conditional distributions X |Y =k ~ N (p, I,),
where p =5, p; = (—=1,2,1,1, 1), pp = (0,1,0,1,0)", p3 = (1,1,—1,0,1)" and I, is the p-
dimensional identity matrix. The marginal distribution of Y is P(Y = 1) =P(Y =3) = 0.3
and P(Y =2) = 0.4.

We aim to solve the following NPMC problem:

min Pxpy=3(¢(X) # 3)

We run the proposed algorithms NPMC-CX and NPMC-ER with four function classes
to estimate Py x, including logistic regression, LDA, kNN, and non-parametric naive Bayes
model with Gaussian kernel. For comparison, we also fit four corresponding vanilla classifiers
trained without error controls as benchmarks. Box plots show the per-class error rates under
each method and training sample size setting in Figure 1.

One can see that vanilla classifiers fail to control the error of class 1 and “over-control”
the error of class 2. In contrast, NPMC-CX and NPMC-ER work very well by controlling the
error rates around the target control level, which matches our theoretical results in Section
3. By comparing the error rates of class 2 between NPMC methods and vanilla classifiers, we
observe that to achieve a successful control over Pyjy—1(¢(X) # 1) " and Py jy—o(¢(X) # 2)
around the corresponding levels, there is a cost in terms of the performance on class 3.

When the training sample size n increases, the variance of error rates for each method

tends to decrease. For NPMC-CX-LDA and NPMC-CX-NNB, when n is small, sometimes

"To be more precise, the graphs only show the empirical error rates on the test data.
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Figure 1: Per-class error rates under each classifier and training sample size setting in
simulation. Horizontal lines in corresponding colors mark the target control levels. In some
graphs, additional values are displayed in brackets beneath the training sample size, n.
These values represent the number of instances where the algorithms reported infeasibility
during evaluation.

the algorithm outputs the infeasibility warning. For NPMC-CX-LDA, this behavior might
be due to LDA’s higher sample size requirements (because of the need to estimate the
covariance matrix) compared to other methods like logistic regression. For NPMC-CX-
NNB, this phenomenon could be caused by the improper choice of bandwidth.

Another noteworthy observation is the higher variances of error rates on class 3 compared
to the other two classes, particularly evident when n is small. This phenomenon arises

because the decision boundary of NP classifiers traverses the densely populated area for
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class 3 but not for classes 1 and 2 when stringent error controls are imposed on the latter.
Consequently, even a small change in the decision boundary can lead to a relatively bigger
change in the error of class 3 compared to classes 1 and 2.

To validate the feasibility and strong duality checking algorithms induced by Corollary
1 (see the algorithms in Section S.1.1 of the supplements and note that the feasibility
prediction is the same as in NPMC-CX and NPMC-ER), we conducted experiments for
them with NPMC-CX-logistic and NPMC-ER-kNN by fixing the random training data of
size n = 10° and considering all choices of (ay, @) within range [0.01, 1]* with a grid size
0.01. Note that the feasibility and strong duality can be theoretically verified for any specific
(v, ) in this example. The following lemma, in conjunction with Lemma 1, establishes

the ground truth regarding strong duality and feasibility.

Lemma 3 The strong duality in Assumption 1 holds for 3-class NPMC' problem (2) with
XY =k~ N(pg, I,) for k=1,2,3, A= {1,2}, and the target levels a;, as € [0,1], if and
only if

1 = pafl2 # 7ML — 1) + @71 — @),
where ®~1 is the inverse CDF function of N(0,1).

We then compared the true feasibility and strong duality with the predictions generated
by our feasibility and strong duality checking algorithms in Figure 2. It shows that our
algorithms can accurately predict the feasibility and strong duality with sufficient data.
Hence, practitioners can first utilize algorithms in Section S.1.1 to assess the feasibility
and strong duality for various target error levels, thereby gaining insights into the problem
difficulty, especially when they are unsure about the appropriate target levels for error
controls. In other words, our feasibility and strong duality checking algorithms offer a

prediction of the landscape of an NPMC problem with various target levels.
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Figure 2: Strong duality and feasibility of simulation: ground truth and predicted results.

4.2 A real data study: loan default prediction

Identifying high-risk customers prone to late payments or default is paramount for banks and
lending institutions in managing risk. Providing loans to high-risk customers often results
in greater losses than denying loans to low-risk customers, underscoring the importance
of effective risk assessment strategies. The Neyman-Pearson classification framework is
particularly valuable in this context for its ability to address asymmetric errors.
LendingClub, a peer-to-peer lending company, caters to borrowers seeking personal loans
ranging from $1000 to $40000. The LendingClub dataset (https://www.kaggle.com/code/
emmaruyiyang/lending-club-loan-default-prediction-eda/input) encompasses loan
data spanning from 2007 to 2015. It includes details such as loan amount, term length,
current status, and borrower information like annual income and number of bankcard ac-
counts. The objective is to predict the loan status based on these variables. The original

dataset contains various labels for loan status, including “fully paid”, “late payment” with
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varying durations, “in grace period”,“default”, and “charge off’. For simplicity, we cat-
egorize them into three groups: class 1 (bad status: default or charge off), class 2 (fair
status: late payment but not default), and class 3 (excellent status: fully paid). Following
some preprocessing steps (refer to Section S.4.3.1 for details), the dataset comprises 264274
observations with 25 features and 1 response variable. The sample sizes for the three classes
are 45072 (17.1%), 19265 (7.3%), and 199937 (75.6%), respectively. The significant class
imbalance poses an additional challenge in addressing this problem.

We would like to solve the following NPMC problem

Hgn Pxjy=3(o(X) # 3)

st Pxy=1(0(X) # 1) < a1, Pxy=2(0(X) #2) < a,

where o is typically chosen to be smaller than sy because misclassifying observations of
class 1 is more detrimental than misclassifying those of class 2.

As described in Section 4.1, practitioners can experiment with various target levels
(a1, ap) using our feasibility and strong duality checking algorithms (Algorithms 3 and 4
in Section S.1.1) to assess the problem’s complexity and select the target level based on
feasibility and practical considerations. We present the predicted strong duality, feasibility,
and objective values using Algorithm 3 with NPMC-CX-logistic (NPMC-CX with M as
logistic regresion) and Algorithm 4 with NPMC-ER-RF (NPMC-ER with M as random
forests) on the entire dataset for different (aq, ay) € [0,1]?, in Figures 3 and 4, respectively.
These figures illustrate the tradeoff between error rates for the three classes. To ensure the
feasibility of the NP problem, the error thresholds (aq,a3) must not be set too low. This
requirement largely stems from the intrinsic complexity of the task, especially the challenge
of distinguishing between classes 1 and 2. When logistic regression and random forests are

trained solely on data from these classes, both methods display a binary misclassification
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Figure 3: Strong duality and feasibility of NPMC problem for the LendingClub dataset
with different target error levels: predicted by Algorithm 3 with NPMC-CX-logistic.

error rate approaching 30%, underscoring the inherent difficulty.
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Figure 4: Strong duality and feasibility of NPMC problem for the LendingClub dataset
with different target error levels: predicted by Algorithm 4 with NPMC-ER-RF.

Next, we fix a; = 0.3 and as = 0.5, and conduct experiments with NPMC-CX-logistic
and NPMC-ER-RF, alongside vanilla logistic regression and random forests as benchmarks.

We randomly split the entire data into 50% training and 50% testing data over 500 repli-
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cations. Box plots in Figure 5 display the per-class error rates under each classifier and
across various training sample size settings. Notably, vanilla logistic regression and random
forests tend to assign all observations to class 3 due to the significant imbalance in sample
sizes. In contrast, NPMC-CX-logistic and NPMC-ER-RF effectively control the error rates

of classes 1 and 2 around the specified target levels.
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0.75- —_—

error
class 1

class 2

EI class 3

0.00- - !

NPMC-CX-logistic NPMC-ER-RF logistic RF
method

Figure 5: Per-class error rates and objective function values under each classifier for the
NPMC problem on the LendingClub dataset. Horizontal lines in corresponding colors mark
the target control levels.

We also run similar experiments on the confusion matrix control problem outlined in

Section 1.2 and the detailed results are presented in Section S.4.3.1.

4.3 Comparison of NPMC-CX and NPMC-ER from experimen-
tal perspective
From the previous numerical results, we can observe that:

e NPMC-CX works better under parametric models (e.g., logistic and LDA) by con-
trolling the error rates well and achieving a lower objective function value compared

to NPMC-ER, but can sometimes fail to control error rates under target levels for

non-parametric models (e.g., kNN, RF, and SVM with RBF kernel).

e Compared to NPMC-CX, NPMC-ER requires a larger sample size to perform well due

to sample splitting in Algorithm 2, but it is more robust to different model types.
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These observations align well with our intuition from theoretical analysis (Section 3.4).
Therefore, for practitioners, if a Rademacher class (usually parametric) is believed to be
suitable for the problem at hand, we suggest using NPMC-CX. If the non-parametric model

is believed to work better and sample size is not very small, we suggest using NPMC-ER.

5 Discussions

5.1 Summary

In this paper, we connect Neyman-Pearson multi-class classification (NPMC) problems with
cost-sensitive learning (CS) problems, and propose two algorithms, NPMC-CX and NPMC-
ER, to solve the NPMC problem (2) via CS techniques. To our knowledge, this is the
first work solving NPMC problems with theoretical guarantees. We have presented some
theoretical results, including conditions for strong duality and multi-class NP oracle prop-
erties for the two algorithms. Furthermore, we propose practical algorithms to verify the
NPMC feasibility and strong duality, which can offer practitioners a landscape of the NPMC
problem with various target error levels. Our algorithms are shown to be effective through
extensive simulations and real data studies.

Comparing NPMC-CX and NPMC-ER, we find:

e Both algorithms are shown to satisfy multi-class NP properties. However, NPMC-CX
necessitates a function class with a vanishing Rademacher complexity for estimating

Py|x—2(Y = k), while NPMC-ER has no such constraints.

e In practice, NPMC-CX works well for parametric models but may struggle with some
non-parametric models. Due to data splitting, NPMC-ER requires a larger sample

size but is more robust to diverse model types.

e Therefore, we suggest the practitioners go with NPMC-CX when a parametric model
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is favored. When the non-parametric model is believed to work better, and there is

enough training data, we suggest using NPMC-ER.

Furthermore, the general confusion matrix control problem outlined in Section 1.2 is
discussed in detail in Section S.2 of supplementary materials, and we extended our two

NPMC algorithms to solve that problem. The theoretical results are also provided.

5.2 Future research directions

There are many interesting future avenues to explore. Here, we list three of them.

(i) There are many approaches to fitting a CS classifier. We use (9) to fit the CS classifier
in our NPMC algorithms, which sometimes is called the thresholding strategy in binary
CS problems (Dmochowski et al., 2010). It might be interesting to explore other

approaches and replace (9) accordingly.

(i) Liet al. (2020) studied the methodological relationship between the binary NP paradigm
and CS paradigm, and constructed a CS classifier with type-I error controls. In this
paper, we focus on the multi-class NP paradigm and build a multi-class NP classifier
via CS learning, which can be viewed as the inverse to Li et al. (2020). Exploring the
other direction in the multi-class cases would be interesting: developing multi-class

CS classifiers with specific error controls.

(iii) As one reviewer pointed out, the current multi-class NP oracle properties might not
be strong enough in some degenerated cases where the NPMC problem can vary with
n and J(¢*) = o(1) or ay = o(1) for some k € A. It would be intriguing to generalize

the existing multi-class NP oracle properties from Ry(¢) < ay + op(1), Vk € A and

J(9) < J(¢*) +op(1) to R(d) < ag +op(c), Yk € A and J(¢) < J(¢*) + 0p(J(¢")).
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