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‭Abstract‬

‭The bacterial order‬‭Pelagibacterales‬‭(SAR11) is among‬‭the most abundant and widely‬

‭distributed microbial lineages across the global surface ocean, where it forms an integral‬

‭component of the marine carbon cycle. However, the limited availability of high-quality‬

‭genomes has hampered comprehensive insights into the ecology and evolutionary history of this‬

‭critical group. Here, we increase the number of complete SAR11 isolate genomes fourfold by‬

‭describing 81 new SAR11 strains from seven distinct lineages isolated from coastal and offshore‬

‭surface seawater of the tropical Pacific Ocean. We leveraged comprehensive phylogenomic‬

‭insights afforded by these isolates to characterize 24 monophyletic, discrete ecotypes with unique‬

‭spatiotemporal patterns of distribution across the global ocean, which we define as genera. Our‬

‭data illustrate fine-scale differentiation in patterns of detection with ecologically-relevant gene‬

‭content variation for some closely related genomes, demonstrating instances of ecological‬

‭speciation within SAR11 genera. Our study provides unique insight into complex environmental‬

‭SAR11 populations, and proposes an ecology-informed hierarchy to pave a path forward for the‬

‭systematic nomenclature for this clade.‬
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‭Main ‬

‭SAR11 marine bacteria are a genetically diverse, order-level lineage of heterotrophs‬

‭within the‬‭Alphaproteobacteria‬‭known as the‬‭Pelagibacterales‬‭(Grote et al. 2012)‬‭that‬

‭numerically dominate planktonic communities across the global ocean‬‭(Morris et al. 2002;‬

‭Carlson et al. 2009; Eiler et al. 2009; Schattenhofer et al. 2009; Becker et al. 2019)‬‭. Associations‬

‭between the spatiotemporal distribution of operationally defined subclades and environmental‬

‭variables suggest the presence of distinct ecotypes within SAR11‬‭(Carlson et al. 2009; Eren et al.‬

‭2013a; Delmont et al. 2019; Tucker et al. 2021)‬‭. Previous‬‭studies further support the functional‬

‭differentiation of subclades‬‭(Grote et al. 2012; Thrash‬‭et al. 2014)‬‭, even across short‬

‭biogeographical distances‬‭(Tucker et al. 2024a)‬‭. While‬‭limited in number, the available‬

‭high-quality SAR11 genomes have demonstrated that this group is a remarkably cohesive genetic‬

‭assemblage‬‭(Grote et al. 2012)‬‭, making it an attractive‬‭model to study the capacity of a‬

‭minimalist genome to reach stunning levels of success.‬

‭Since the first observation of SAR11 through environmental 16S rRNA gene fragments‬

‭over three decades ago‬‭(Giovannoni et al. 1990)‬‭, microbiology‬‭has benefited from a dramatic‬

‭increase in microbial sequence data recovered directly from the environment, offering‬

‭representative genomes for many difficult to cultivate microbial lineages‬‭(Hug et al. 2016)‬‭.‬

‭However, even the most comprehensive genome-resolved surveys of marine metagenomes have‬

‭failed to yield high-quality SAR11 genomes‬‭(Paoli‬‭et al. 2022)‬‭, resulting in limited insights into‬

‭what constitutes ecologically meaningful units within this broad group. The extensive intra-clade‬

‭diversity of SAR11‬‭(Tsementzi et al. 2016; Kiefl et‬‭al. 2023)‬‭confounds the ability to reconstruct‬
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‭environmental genomes from metagenomes‬‭(Delmont et al. 2018; Tully et al. 2018)‬‭, which is‬

‭why one of the most abundant microbial clades in marine systems suffers from poor‬

‭representation in genome-resolved metagenomics surveys‬‭(Chang et al. 2024)‬‭. Circumventing‬

‭the need to assemble complex metagenomes first for genome recovery, single-cell sorting‬

‭techniques have been much more effective in sampling environmental SAR11 populations‬

‭through single-amplified genomes (SAGs). However, in an extensive effort to characterize‬

‭surface ocean microbes, the estimated genome completion of SAGs that could be affiliated with‬

‭SAR11 remained below 60%‬‭(Pachiadaki et al. 2019)‬‭,‬‭a level that prevents robust phylogenomic‬

‭insights. Such barriers have led to a reliance on isolate genomes to investigate the evolution of‬

‭SAR11 populations‬‭(Vergin et al. 2007; Wilhelm et‬‭al. 2007; Thrash et al. 2011; Grote et al.‬

‭2012; Muñoz-Gómez et al. 2019)‬‭, yet following this‬‭path has been impeded by another‬

‭formidable challenge: the difficulty of cultivating SAR11 in the laboratory, even with genomic‬

‭insights regarding its unique growth requirements‬‭(Tripp et al. 2008; Carini et al. 2013; Sun et al.‬

‭2016)‬‭.‬

‭The first successful cultivation of SAR11 in 2002 resulted in the isolation of‬‭Pelagibacter‬

‭ubique‬‭strain HTCC1062‬‭(Rappé et al. 2002)‬‭, followed‬‭by the publication of its complete‬

‭genome‬‭(Giovannoni et al. 2005)‬‭. Over the past two‬‭decades, additional isolate genomes have‬

‭been few, with only 25 currently available. Despite their rarity, high-quality genomes from‬

‭isolated strains not only shed light on SAR11 biology‬‭(Schwalbach et al. 2010; Sun et al. 2011;‬

‭Carini et al. 2013)‬‭and the origins of this lineage‬‭within the‬‭Alphaproteobacteria‬‭(Thrash et al.‬

‭2011; Grote et al. 2012; Muñoz-Gómez et al. 2019)‬‭,‬‭but also have made it possible to establish‬

‭key concepts in biology such as genome streamlining‬‭(Schwalbach et al. 2010; Sun et al. 2011;‬
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‭Grote et al. 2012; Viklund et al. 2012; Giovannoni et al. 2014; Giovannoni 2017)‬‭and investigate‬

‭the evolutionary processes that shape protein evolution‬‭(Delmont et al. 2019; Kiefl et al. 2023)‬‭.‬

‭Here we report 81 high-quality genomes from SAR11 strains, increasing the number‬

‭available for SAR11 isolates by fourfold, and leverage this new collection to build a robust‬

‭genome phylogeny for the order‬‭Pelagibacterales‬‭. By‬‭incorporating publicly available,‬

‭high-quality single-cell genomes and surface ocean metagenom‬‭es from both a steep, nearshore to‬

‭open-ocean local environmental gradient and elsewhere from around the globe, we reveal‬

‭cohesive patterns of genomic and ecotypic diversification. We propose a framework through‬

‭which to characterize and interpret genome heterogeneity at multiple stages along the‬

‭evolutionary history of SAR11 marine bacteria, and establish a roadmap for future efforts to‬

‭organize this globally abundant bacterial clade.‬

‭Results‬

‭Eighty-one high-quality genomes sequenced from 206 newly isolated SAR11 strains and‬

‭co-cultures‬

‭Three dilution-to-extinction culturing experiments using surface seawater collected from‬

‭nearshore and adjacent offshore environments of Oʻahu, Hawaiʻi, in the tropical Pacific Ocean‬

‭resulted in 916 isolates from 2,102 inoculated cultures (Table 1; Supplemental Fig. 1). Using a‬

‭streamlined isolate-to-genome approach, we identified 206 cultures as either pure SAR11 strains‬

‭or mixed cultures with at least 50% of the total reads matching a SAR11 strain via 16S rRNA‬

‭gene amplicon sequencing (Supplemental Table 1), and sequenced draft genomes from 90.‬

‭ Manual curation resulted in 79 high-quality SAR11 isolate genomes. The genomes from two‬
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‭strains (HIMB123 and HIMB109) isolated from a previous culture experiment were also added‬

‭(Brandon 2006)‬‭, resulting in 81 new SAR11 genomes‬‭from isolates. The majority of these‬

‭(n=60) assembled into ten contigs or less, including 24 closed genomes and an additional 30‬

‭containing one to three contigs. They ranged from 1.00 to 1.54 Mbp in size and GC content of‬

‭28.5 to 30.7% (Supplemental Table 2). The median pairwise‬‭genome-wide average nucleotide‬

‭identity (gANI)‬‭value across all genomes was 81.8%‬‭and none of the 81 new isolate genomes‬

‭were identical. Having captured a genetically diverse array of SAR11 isolates, we used a‬

‭phylogenomic approach to characterize evolutionary relationships between these genomes and to‬

‭high-quality single-cell and isolate genomes previously retrieved from seawater.‬

‭Table 1. Summary of high-throughput culturing (HTC) experiments.‬

‭Site‬ ‭Inoculum source‬ ‭Inoculum size‬
‭(# of cells)‬

‭Cultures‬
‭screened‬

‭Positive‬
‭cultures‬

‭SAR11‬
‭genomes‬

‭SB‬ ‭raw seawater‬ ‭5‬ ‭576‬ ‭339‬ ‭53‬
‭STO1‬ ‭raw seawater‬ ‭5‬ ‭576‬ ‭126‬ ‭16‬
‭STO1‬ ‭cryopreserved seawater‬ ‭5‬ ‭480‬ ‭142‬ ‭9‬
‭STO1‬ ‭cryopreserved seawater‬ ‭100‬ ‭470‬ ‭343‬ ‭1‬

‭A comprehensive genome phylogeny reveals a robust evolutionary backbone populated by‬

‭clusters of closely related genomes‬

‭We first sought to resolve relationships between the strains isolated in this study and‬

‭other publicly available high-quality‬‭Pelagibacterales‬‭genomes to precisely establish where the‬

‭new genomes originate from within the broad spectrum of known SAR11 diversity. For this, we‬

‭created a database that, in addition to the 81 genomes presented here, included 25 public SAR11‬

‭isolate genomes, 8 of which were also isolated from off the windward coast of Oʻahu, Hawaiʻi,‬

‭and 375 SAR11 single-amplified genomes (SAGs) estimated to be‬‭>‬‭85% complete with a‬
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‭redundancy <5% (Supplemental Table 3). We also included five additional SAR11 SAGs of‬

‭potentially unique evolutionary origin in this collection‬‭(Vergin et al. 2013; Thrash et al. 2014)‬‭,‬

‭though we excluded genomes from putative SAR11 subgroups IV‬‭(Vergin et al. 2013)‬‭and V‬

‭(Thrash et al. 2011)‬‭due to their unlikely or, at‬‭a minimum, uncertain shared common ancestry‬

‭with SAR11‬‭(Thrash et al. 2011; Viklund et al. 2013;‬‭Haro-Moreno et al. 2020; Muñoz-Gómez et‬

‭al. 2022)‬‭. This resulted in a curated collection of‬‭481 SAR11 genomes to assess the evolutionary‬

‭backbone for SAR11.‬

‭Previous studies investigating phylogenomic relationships within the‬

‭Alphaproteobacteria‬‭utilized a curated set of 200‬‭single-copy core genes (SCGs) for this‬

‭bacterial class‬‭(Wang and Wu 2013; Muñoz-Gómez et‬‭al. 2019)‬‭. We evaluated the presence of‬

‭these 200 SCGs across our genome dataset, and excluded genes missing in more than 90% of the‬

‭481 SAR11 genomes. This resulted in a SAR11-specific SCG set of 165 genes for downstream‬

‭phylogenomic analyses, referred to hereafter as the SAR11_165 core gene set (Supplemental‬

‭Table 4).‬

‭Our analysis of the 481 genomes using the SAR11_165 gene set revealed that the SAR11‬

‭clade consists of four robust, deeply-branching sublineages (Fig. 1; Supplementary Fig. 2). Three‬

‭of these branches were the previously characterized subclades Ic‬‭(Vergin et al. 2013)‬‭, II‬‭(Suzuki‬

‭et al. 2001)‬‭, and III‬‭(Morris et al. 2005)‬‭, while‬‭the fourth was a combination of established‬

‭SAR11 subclades Ia and Ib‬‭(Suzuki et al. 2001)‬‭, which‬‭did not form separate monophyletic‬

‭subclades in this comprehensive genomic dataset and robust phylogenetic analysis. If the SAR11‬

‭clade is assigned to the taxonomic level of a bacterial order, then these four lineages logically‬

‭resolve to the taxonomic level of families.‬
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‭We further removed genomes from this initial tree in two steps. First we excluded SAGs‬

‭that did not fall into a 90% gANI cluster of at least three genomes to focus our analyses on‬

‭well-resolved regions of the tree. Second, we de-replicated the remaining genomes using a‬

‭conservative cutoff of 95% gANI to minimize subsequent competitive metagenomic recruitment‬

‭steps splitting reads among closely related genomes‬‭(Evans and Denef 2020)‬‭. While the 95%‬

‭ANI cutoff is broadly recognized in contemporary microbiology as a threshold to identify‬

‭microbial species, it over-splits ecologically and evolutionarily cohesive units in SAR11 and‬

‭does not delineate species-like groups. We note that the reason behind our use of the 95% ANI in‬

‭this step of our analysis was solely to establish a technically robust workflow prior to‬

‭competitive read recruitment rather than a biologically meaningful partitioning of our genomes, a‬

‭challenge our study focuses on later.‬

‭We then turned our attention to the distal end of the phylogeny, which contained a large‬

‭number of well supported clusters of closely related genomes, particularly within the Ia/Ib‬

‭subgroup that contained 78 of the 81 new isolate genomes. A phylogeny of the resulting 268‬

‭genomes revealed 24 monophyletic clusters within the historical Ia/Ib subgroup that were‬

‭characterized by a range of gANI values from 84% to 96% (92.1 ± 2.94%; mean ± SD) (Fig. 1,‬

‭Supplemental Fig. 3). While a handful of these clusters were recognized previously, we defined‬

‭an additional 11 here (Fig 1; Supplemental Table 5). Twelve of the 24 clusters contained an‬

‭isolated representative, and eight contained at least one isolate from our study area in the tropical‬

‭Pacific.‬

‭In summary, our extensive phylogenomic analysis of SAR11 revealed 24 monophyletic‬

‭clusters within the historical Ia/Ib subgroup which included the majority of SAR11 SAGs and the‬
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‭new and previously published isolate genomes. The non-uniform minimum gANI estimates‬

‭suggest that the application of sequence-based ANI thresholds to demarcate SAR11 diversity‬

‭may obscure important evolutionary signals. Hypothesized drivers of the maintenance and‬

‭partitioning of genomic diversity in SAR11 include niche-based processes, where genetically‬

‭cohesive clusters also display ecological homogeneity and the underlying genetic diversity is‬

‭maintained by similar forces of selection, recombination, and drift. To understand the potential‬

‭eco-evolutionary forces that shape SAR11 diversification, we turned to metagenomic read‬

‭recruitment analysis to recover biogeographical distribution patterns for our genomes across the‬

‭globe.‬
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‭Fig 1. Comprehensive phylogenies of the‬‭Pelagibacterales‬‭.‬‭A comparison between an‬
‭exhaustive phylogeny (left panel) with 481 SAR11 genomes (106 isolates and 375 SAGs) and a‬
‭pruned phylogeny (right panel) with 268 genomes (50 isolates and 218 SAGs), based on a‬
‭curated SAR11-specific set of 165 genes. Genomes included in the pruned phylogeny are‬
‭indicated with a dark blue bar in the left panel, and the origin of isolate genomes is indicated for‬
‭both phylogenies.‬
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‭Global read recruitment from the surface ocean reveals broadly congruent phylogenetic‬

‭and ecotypic diversification across SAR11‬

‭Our competitive metagenomic read recruitment assessed the distribution of the 268‬

‭SAR11 genomes around the globe and relied upon 950 publicly-available marine metagenomes,‬

‭as well as metagenomes from the Kāneʻohe Bay Time-series (KByT), the location of isolation‬

‭for the 81 new and 9 of the 25 existing isolate genomes (Supplemental Table 6; Supplemental‬

‭Table 7). These data enabled us to investigate whether cohesive genomic and ecological groups,‬

‭or ecotypes, could be discerned by combining SAR11 phylogeny and biogeography.‬

‭Our first priority was to establish whether genome clusters within a given SAR11 clade‬

‭showed cohesive read recruitment profiles across metagenomes, or, in other words, whether the‬

‭ecological patterns revealed by a single genome were similar to all genomes within the group to‬

‭which it belonged. Detection values for multiple genomes within a genome cluster showed a‬

‭high degree of cohesion (Fig. 2; Supplemental Table 8; Supplemental Table 9). For example,‬

‭representatives from Ia.3.IV, Ia.3.I, Ia.4_II, Ia.4.N2, Ia.4.N5, Ib.1.III, and Ib.4.N9 are particularly‬

‭consistent within the genome clusters (Fig. 2). Consistent overlap between SAGs and isolate‬

‭genomes within the same clade demonstrated that both genome types accurately reflect‬

‭distribution patterns for closely related populations as inferred by phylogeny (Fig. 2). A‬

‭non-metric multidimensional scaling (NMDS) analysis of the overall detection patterns of‬

‭genomes across metagenomes consistently grouped genomes within a given clade more closely‬

‭compared to those that belonged to other genome clusters (Supplemental Fig. 4), further‬

‭supporting a high degree of intra-clade ecological cohesion.‬
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‭Our second priority was to establish insights into whether SAR11 genome clusters‬

‭differed in their biogeographical patterns, and whether genome clusters identified SAR11‬

‭populations of distinct ecology. Hierarchical clustering of metagenomes based on SAR11‬

‭detection patterns revealed four groups: metagenomes that originated from (1) low-latitude‬

‭samples, (2) high-latitude samples with low SAR11 diversity, (3) low-latitude samples with high‬

‭SAR11 diversity, as well as (4) samples from coastal Kāneʻohe Bay (Fig. 2). Many SAR11‬

‭genome clusters were indeed differentially distributed across these metagenome groups. For‬

‭example, Ia.4.II and Ia.4.N5 were only consistently found in groups 3 and 4, while Ia.3.IV was‬

‭found across group 1 and only in select sites in groups 3 and 4 (Fig 2). However, in multiple‬

‭cases, the environmental detection patterns of different phylogenomic genome clusters‬

‭overlapped; while there was some degree of inter-clade ecological differentiation, distinct‬

‭SAR11 genome clusters frequently co-occurred (Fig. 2, Supplemental Fig. 5). This observation‬

‭suggests that patterns of distribution alone cannot discern the boundaries of cohesive ecological‬

‭units within SAR11, a task that evidently requires the integration of biogeographical patterns‬

‭through metagenomic read recruitment with ancestral relationships among genomes though‬

‭phylogenomics.‬

‭Finally, we used the read recruitment analysis to assign ecological patterns to specific‬

‭SAR11 genome clusters. While multiple broad patterns were clear from the pairing of the‬

‭phylogenomic relationships and read recruitment data, we focused our investigation on whether‬

‭the genome clusters within the SAR11 Ia/Ib lineage that appeared to be confined to the coastal‬

‭end of the KByT environmental gradient (Ia.3.VI, Ia.3.II, and Ia.3.III; Supplemental Fig. 1; also‬

‭see‬‭(Tucker et al. 2024a)‬‭) were similarly constrained‬‭to coastal areas globally. Indeed, two of the‬
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‭three genome clusters, Ia.3.II and Ia.3.III, were detected almost exclusively in metagenomes‬

‭sourced from coastal environments (e.g., KByT, the north coast of Panama, the Chesapeake Bay,‬

‭and the Atlantic coast of Portugal). Interestingly, while the clade Ia.3.VI was restricted to‬

‭nearshore metagenomes across KByT, it was well-detected in both coastal and offshore‬

‭environments in other oceanic regions (Fig. 2). Genome clusters Ia.3.II and Ia.3.III did not‬

‭include any SAGs and were only composed of isolates from coastal Kāneʻohe Bay. Yet, we could‬

‭detect them in other oceans, which confirms their global relevance as representatives of SAR11‬

‭populations adapted to coastal ecosystems.‬

‭Through the combination of global metagenomic read recruitment and phylogenomics,‬

‭we show that SAR11 genome clusters contain genomes with a high degree of intra-clade‬

‭ecological cohesion. These genome clusters were often distinguished by their ecological‬

‭distributions and demonstrated notable inter-clade ecological differentiation. Finally, we applied‬

‭this framework to understand how SAR11 genetic and ecological diversity partitions among‬

‭ocean biomes, in particular coastal ocean and open ocean environments.‬

‭The integrated ecological and evolutionary framework here is supported by high-quality‬

‭genomes that span the known diversity of the‬‭Pelagibacterales‬‭,‬‭providing a critical opportunity‬

‭to discern distinct ecologically meaningful genome clusters within SAR11. We show that the 24‬

‭distinct genome clusters represent groups sharing cohesive ecological patterns and evolutionary‬

‭relationships, not at the finest tips of the phylogenomic tree, but at relatively deeper branches‬

‭that encompass gANI values ranging between‬‭84% and‬‭96%‬‭. This suggests it is unlikely that‬

‭these genome clusters represent SAR11 diversity at the level of ‘species’. This conclusion is‬

‭further supported by our companion work‬‭(Tucker et‬‭al. 2024a)‬‭, which reveals systematic‬
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‭differences in the metabolic potential of SAR11 genome clusters that likely support distinct‬

‭ecological distributions in immediately adjacent coastal and open ocean surface seawater with‬

‭habitat-specific metabolic genes that are under higher selective forces. With the combined‬

‭evidence presented here and in the work by Tucker et al.‬‭(2024a)‬‭that unite SAR11 diversity into‬

‭distinct genome clusters with ecotype properties supported by SAR11 phylogenomics, ecology,‬

‭metabolic potential, as well as population genetics, we argue that the most conceivable‬

‭taxonomic rank at which SAR11 genome clusters can be described in a conventional framework‬

‭emerges as the ‘genus’ level.‬

‭This genus-level designation is ideal as it encompasses a degree of diversity previously‬

‭designated by SAR11 subgroups and has the flexibility to account for subtle variation in ecology‬

‭recognized between closely related genomes. We identified the highest quality genome‬

‭representatives (electing for isolates when possible) to assign as type genomes for each genus‬

‭(Fig. 4), which establishes a roadmap to rationally designate new genera as they are identified in‬

‭the future.‬
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‭Fig. 2:‬‭Global metagenome read recruitment to 268‬‭Pelagibacterales‬‭genomes.‬‭A clustering‬
‭analysis reveals that the distribution of metagenomes from the same geographic location have‬
‭characteristic pattern‬‭s of‬‭detection‬‭. Detection values‬‭from 0.25 to 0.75 are shown.‬

‭Evidence for ecological speciation within closely related genome clusters‬

‭Despite broad ecological cohesion within what we have designated as‬‭Pelagibacterales‬

‭genera, some notable differences highlight underlying complexities in defining the finest scales‬

‭of divergence. The Ia.3.VI genus includes genomes from strains of Kāneʻohe Bay origin as well‬

‭as SAGs from other regions of the global ocean and encompasses significant genomic diversity‬

‭(minimum gANI 88%) and phylogenomic structure (Fig. 3a). Through read recruitment, we‬

‭observed notable differences in detection patterns of genomes across metagenomic samples.‬

‭Isolate genomes from the bay harbored the highest detection values of the Ia.3.VI genus from‬

‭metagenomes in the bay, while a SAG from the BATS site in the Atlantic Ocean‬

‭(GCA_902533445.1) had the highest detection values at the BATS site (Fig. 3a)‬‭, particularly in‬

‭the summer and fall (Fig. 2).‬
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‭Fig. 3: Fine-scale ecological speciation between closely related SAR11 genomes. (a)‬‭Detailed‬
‭view of the Ia.3.VI genus including evolutionary relationships, locations of genome origin,‬
‭detection values from select locations, and within-genus gANI values. The geographic origins of‬
‭two of the closely related genomes that have distinct detection patterns include Kāneʻohe Bay in‬
‭the Pacific Ocean and the Bermuda Atlantic Time-series Study (BATS) in the Atlantic.‬‭(b)‬
‭Coverage values of isolate HIMB1636 and SAG GCA_902533445.1 of metagenomes from‬
‭nearshore Kāneʻohe Bay, Station ALOHA in the North Pacific Subtropical Gyre, and BATS‬
‭highlighting the differential detection of genes for type IV pilus assembly and the phosphonate‬
‭catabolic pathway.‬

‭Given the underlying genomic diversification between‬‭isolate HIMB1636 and‬‭BATS‬

‭SAG GCA_902533445.1 and their distinct biogeographical distributions that peak in each of‬

‭their respective source locations, we next surveyed the genomes for potentially unique‬‭metabolic‬

‭capabilities. By inspecting the coverage of isolate HIMB1636 and‬‭BATS SAG‬

‭GCA_902533445.1‬‭using metagenomes from Kāneʻohe Bay‬‭and the BATS site (Supplemental‬

‭Table 10), we found one genomic region of SAG‬‭GCA_902533445.1‬‭that‬‭had particularly high‬
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‭coverage at BATS compared to the KByT samples and included 29 genes encoding the uptake‬

‭(‬‭phnCDE‬‭) and catabolism of phosphonates via the C-P‬‭lyase pathway (‬‭phnGHIJKLM‬‭) (Fig. 3d)‬

‭(Villarreal-Chiu et al. 2012)‬‭. The‬‭phnJ‬‭phylogeny‬‭did not reflect the phylogenomic relationships‬

‭among genomes (Supplemental Fig. 6), and the entire pathway was located on a genomic island‬

‭similar to the marine bacterium HIMB59‬‭(Molina-Pardines‬‭et al. 2023)‬‭. The C-P lyase pathway‬

‭is known to be enriched in phosphate-depleted systems of the Atlantic Ocean‬‭(Sosa et al. 2019;‬

‭Acker et al. 2022)‬‭, so the presence of the C-P lyase‬‭catabolic genes in a genome sourced from‬

‭BATS, but missing from a closely related genome sourced from more phosphate-replete‬

‭environments of Kāneʻohe Bay in the Pacific, suggests these genes provide an advantage in‬

‭phosphate depleted systems and that the‬‭BATS SAG GCA_902533445.1‬‭may be locally-adapted‬

‭to these environments‬‭.‬

‭While the HIMB1636 genome lacked the C-P lyase pathway, it contained a unique‬

‭genomic region with particularly high coverage that was not found in SAG‬‭GCA_902533445.1,‬

‭and encoded genes for type IV pilus assembly. The role of type IV pilus assemblies in SAR11 is‬

‭unclear (Zhao et al., 2017), although in other organisms it has been associated with an array of‬

‭functions including DNA uptake, twitching motility, and aggregation into microcolonies‬‭(Craig‬

‭and Li 2008)‬‭. The presence of the type IV pilus assembly‬‭genes in the Ia.3.VI genome sourced‬

‭from the nitrogen-limited Pacific Ocean, but not in genomes from relatively more‬

‭nitrogen-replete waters of BATS, along with evidence that the‬‭Pelagibacteraceae‬‭can utilize‬

‭purine nucleosides and purine-derivatives for nitrogen‬‭(Braakman et al. 2024; Tucker et al.‬

‭2024a)‬‭, suggests that the presence of a type IV pilus‬‭may be advantageous for DNA uptake in‬

‭nitrogen-poor environments and that HIMB1636 may be locally-adapted. Contrary to the‬
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‭hypothesis that genera recombine at a rate sufficient to limit the ecotypic diversification of‬

‭closely related genomes‬‭(Zhao et al. 2024)‬‭, our read‬‭mapping instead shows that the HIMB1636‬

‭and SAG‬‭GCA_902533445.1 genomes within cluster Ia.3.VI‬‭have sufficiently diverged at the‬

‭nucleotide level to reveal clear biogeographic divergence, and that they possess‬‭sets of genes that‬

‭reside in hypervariable genomic regions that are clearly associated with the differences in‬

‭abundance.‬

‭We examined gANI estimates, phylogenetic branching, environmental distributions, and‬

‭ecologically-relevant gene content to support the characterization of ecological diversification at‬

‭the finest tips of the tree, a process that we theorize to represent speciation. This underscores the‬

‭complexity of SAR11 ecology, highlights the need to include a diversity of representative‬

‭genomes within even closely related genera for environmental genomics studies, and indicates‬

‭that continued efforts to sample SAR11 globally are key to understanding the distribution of this‬

‭ubiquitous clade.‬

‭Proposed‬‭Pelagibacterales‬‭classification and nomenclature‬

‭We leveraged the robust genome phylogeny, gANI metrics, and read recruitment to‬

‭establish a rational classification and nomenclature system for the‬‭Pelagibacterales‬‭bacterial‬

‭order‬‭Pelagibacterales‬‭. To provide a framework and‬‭vocabulary to discuss groups of SAR11 in a‬

‭meaningful context, we first defined four family-level monophyletic groups as the‬

‭Pelagibacteraceae‬‭(historical subgroups Ia and Ib),‬‭Cosmipelagibacteraceae‬‭(historical‬

‭subgroup II),‬‭Allofontibacteraceae‬‭(historical subgroup‬‭III), and the‬‭Mesopelagibacteraceae‬

‭(historical subgroup Ic) (Fig. 4). We focused our efforts primarily on classification within the‬
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‭Pelagibacteraceae‬‭where the majority of cultured isolates originate. Within the‬

‭Pelagibacteraceae‬‭, we used phylogenomics and ecological‬‭data to characterize 24 genera that‬

‭represent cohesive genetic and ecological clades, and designate type species for each‬

‭(Supplemental Table 11). The primary aim of these efforts is to ensure that the taxonomic‬

‭hierarchy for SAR11 provides a useful and tractable reflection of the ecology and genetic‬

‭diversity within this globally distributed group, and establishes a rational system that future‬

‭efforts can build upon.‬
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‭Figure 4. A proposed taxonomic framework for the SAR11 order‬‭Pelagibacterales‬‭.‬‭This‬

‭schematic SAR11 phylogeny unites proposed genus and species names, proposed type strains,‬

‭and historical reference labels.‬
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‭Discussion‬

‭By integrating high-throughput cultivation experiments with publicly available genomes‬

‭and metagenomes, our study provides key insights into a long-standing question: to what extent,‬

‭and at what hierarchical levels, can the genomic and ecological diversity of SAR11 be‬

‭partitioned into cohesive units? Through comprehensive phylogenomic analyses paired with‬

‭global metagenomic read recruitment surveys, we reveal ecotypic differentiation at both‬

‭relatively shallow, species-level and deeper, genus-level diversity within SAR11. This robust‬

‭eco-evolutionary framework, which unifies independent yet complementary approaches to‬

‭genomic diversity and biogeography, resolves the order‬‭Pelagibacterales‬‭into four families and‬

‭the family‬‭Pelagibacteraceae‬‭into 24 genera, establishing‬‭a much-needed taxonomic framework‬

‭that delineates SAR11 diversity into tractable units and provides a foundation for future‬

‭investigations.‬

‭A tight relationship between‬‭the phylogeny and ecology‬‭of SAR11 has long been‬

‭suggested‬‭(Brown et al. 2012; Vergin et al. 2013)‬‭;‬‭however, the ability to associate specific‬

‭SAR11 clades with distinct ecological patterns and explain forces that maintain SAR11 diversity‬

‭has remained elusive. Focusing on sequence-discrete groups within deep ocean SAR11 lineages,‬

‭a recent study concluded that recombination, rather than ecological speciation, was likely the‬

‭major driver of species-level cohesion (Zhao et al., 2024). While this observation may explain‬

‭forces that maintain species-level cohesion for some populations in this group, our study shows‬

‭that the global sampling of environmental populations through metagenomes consistently‬

‭supports ecological delineations that are congruent with phylogenomic clustering patterns,‬
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‭pointing towards ecotypic differentiation as the pervasive driver of the evolution within the‬

‭Pelagibacterales‬‭. Interestingly, SAR11 genera that‬‭showed similar biogeographical distribution‬

‭patterns in our analysis tended to occupy distant parts of the tree. This observation suggests an‬

‭inverse correlation between the genetic similarity among SAR11 populations and their‬

‭co-occurrence, a trend known as phylogenetic overdispersion. Phylogenetic overdispersion has‬

‭been observed across the tree of life‬‭(Davies 2006)‬‭and is driven by forces of competitive‬

‭exclusion, an overarching ecological phenomenon that limits the co-occurrence of ecologically‬

‭similar, closely related organisms. Future analyses that aim to resolve specific genetic‬

‭determinants of competitive exclusion or co-existence may benefit from geographically‬

‭constrained time-series data, as these patterns are likely not immediately attainable from global‬

‭yet spatiotemporally sparse metagenomes.‬

‭The practical need of microbiologists to find reasonable cutoffs to demarcate species‬

‭boundaries from genomic data alone and the nature of SAR11 evolution do not align seamlessly.‬

‭Through the analysis of genomes, a large number of anecdotal observations support 95% ANI as‬

‭a reasonable means to resolve archaeal and bacterial species‬‭(Jain et al. 2018; Olm et al. 2020)‬‭.‬

‭However, SAR11 serves as a reminder that practical solutions do not necessarily apply to all‬

‭microbial clades‬‭(Delmont et al. 2019; López-Pérez‬‭et al. 2020)‬‭. One of the implications of the‬

‭efforts to standardize the tree of life based on principles that work only for the majority of‬

‭microbial taxa is the conflation of all SAR11 genomes into two genera in the taxonomic‬

‭framework derived from genomes available on GTDB based on RED scores‬‭(Parks et al. 2022)‬‭.‬

‭Indeed, while the ecologically relevant units of SAR11 described in our study are in agreement‬

‭with functional, evolutionary, and ecological observations, they are in disagreement with the‬
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‭contemporary summaries of this clade based on RED- or ANI-based demarcations. The ways in‬

‭which evolutionary relationships between distinct clades of life intersect with taxonomic‬

‭classification systems will unlikely be resolved in a manner that satisfies everyone in‬

‭microbiology‬‭(Waite et al. 2020; Sanford et al. 2021)‬‭.‬‭In this juncture, we believe that a stronger‬

‭motivation to understand the biological drivers that render SAR11 incompatible with our best‬

‭practical approaches will bring us closer to a unified solution to partition microbial diversity into‬

‭meaningful units, rather than casting SAR11, one of the most numerous microbial clades on our‬

‭planet, as a mere outlier.‬

‭Insights into the eco-evolutionary processes that shape SAR11 diversification in our‬

‭study rely heavily on the contribution of 81 new isolate genomes that represent abundant and‬

‭ecologically-relevant SAR11 populations across the coastal and global ocean. The‬

‭ecology-informed hierarchical organization of these genomes enabled us to propose SAR11‬

‭genera with formal names here, and investigate the likely functional determinants of ecological‬

‭diversification across the‬‭Pelagibacteraceae‬‭in our‬‭companion work‬‭(Tucker et al. 2024a)‬‭. While‬

‭deeper understanding of the physiological, metabolic, and genetic factors that shape SAR11‬

‭biology will require controlled experimentation of isolated strains in the laboratory, our study‬

‭organizes the eco-evolutionary characteristics of known SAR11 diversity and provides a‬

‭roadmap for future efforts aimed to organize and understand the ubiquitous SAR11 populations‬

‭inhabiting the global ocean.‬
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‭Methods‬

‭High-throughput culturing from surface seawater within and adjacent to Kāneʻohe Bay,‬

‭Oʻahu‬

‭Growth medium was prepared as previously described (Monaghan et al., 2020). Briefly,‬

‭20 L of seawater was collected first on 8 July 2017 and again on 20 September 2017 from a‬

‭depth of 2 meters at station SR4 (N 21º 27.699’, W 157º 47.010’) in acid-washed polycarbonate‬

‭bottles (Supplemental Fig. 1). The seawater was then filtered, autoclaved, and sparged as‬

‭previously described‬‭(Monaghan et al. 2020)‬‭. After‬‭processing, the sterile seawater was stored at‬

‭4ºC until use.‬

‭Two 4 L seawater samples to be used as inoculum were collected on 26 July 2017 in‬

‭acid-washed polycarbonate bottles from 2 meters from stations SB (N 21° 26.181’, W 157°‬

‭46.642) and STO1 (N 21° 28.974, W 157° 45.978’) (Supplemental Fig. 1) and immediately‬

‭returned to the laboratory for further processing. All of the Kāneʻohe Bay Time series sampling‬

‭sites were previously classified as ‘nearshore’, ‘transition’, or ‘offshore’, with SB and STO1‬

‭representing nearshore and offshore sites, respectively‬‭(Tucker et al. 2021)‬‭. Subsamples of the‬

‭raw seawater were processed as described previously‬‭(Monaghan et al. 2020)‬‭. Briefly, aliquots‬

‭were taken for cryopreservation in a final concentration of 10% v/v glycerol and fixed with‬

‭paraformaldehyde for the enumeration of planktonic microorganisms via flow cytometry.‬

‭Additionally, 0.96 L from station SB and 1.30 L from station STO1 were filtered through a 25‬

‭mm diameter, 0.1 µm pore-sized polyethersulfone membrane (Supor-100; Pall Gelman Inc., Ann‬

‭25‬

‭415‬

‭416‬

‭417‬

‭418‬

‭419‬

‭420‬

‭421‬

‭422‬

‭423‬

‭424‬

‭425‬

‭426‬

‭427‬

‭428‬

‭429‬

‭430‬

‭431‬

‭432‬

‭433‬

‭434‬

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2024.12.24.630191doi: bioRxiv preprint 

https://paperpile.com/c/ZtuQ6r/zXJEA
https://paperpile.com/c/ZtuQ6r/Vs1sx
https://paperpile.com/c/ZtuQ6r/zXJEA
https://doi.org/10.1101/2024.12.24.630191
http://creativecommons.org/licenses/by-nc-nd/4.0/


‭Arbor, MI), which was then submerged in 500 µL DNA lysis buffer and stored at -80ºC until‬

‭DNA extraction. ‬

‭Subsamples of raw seawater from SB and STO1 were enumerated using microscopy,‬

‭diluted to 2.5 cells mL‬‭-1‬
‭,‬ ‭and plated in 2 mL volumes‬‭into a total of 1,152 wells (576 wells per‬

‭site) of custom-fabricated 96-well Teflon microtiter plates. This experiment is referred to here as‬

‭HTC2017. Plates were then sealed with breathable polypropylene microplate adhesive film and‬

‭incubated in the dark at 27ºC. Plates were monitored for cellular growth at 3.5 and 8 weeks using‬

‭flow cytometry as previously described‬‭(Tripp et al.‬‭2008; Monaghan et al. 2020)‬‭. Wells with‬

‭positive growth (greater than 10‬‭4‬ ‭cells mL) after‬‭24 or 57 days of incubation were further‬

‭sub-cultured by transferring approximately 1 mL into 20 mL of sterile seawater media amended‬

‭as previously described‬‭(Monaghan et al. 2020)‬‭with‬‭400 µM (NH‬‭4‬‭)‬‭2‬‭SO‬‭4‬‭, 400 µM NH‬‭4‬‭Cl, 50 µM‬

‭NaH‬‭2‬‭PO‬‭4‬‭, 1 µM glycine, 1 µM methionine, 50 µM pyruvate,‬‭800 nM niacin (B3), 425 nM‬

‭pantothenic acid (B5), 500 nM pyridoxine (B6), 4 nM biotin (B7), 4 nM folic acid (B9), 6 µM‬

‭myo-inositol, 60 nM 4-aminobenzoic acid, and 6 µM thiamine hydrochloride (B1). These‬

‭subcultures were then incubated at 27ºC in the dark for an additional 33 days and then all‬

‭samples were processed and cataloged.‬

‭Cultures checked at 33 days that yielded positive growth (>10‬‭4‬ ‭cells ml‬‭-1‬‭) were‬

‭cryopreserved in duplicate (2 x 500 µL culture and a final concentration of 10% v/v glycerol).‬

‭Each well with positive growth was assigned an HIMB culture ID and cells from the‬

‭approximately 18 mL remaining volume of each culture were collected by filtration through a 13‬

‭mm diameter, 0.03 µm pore-sized polyethersulfone membrane (Sterlitech, Kent, WA, USA),‬

‭which was then submerged in 250 µL DNA lysis buffer and stored at -80ºC until DNA‬
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‭extraction. The lysis buffer was prepared by adding the following to MilliQ water: 8 mL 1M Tris‬

‭HCl (pH 8.0), 1.6 ml 0.5M EDTA (pH 8.0), and 4.8 g Triton X, for a final volume of 400 mL,‬

‭which was then filter sterilized, with lysozyme added to aliquots immediately before use (at a‬

‭final concentration of 20 mg ml‬‭-1‬‭). ‬

‭An additional experiment was performed using cryopreserved samples of seawater‬

‭collected on July 26, 2017, and described previously‬‭(Monaghan et al. 2020)‬‭. Briefly, the‬

‭cryopreserved sample was enumerated and then diluted to two cell concentrations (2.5 and 52.5‬

‭cells ml‬‭-1‬‭), and used to plate 480 and 470 2-ml dilution‬‭cultures, respectively. This experiment is‬

‭referred to as HTC2018. Growth was monitored at 2, 3, and 5 weeks after inoculation with‬

‭positive growth (>10‬‭4‬ ‭cells ml‬‭-1‬‭) from the 2.5 cells‬‭ml‬‭-1‬ ‭cultures subcultured into 20 ml of sterile‬

‭seawater growth medium and monitored for growth for up to 10 weeks at 27ºC in the dark.‬

‭Subcultures were then cryopreserved and cells collected for DNA sequencing as described‬

‭above. One well from the 52.5 cells ml‬‭-1‬ ‭inoculation‬‭was directly collected for DNA sequencing‬

‭without subculturing (Monaghan et al. 2020).‬

‭DNA extraction and 16S rRNA gene amplicon sequencing‬

‭Genomic DNA (gDNA) from all filtered cultures as well as environmental DNA (eDNA)‬

‭from STO1 and SB was extracted using the Qiagen DNeasy Blood and Tissue Kit with modified‬

‭manufacturer’s instructions for bacterial cells (Qiagen, Germantown, Maryland, USA). The‬

‭modifications included the addition of an initial freeze-thaw step (3 cycles of 10 minutes at 65ºC‬

‭followed by 10 minutes at -80ºC), the addition of 35 µL Proteinase K and 278 µL buffer AL at‬

‭the appropriate pretreatment step, and finally when eluted the same 200 µL volume was passed‬

‭through the membrane three times.‬
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‭For the initial identification of all cultures, gDNA was used as template for the‬

‭polymerase chain reaction (PCR) amplification (Bio Rad C1000 Touch, Bio Rad, Hercules, CA,‬

‭USA) using barcoded 515F and 926R primers targeting the V4 region of the SSU rRNA gene‬

‭(Parada et al., 2016) in a reaction volume of 25 µL composed of: 2 µL gDNA, 0.5 µL each‬

‭forward and reverse primer, 10 µL 5PRIME HotMasterMix (Quantabio, Beverly, MA, USA),‬

‭and 12 µL of molecular grade H‬‭2‬‭0‬‭(Monaghan et al.‬‭2020)‬‭. The reaction was as follows: an‬

‭initial denaturation step of 3 min at 94ºC, 40 cycles of 45 sec at 94ºC followed by 1 min at 50ºC‬

‭and 1.5 min at 72ºC, with a final extension of 10 min at 72ºC. The PCR products were prepared‬

‭for sequencing as previously described‬‭(Monaghan et‬‭al. 2020)‬‭and sequenced on a MiSeq‬

‭platform by the Oregon State University Center for Genome Research and Biocomputing.‬

‭16S rRNA gene sequence analysis‬

‭Amplicon sequence data were processed as previously described‬‭(Monaghan et al. 2020)‬‭.‬

‭Briefly, the data was imported into QIIME2 v2019.4.0, and demultiplexed before being assessed‬

‭for sequence quality and merged. DADA2‬‭(Callahan et‬‭al. 2016)‬‭was then used for quality‬

‭control. Taxonomy was assigned to all reads using a Naïve Bayes classifier trained on the Silva‬

‭rRNA v132 database‬‭(Quast et al. 2013)‬‭. Cultures were‬‭first classified as defined previously‬

‭(Monaghan et al. 2020)‬‭, with “monocultures'' consisting‬‭of more than 90% of reads from a single‬

‭amplicon sequence variant (ASV), “mixed cultures'' with an ASV that was between 50% and‬

‭90% of the reads, and finally cultures with no dominant members. Any samples with less than‬

‭1,000 reads were not included in further analyses. We aimed to sequence all strains that included‬

‭monocultures and mixed cultures of SAR11.‬
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‭Genome sequencing‬

‭To prepare samples of interest for whole genome sequencing, all extractions with gDNA‬

‭concentrations above 0.06 ng µL‬‭-1‬‭, a total of 10 µL‬‭were aliquoted for sequencing. For samples‬

‭with concentrations below 0.06 ng µL‬‭-1‬‭, the remaining‬‭extraction volume (approximately 175 to‬

‭185 µL) was concentrated using a SpeedVac (ThermoFisher) to approximately 30 µl and was‬

‭re-quantified (Qubit 2.0, Invitrogen). From the concentrated samples with a minimum of 0.06 ng‬

‭µL‬‭-1‬‭, 10 µL was aliquoted for sequencing. Samples‬‭for sequencing were prepared using a‬

‭Nextera library kit and sequenced on the NextSeq500 platform via a 150 bp paired-end run.‬

‭Genomes for previously cultured strains HIMB109 and HIMB123‬‭(Brandon 2006)‬‭were‬

‭sequenced by the Joint Genome Institute. Multiple methods were used to sequence these two‬

‭strains, including directly using 200 µL of cell culture for library prep as well as using multiple‬

‭volumes (5, 10, or 20 µL) of culture for multiple displacement analysis (MDA) prior to library‬

‭preparation. The genomes were evaluated based on completeness, length, number of reads, and‬

‭total contigs post assembly using SPAdes‬‭(Bankevich‬‭et al. 2012)‬‭. An additional assembly using‬

‭all reads generated from various sequencing attempts per genome was also constructed using the‬

‭same assembly method, the highest quality genomes based on the metrics above were manually‬

‭curated and used for additional analyses. ‬

‭Genome assembly and assessment‬

‭Short reads were trimmed with Trim Galore!‬

‭(‬‭https://github.com/FelixKrueger/TrimGalore‬‭) and assembled‬‭using Unicycler‬‭(Wick et al. 2017)‬‭,‬

‭which acts as a SPAdes‬‭(Bankevich et al. 2012)‬‭optimizer‬‭with Illumina short read data. Once‬

‭assembled, reference indexes were built, and read mapping was performed using Bowtie2 with‬
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‭default parameters‬‭(Langmead and Salzberg 2012)‬‭. SAMtools‬‭(Li et al. 2009)‬‭was used to‬

‭convert the SAM file to a sorted and indexed BAM file. These initial assemblies and BAM files‬

‭were used to visualize genomes in anvi’o to check for possible contamination‬‭(Eren et al. 2015,‬

‭2021)‬‭. For genomes with contamination, (determined‬‭visually as instances where contigs had‬

‭anomalous GC content or tetranucleotide frequency), suspicious contigs were removed.‬

‭Redundancy was also used as a way to flag any genomes that needed further curation. After‬

‭inspection, curated contigs were exported using the program 'anvi-summarize' and reads were‬

‭re-mapped to the cleaned version of assemblies. The cleaned genomes were processed again for‬

‭visualization in anvi’o to ensure no erroneous contigs were included. Mapping quality was‬

‭inspected visually using the Integrative Genomics Viewer (IGV)‬‭(Robinson et al. 2011)‬‭and‬

‭Tablet‬‭(Milne et al. 2013)‬‭and manual curation was‬‭undertaken using mapped read data. Manual‬

‭inspection was used to determine if a circular genome could be considered closed and complete.‬

‭All contigs shorter than 1000 bp were removed from the genomes that were not closed after final‬

‭curation, and anvi’o was used to assess final genome completeness and redundancy‬‭(Eren et al.‬

‭2021)‬‭.‬

‭Phylogenomic analyses‬

‭To generate a comprehensive phylogeny of the SAR11‬‭clade, a suite of high-quality‬

‭genomes were curated. Even with an abundance of metagenomes, the high diversity among‬

‭SAR11 populations makes constructing reliable MAGs currently unfeasible, so to ensure the‬

‭phylogeny was as robust as possible, only isolate genomes and SAGs were included. The final‬

‭set of 493 SAR11 genomes for phylogenetic reconstruction included 81 genomes sequenced in‬

‭this study, 25 previously published reference genomes, and 387 previously published single‬
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‭amplified genomes (SAGs), in addition to 20 isolate genomes from the family Rhodobacteraceae‬

‭that were used as an outgroup (Supplemental Table 3). The majority of SAGs included were‬

‭equal to or greater than 85% complete according to checkM‬‭(Parks et al. 2015)‬‭. However,‬

‭genomes of lower quality from subclades of SAR11 with no high-quality representatives were‬

‭included to produce a comprehensive phylogeny, for example SAR11 Ic genomes that ranged‬

‭from 56.0 to 93.7 percent completion were also included‬‭(Thrash et al. 2014)‬‭(Supplemental‬

‭Table 3). Both previously identified subgroup V and IV genomes were excluded from these‬

‭analyses as subgroup V is not considered to be within SAR11 and the inclusion of subgroup IV‬

‭has not been rigorously investigated and thus its relationship to the‬‭Pelagibacterales‬‭is‬

‭questionable‬‭(Thrash et al. 2011; Viklund et al. 2013;‬‭Haro-Moreno et al. 2020; Muñoz-Gómez‬

‭et al. 2022)‬‭.‬

‭We compared two gene sets to determine the most appropriate genes to use for‬

‭phylogenetic reconstructions of the SAR11 clade. This included the bac120 gene set utilized by‬

‭GTDB-Tk to determine the bacteria guide tree, and a curated gene set of marker genes derived‬

‭from the 200-genes previously demonstrated to be best fit for the‬‭Alphaproteobacteria‬

‭(Muñoz-Gómez et al. 2019)‬‭(Supplemental Table 4).‬‭To curate the second gene set, we generated‬

‭a custom HMM profile for the 200‬‭Alphaproteobacteria‬‭genes with a noise cutoff term of‬

‭1×10‬‭−20‬‭, ran the HMM profile on all genomes using‬‭the anvi’o program `anvi-run-hmms‬‭̀‬‭, and‬

‭generated a presence-absence matrix of genes in this model across genomes using the program‬

‭̀anvi-script-gen-hmm-hits-matrix-across-genomes‬‭̀‬‭.‬‭After evaluating the model hits across the‬

‭genomes matrix, we removed the genes that occurred in less than 90% of the genomes or those‬

‭that were redundant in more than 2% of the genomes from the‬‭Alphaproteobacteria‬‭200-gene‬

‭31‬

‭544‬

‭545‬

‭546‬

‭547‬

‭548‬

‭549‬

‭550‬

‭551‬

‭552‬

‭553‬

‭554‬

‭555‬

‭556‬

‭557‬

‭558‬

‭559‬

‭560‬

‭561‬

‭562‬

‭563‬

‭564‬

‭565‬

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2024.12.24.630191doi: bioRxiv preprint 

https://paperpile.com/c/ZtuQ6r/r4gcE
https://paperpile.com/c/ZtuQ6r/3VYor
https://paperpile.com/c/ZtuQ6r/kvdXD+wcKaa+xJuV9+wS9DI
https://paperpile.com/c/ZtuQ6r/kvdXD+wcKaa+xJuV9+wS9DI
https://paperpile.com/c/ZtuQ6r/XseoH
https://doi.org/10.1101/2024.12.24.630191
http://creativecommons.org/licenses/by-nc-nd/4.0/


‭collection, which resulted in a new collection with 165 genes, which is referred to as the‬

‭̀SAR11_165` throughout our study (Supplemental Table 4). To generate a concatenated‬

‭alignment of the genes of interest for downstream phylogenomic analyses, a custom HMM‬

‭source was generated that encompassed the SAR11_165 genes. The program‬

‭̀anvi-get-sequences-for-hmm-hits‬‭̀‬‭with the custom‬‭HMM source was then implemented to‬

‭extract and align genes of interest. The program trimAL 1.3‬‭(Capella-Gutiérrez et al. 2009)‬‭was‬

‭then used to remove all positions that were missing in more than 50% of the genomes.‬

‭Phylogenies were generated with IQ-Tree v2.1.2‬‭(Minh‬‭et al. 2020)‬‭with the best fit model‬

‭(LG+F+R10) chosen using ModelFinder‬‭(Kalyaanamoorthy‬‭et al. 2017)‬‭and 1,000 ultrafast‬

‭bootstraps. Phylogenies were rerooted appropriately in FigTree, and exported in NEXUS format‬

‭with the options selected to “Save as currently displayed” and “Include Annotations (NEXUS &‬

‭JSON only)”. Once exported, phylogenies were then compared using the package phytools‬

‭(Revell 2024)‬‭in R‬‭(R Development Core Team 2011)‬‭.‬

‭Once the extended phylogeny was established, a subset of SAR11 genomes was used to‬

‭generate a pruned phylogeny with the SAR_165 gene set. For this, we first used PyANI‬

‭(Pritchard et al. 2016)‬‭to dereplicate all genomes‬‭using 95% gANI as a cutoff, then excluded‬

‭SAGs that did not share at least 90% gANI with a neighboring genome, and finally included 10‬

‭genomes from the GTDB that spanned 10 families from the order‬‭Rhodospirillales‬‭as an‬

‭outgroup prior to recomputing the final phylogenomic tree as described above. The 95% ANI‬

‭dereplication cutoff was chosen to avoid read splitting during competitive read recruitment and‬

‭for any clusters in which isolate genomes were available, they were chosen as preferred‬

‭representatives.‬
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‭Classification and nomenclature‬

‭The extended phylogeny was used to define cohesive genetic clusters at the distal end of‬

‭the SAR11 tree. Single genomes that did not share at least 90% ANI with a neighboring genome‬

‭were not classified into genera.‬

‭To determine how taxonomic levels across the SAR11 lineage would compare using‬

‭relative evolutionary distance, we implemented this approach as previously described‬‭(Ramfelt et‬

‭al. 2024)‬‭. Briefly, a domain-level phylogeny was first‬‭constructed using the GTDB-Tk‬

‭de_novo_workflow‬‭(Chaumeil et al. 2019)‬‭with SAR11‬‭isolate and SAGs as well as‬

‭“p__Chloroflexota'' as the outgroup. Marker genes were identified from the input genomes using‬

‭GTDB-Tk `‬‭identify‬‭̀‬‭, and then aligned with GTDB-Tk‬‭̀ ‬‭align‬‭̀‬‭(using the "–skip_gtdb_refs"‬

‭flag). Finally, a tree was constructed using FastTree v2.1.10 (model WAG+GAMMA)‬‭(Price et‬

‭al. 2010)‬‭, rooted with the Chloroflexota outgroup.‬‭This phylogeny was used as the input for the‬

‭'scale_tree' program in PhyloRank v0.1.11 (https://github.com/dparks1134/PhyloRank) to‬

‭convert branch lengths into relative evolutionary distance (RED). RED values of 0.77 and 0.92‬

‭were used to assess how they would align with family and genus-level lineages, respectively.‬

‭These values were based on the distribution of internal nodes within the SAR11 clade and values‬

‭used previously for other family and genus-level lineages‬‭(Parks et al. 2018)‬‭.‬

‭Read recruitment‬

‭To assess the distribution of the newly described strains described in this study and put‬

‭them into context with previously sequenced genomes, we used a read recruitment approach with‬
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‭globally distributed metagenomes. The SAR11 genomes included in this study were grouped into‬

‭clusters that shared 95% average nucleotide identity (ANI) or greater and representatives from‬

‭these 95% gANI groups were then used for read recruitment (n = 314, Supplemental Table 12).‬

‭Results from read recruitment were extrapolated for the other genomes included in each 95%‬

‭gANI group.‬

‭Metagenomes used for recruitment included those sequenced in Kāneʻohe Bay‬‭(Tucker et‬

‭al. 2024b)‬‭, the environment from which the genomes‬‭were isolated. Only samples from sites‬

‭previously categorized as “nearshore” and “offshore”‬‭(Tucker et al. 2024b)‬‭were used here.‬

‭Additionally, globally distributed previously published metagenomes were also used including‬

‭those from TARA Oceans expeditions‬‭(Sunagawa et al.‬‭2015)‬‭, station ALOHA‬‭(Mende et al.‬

‭2017)‬‭, GEOTRACERS cruises‬‭(Biller et al. 2018)‬‭, the‬‭eastern coast of Japan‬‭(Kudo et al. 2018;‬

‭Yoshitake et al. 2021)‬‭, Monterey Bay‬‭(Mueller et al.‬‭2015)‬‭, and the ocean sampling day program‬

‭(Kopf et al. 2015)‬‭(Supplemental Table 6 for a list‬‭of appropriate references and details regarding‬

‭metagenomes included).‬

‭Once metagenomes were chosen, raw reads were downloaded using‬‭'‬‭prefetch‬‭'‬‭and‬

‭'‬‭fasterq-dump‬‭'‬‭in the SRA toolkit. We automated the‬‭quality filtering of metagenomes,‬

‭metagenomic read recruitment, and profiling of recruited reads using the program‬

‭anvi-run-workflow‬‭(Shaiber et al. 2020)‬‭with the `--workflow‬‭metagenomics` flag, which‬

‭implements snakemake‬‭(Köster and Rahmann 2012)‬‭recipes‬‭for standard analyses in anvi’o.‬

‭Briefly, this workflow identified and discarded the noisy sequencing reads in metagenomes using‬

‭the program‬‭̀ ‬‭iu-filter-quality-minoche‬‭̀ ‬‭(Eren et al.‬‭2013b)‬‭, used SAR11 genomes to‬

‭competitively recruit short reads from metagenomes using Bowtie2‬‭(Langmead and Salzberg‬
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‭2012)‬‭SAMtools‬‭(Li et al. 2009)‬‭using the program‬‭̀ ‬‭anvi-profile‬‭̀‬‭, and finally merge individual‬

‭profiles into an anvi’o merged profile database using the program‬‭̀ ‬‭anvi-merge‬‭̀ ‬‭. The resulting‬

‭anvi’o merged profile database included essential data, including genome coverages and‬

‭detection statistics across metagenomes, for our downstream analyses. For coverage, we‬

‭primarily used the ‘mean coverage Q2Q3’ statistic, which represents the interquartile average of‬

‭coverage values where, for any given genome, the lowest 25% and the highest 25% of individual‬

‭coverage values are trimmed prior to calculating the average coverage from the remaining data‬

‭points, and thus minimizing the impact of biases due to highly conserved or highly variable‬

‭regions in the final coverage estimates. Visualization of read recruitment data mapped according‬

‭to the phylogeny constructed was completed using the program‬‭̀ ‬‭anvi-interactive‬‭̀‬‭with the‬

‭̀--manual‬‭̀‬‭flag.‬

‭Metagenome profile clustering‬

‭We performed a cluster analysis of metagenomes based on genome detection values from‬

‭the read recruitment step using the k-means algorithm, where we determined the `k‬‭̀‬‭by‬

‭identifying the elbow of the curve of within-cluster sum of square values for increasing values of‬

‭̀k` using the R code shared by Delmont et al.‬‭(2019)‬‭at https://merenlab.org/data/sar11-saavs/.‬

‭The results of the clustering analysis were visualized using anvi’o. To investigate how similar‬

‭detection patterns of genomes within genome clusters were, in addition to how similar or distinct‬

‭patterns were between genome-clusters, we performed a non-metric multidimensional scaling‬

‭(NMDS) analysis using the vegan package in R. Any metagenomes with zero detection across all‬
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‭genomes were removed. The NMDS results were visualized using ggplot2 and plotly and an‬

‭interactive plot was generated with ggplotly.‬

‭Investigation of C-P lyase pathway‬

‭All genomes included in the extended phylogeny (n=X) were searched using‬

‭̀anvi-search-functions` for the key enzyme in the C-P lyase pathway (‬‭phnJ‬‭) to determine the‬

‭capacity among high-quality SAR11 genomes to utilize the pathway. The genes upstream and‬

‭downstream of this essential gene were extracted from all 57 genomes and a pangenome was‬

‭used to compare the presence and absence of other key genes in the pathway as well as the‬

‭synteny of this region of the genome. The‬‭phnJ‬‭phylogeny‬‭(Supplemental Fig. 6) does not reflect‬

‭the relationships among genomes as demonstrated by the SAR_165 phylogeny (Fig. 1), which is‬

‭further evidence that this gene is located on a genomic island as previously described‬

‭(Molina-Pardines et al. 2023)‬‭.‬
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‭Supplemental Figures‬

‭All supplemental figures are available on FigShare at:‬

‭https://doi.org/10.6084/m9.figshare.28087760.‬
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‭Supplemental Figure 1‬‭.‬‭Sampling sites used for high-throughput‬‭culturing experiments. (a)‬
‭Location of Oʻahu in the Hawaiian archipelago in relations to Station ALOHA approximately‬
‭100 km north.‬‭(b)‬‭Map of the embayment on the windward‬‭side of Oʻahu with sites included in‬
‭the Kāneʻohe Bay Time-series with sites classified as ‘nearshore’ (orange text), ‘transition’‬
‭(black text), or ‘offshore’ (turquoise text). Site SR4 in gray from which seawater media was‬
‭collected for the cultivation experiments is also indicated. Bathymetry lines are approximate.‬‭(c)‬
‭Flowchart outlining the high throughput cultivation (HTC) experiments conducted in 2017 and‬
‭2018 leading to the isolation of hundreds of SAR11 cultures and 79 new SAR11 isolate genomes.‬
‭(d)‬‭Schematic SAR11 phylogeny to indicate which samples‬‭harbored genomes from which‬
‭subgroups.‬
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‭Supplemental Figure 2. Phylogenomic tree of all 481‬‭Pelagibacterales‬‭genomes initially‬
‭included.‬‭Of the 481 SAR11 genomes 106 were isolates‬‭and 375 SAGs and the phylogeny is‬
‭based on a curated SAR11-specific set of 165 genes. Isolate origin is indicated and indicates if‬
‭the genome was from this study, a previous isolate from Kāneʻohe Bay, or from another source.‬
‭Genomes included in the pruned tree are also indicated.‬
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‭Supplemental Figure 3. Pruned phylogenomic tree with 268‬‭Pelagibacterales‬‭genomes.‬‭Of‬
‭the 268 genomes 50 were isolates and 218 SAGs based on a curated SAR11-specific set of 165‬
‭genes. Isolate origin is highlighted on the tree and indicates if the genome was from this study, a‬
‭previous isolate from Kāneʻohe Bay, or from another source. Number of additional genomes in‬
‭the same 95% gANI cluster are indicated as well by intensity of the bar which range from 0 to‬
‭45.‬
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‭Supplemental Figure 4. NMDS of genomes with detection data.‬‭All of the genomes included‬
‭in the analysis are included here, with distinction between isolate genome (circle) or SAG‬
‭(triangle) indicated. Genomes not designated a subgroup noted as NA.‬
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‭Supplemental Figure 5. Read recruitment data including all metagenomes included in‬
‭cluster analysis of metagenomes based on genome detection values using the k-means‬
‭algorithm.‬‭Subgroups are indicated at the bottom of‬‭the figure with labels indicating the‬
‭metagenome groups along the right hand side of the figure.‬
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‭Supplemental Figure 6.‬‭Phylogeny of the‬‭phnJ‬‭gene‬‭for all‬‭Pelagibacterales‬‭genomes in the‬
‭pruned phylogeny data set.‬
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‭Supplemental Table Legends‬

‭All supplemental tables are available on FigShare at:‬

‭https://doi.org/10.6084/m9.figshare.28087490.v1.‬

‭Supplemental Table 1. Summary of the 16S rRNA gene amplicon data from HTC17 and‬
‭HTC18.‬

‭Supplemental Table 2. Detailed information for the isolate genomes reported in this study.‬
‭The genome summary information originated from checkM (v1.1.2). *Indicates the genome has‬
‭been manually verified to be completely closed.‬

‭Supplemental Table 3. Summary statistics for all genomes used for analyses in this study.‬
‭This includes isolates reported here, previously published isolate genomes, and high-quality‬
‭single amplified genomes (SAGs) used in the extended SAR11 phylogeny. The genomes used in‬
‭read-recruitment are indicated. *Indicates the accession is the IMG Genome ID not the NCBI‬
‭Accession.‬

‭Supplemental Table 4. Gene sets evaluated for use in SAR11 phylogenetics.‬‭The sets‬
‭evaluated include the bac120 (Parks et al., 2018) and a subset of 165 of the genes (SAR11_165)‬
‭delineated for the Alphaproteobacteria (Wang and Wu 2013; Muñoz-Gómez, 2019).‬

‭Supplemental Table 5. Summary of average genome statistics for the 23 genera established‬
‭in the‬‭Pelagibacteraceae‬‭as well as the Ic, II, and‬‭III families.‬

‭Supplemental Table 6. Studies from which metagenomes were sourced.‬

‭Supplemental Table 7. List of all metagenomes used for read recruitment and accession‬
‭numbers.‬

‭Supplemental Table 8. Detection values across genomes from all metagenomes used in read‬
‭recruitment.‬

‭Supplemental  Table 9. Average detection across genome cluster for bins in Fig 3.‬

‭Supplemental Table 10. Coverage values across genomes from all metagenomes used in‬
‭read recruitment.‬
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‭Supplemental Table 11. Type genomes and classification hierarchy for the‬‭Pelagibacterales‬
‭including proposed naming schemes.‬

‭Supplemental  Table 12. All of the final 95% ANI clusters defined including the cluster‬
‭number, the final representative genome for that cluster and the list of other genomes in the‬
‭same cluster.‬
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