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Abstract—Nowadays, the emerging short video streaming applications have gained substantial attention. With the rapidly burgeoning

demand for short video streaming services, maximizing their Quality of Experience (QoE) is an onerous challenge. Current video

preloading algorithms cannot determine video preloading sequence decisions appropriately due to the impact of users’ swipes and

bandwidth fluctuations. As a result, it is still ambiguous how to improve the overall QoE while mitigating bandwidth wastage to optimize

short video streaming services. In this paper, we devise Gamora, a buffer-aware short video streaming system to provide a high QoE of

users. In Gamora, we first propose an unordered preloading algorithm that utilizes a Deep Reinforcement Learning (DRL) algorithm to

make video preloading decisions. Then, we further devise an Asymmetric Imitation Learning (AIL) algorithm to guide the DRL-based

preloading algorithm, which enables the agent to learn from expert demonstrations for fast convergence. Finally, we implement our

proposed short video streaming system prototype and evaluate the performance of Gamora on various real-world network datasets.

Our results demonstrate that Gamora significantly achieves QoE improvement by 28.7%-51.4% compared to state-of-the-art

algorithms, while mitigating bandwidth wastage by 40.7%-83.2% without sacrificing video quality.

Index Terms—Short video streaming, Preloading, Buffer management, Asymmetric imitation learning.

✦

1 INTRODUCTION

IN recent years, short video streaming service has become
increasingly popular among users. Commercial short

video applications such as TikTok, Vine, and Instagram
Reels attract billions of active users monthly and consis-
tently top popularity lists for mobile apps [1]. According
to a recent report, TikTok application attains 1.5 billion
monthly active users in 2023, with projections indicating an
anticipated surge to over two billion by the end of 2024
[2]. Unlike traditional long-form videos, short videos typi-
cally have a median video duration of around 100 seconds
[3]. Specifically, users may swipe at any position in short
videos and expect seamless playback for subsequent videos
upon a swipe [4]. To provide immersive and interactive
Quality of Experience (QoE) for users, short video service
providers have striven to optimize video quality and re-
duce the rebuffering ratio [5], [6]. Nevertheless, arbitrary
user swipes may cause discernible startup latency and
bandwidth wastage, especially when short videos remain
undownloaded or downloaded but never viewed. Conse-
quently, it is indeed challenging for short video service plat-
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forms to improve the overall QoE while not concurrently
raising bandwidth wastage.

Considering about the unique characteristics of short
videos, it is ill-suited to directly apply the conventional
long-form video prefetching algorithm to tailor the preload-
ing sequences for short videos [7], [8], [9], [10]. Since
current prefetching algorithms usually focus on obtaining
high video bitrates and low rebuffering ratios without
considering the impact of users’ swipe events and band-
width wastage on system performance. Moreover, exist-
ing prefetching algorithms assume that users would watch
short video content sequentially to completion and hence
download short videos in order. However, users’ swipes are
complicated, and swipe times determine the video chunks
that will be viewed or skipped during a video session [11].
The video download sequence is not exactly the same as the
video playback order due to user-specific swipe behaviors.
Short video streaming service usually adopts a preloading
algorithm [12] to determine the video buffering order and
corresponding bitrate simultaneously. To this end, we need
to appropriately preload short videos into the client buffer
under dynamic network conditions. Preloading as many
short videos as possible into the buffer under its limit
ensures the desired QoE during playback but it may lead
to substantial bandwidth wastage. Nevertheless, inadequate
buffering may cause tremendous startup latency [13] when
swiping to the subsequent video that is not yet downloaded.

The existing efforts on solving the video preloading
problem in short video streaming can be broadly cate-
gorized into rule-based heuristic algorithms and learning-
based optimization algorithms. Specifically, rule-based
heuristic algorithms typically make short video preloading
decisions based on pre-programmed rules using client ob-
servations such as network conditions, buffer status, etc.



2

Short Video APP

Video Player

Swipe

Player Buffer

Played Downloaded To be downloaded

Video 1

Video 2

Video 3

Video 4

Video N

…

O
rd

e
r

o
f
p

la
yi

n
g

 

Video Server

CDN NodesVideo chunks

…

Network
Monitor

Video Preloading 
Selection

TimeB
a
n

d
w

id
th

…

Fig. 1. A brief illustration of short video streaming system.

[14], [15], [16]. Although these algorithms are easy to imple-
ment, fixed rules hardly adapt to the complex fluctuations
caused by heterogeneous networks and swipe behaviors,
and inappropriate settings perhaps significantly impede
their efficacies [17]. Learning-based algorithms apply deep
Neural Networks (NNs) to directly connect environmental
observations and actions to determine an optimal control
policy for a given user-specific QoE objective [18], [19], [20].
Their performances heavily depend on training data, mak-
ing it difficult to achieve fast convergence [21]. Moreover,
once video preloading decisions are made, they cannot be
rolled back. In this sense, one premature preloading mis-
match decision may exacerbate the QoE of the entire short
video streaming [22]. Unfortunately, off-the-shelf preloading
algorithms usually fall short of considering users’ swipe
estimation according to video content and historical viewing
behaviors. Consequently, there is a need for a tailor-made
short video preloading algorithm to find an appropriate
video preloading sequence that maximize QoE improve-
ment by simultaneously reducing bandwidth wastage.

Driven by these practical concerns, we attempt to answer
a pivot question: Can short video streaming quickly adapt to
frequent swipes and dynamic network conditions to propel the
boundary of QoE? To that end, we analyze the KuaiRand
dataset [23] and conduct measurement experiments on short
video streaming transmissions in real-world network traces.
The empirical analysis elucidates that despite the drastic
fluctuations in network bandwidth, there exists discernible
short-term continuity in network sequences. This presents
a unique opportunity to utilize learning-based methods
to learn and adapt to dynamic environments and make
sequential decisions in short video preloading scenarios.
Inspired by this, we propose Gamora, a novel fine-grained
video streaming system for short video applications that
embraces joint optimization of QoE enhancement and band-
width efficiency. In this paper, we first propose an un-
ordered video preloading algorithm that utilizes a Deep Re-
inforcement Learning (DRL) algorithm [24] to automatically
learn the correlations between network conditions, swipe
behaviors, and the corresponding optimal potential video
preloading decisions. Moreover, we present an Age-of-
Information (AoI)-based [25] buffer management method,
which can achieve high throughput and video timeliness of
continuous viewing sequences by seamlessly compromising
the online feedback of total buffer occupancy and buffer
queue drain time [26]. Then, Gamora further applies the
Asymmetric Imitation Learning (AIL) algorithm to guide

the DRL-based preloading algorithm, which enables the
trainee policy to learn enough knowledge to maximize ex-
pected rewards under repeated demonstration/supervision
by experts [27]. Finally, we implement a holistic prototype of
our proposed short video streaming system and conduct ex-
tensive experiments under different network conditions. We
find that Gamora improves QoE by 28.7%-51.4% on average
compared to existing algorithms, while reducing bandwidth
wastage by 40.7%-83.2% without sacrificing video quality.
To our knowledge, Gamora is a novel DRL-based buffer-
aware system with AIL guidance for determining optimal
unordered preloading sequences to satisfy users’ QoE re-
quirements and mitigate bandwidth wastage for short video
sessions. In particular, this paper makes the following con-
tributions:

• We design a buffer-aware short video streaming sys-
tem by incorporating network prediction and swipe
estimation to steer unordered video preloading algo-
rithm to enhance the user’s QoE during playback.

• We further propose an asymmetric imitation learning
algorithm to guide DRL-based short video preload-
ing decisions under experts’ demonstration for fast
convergence.

• We implement a holistic prototype of our pro-
posed short video streaming system. Extensive re-
sults demonstrate that our proposed solution outper-
forms state-of-the-art algorithms in terms of overall
QoE and bandwidth wastage.

The remainder of this paper is organized as follows. In
Section 2, we introduce the background and motivation of
this paper. Section 3 elaborates on the system design. Section
4 presents the short video preloading algorithm. Section 5
demonstrates the prototype implementation. Section 6 eval-
uates and analyzes the performance of Gamora via extensive
experiments. We provide the related works in Section 7 and
conclude this paper in Section 8.

2 BACKGROUND AND MOTIVATION

This section first presents a typical architecture of short
video streaming. Then we analyze and perform a scaling
experiment with real-world datasets to demonstrate the
associated challenges of short video streaming.

2.1 Short Video Streaming Primer

In short video applications, user swipes dictate the playing
order of videos to cater for their needs. Fig. 1 shows a
system overview for the short video streaming application.
Upon receiving a client session request, the server inherently
generates a list of Top-K short video recommendations [28]
based on user characteristics and preferences derived from
their previous access session records [29]. Subsequently, the
server ships the client player with a manifest file containing
the URL and relevant information. Like traditional video
streaming, the client maintains a playback buffer and uti-
lizes a preloading algorithm [30] to determine appropriate
preload video sizes in the manifest file through Content
Distribution Networks (CDN) nodes at any time to improve
overall QoE for future short video sessions. Moreover, short
videos are played sequentially within each logical buffer
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Fig. 2. User interaction statistics on the KuaiRand dataset [23].

intra-queue but across inter-queues in a specific order. Play-
back is triggered at any time by user actions (e.g., swipe),
or video completion, moving to the head of buffer to play
the subsequent video. Once all the previous videos in the
current queue are downloaded, the client player requests
a new short video manifest file to continue playback. It
facilitates swift and seamless adaptation of short videos to
enhance viewer engagement [31], [32].

2.2 Short Video Session Characterization

We analyze short video streaming requests to investigate
the distribution of video requests and uncover hidden char-
acteristics in both the temporal and spatial dimensions. To
that end, we utilize an unbiased sequential recommendation
dataset called KuaiRand [23], which is collected from the
Kuaishou application in one month. This dataset contains
affluent features of items and users’ behavioral history,
encompassing millions of interactions on randomly exposed
videos. We analyze a random sample of short video data
from the dataset. Fig. 2a illustrates the internal relationship
between video duration and user viewing time for short
videos. The majority of video sessions have an average
duration of less than 100 seconds. Moreover, nearly 93% of
short videos are viewed for no more than 8 seconds, and the
average video playback progress (defined as video playback
duration divided by video duration) is 17%. This data ex-
plicitly suggests a long-tail effect in short videos, indicating
that users lack the patience to watch videos in their entirety
[29]. Fig. 2b provides further insights into user behavior by
exploring users’ proportion who engage in long and short
video playback. Notably, approximately one-third of users
fall into the category of short-time users with a playback
duration of less than 3 seconds. Therefore, we can conclude
that arbitrary user swipe is a pivot factor contributing to
prohibitive bandwidth wastage. Since the user may swipe
at any given moment, subsequently downloaded chunks in
the current download buffer queue might remain unviewed.

2.3 Challenges of Short Video Streaming

We investigate the impacts of user swipes, network condi-
tions, and buffer occupancy in depth for short video stream-
ing. To study the user’s QoE in a controlled and systematic
manner, we develop a high-fidelity simulator that is capable
of replaying the entire trajectory and chunk download strat-
egy. It enables us to obtain detailed information about the
video playback process swiftly. We leverage the Mahimahi
tool [33] to control network conditions, which are collected
from previous bandwidth measurements from commercial
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Fig. 3. Bandwidth statistics across various network traces.
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Fig. 4. QoE performance of various short video preloading algorithms
under lumos network conditions.

networks [34] [35]. Overall, we identify that these factors
affect users’ QoE. Specifically, short video streaming suffers
from poor performance for the following reasons:

Network and video adaptation. To measure the impact
of heterogeneous networks on the video chunk download
strategy for short video streaming, we conduct a series
of empirical experiments using the Lumos dataset [35].
As shown in Fig. 3a, different network bandwidth tra-
jectories change frequently and fluctuate violently up to
several hundred Mbps. Dramatically fluctuating networks
face challenges for video preloading while delivering highly
available throughput. Therein, short video streaming em-
ploys a vanilla waterfall strategy [20] for downloading
video chunks sequentially from the top of the recommended
queue. We describe the instantaneous network throughput
and chunk adaptation decisions for short video streaming
in Fig. 3b. We identify that the chunk decisions positively
correlate with the network throughput [36].

Swipe estimation and wastage. Current short video
streaming systems employ a fundamentally fixed-size static
heuristic adaptation approach [14] to cope with dynamic
network conditions. However, this approach often needs
more adaptability to adjust optimally for different videos
or users, leading to either extremely cautious or aggressive
behavior. To address this thorny problem, we show the per-
formance of five existing short-video streaming algorithms,
as depicted in Fig. 4. Both the Next-one [37] and Waterfall
strategies [38] select the next video once the current video
has finished downloading. The primary distinction lies in
the concurrent buffering capacity for short videos simulta-
neously. The Dynamic algorithm adopts a fixed buffer to
download video sequentially, while the Greedy approach [1]
dynamically selects the target bitrate based on the network
bandwidth. Moreover, Pensieve [9] is a typical RL-based
algorithm for long-form video streaming delivery. From
Fig. 4a, we demonstrate that video bitrate and rebuffer-
ing ratio are two conflicting factors. Pensieve exhibits the
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highest video quality, but its rebuffering ratio displays a
significant upward trend with an average increase by 74.2%
compared to Next-one. The coarse-grained approach leads
to potential bitrate oscillations when there are changes in
bandwidth during this interim period, attributable to the
premature and blind binding of short video sequences.

Short video streaming systems often prioritize down-
loading the first chunk of content to address the uncertainty
of user swipes to prevent rebuffering. However, especially
when users swipe to the subsequent video, the remaining
downloaded chunks of the preceding video evolve redun-
dant, resulting in non-negligible wastage of bandwidth. As
shown in Fig. 4b, the urgency of short video downloads
leads to a significant impact on the average buffer occu-
pancy, while the video playback process remains below 40%.
As swipe bursts become more bursty, a meticulous active
buffer management approach becomes essential to mini-
mize bandwidth wastage without sacrificing video quality
according to various situations.

3 SYSTEM DESIGN

This section first presents the system design of the short
video streaming system called Gamora. Subsequently, we
elaborate on core components, including bandwidth predic-
tion and swipe estimation, AoI-based buffer management,
and preload decision engine for short video streaming.

3.1 System Overview

Gamora’s core concept is to use historical data from short
video streaming to accurately predict future short-term
bandwidth and analyze video swipe probability distribu-
tions to generate appropriate decisions for video preload-
ing sequences. We utilize an efficient asymmetric imitation
learning algorithm to optimize the short video preloading
selection algorithm that decides the sequence of each short
video to improve the overall QoE. Additionally, Gamora
leverages online feedback from an accurate active buffer
management method to orchestrate buffer queue download
sequences in real-time and effectively reduce bandwidth

wastage. Fig. 5 shows a system overview of Gamora’s de-
sign. It consists of two primary phases, online and offline. In
the online phase, it leverages the network bandwidth from
the most recent session traces to train a time series model for
generating network predictions. The extracted user swipe
characteristics, network statistics, and buffer occupancy are
comprehensively combined and fed into an online learning-
based model that uses asymmetric imitation learning to
guide chunk request decisions and accelerate the training
process. The preloading decision results from a fusion of
predictions from two models. We utilize these predictions
to determine the ultimate video preloading decision and
incorporate it into the video preloading algorithm. In the
offline phase, a DRL model for short video preloading
decisions is well-trained using historical trajectories.

Workflow. The implementation of short video preload-
ing decision is as follows. ❶ In the offline phase, Gamora
utilizes the previously collected trajectories to automatically
train the RL model by interacting with specific environ-
ments in order to improve user QoE. ❷ Considering users’
swipe features, we leverage previous research findings that
suggest short videos with similar content often exhibit the
same swipe pattern [3]. Consequently, we could obtain the
coarse-to-fine knowledge of the swipe probability associated
with various short videos. ❸ We then analyze short video
sessions to exploit bandwidth trajectories and employ a
canonical Long Short-Term Memory (LSTM)-based model
[39] to learn the network characteristics for predicting band-
width fluctuations. ❹ As for the buffer state, the buffer
manager continually monitors the current player buffer
occupancy. In handling short video streaming requests,
the queue scheduler maintains concurrent buffer queues
to synchronize the download rhythm of short videos. To
tackle the buffer management challenges arising from user
swipe, we introduce an Age of Information (AoI) token
[25], representing the time elapsed since the playback of the
current queue. Once the AoI token surpasses a predefined
threshold, it is promptly triggered to release the already
played buffer queue occupancy. ❺ Meanwhile, the preload
decision engine employs asymmetric imitation learning to
navigate the DRL model to promptly decide on the short
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Fig. 6. Distribution of video viewing percentage for two sample videos.

video response (video ID, chunk index, chunk bitrate). The
final preloading decision is adjusted according to buffer
occupancy feedback. ❻ Subsequently, the pre-trained DRL
model [40] undergoes periodic updates during the online
phase to achieve fine-tuning and optimization.

3.2 Swipe and Bandwidth Prediction

Swipe distribution estimation. The overall QoE and band-
width wastage in short video streaming closely correlate
to user swipe. However, in existing short video streaming
systems, swipe behavior is often deemed entirely random,
although not in reality. To investigate this, we randomly se-
lect two highly-viewed short video types, including Kmovie
and ShortCamera, from the KuaiRand dataset [23]. Fig. 6
exhibits a representative result of swipe probabilities in
short videos. Approximately 80% of swipe events occur
within the initial 20% of the short video’s duration. Users
are more inclined to swipe after video playback starts or
automatically switch to another video after completing play-
back, consistent with previous studies on user swipe [11],
[41]. Meanwhile, we observe the remarkable similarity in
the distribution of swipe events in each video under diverse
video datasets, suggesting that different users watching
similar videos are likely to exhibit similar swiping behavior.
With this information, we can gain insight into the like-
lihood of swiping for each short video and its potential
location within a given video through machine learning
methods during video playback. Therefore, if the current
buffer length surpasses the user’s anticipated swipe point,
the short video system preemptively halts the current video
request for new content (i.e., enters a sleep state) and pro-
ceeds to download the subsequent short video to conserve
bandwidth consumption explicitly.

Each short video comprises several chunks with uniform
duration. Let v represent a short video, and V denote the set
of short videos. Each short video v is divided into Nc (c ∈ C)
chunks, where L signifies the video chunk length. Due to
variations in user swipe patterns across different videos, we
represent the probability pv,c of a user swiping after viewing
the current chunk. The probability of user swipes can be
inferred from the historical interaction sessions associated
with videos of the same type. However, the user swipe is
not limited to occurring at chunk boundaries, and they may
swipe at any time during playback in reality. Behavior pro-
filer extrapolates the swipe probability to all video chunks,
relying on the empirical value obtained from existing video
chunks. Suppose the cumulative buffering time of video
v from the initial chunk to the chunk c is Nc × L. Then,
assuming the current playback progress is Γ, so the swipe

probability pv,c until the chunk Nc+1 of the next video v is
calculated as:

pv,c(Nc+1) =

∣

∣

∣

∣

Nc × L− Γ

Nc × L

∣

∣

∣

∣

× pv,c(Nc) (1)

where pv,c(Nc+1) represents the probability of subsequent
video chunk. We use a random forest model, to build a
predictive model for swipe behavior probability. The swipe
prediction model is integrated into the short video stream-
ing system. The system monitors real-time playback and
user interaction data to continuously update swipe prob-
ability estimations. More precise decisions regarding the
preloading of short video chunks can be achieved through a
rough estimation of the user’s swipe probability for a given
short video. It is noteworthy that, in practical short video
streaming applications, the real-time playback progress of
short video can be readily tracked a priori [29].

Short-term bandwidth prediction. We learn the dynam-
ics of the network state by extracting short video session
characteristics from historical bandwidth traces to predict
the instantaneous bandwidth of the next interval in the
future. The performance metrics that characterize the net-
work links during short video transmission are generally
described by latency, packet loss and bandwidth. Therefore,
we leverage the feature extraction module to extract these
features from historical network statistics. Nevertheless, the
intricate variations and uncertain fluctuations in network
bandwidth pose a significant challenge to accurately pre-
dicting bandwidth. Hence, there is an urgent need to devise
an appropriate bandwidth prediction model for short video
streaming systems to deliver suitable video responses for
diverse user requests during playback.

To this end, we utilize an online bandwidth prediction
model, specifically the Autoregressive Integrated Moving
Average (ARIMA)-based LSTM model [42], [43], known
for delivering more robust predictions than simple linear
models such as the harmonic mean method. Short-term
bandwidth features are extracted using the ARIMA model
to identify contextual information in the network trajecto-
ries, while the LSTM model captures long-term temporal
dependencies in these trajectories to eliminate biases for
bandwidth prediction. Specifically, during the transmission
of short video streaming, we utilize the historical network
state data of the previous T period to extract the corre-
sponding network features. For each tuple of input, we
consider a three-part network feature: Xt = (Rσt , B

σ
t , P

σ
t ),

where Rσt denotes the Round-trip time (RTT), Bσ
t is the

bandwidth measurement, and Pσt is the network packet loss
rate. These metrics are derived from the real-time internal
state of TCP during the transmission of short videos. In
the LSTM model, we incorporate 64 nodes in hidden layers
and employ the Adam optimizer [44] for training. The final
output Yt is the instantaneous bandwidth prediction over
a short-term period. Therefore, the ARIMA-based LSTM
model enables rapid estimation of network variation trends
for video preloading adaptation in the subsequent decision
models.

3.3 AoI-based Buffer Management

A pragmatic approach to conserve bandwidth involves
regulating the download rhythm of short videos when
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the buffered content surpasses the maximum buffering
threshold. Our proposed solution is an AoI-based Buffer
Management (ABM) module that dynamically orchestrates
short video buffering sequences and releases via online
feedback to achieve smooth playback without sacrificing
QoE during short video playback. Concretely, Gamora dy-
namically adjusts the number and quality of preloaded short
video chunks for subsequent time intervals based on the
current resource availability by alternatively constructing
a video download queue in advance. The ABM algorithm
is designed to accommodate incoming video playback re-
quests, while timely suspension of the preceding buffer
queue to conserve bandwidth resources. It then releases
the buffer queue viewed by users to guarantee valid con-
tent service according to the AoI value. Furthermore, we
incorporate considerations for total buffer occupancy and
queue drain time to ensure that Gamora exhibits specific
properties such as mutual isolation, swipe tolerance, and
bounded bandwidth wastage.

Fine-grained buffer management. Our proposed ABM
module endeavors to optimize buffer utilization through
fine-grained management across the entire buffer space at
the queue level. Specifically, ABM assigns AoI thresholds to
each short video queue by considering the statistics of the
entire buffer in the spatial dimension and the characteristics
of each buffer downloading queue in the temporal dimen-
sion. The threshold dynamically adjusts based on variations
in the total remaining buffers and alterations in network
bandwidth. In case the download queue length approaches
the designated threshold, ABM temporarily suspends the
ongoing download queue to initiate the download of the
subsequent video with inferior priority. Specifically, we
assign the specific threshold Ψv

p(t) to the buffer queues of
short video v with priority p at time t according to Eq. (2),
which primarily takes into account four dynamic factors: (1)
the number of video buffer queues with priority Np; (2) the
drain time of the video occupied queue µv

p, i.e., the short
video playback time; (3) the total buffer space B of client;
and (4) the current occupancy queue space Q. Therefore, the
per-queue threshold Ψp

v(t) is defined as:

Ψp
v(t) = αp ·

1

Np
· (B− Q) ·

µv
p

bt
(2)

where parameter αp defines the buffer queue available to
each priority level of short video. Np indicates the number
of video queues with priority p and µv

p represents the
normalized playback speed of the short video client. The
variables bt is the current bandwidth at time t and B − Q

denotes the remaining buffer occupancy, respectively. To en-
sure practicality, we use empirical values [23] and periodic
measurements for threshold calculation in our evaluations.

To maximize buffer efficiency, we utilize a simple prior-
ity buffering queue sequence to determine the maximum
buffer occupancy. Given the potential for users to swipe
away the video at any moment, we regulate the maximum
queue buffer size contingent on the likelihood of the video
being viewed at the present playback progress. In effect,
it is essential to prevent any priority buffer queue from
monopolizing the buffer, leading to starvation of other prior-
ities. ABM achieves this equilibrium by taking into account
the number of download queues per priority during the

calculation of each queue AoI threshold. To accomplish this,
the calculation of queue thresholds involves considering
the number of download queues for each priority level.
Moreover, we set a maximum buffer size of Bmax to prevent
bandwidth wastage. The amount of buffer queue available
for any priority p of short video v is given by:

Bv
p =

Bmax · αp

1 +
∑

p∈P Np · αp
(3)

where P represents the set of priorities for short videos
within the buffer queue. ABM allocates buffer space in
proportion to the drain time of each downloading queue,
thereby improving buffer efficiency while mitigating the
adverse effects of queuing delays. Intuitively, the bounded
allocation strategy of ABM enables it to absorb small video
bursts, while the stable exhaustion time property further
enhances its swipe tolerance as the unoccupied buffer queue
can promptly respond to incoming short video requests.
In particular, if the buffering duration exceeds the buffer
size, the client would sleep mode for τ seconds to halt the
download of video chunks [41].

AoI-based buffer release. The buffer manager relies
heavily on playback information from various short video
queues for the buffer release process. As users may choose
to review previous short videos at any point, it is essential
to determine the appropriate time to release the buffer
queue to guarantee the valid content service before the AoI
expires. To that end, we use the AoI metric that measures the
elapsed time between the completion of buffer release and
video playback from the user’s perspective. The AoI metric
is predominantly influenced by inter-arrival time, thereby
effectively capturing the short-term playback information of
short video system. Specifically, the AoI value progressively
increases over time and until the corresponding buffer
queue is released from the client buffer space, indicating
that short video information played from an earlier request
becomes outdated and necessitates its release to free up
buffer occupancy. Consequently, we utilize Zv

n(t) to indicate
the AoI received by the video queue in a time slot t. If
the AoI exceeds the threshold, it signals the need to release
and update the buffer with new content, thereby preventing
the playback of outdated short videos. The queue scheduler
does not receive an AoI token about video playback comple-
tion during the time interval of video playback, so its AoI
value is reset to 1. On the other hand, if the queue scheduler
receives the associated information, the AoI value increases
by 1. Consequently, Zv

n(t) is defined as:

Zv
n(t+ 1) =

{

Zv
n(t) + 1, if Qv

n = 1

1, if Qv
n = 0

(4)

where Qv
n indicates the completion of playback for short

video v at time slot t. To guarantee the desired information
freshness of each queue, we need to constrict the AoI value
of playback queue are not larger than a certain threshold
[25], subject to minimize the response delay of requests.

3.4 Preload Decision Engine

The cornerstone of Gamora is its preloading decision engine,
which systematically employs a short video preloading al-
gorithm (Sec. 4) to make rational decisions based on the
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previous information from the aforementioned components.
Concretely, the preloading algorithm contains two phases:
the online phase and the offline phase, respectively. During
the offline phase, we pre-train the RL agent to interact
with the environment, which utilizes them through massive
explorations to derive the preloading model. Subsequently,
Gamora’s policy is further fine-tuned using AIL with pref-
erence as the IL framework until converging to a global
optimum in the online phase. The video preload decision
engine exploits an AIL algorithm to generate appropriate
short video preloading decisions guided by mimicking the
expert policy [45].

4 SHORT VIDEO PRELOADING ALGORITHM

This section provides a comprehensive description of the
short video preloading algorithm.

To expedite convergence and enhance learning efficiency,
we adopt an AIL algorithm with preferences to refine the
short video preloading model for maximizing overall QoE.
Formally, an expert’s policy or sampled trajectories are
acquired to address the short video preloading task. The
trainee learns and adjusts through direct imitation of the
expert’s actions, accessing demonstrations based on their
observations. However, this algorithm may lead to poor
performance when confronted with partial information not
encompassed in the training set. A crucial challenge lies
in ensuring that the expert is cognizant of the trainee’s
knowledge gaps [46], a determination that may be intricate.
This limitation restricts the expert’s capacity to provide
suitable supervision. To tackle this concern, we employ an
AIL algorithm, refining the agent’s policy π(a|s) by incorpo-
rating the trainee’s imitation of the expert. As shown in Fig.
7, the AIL algorithm narrows the policy distance between
the trainee’s and policies to refine the expert’s policy πe by
leveraging additional QoE preference feedback. Utilizing a
pre-trained RL agent, we leverage expert demonstrations
D and the agent’s experience replay buffer to generate
trajectories for updating the discriminator. Subsequently, a
discriminator φ(s, a) is trained to differentiate between the
generated samples, consisting of state-action pairs, and the
expert demonstrations Ld and buffer Le. The discrimina-
tor selects the superior sample, and this iterative process
continues until convergence, signifying that the generated
samples closely resemble those of the expert demonstration.
Facilitated by the discriminator, the agent struggles to emu-
late the expert’s behaviors by executing appropriate actions,
such as selecting short video sequences. In particular, the
AIL approach seamlessly integrates with the RL algorithm,
eliminating the need for manual intervention.

Our adopted AIL with preferences mitigates state un-
certainty by iteratively enhancing the policy through re-
gression learning of expert behaviors, thereby improving
the expected surrogate reward of the asymmetric policy.
Specifically, preferences are acquired by randomly extract-
ing trajectories from the demonstrations or an existing tra-
jectory buffer. This updating process aims to reconstruct
the optimal partially observed policy in conjunction with
the AIL method. To derive the update of the expert policy
πθ , we analyze the cumulative RL objective J(θ) under the
asymmetric policy π∗

θ as follows:

J(θ) =
T
∑

t=1

E
dπ

∗

θ (st)π∗

θ (at|st)

[

Qπ∗

θ (st, at)
]

(5)

where dπθ (st) is the state occupancy, and Qπθ is defined as:

Qπθ (st, at) = Ep(st+1|st,at) [R(st, at) + γV πθ (st+1, at+1)] (6)

where the asymmetric value function is defined as
V πφ(st) = Eπφ(at|st) [Q

πφ(st, at)]. This objective defines the
cumulative discounted rewards that the trainee receives for
various impacts on the expert’s policy, given the current
state-action pairs. The aim is to maximize J(θ) and ensure
that the trainee receives guidance from the sampled expert
demonstrations to update the RL parameters [47].

Our AIL algorithm comprises two layers of optimization
to derive partially observed expert policy based on pre-
vious trajectories. Initially, we utilize preference feedback
to refine the parameters of the expert’s policy, aiming to
maximize the expected reward of the implicit strategy given
the current trainee policy. Subsequently, we use the samples
from the replay buffer to calculate the demonstration loss
and preference loss, optimizing them with respect to ϕ by
projecting them onto the updated implicit policy defined by
the refined expert. Consequently, we optimize a surrogate
reward Jϕ(θ) as:

∇θJψ(θ) = Eπ∗

θ (at|st)d
πψ (st) [Q

πψ (st, at)] +H (π (· | st))
(7)

where Qπψ (st, at) represents the expected cumulative re-
ward under the variational trainee policy, and H (π (· | st))
is the conditional entropy of policy π. The AIL algorithm
gathers samples by rolling out under the mixture policy and
then updates expert policy with an importance-weighted
policy gradient to fit the trainee policy parameters.

Offline pre-training with RL. Gamora’s agent aims to
enhance the user-defined QoE while minimizing the amount
of bandwidth wastage through a DRL-based algorithm in
short video streaming. This involves interacting with the
environment via a trial-and-error learning mechanism to
achieve multi-objective optimization properties. Gamora in-
corporates two significant changes compared to standard
RL-based algorithms [40]. Firstly, a bandwidth prediction
sub-network is integrated into the policy network, enhanc-
ing the tight feedback loops. Secondly, historical short video
requests are employed as state inputs alongside with dy-
namic reward functions. In this way, Gamora can associate
short video requests with the optimal video preloading
policy for maximizing cumulative rewards. Fig. 8 illustrates
Gamora’s neural network (NN) architecture. Further details
about the NN, involving inputs, outputs, and model struc-
ture, are provided below.
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(1) Input state. We logically categorize the agent NN
input into three individual portions, network condi-
tions, buffer statistics, and video features, respectively.
Concretely, we expose a finite subset of states (st ∈
S) as the observations O from dynamic environment,
where the agent c observes current state input Oc

t =
{Y c

t , L
c
t , P lct , Bcct , Qsct , AoIct , Csct , Dtct , V bct , Sw

c
t} at each

time epoch t. These inputs are: predicted bandwidth Y c
t , la-

tency Lc
t , packet loss Plct , current playback buffer occupancy

Bcct , queue size Qsct , AoI token AoIct , chunk size Csct , down-
load time Dtct , chunk quality V bct , and swipe distribution
Swc

t . At each time epoch t, the RL agent typically takes the
current state st as input, the neural network as an optimal
policy πθt , and outputs a target video preloading decision
at to interact with the customized short video system.

(2) Action space. Upon observing current state st, the
RL agent performs an action (at ∈ A) to maximize the
expected cumulative reward (rt ∈ R) based on past state-
action pairs. Specifically, the action space A is denoted as
the available three decisions (i.e., 3-dimensional vector) for
a given short video. Namely, the information required for
download includes the video ID, chunk index, and bitrate.
In each time t, the policy πθt of agent maps observation Oc

t

to compact discrete action space A and select an action at to
enhance QoE performance.

(3) Reward function. After determining actions at, the
RL agent interacts with the short video environment by
adjusting video preloading decisions and then receives a
cumulative discounted reward rt ∈ R to update policy
πθt . The ultimate goal of RL model is to learn to select
the optimal action that maximizes the QoE while minimiz-
ing the wastage. Therefore, we use a well-known reward
function [9] that linearly combines four metrics: perceptual
quality Qi, rebuffering duration Ti, startup latency Li and
bandwidth wastage Wi as:

rt = ω1 ·QoE + ω2 ·Wastage

= ω1 ·

(

Nc
∑

i=1

q(Qi)− µ

Nc
∑

i=1

Ti − δ

Nc
∑

i=1

Li

)

− ω2 ·
Nc
∑

i=1

Wi

(8)

where Nc represent the total number of chunks for each
short video session. q(Qi) maps the bitrate Qi to a utility
value in Mbps, which signifies the quality perceived by the
user. µ and δ are the coefficients. Referring to recent studies
[17], [48], we empirically set these two weights to 1.85 and
0.5, respectively.

(4) NN Architecture. Gamora exploits the Proximal Policy
Optimization (PPO) algorithm [21], a fundamental actor-
critic framework for training NN policies to maximize the

specific reward. In this paper, the architecture of the NN
consists of two networks: the actor and the critic [24].
Before being inputted into the networks, state sequences
are flattened. Each network structure utilizes two 1D-CNN
layers and eight linear fully connected (FC) layers to extract
temporal features. We use the Softmax activation function
with the L2-norm as the last FC layer for both networks,
resulting in optimal video preloading adaptation policy
πθ : S × A → [0, 1]. The actor model produces a 1 × n
dimensional vector representing video id, chunk index, and
bitrate levels with their associated probabilities. The critic
network generates a single scalar to indicate the value
function for the current state. In addition, we instantiate
multiple surrogate agents (default is 8) concurrently to
expedite training using collected tuples in parallel.

Online fine-tuning with AIL. Gamora employs the
AIL algorithm to fine-tune the NN parameters of short
video preloading strategy, minimizing the number of trial-
and-error iterations required for the agent to acquire the
task, consequently expediting convergence. The AIL algo-
rithm enables the agent to receive guidance from an expert
through supervised learning by observing trajectories. The
proficiency of the expert significantly influences the agent’s
performance within the AIL framework. To this end, we
utilize PDAS [41], a rule-based hand-crafted algorithm, as
the expert to guide the fine-tuning process. The selection of
action combinations with superior QoE preferences serves
as the basis for expert policies. The labels accurately reflect
the real-time optimal preloading decisions available for
video network paths. Furthermore, we continually enhance
the rollout of expert’s policies through iterative refinement,
thus improving learning efficiency.

In each i-th round of imitation learning in Gamora, our
goal is to use sampled expert trajectories to formulate a short
video preloading policy πθi that minimizes the imitation
loss of the visited state induced by the previous round’s
policy πθt−1

. The concrete policy πθ∗ is defined as:

πi = πθ∗ = argmin
θ∈ΠΘ

Edπi−1 (s)[ℓ(πθ(s),π
∗(s))] (9)

where ℓ(πθ(s),π∗(s)) represents the imitation loss for ev-
ery state s. To cater to the distinctive features of short
video streaming, Gamora incorporates two customized fine-
tuning strategies: (1) an imitation loss mechanism that de-
rives the update applied to the RL parameters through
the expert policy, and (2) a dedicated method to smooth
swipe transition between short video sequences, which we
elaborate on below.

(1) Imitation loss function. The AIL process involves itera-
tively demonstrating pairs of state-action trajectories instead
of feature-label pairs, which is similar to conventional ap-
proach for supervised learning. Therefore, we leverage the
cross-entropy function for evaluation. For Gamora, the loss
function of the AIL process is described as follows:

LAIL = −
T
∑

t=1

Âe
t log πθ (st, at) (10)

where πθ (st, at) is the actor policy of the agent. The expert
policy generates a list of action probability distributions
denoted by Âe

t , where the value of the expert action is 1
while the others are 0. As for Gamora, even occasional burst
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prediction deviations can negatively affect short video QoE.
To mitigate this, we introduce a cross-entropy approach [48]
to penalize such occurrences. The weights κ(s) are defined
as follows:

κ(s) =

{ 1
2∥πθ(s)− π∗(s)∥2, if πθ(s) ≤ π∗(s)
ξ∥πθ(s)− π∗(s)∥+ 1

2ξ
2, otherwise

(11)
where the parameter ξ generally indicates an auxiliary
penalty for uncertainty over the expert state during training.
Subsequently, the imitation loss is modified as LAIL × κ(s).

(2) Smoothing swipe switch. During the fine-tuning phase,
Gamora strategically integrates the swipe smoothness re-
quirement as a regularization term into the AIL algorithm
to mitigate rebuffering events and video bitrate switches.
Swipe smoothness refers to the seamless video adaptation
of the short video streaming to dynamic network conditions
and user interactions, resulting in a more fluent viewing
experience. Let’s consider the expert policy πθ , which yields
optimal preloading decisions for the previous k time peri-
ods (up to t) as [πθ (st−k) ,πθ (st−k+1) , ...,πθ (st−1)] using
samples D from β proportion of the demonstrator’s obser-
vation–action tuples. Gamora attempts to identify a saddle
point where the predicted value at time interval t aligns
closely with the historical decision-weighted average φ(t, k)
, denoted as:

φ(t, k) =
k
∑

i=1

2−i × πθ(st−i) (12)

where in φ(t, k), the closer trajectories are to historical
expert demonstrations, the better the performance yield. We
integrate the unbiased regularization term into the optimal
policy derivation objective with a weight λ to estimate πθ as
follows:
πθ∗ = argmin

θ∈ΠΘ

Est∼d
πi−1 [ℓ(πθ(st),π

∗(st)) + λ∥πθ(st)− φ(t, k)∥]

(13)
The AIL algorithm iteratively updates the model parame-
ters θ with the stochastic gradient descent method [49] to
improve the convergence efficiency, which provides a swipe
smoothness guarantee simultaneously.

5 IMPLEMENTATION

In this section, our implementation of Gamora comprises
two primary components: real-world testbed and trace-
driven simulator. We then present the corresponding net-
work/video datasets and existing baselines.

TABLE 1. Gamora training/testing parameter settings.

Parameter Notation Value

Actor & Critic learning rates lr 10−4, 10−3

PPO Clip parameter & steps ϵ, t 0.2, 20

GAE parameter & AIL weight σ,λ 0.95, 0.5

Discount factor γ 0.99

Number of workers N 16

Expert policy proportion β 0.5

5.1 Experimental Setup

Testbed implementation. We establish an end-to-end short
video streaming prototypical testbed and utilize public real-
world network datasets to validate the performance of
Gamora. As shown in Fig. 9, the system predominantly
consists of three PCs and a mobile phone, interconnected
via a network router. Specifically, the server runs Ubuntu
20.04 LTS with Intel Xeon Gold 6226 CPU @2.90GHz and
Nvidia RTX 3090 GPU. The PCs act as the HTTP content
server, running WebRTC [21] in the Nginx server to host
short video contents and using Linux TC tool [10] to throttle
network traffic. Gamora operates as a Python daemon. It
integrates with an asynchronous RL server using gRPC to
execute HTTP requests. When receiving HTTP requests to
predict short video preloading workflow, the HTTP RPC
is invoked for execution. Moreover, the client is a Dash.js-
based media player [50] deployed on a rooted mobile phone
(Android 12), which extends the Node.js configuration to
facilitate short video playback.

Trace-driven simulator. We use TensorFlow 2.4.0 [51]
and Ray 2.6.0 [52] to train Gamora’s model architecture and
construct the multiple parallel training workflows in the RL
server. To hasten the model training process, we also utilize
a trajectory-driven chunk-level simulator, derived from the
existing simulator provided by Grand Challenges [53], to
simulate a typical short video application. Furthermore,
the simulator automatically generates the user’s viewing
behavior during video playback, taking the users’ swipe
patterns into account. It emulates the video player under
various network conditions and faithfully records the cru-
cial video chunk characteristics for efficient evaluation, such
as the encapsulation of experience tuples and bandwidth
overhead. The performance of Gamora significantly relies
on the training parameter settings, so we empirically set the
parameters as outlined in Table (1).

5.2 Methodology

Network traces. We use diverse users’ mobility network
traces to simulate the bandwidth throttling between servers
and clients. These traces are sourced from the real-world
commercial network measurements [34] and Lumos net-
work dataset [35], which we used for evaluation. We
randomly select synthetic network traces from individual
datasets, where the inter-variation duration maintains a
consistent interval of 1 second between bandwidth values.

Video datasets. We utilize the H.264 codec in FFmpeg

(version 4.3.6) to encode the public Big Buck Bunny (BBB)
dataset [50] into various video segments, each lasting a fixed
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Fig. 10. The performance of various algorithms in terms of QoE and
bandwidth utilization across diverse network traces.
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Fig. 11. The CDF of average QoE by various algorithms under Lumos
dataset.

number of seconds at 30 fps and available at five represen-
tative bitrates/resolutions (e.g., 1080P). For simplicity, we
randomly selected a subset of the Kuairand dataset [23] to
create a representative distribution of user swipe behaviors.
Specifically, we split the video datasets, assigning 80% for
training usage and the remaining 20% for testing.

Baseline algorithms. We compare four representative
state-of-the-art baselines to evaluate the performance of our
proposed Gamora solution. All algorithms are implemented
in the same environment:

• Alfie [1]: It utilizes a vanilla DRL-based algorithm to
optimize the user’s QoE for short videos w.r.t. the
current throughput-bound to improve the long-term
streaming performance.

• DUASVS [15]: It develops an Integrated Learning
algorithm to predict throughput using historical net-
work conditions, and then dynamically determines
short video bitrates and prefetch threshold to miti-
gate data loss during playback.

• PDAS [41]: It leverages a probability-driven buffer-
based adaptive bitrate approach to balance the trade-
off between QoE and bandwidth wastage in short
video streaming.

• Dashlet [11]: It accounts for the complexity of user’s
swipe pattern and proposes a greedy algorithm to
strategically determine the potential short video pre-
buffering sequences and bitrate selection for maxi-
mizing overall QoE.

6 PERFORMANCE EVALUATION

This section evaluates the performance of Gamora by in-
crementally setting up different components under various
network conditions and measures the influence of such
configurations on the performance of short video streaming.
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Fig. 12. The performance of different preloading algorithms under vari-
ous network conditions in term of bitrate and rebuffering.
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Fig. 13. The performance of different preloading algorithms under vari-
ous network condition in term of latency and bandwidth wastage.

6.1 Comparison with Baseline Algorithms

We conduct a comparative analysis between Gamora and
existing baseline algorithms using the uniform Lumos net-
work traces [35]. Fig. 10 illustrates the result of the average
QoE value computed according to Eq. (8) and bandwidth
utilization. Our findings indicate the following: (1) Gamora
consistently outperforms the four comparing algorithms
in terms of the QoE metric under all dynamic network
conditions. On average, the QoE improvement between the
closest competing solutions remains 8.3% and 44.7% for 4G
and 5G networks, respectively. (2) The performance of the
four benchmark algorithms is relatively similar. For exam-
ple, PDAS exhibits a marginal improvement in 5G networks
and worse in 4G networks. Moreover, Fig. 10b illustrates
the bandwidth utilization and the average startup latency
during short video playback. Our analysis reveals that
Gamora achieves a throughput gain of 7.8%, 10.1%, 16.9%,
and 3.1% compared to DUASVS, PDAS, Alfie, and Dashlet,
respectively, while experiencing only a negligible increase in
startup delay. Our investigation attributes Gamora’s success
to its ability to make accurate decisions regarding short
video preloading adaptation and fine-grained buffer man-
agement during short video playback.

Fig. 11 illustrates the Cumulative Distribution Function
(CDF) of average QoE for competitive baselines under
heterogeneous network conditions. The CDF distribution
curves, shown in Fig. 11a and Fig. 11b, provide evidence
of the consistent performance of Gamora. Gamora also
demonstrates a noteworthy improvement in average QoE,
ranging from 28.7% to 51.4% when compared to other base-
line algorithms. It is intriguing to note that Gamora exhibits
varying performance levels in different QoE ranges. Under
5G network condition, 80% of the average QoE exceeds
50, whereas under 4G conditions, only about 80% of the
average QoE value exceeds 20. For example, in Fig. 11a,
in contrast to its competitors, Gamora exhibits superior
performance in the high QoE range but significantly lags
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Fig. 15. QoE performance of Gamora with different chunk lengths.

in the low to medium QoE range. This behavior is due
to the multidimensional exploration of action space. With
immediate guidance from expert demonstration, Gamora
can effectively adapt to network bandwidth fluctuations and
determine the appropriate short video preloading sequences
for transmission during playback.

6.2 End-to-end QoE Improvement

Fig. 12 and Fig. 13 demonstrate the impact factors con-
tributing to the overall QoE of short video streaming for
Gamora vs. the baselines. Gamora consistently exhibits a
prominent lead in both QoE metrics during video playback,
containing bitrate, rebuffering, startup latency, and band-
width wastage. Specifically, under the Lumos5G network
conditions, Gamora outperforms the superior Dashlet by
6.1% in bandwidth wastage, because Gamora mitigates ex-
cessive buffering by strategically pausing video download
sequences that surpass the buffering threshold and initiat-
ing the download of the subsequent video. Furthermore,
Gamora achieves significant improvements by reducing the
buffering time by 26.8%-73.5%, startup latency by 19.4%-
29.7%, and 40.7%-83.2% bandwidth wastage while increas-
ing video chunk bitrates by 54.1%-82.4% compared to other
baselines. Gamora’s superior performance is due to its pre-
cise and rapid video preloading approach to maximize the
expected cumulative reward explicitly, thus mitigating the
uncertainty associated with user swipes and network con-
ditions during video playback. Moreover, relative metrics
such as video bitrate exhibited superior performance under
5G conditions, aligning with real-world expectations. The
high bandwidth and low latency of 5G contribute to an
enhanced video viewing experience for mobile short video
streaming. Nevertheless, the augmented bandwidth often
leads to instant download completion of short videos, which
tends to waste bandwidth because users may only watch a
portion of the downloaded video before swiping away.
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Fig. 16. Video performance of Gamora with different queue numbers.
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Fig. 17. Impact of network prediction and swipe estimation errors.

We demonstrate Gamora’s prompt adaptation to new
short video requests by average reward and loss, as indi-
cated in Fig. 14. We compare Gamora’s and Alfie’s training
logs on the Lumos5G dataset, aiming to evaluate the train-
ing efficiency of our asymmetric expert-guided algorithm
and RL algorithm. Fig. 14a illustrates that Gamora consis-
tently achieves higher rewards compared to Alfie within a
low amount of interactions. Because Alfie initially adopts
a suboptimal strategy, which requires a prolonged conver-
gence period to reach the global policy. This challenge arises
from the demand for an extensive exploration of future
short video preloading sequences to unveil all possible
state spaces that surrogate agents can generate. In contrast,
Gamora efficiently achieves expert-level strategies in signifi-
cantly lower 50k epochs through fine-tuning based on asym-
metric imitation learning. Moreover, we also observe that
Gamora converges at a higher pace than Alfie in Fig. 14b.
Our proposed asymmetric imitation fine-tuning framework
empowers Gamora to progress substantially with expert
guidance during the RL fine-tuning phase.

6.3 Understanding Gamora In-depth

Impact of chunk size. Similar to traditional long video
streaming, Gamora divides the short videos into fixed-
duration chunks along the temporal dimension. We explore
the impact of dynamic video chunk lengths, such as 1s, 2s,
3s, and 4s, on Gamora’s performance. We also Gamora’s
performance based on a fixed byte size (1M). Fig. 15 illus-
trates the average QoE and bandwidth wastage of video
chunks for short video streaming. As depicted in Fig. 15a,
the performance of Gamora exhibits a steady decline as the
chunk size increases. For instance, when the video chunk
length increases from 1s to 4s, the average QoE decreases by
35.9%. Fig. 15b reveals the relationship between chunk size
and bandwidth wastage, with larger chunk size resulting
in higher bandwidth wastage. The underlying reason is
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Fig. 18. The performance of different short video streaming algorithms
under various network condition in term of buffer size.

that substantial chunks of the download remain unviewed
than requested whenever a user performs a swipe action
by the client, leading to a higher volume of wasted bytes.
Consequently, we advocate Gomora splits video into 2s
chunks by default to enhance video QoE while reducing
the bandwidth volume during playback.

Impact of queue number. Gamora downloads short
videos by maintaining concurrent buffer queues. We con-
duct a quantitative study under the Lumos5G conditions to
validate the impact of buffer queues. Fig. 16 demonstrates
the buffer queue utilized by Gamora in regard to end-to-
end latency and buffer occupancy. In Fig. 16a, we observe
that an increase in the number of candidate videos for
download leads to longer download times. However, this
problem is mitigated by efficiently increasing the number
of download queues. For instance, maintaining ten queues
results in a 60.3% reduction in average latency compared to
only having one queue. Simultaneously, employing multiple
buffer queues helps alleviate spikes in short video requests,
thereby reducing end-to-end latency. Furthermore, there is
a rapid increase in buffer occupancy with the growing
number of download queues, sustaining prolonged buffer
consumption times, as illustrated in Fig. 16b. On average,
Gamora experiences a buffer occupancy increase of approx-
imately 7 seconds, enabling it to adeptly handle arbitrary
swipes without incurring short video stall events.

Impact of prediction error. We conduct further anal-
ysis to evaluate the QoE influence of users’ swipe distri-
bution and network prediction errors, as depicted in Fig.
17. Specifically, we run an Oracle baseline to serve as a
benchmark for normalized average QoE. The oracle is the
Gamora with a priori knowledge of user swipe behaviors
and network throughput traces, free from any prediction
errors. Fig. 17a presents the outcomes under the influence
of network prediction errors. We find that the average QoE
declines rapidly as the prediction error increases. Gamora’s
QoE diminishes to 81% and 72% of its value when the
network estimate is overestimated or underestimated by
50%, respectively. Because underestimating throughput con-
sistently prompts the selection of lower-quality short videos
or even the suspension of the download. Fig. 17b illustrates
the results regarding the swipe estimation errors. Herein,
overestimation denotes the case where users watch longer
than the correct distribution, i.e., swipe short video later.
Gamora exhibits significant resilience to prediction errors,
maintaining a prediction error margin of no more than 20%
compared to the benchmark (no error) while achieving a
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Fig. 19. Overhead of Gamora system during short video playback.

normalized QoE value of 80% or more.
Impact of buffer management. To thoroughly evaluate

the available buffer occupancy, we investigate the Gamora
performance under various network conditions. As shown
in Fig. 18, we demonstrate the buffer occupancy size of
the short video preloading algorithm in different network
environments. We observe that as the short video playback
starts, all algorithms download the video chunks quickly
and maintain the current buffer within an appropriate range
to avoid video lag and unnecessary data wastage during
video sessions. Gamora outperforms the baselines, main-
taining an average buffer size of 32.3MB. Additionally, the
5G network provides higher bandwidth compared to the
4G network, resulting in a higher available buffer for the
Gamora algorithm under 5G conditions. It is worth noting
that even at high bandwidth, the buffer occupancy does not
continuously increase but stabilizes at a relatively high level.

System overhead. Fig. 19 illustrates the system overhead
of Gamora during short video playback. Specifically, Fig.
19a demonstrates the CPU and memory utilization of the
Gamora algorithm inference throughout the entire exper-
iment. The average CPU and memory utilization rates of
Gamora are 23.57% and 4.13GB, respectively. Considering
the computational capabilities of the client (16 GB memory),
the overhead introduced by the Gamora algorithm is within
an acceptable range. We further compare the runtime of
Gamora with other benchmark algorithms during short
video playback. Fig. 19b illustrates the breakdown of run-
time. Notably, the preloading time significantly exceeds the
model inference time. Heuristic-based algorithms, Dashlet
and PDAS, have shorter inference time compared to DRL-
based algorithms. Among the DRL-driven algorithms, our
proposed Gamora algorithm has a much shorter inference
time than DUASVS and Alfie. This is primarily due to
the low computational complexity of Gamora, achieved
through AIL fine-tuning. The results indicate that while
there is some overhead, it remains within acceptable limits
for most practical video applications.

7 RELATED WORK

This section briefly summarizes relevant literatures on opti-
mizing short video streaming and imitation learning.

Short video streaming. Recent advancements in short
video streaming show great potential for enhancing the
video QoE by utilizing adaptive video algorithms. In gen-
eral, it falls into two categories: (1) Heuristic-based algo-
rithms [14], [15], [16] and (2) learning-based algorithms [18],
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[19], [20]. Specifically, heuristic-based algorithms typically
use estimated bandwidth [7], buffer status [8], or a combina-
tion [5], [37] to optimize the QoE for users. APL [14] utilizes
Lyapunov optimization theory to provide near-optimal on-
line decisions for the short video preloading problem. Dash-
let [11] accounts for the complexity of user’s swipe pattern
and proposes a greedy algorithm to determine the potential
short video prefetching sequences for maximizing overall
QoE. However, such pre-defined generic rules are difficult to
adapt to diverse heterogeneous networks and complicated
interactive applications. Besides, learning-based algorithms
apply DRL techniques [9], [18], [21], [50] to make appropri-
ate decisions with observed features from the video stream-
ing environment. DAM [19] incorporates user interactions
and action masking into the RL agent for predicting the
next requested short video segment. LiveClip [20] presents
a Markov model to design a practical streaming policy for
mobile short-form videos. Huang et al. propose DeepBuffer,
a DRL-based algorithm that simultaneously determines ap-
propriate bitrate ladders and controls buffer size to enhance
the user’s QoE during video streaming [54]. Nevertheless,
these algorithms depend on extensive training data, which
impedes rapid adaptation to dynamic environments. There
are several studies to handle QoE optimization problem
from diverse perspectives, including multi-path delivery
[30] and short video recommendations [4], [28]. But all these
works maintain a common prerequisite: the sequence of
video playback matches the sequence of video downloads.
In contrast, Gamora not only considers swipe complexity,
but also overcomes buffer management under dynamic
network conditions to effectively enhance QoE while mit-
igating bandwidth wastage.

Imitation learning. Imitation learning [27] has been
applied in various research domains [18], [46], [55], given
its robust learning capacity, such as task allocation and
video streaming, etc. Wang et al. [46] devise an IL-driven
online task scheduling algorithm in the vehicular edge
computing environment. Comyco [17] stands out as the
pioneering effort to integrate the IL algorithm into bitrate
decision tasks, contributing to the efficient exploration of
optimal streaming policies for on-demand video. Zhou et
al. [48] propose an IL-enabled online algorithm to leverage
the characteristics of codec and transport layers for opti-
mal bitrate selection in video telephony. However, existing
methods have a serious limitation [45]: the trainee usually
concentrates on a single expert policy interaction whilst
neglecting crucial feedback from training data, which could
lead to the possibility of making sub-optimal choices under
partially observed information. Therefore, we leverage a
well-designed AIL-enabled approach to orchestrate the roll-
out of efficient expert demonstrations for video preloading
optimization problem to accelerate learning convergence in
the short video system environment.

8 CONCLUSION

In this paper, we have presented Gamora, a buffer-aware
learning-based short video streaming system, to enhance the
user’s QoE. Gamora strategically determines and enforces
appropriate short video preloading sequences through fine-
grained network prediction, swipe estimation, and AoI-

based buffer management online feedback techniques.
Moreover, we further devise an asymmetric imitation learn-
ing algorithm to efficiently guide agents via expert demon-
strations to explore and adapt to optimal policy to gener-
ate appropriate video preloading sequences. We develop
a holistic prototype for short video streaming system to
assess the effectiveness of Gamora. Extensive experimen-
tal results have demonstrated that Gamora significantly
enhances video quality and mitigates bandwidth wastage
compared to state-of-the-art baselines.
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