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Abstract

The order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacteria
in the global surface ocean, where individual sublineages likely play distinct roles in oceanic
biogeochemical cycles. Yet, understanding the determinants of niche partitioning within SAR11
has been a formidable challenge due to the high genetic diversity within individual SAR11
sublineages and the limited availability of high-quality genomes from both cultivation and
metagenomic reconstruction. Here, we take advantage of 71 new SAR11 genomes from strains
we isolated from the tropical Pacific Ocean to evaluate the distribution of metabolic traits across
the Pelagibacteraceae, a recently classified family within the order Pelagibacterales
encompassing subgroups la and Ib. Our analyses of metagenomes generated from stations where
the strains were isolated reveals distinct habitat preferences across SAR11 genera for coastal or
offshore environments, and subtle but systematic differences in metabolic potential that support
these observations. We also observe higher levels of selective forces acting on habitat-specific
metabolic genes linked to SAR11 fitness and polyphyletic distributions of habitat preferences
and metabolic traits across SAR11 genera, suggesting that contrasting lifestyles have emerged
across multiple lineages independently. Together, these insights reveal niche-partitioning within
sympatric and parapatric populations of SAR11 and demonstrate that the immense genomic
diversity of SAR11 bacteria naturally segregates into ecologically and genetically cohesive units,

or ecotypes, that vary in spatial distributions in the tropical Pacific.
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Main

Bacterial populations typically harbor extensive variation in gene content that can be
difficult to delineate into discrete ecological or evolutionary units, despite the significant impact
such differences may have on the biogeochemical roles, ecological interactions, and fitness of
these microorganisms (Louca et al. 2016; Hao et al. 2020; Wang et al. 2023). Comparative
genomics has enabled the identification of gene content variation that underpins distinct
ecologies and contributes to the process of niche diversification (Cordero and Polz 2014;
Sheppard et al. 2018; Whelan et al. 2021). However, because these analyses most often use a
collection of genomes isolated from diverse environments where genes have evolved under a
range of selective pressures (Conrad et al. 2022), associating variations in gene content with
specific forces of selection and identifying crucial genes that likely serve as determinants of
fitness under specific conditions remains a formidable challenge.

The bacterial order Pelagibacterales (SAR11) is one of the most abundant and diverse
bacterial groups in the surface oceans (Morris et al. 2002; Brown et al. 2012; Grote et al. 2012),
where even a single SAR11 population can exhibit substantial sequence diversity in the
environment (Delmont et al. 2019). Defining the genomic variation underlying distinct spatial
distributions of SAR11 populations and how gene content differs across environmental
conditions is vital to further understanding ocean biogeochemical cycling, eco-evolutionary
relationships, and the biology of a ubiquitous and dominant lineage in the surface oceans. This
task remains difficult because assessing the loss or gain of ecologically-relevant genes or
metabolic pathways in SAR11 necessitates a robust collection of high quality genome sequences

that represent a spectrum of both ecological and genomic diversity. SAR11 cells are historically
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recalcitrant to laboratory cultivation, and as such only a small portion of the total diversity of
naturally occurring SAR11 populations can be interrogated via high quality genomes such as
those from isolated strains (Haro-Moreno et al. 2020). Yet even with a small set of isolate
genomes, SAR11 has become a key model to help elucidate fundamental processes of ecology
and evolution such as genome streamlining (Giovannoni et al. 2005), marine oligotrophy (Noell
et al. 2023), co-evolution (Morris et al. 2012; Braakman et al. 2017), drivers of genetic diversity
and evolution within organisms of large population sizes (Vergin et al. 2007; Delmont et al.
2019), structure-aware investigations of microbial population genetics (Kiefl et al. 2023), and
ocean biogeochemical cycling (Grant et al. 2019; White et al. 2019; Acker et al. 2022).

In our companion work (Freel et al. 2024), we address the gap in the available genomic
resources with novel SAR11 isolates that originate from a geographically constrained
environment within the tropical Pacific, and develop a phylogenomic backbone that unites
evolution with ecology to understand this diverse clade. Freel et al., (2024) delineated four
families within SAR11, including the family Pelagibacteraceae which encompasses the
historical SAR11 subgroups la and Ib. Here, we illuminate metabolic diversity found within
Pelagibacteraceae and identify the determinants of niche differentiation within co-occurring
Pelagibacteraceae populations by combining 71 of the new isolates with 21 previously
sequenced Pelagibacteraceae isolate genomes. By taking advantage of metagenomes from the
prominent source of isolation, we apply an integrated ‘omics analysis to unveil differences in
Pelagibacteraceae metabolic features across coastal and offshore habitats and identify metabolic

genes under high selective pressures.
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Results

Ecology and evolution of Pelagibacteraceae reveals strong
habitat-specificity

By analyzing 92 high quality genomes from isolates obtained predominantly from coastal
Kane‘ohe Bay, O‘ahu, Hawai‘i, and the adjacent offshore (Fig. 1, Supplementary file 1a), we
reveal that the genomic diversity of cultured Pelagibacteraceae partitions into eleven discrete
monophyletic clusters, seven of which include isolates from the Kane‘ohe Bay Time-series
(KByT; Fig. 1, Extended Data Fig. 1a). The 92 genomes belong to both previously-described
and new clades, which we recently described as eleven genera (Freel et al. 2024; Fig. 1,
Supplementary file 1a). The within-genus genome-wide average nucleotide identity (gANI)
differed among genera, with the lowest within-genus average gANI found in Proprepelagibacter
(87.1+0.0%, mean = sd) and the highest within-genus average gANI found in
Littoralipelagibacter (95.8+0.0; Supplementary file 1b). The average of all within-genus
genome-wide average nucleotide identities was 92.3+2.7%.

We investigated the biogeography of Pelagibacteraceae isolate genomes through read
recruitment with metagenomes from KByT and Station ALOHA in the adjacent North Pacific
Subtropical Gyre. This revealed that the seven genera within the Pelagibacteraceae that
contained KByT isolate genomes were commonly detected within the KByT system, while the
three genera not containing KByT isolates were rarely detected, if at all (Extended Data Fig.
1b). Congruent with k-means cluster analysis that grouped the biogeochemical parameters from

the metagenomic samples into coastal and offshore clusters (Extended Data Fig. 3,
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Supplementary file 1c, Supplementary Information Note 1), the patterns of genome
distribution revealed a clear dichotomy where each genus was either highly present in the
offshore or in the coastal environment, but not both (Fig. 1¢, Supplementary file 1d). Genera
with higher abundances in the coastal environment, hereafter referred to as ‘coastal genera’, did
not occur within a single monophyletic clade and instead appeared to have evolved multiple
times across the evolutionary history of Pelagibacteraceae (Fig. 1c).

For the most part, the patterns of distribution were consistent for all genomes within the
same genus (Extended Data Fig. 3), and genomes that belonged to the same genus generally
recruited similar proportions of reads from the environment. One exception was the genome
HIMB1412 from the genus Coralipelagibacter which had the highest relative abundance among
all Pelagibacteraceae genomes in the coastal environment (19.9+9.4%, mean + sd, Extended
Data Fig. 3). While we consistently detected all isolate genomes of Xanthipelagibacter in the
offshore environment, four of eight genomes (HIMBS&3, FZCC0015, HIMB1456, HIMB2250)
were also frequently detected in the coastal environment (Extended Data Fig. 3). Regardless,
their relative abundances were low in coastal samples (0.4+0.5%, mean + sd) and sharply
increased offshore (3.5+£2.0%, mean + sd; Extended Data Fig. 3), further supporting the
characterization of Xanthipelagibacter as an offshore genus.

Overall, our metagenomic read recruitment reveals that Pelagibacteraceae communities
partition between coastal and offshore habitats in the tropical Pacific, that these distinct
communities are driven by differences in the distribution of individual Pelagibacteraceae
genera, and that coastal genera (Ampluspelagibacter, Coralipelagibacter, Littoralipelagibacter)

are distributed polyphyletically across the Pelagibacteraceae.
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Fig. 1. Pelagibacteraceae show polyphyletic habitat preferences for coastal or offshore
environments across KByT. a) The location of the Kane‘ohe Bay Time-series (KByT) sampling
stations and the Hawaii Ocean Time-series (HOT) at Station ALOHA. KByT spans a steep
biogeochemical gradient, as noted by the dramatic increase in Prochlorococcus cellular
abundances immediately offshore. b) Eleven genera are represented by genome-sequenced
Pelagibacteraceae isolates, with the majority isolated from coastal Kane‘ohe Bay and the
adjacent offshore. Nodes with circles represent >90% bootstrap support. Historically referenced
clade names for Pelagibacteraceae genera are provided in parentheses. ¢) The relative read
recruitment of Pelagibacteraceae isolate genomes summed at the level of genera for
metagenomes from KByT and Station ALOHA. Metagenomes grouped into two clusters by
environmental parameters, coastal and offshore, coinciding with the gradient in Prochlorococcus
cellular abundances. Pelagibacteraceae genera showed distinct distribution patterns in the
coastal and offshore waters that are distributed polyphyletically. Read recruitment <1% not
shown. The order of metagenomes presented follows the order in Supplementary file 1d.

Pelagibacteraceae pangenome includes differentially enriched genes

and functions within coastal and offshore genera

Next, we sought to characterize the genomic diversity and functional gene content of
Pelagibacteraceae isolates in order to investigate the potential determinants of fitness that may
explain the distinct ecological patterns of distribution. We utilized a pangenomic approach that
partitioned all genes across all Pelagibacteraceae genomes into de novo gene families, or ‘gene
clusters’, based on amino acid sequence homology. This analysis resulted in 8,242 gene clusters
across all 92 genomes, of which 784 were core among all Pelagibacteraceae and made up the
majority (52-63%) of gene content found in any individual genome (Fig. 2a; Supplementary
file 2a). Half of the pangenome was composed of gene clusters that were singletons (4,201 of
8,242; Fig. 2a). Between the extremes of gene clusters that occur in every genome and those that
occur only in one, we found 206 accessory gene clusters that were ‘genus-specific’ (2127,
mean+sd per genus; Fig. 2a; Supplementary file 2b) as they were present among all
representatives of a single genus, but absent from genomes belonging to any other genus. The

206 genus-specific gene clusters were not distributed uniformly across genera, as 95 were unique
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to the genus Superopelagibacter alone (Supplementary file 2b). However, this number is likely
an overestimation of the true Superopelagibacter genus-specific traits since this particular genus
was represented by only two genomes, and the number of genus-specific gene-clusters
negatively correlated with the number of genomes in a genus (r’adj = 0.37, F=6.29, p = 0.037;
Pearson’s correlation). Gene clusters that were core to multiple genera (e.g., present in every
genome for two or more genera, but absent in every other) were also not a dominant feature in
the pangenome (Fig. 2a). They only represented 182 gene clusters, and were generally uniformly
distributed across many different groupings of genera (Fig. 2a; Supplementary file 2b). We
could further assign a subset of the gene clusters to coastal or offshore categories based on the
environmental preference of the genomes in which they occurred, finding 38 and 176 gene
clusters that were specific to coastal genera and offshore genera, respectively. (Fig. 2a,

Supplementary file 2b).

We next focused on genes with well-characterized roles in known metabolisms by
examining those that share orthology with genes described in the Kyoto Encyclopedia of Genes
and Genomes (KEGG; Kanehisa and Goto 2000) through KOfam models (Aramaki et al. 2020)
and generating a ‘functional pangenome’ (Fig. 2b). The Pelagibacteraceae functional
pangenome grouped genes based on functional identity rather than amino acid sequence
similarity and consisted of 1,276 KOfam functions, with a large core (612 KOfams; Fig. 2b).
Many of the remaining non-core functions were still shared widely across all eleven genera with
a relatively uniform distribution (n=136; Fig. 2b) or were singletons (n=70). Similar to the
conventional pangenome, the functional pangenome contained very few genus-specific functions
(14 total among all genera; 0-5 KOfams per genus; Fig. 2b) and a limited number of functions

that were core to multiple genera (e.g. present in every genome for two or more genera, but
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absent in every other; 32 KOfams total; Fig. 2b; Supplementary file 2¢). Only three KOfam
functions were specific to coastal genera, while 13 KOfam functions were specific to offshore

genera (Fig. 2a; Supplementary file 2c¢).

Pangenomic analysis using conventional and functional approaches revealed a large
overlap in gene content among ecologically distinct genera, with subtle but consistent
genus-specific features. The high overlap in gene content across the Pelagibacteraceae and small
number genus-specific gene clusters suggests differentiation between genera of the
Pelagibacteraceae may be determined by only a small portion of the genome. The polyphyletic
distribution of habitat preference (Fig. 1¢) supports that genes and functions that are linked to
success in these different habitats likely evolved multiple times through independent processes.
Given this evolutionary trajectory, it is highly plausible that instead of vertical inheritance,
horizontal gene transfer led to the acquisition of most of these habitat-specific genes and
subsequent high rates of recombination and strong selective forces resulted in the increased
prevalence among Pelagibacteraceae in a given ecological niche. This process, referred to as
gene-specific sweeps, frequently results in a more subtle display of habitat-specific traits
(Shapiro et al. 2016), as is observed here. To further examine the potential importance of these
environmentally-distinct functions in providing advantages to Pelagibacteraceae prevalent in
coastal or offshore habitats, we next focused on the subset of the environmentally-distinct
functions characterized here that are involved in nutrient resource utilization and cellular stress.
Furthermore, in examining the functions involved in nutrient resource utilization and cellular
stress, we broadened our investigation beyond the functions that were strictly found in coastal
genera or strictly found in offshore genera (e.g. environmentally-distinct functions), to also

include functions that were enriched in either coastal or offshore genera.
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extensively across all 11 genera and 92 genomes. The outer layer shows the sparse
environmentally-distinct portions of the gene pool and functional pool that are specific to coastal
or offshore genera.

Potential determinants of habitat-specificity in Pelagibacteraceae
include molybdenum utilization and nitrogen and carbon
metabolisms

Despite a high amount of water exchange, coastal Kane‘ohe Bay and the adjacent
offshore vary in nutrient availability, osmotic conditions (e.g. salinity, temperature, pH), and
phytoplankton communities that determine the organic carbon pool (Tucker et al. 2021, 2024),
suggesting that this would enforce distinct environmental pressures on coastal and offshore
Pelagibacteraceae genera. To characterize ecologically-relevant genes that may support coastal
and offshore habitat-preferences of Pelagibacteraceae across the KByT system, we used an
enrichment analysis to examine metabolic traits related to nutrient acquisition and cellular stress
that were differentially distributed across genomes from either coastal or offshore genera. Genes
that were core across genera of the Pelagibacteraceae or did not show easily distinguishable
distributions (e.g. driven by phylogeny or environment) are further discussed in Supplementary
Information Note 2. Unless noted otherwise, the following metabolic traits were found outside
of hyper-variable regions of genomes and thus represent genes that are encoded within the

relatively stable genomic backbones of a given genus or set of genera.

Molybdenum enzyme utilization.

Molybdenum enzymes are nearly ubiquitous among organisms from all domains of life,

catalyze important oxidation-reduction reactions involved in carbon, sulfur, and nitrogen

12
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metabolisms, and require a cofactor scaffold to hold the molybdenum in place (Zhang and
Gladyshev 2008). While most Pelagibacteraceae genomes contained genes involved in
molybdenum cofactor biosynthesis as well as molybdenum cofactor-dependent enzymes (Fig.
3a, Supplementary file 2d), these genes were missing from two offshore genera,
Lacunapelagibacter and Tantilluspelagibacter. In contrast to the lack of molybdenum enzymes
found in the offshore Lacunapelagibacter and Tantilluspelagibacter, other offshore genera,
Xanthipelagibacter and Semelpelagibacter, appeared to increase reliance on
molybdenum-dependent enzymes by uniquely harboring genes encoding
molybdenum-dependent enzymes associated with the oxidation of purines (xanthine; xdhAB)
(Fig. 3a, Supplementary file 2d, Supplementary Note 3). The distribution of molybdenum
enzymes are polyphyletically distributed among offshore genera, where some offshore groups
possess no molybdenum enzymes while others harbor all the molybdenum enzymes detected
within Pelagibacteraceae (Fig. 3a). We hypothesize that the absence of molybdenum enzymes
within the offshore Lacunapelagibacter and Tantilluspelagibacter, which have some of the
smallest genomes within Pelagibacteraceae (~1.2Mbp; Supplemental file 1a), is likely driven
by streamlining selection to minimize metabolic requirements and genome size (Giovannoni et

al. 2005, 2014).
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c) Specialization on allantonate metabolism and purine salvage in coastal genera
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Fig. 3. Pelagibacteraceae genera fill distinct niches in molybdenum enzyme utilization. a)
The distribution of molybdenum cofactor (MoCo) biosynthesis genes and genes involved in
metabolisms that require a molybdenum cofactor across Pelagibacteraceae genera. Metabolisms
within Pelagibacteraceae that require a molybdenum cofactor included those involved in the
repair of methionine sulfoxides and the catalytic subunit of periplasmic dimethylsulfoxide
(DMSO; msrPQ), the detoxification of 6-N-hydroxylaminopurine (HAP) to adenine (yiiM,
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yebX), the oxidation of formate to carbon dioxide (fdhFD), the oxidation of carbon monoxide
(coxSMLG), and the oxidation of purines via xanthine dehydrogenases (xdhAB). Genes that are
predicted to represent proteins with molybdenum cofactor binding sites are noted in bold. b)
Genes encoding for purine catabolism and transport are only present in some offshore genera. ¢)
Genes encoding for allantonate metabolism and purine salvage are present only in coastal genera.
MoCo: molybdenum cofactor, DMSO: dimethylsulfoxide, HAP: hydroxylaminopurine, CO:
carbon monoxide, NH;: ammonia, dR-Pur-5P: purine 2'-deoxyribonucleoside 5'-monophosphate,
Pur: purine base, dRib5P: 2'-deoxyribonucleoside 5'-monophosphate, (d)R-Pur-1P:
beta-(deoxy)ribonucleosides.

Nitrogen metabolisms.

Purines are abundant in aquatic environments (Berman and Bronk 2003), contain a high
number of nitrogen atoms per molecule (Kornberg 1974), and likely contribute to
niche-differentiation between coastal and offshore SAR11 (Braakman et al. 2025). Our metabolic
reconstructions show that offshore genera Xanthipelagibacter and Semelpelagibacter harbored
genes to catabolize purines through the utilization of a molybdenum cofactor-dependent xanthine
dehydrogenase (Fig. 3b, Supplementary file 2e), as well as genes with functions predicted to
support the efficient transport of nucleotides (Xanthipelagibacter: nupNOPQ system,;
Xanthipelagibacter and Semelpelagibacter: xanthine/uracil permease uraA4). To make
hypoxanthine available for degradation, Semelpelagibacter can convert adenine to hypoxanthine
using adenine deaminase (ade) and both genera Semelpelagibacter and Xanthipelagibacter also
uniquely possess a tRNA(adenine34) deaminase (tadA4), which can convert adenine to
hypoxanthine (Fig. 3b). Most Xanthipelagibacter genomes (6 of 8) also harbor a urease system
(ureABCDEFG) to liberate ammonia in the final steps of the xanthine degradation pathway.

In contrast to the purine degradation pathways found within the offshore genera, we
found coastal genera specialize on the degradation of allatonate, a bi-product of purine
metabolism, as well as the recycling of nucleotides. Members of the coastal genus

Ampluspelagibacter (and a single Coralipelagibacter genome, HIMBS) have the functional
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capacity to degrade allantoate to (S)-ureiodoglycine and ammonia via an allantoate deiminase
and ureidoglycine to ureidoglycolate and ammonia, via a nucleophile (Ntn)-hydrolase (Fig. 3¢,
Supplementary file 2e). It is important to note that the allantoin degradation genes found in
coastal genomes characterized here appear to provide a source of nitrogen, and differ from those
found in the offshore genera. All coastal genera possess a deoxynucleoside 5S-monophosphate
N-glycosidase (rc/) that putatively breaks the N-glycosidic bond of purine nucleotides (i.e.
purine 2'-deoxyribonucleoside 5'-monophosphates; Fig. 3¢). This differs from the purine
nucleoside salvage pathway core to both coastal and offshore genera, which requires
orthophosphate to cleave the N-glycosidic bond of beta-(deoxy)ribonucleosides to yield
alpha-(deoxy)ribose 1-phosphate (Supplementary file 2e). All Pelagibacteraceae are missing
genes to utilize deoxyribose-5-phosphate or deoxyribose-1-phosphate via a
deoxyribose-phosphate aldolase (deoC). However, ribose-1-phosphate could be catabolized to
D-fructose-6P and D-glyceraldehyde-3P (Supplementary file 2e).

In addition to differences in purine metabolism, offshore genera uniquely harbor a
transaminase (agxt) that may help these cells to overcome auxotrophies for the biosynthesis of
the amino acids glycine and serine (Fig. 4, Supplementary file 2f), which are common features
across Pelagibacteraceae, but likely restrict important biosynthetic pathways including protein
synthesis and central carbon metabolism (Tripp et al. 2009). Offshore genera also uniquely
contain genes involved in glutamate deamination, glutathione and carnitine metabolism, and the
synthesis of glucosylglycerate, which is used as an alternative osmolyte under nitrogen-limited
conditions in cyanobacteria (Kléhn et al. 2010). In contrast, the coastal genera contain nitrogen
metabolisms generally involved in the deamination of various amino acids (e.g. hydroxyprolines,

proline, ornithine, and threonine). A subset of coastal Ampluspelagibacter genomes also have the
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potential to metabolize the polyamines putrescine and spermidine via puuBCD (Fig. 4). The

puuD gene was located in hypervariable regions within coastal Ampluspelagibacter genomes.

Phosphate & Metals.

Some offshore Pelagibacteraceae genera exhibit a reduced genomic capacity to transport
phosphate relative to coastal genera. High-affinity phosphate acquisition genes (pstSCAB-phoU,
phoB; phoR) were core among coastal genera but, while present in some genomes, were not core
among the offshore genera. Offshore genomes lacking this system appear to rely solely on the
pitA gene, a presumably lower-affinity proton-motive force permease of phosphate or sulfur
(Fig. 4, Supplementary file 2f). Some offshore genera contain an increased genomic capacity to
transport or capture iron relative to coastal genera. While all Pelagibacteraceae contain an iron
(II) transport system (afuAB), the offshore Semelpelagibacter genus alone possesses a
high-affinity iron permease (fir/) (Fig. 4, Supplementary file 2f). Offshore genera
Superopelagibacter, Lacunapelagibacter, and Tantilluspelagibacter also contain a heme oxidase,
which could catalyze the oxidative degradation of the heme porphyrin ring to release iron.
Unique genes to utilize copper, potassium, and nickel were found among the coastal genera (Fig.
4). We observed a copper-containing plastocyanin gene within a small subset of coastal genomes
(Fig. 4; Supplementary file 2f). Plastocyanins serve as an electron carrier from cytochrome f'to
photosystem I and are generally found within eukaryotic phytoplankton and cyanobacteria
(Castell et al. 2021). Future studies are needed to understand the functional role of plastocyanins
in Pelagibacteraceae, although one potential use could be the storage of copper to cope with

periods of reduced availability (Peers and Price 2006).
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Cellular stress.

Difterences in the capacities to respond to osmotic and oxidative stresses were found
among offshore and coastal Pelagibacteraceae genera. Most offshore genera shared a
catalase-peroxidase (katG) that may help to cope with oxidative stress and has also been
suggested to play a role in the co-evolution of marine microbial communities (Morris et al. 2012)
(Fig. 4, Supplementary file 2f). Coastal genera contained two genes involved in osmotic stress
that were not prevalent among offshore genomes: a voltage-gated sodium channel (vgsc) and a
cation:H+antiporter (yrbG) (Fig. 4, Supplementary file 2f). Voltage-gated sodium channels
utilize a structurally complex gating system to physically open and close the pore in response to
changes in fluid shear or membrane stretch from dehydration (Ren et al. 2001; Strege et al.
2023), and may be particularly useful in coastal Kane‘ohe Bay where spatiotemporal shifts in

salinity are common (Yeo et al. 2013).

Carbon metabolisms.

Carbon metabolisms unique to coastal and offshore genera were remarkably distinct.
SAR11’s specialization on low-molecular weight, labile carbon sources has likely facilitated the
success of this marine oligotroph in open oceans where carbon substrates are limited in
availability and under high competition (Sun et al. 2011; Giovannoni 2017; Moore et al. 2022).
Consistent with these observations, the carbon metabolisms shared by offshore genera did not
rely on glycolysis and involved low-molecular-weight compounds (one-carbon to three-carbon;
C1-C3) that are common molecules and/or typical waste products in the marine environment.
This includes the genetic potential to metabolize organic acids such as D-lactate, oxalate,

haloacetate, and formate, as well as diverse aldehydes (Fig. 4, Supplementary file 2f). In

18


https://paperpile.com/c/0sYZaf/H41Ei
https://paperpile.com/c/0sYZaf/tWGsi+szhDJ
https://paperpile.com/c/0sYZaf/tWGsi+szhDJ
https://paperpile.com/c/0sYZaf/CefMJ
https://paperpile.com/c/0sYZaf/33EMr+NCvUq+1a8H1
https://doi.org/10.1101/2024.12.23.630198
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.23.630198; this version posted January 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

contrast, coastal genera contain gene content to specialize in the degradation of relatively larger
carbon compounds (C4-C6), including the sugars D-xylulose and D-ribulose via xy/B and sugar
alcohols arabinitol and mannitol via an arabinitol dehydrogenase, both of which subsequently
enter glycolysis through the non-phosphorylative Entner—Doudoroff (np-ED) pathway. Some
coastal groups also have the capacity to metabolize the sugar acids D-tartrate and malate via
tarD (Fig. 4; Supplementary file 2f). Genomes belonging to the coastal genus
Ampluspelagibacter, which have the largest genomes among known Pelagibacteraceae,
harbored gene content potentially involved in the transport and metabolism of
glycerophospholipids and sn-glycerol-3-phosphate (upgEBQ, gpr, glpA), the capacity to
metabolize L-fucose, D-arabinose, and L-xylose to pyruvate through a L-fucono-1,5-lactonase
(fucB) and the glycolytic Entner-Doudoroff (ED) glycolytic pathway, and a fructose transport
system (frcABC) (Fig.4; Supplementary file 2f). The ED glycolytic pathway was core among
Ampluspelagibacter, Xanthipelagibacter, and Proprepelagibacter genomes and variable across
genomes in other genera (Supplementary file 2f). The increased prevalence of sugar
metabolisms among coastal genera, especially the Ampluspelagibacter genus, suggests
broadened metabolic versatility among coastal Pelagibacteraceae in response to a diverse and/or
more readily available set of organic carbons found within coastal Kane‘ohe Bay relative to
offshore waters. The distinct distributions of carbon metabolisms resolved here also suggests
fine-scale niche partitioning along the sugar-acid spectrum within Pelagibacteraceae (Gralka et

al. 2023).
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Fig. 4. Metabolic determinants of habitat-specificity in Pelagibacteraceae. The distribution of
metabolic genes associated with nutrient acquisition of carbon, nitrogen, phosphorus, and metals
and oxidative and osmotic cellular stress vary among coastal and offshore Pelagibacteraceae
genera. Each column represents a genus, organized by genera that have coastal (black) and
offshore (red) biogeographical distributions. Each row represents a metabolic gene(s) organized
by their role in carbon, nitrogen, phosphorus, or metal acquisition or oxidative and osmotic
cellular stress. The intensity of color indicates the prevelance of the metabolic gene(s) in each
genus.

Adhesion.

Finally, while investigating the metabolic differences between coastal and offshore
genera, we observed homologs of a large gene (~5,000 to 9,500 bp) annotated as an
autotransporter adhesin that was almost always present among coastal genomes and absent in all
offshore genomes (Fig. 4). Autotransporters provide a simple and relatively minimal mechanism
for the delivery of a passenger protein to the surface of Gram-negative bacteria (Leyton et al.
2012), and can vary greatly in size due to changes in the number of repeating sequences in the
passenger protein (Doyle et al. 2015). Because repeating regions cause difficulty for short-read
assemblers such as those used in our genome assemblies (Freel et al. 2024), we further
established confidence in the assembly of this gene in our coastal genomes by successfully
finding homologs in long-read sequencing libraries from the coastal Kane‘ohe Bay environment
and comparing protein structure models of genes annotated from the long-read data to a known
autotransporter (Extended Data Fig. 4; Supplementary Information Note 4). We also
examined the genome context of the gene, which was always positioned next to genes involved
in type IV pilus systems and/or type II secretory systems and sometimes, but not always, within
hyper-variable regions (Extended Data Fig. 4, Supplementary Information Note 4,

Supplementary file 2f).
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Adhesion to surfaces has not been observed in Pelagibacteraceae in culture or through
environmental studies, although long filaments believed to be pili were observed within dividing
cells of Pelagibacteraceae (Zhao et al. 2017) and are associated with multiple processes,
including adhesion to surfaces, transformation competence, and DNA uptake (Hazes and Frost
2008; Ellison et al. 2018). While speculative, it is possible that adhesion by the autotransporter
adhesin gene may be involved in the uptake of nutrients also in Pelagibacteraceae (Meuskens et
al. 2019). The coastal distribution of the autotransporter gene suggests that the advantage of
having this large of a gene is worth the trade-off of maintenance in more nutrient-rich coastal
environments, but potentially not in nutrient-limited offshore environments.

In summary, our investigation of the distribution of genes related to nutrient acquisition
and cellular stress that are unique to coastal and offshore genera reveals numerous subtle
differences in metabolic traits driven by the presence or absence of single genes (e.g. high
affinity iron transporters, voltage-gated sodium channel genes), but few differences in multi-gene
metabolic pathways (e.g. purine metabolism, molybdenum cofactor biosynthesis, fucose
metabolism). Differences in genes related to nutrient acquisition were predominantly related to
organic carbon and nitrogen metabolisms, and help to further define the unique and diverse roles
Pelagibacteraceae play in oceanic biogeochemical cycles. The distribution of these metabolic
traits generally do not follow phylogenetic distributions, but environmental patterns, suggesting

that these metabolisms may be driven by selective pressures from the environment.

Gene determinants of habitat-specificity are under relatively higher

selective pressures compared to non-diagnostic genes
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Our analyses indicated a relatively small number of functions in the Pelagibacteraceae
appear to be associated with its strict niche partitioning. Assuming that the requirement to
perform optimally may be higher for genes that determine fitness to particular lifestyles, we
hypothesized that metabolic traits that have distinct environmental distributions should be under
higher selective pressures compared to other genes in the environment. To test this hypothesis we
examined the proportion of non-synonymous to synonymous (pN/pS) sites per gene across
Pelagibacteraceae genomes using four deeply sequenced metagenomic samples from the KBy T
system.

To define the set of genomes to be included in this analysis, we first evaluated whether
the gene-level selective pressures were uniform across genomes from the same genus. We
examined variation in pN/pS across genes with shared KOfam assignments for genomes
belonging to the genus Coralipelagibacter, which has a low minimum gANI (84.5%, n=6) and is
abundant in the tropical Pacific. Gene-to-gene variation explained 82% of the variation, while
sample-to-sample variation and genome-to-genome variation only explained 0.26 and 0.09%,
respectively (ANOVA, Supplemental file 3a). The little genome-to-genome variation showed
that genomes within the same genus likely experience similar patterns of selection on shared
genes, and supported using a single genome as a representative per genus. Thus, our downstream
analyses utilized a single genome for each genus in Pelagibacteraceae, except
Atlantikopelagibacter, Pelagibacter, Proprepelagibacter, and Semelpelagibacter, which lacked
sufficient coverage in the KByT system (Extended Data Fig. 1, Supplemental file 3b).

Across the Pelagibacteraceae genomes examined, strong purifying selection (pN/pS <
1) was a general characteristic of most genes as observed previously by Kiefl et al., (2023),

where over 75% of genes in each genome representative had a pN/pS value of < 0.1
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(Supplemental file 3¢). However, not all genes experienced similar magnitudes of purifying
selection, with gene-to-gene variation in pN/pS explaining between 88-99% of the variation in
pN/pS across genomes (n=7, ANOVA, Supplemental file 3d). Sample-to-sample variation in
pN/pS values varied for most genomes, however it explained a very small proportion of the
overall variation (<0.5%, n=7, ANOVA). Gene coverage showed no correlation between per
gene values of pN/pS (absolute value of r=0.02-0.28; Pearson correlation coefficient; Extended
Data Fig. 5). Gene coverage explained an extremely small portion of the overall pN/pS variation
(<0.07%, n=7, ANOVA, Supplemental file 3d), which indicates that pN/pS values are unlikely
to be driven by artifacts associated with variation in coverage.

We next evaluated the selective pressures on genes that were differentially distributed
across coastal and offshore Pelagibacteraceae genera (Fig. 5; Extended Data Fig. 6). The
differentially distributed genes with the highest selective pressures in offshore genera included a
malonyl-CoA decarboxylase (mlycd,; pN/pS= 0.019+0.010, mean + sd), an aldehyde
dehydrogenase (aldB; pN/pS= 0.033+0.018), a formate dehydrogenase
(fdh;pN/pS=0.0127+0.001), a D-lactate dehydrogenase (/dhD; pN/pS=0.018+0.003) and an
alanine-glyoxylate / serine-glyoxylate / serine-pyruvate transaminase (agxt; pN/pS=
0.022+0.008) (Fig. S). These genes are generally involved in the metabolism of small and
common carbon substrates and the capacity to produce glycine and serine, which are
auxotrophies in other Pelagibacteraceae. Within Xanthipelagibacter, genes involved in purine
uptake (uraA, pN/pS=0.040£0.001; nupNOPQ, pN/pS=0.045+0.010) experienced higher
purifying selection than purine degradation pathways (xdh4B, pN/pS=0.084+0.028), which is in
line with previous observations that high-affinity transport is key to Pelagibacteraceae’s success

as an oligotroph (Noell and Giovannoni 2019; Clifton et al. 2024). The low pN/pS values for
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these distinct carbon and nitrogen related genes support the hypothesis that these metabolisms

provide a fitness advantage in offshore waters.
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Fig. 5. Habitat-specific genes are under relatively higher selective pressures compared to
non-diagnostic genes. Across each genome, pN/pS values per gene are ranked from lowest
pN/pS value (high purifying selection) to highest pN/pS value (low purifying selection). Genes
that were characterized as differentially distributed between offshore and coastal
Pelagibacteraceae genera in Fig. 4 are colored red (offshore) or black (coastal) across the
genomes. The gene names are noted and the description of the gene provided in the key for genes
that are discussed in the text. The full suite of gene names and descriptions can be found in
Extended Data Fig. 6. pN/pS values of 0.01, 0.025, 0.05, 0.075, 0.1, and 0.25 are shown in blue
and genomes are ordered by their phylogenomic relationships. pN/pS: proportion of
non-synonymous to synonymous.

Among the genes unique to coastal genera, the voltage-gated sodium channel was under
high selective pressure (vgsc, pN/pS=0.016+0.004). Coastal Kane‘ohe Bay harbors a larger range
of salinity, temperature, and pH conditions compared to the adjacent offshore (Yeo et al. 2013;
Tucker et al. 2021, 2024), and thus the voltage-gated sodium channels may be critical for coastal
genera as they rapidly regulate ionic composition (Ren et al. 2001). The allantoin deiminase
(allC, pN/pS=0.039+0.002) and nucleoside 2-deoxyribosyltransferase (rcl, pN/pS=0.054+0.006)
were also under moderately high selective pressures in coastal genomes, further supporting the
specialization of coastal genera on allantonate and nucleotides and a separation in purine
metabolism niche from offshore genera. Three sugar transporter genes (frcABC,
pN/pS=0.024+0.006) within Ampluspelagibacter and a tartrate dehydratase (tarD,
pN/pS=0.051+0.001) within Littoralipelagibacter exhibited low pN/pS values suggesting that
sugar metabolisms and transporters are not only a more common genomic feature in the coastal
genera, but also likely essential for their fitness.

Finally, to understand which Pelagibacteraceae core genes were under the highest
selective pressures in the KByT system, we examined the mean pN/pS values for core genes
found across the same seven genomes. Not surprisingly, ribosomal proteins were found among

the genes with the highest purifying selection (low pN/pS values; Table 2). Genes related to

baseline functions of the cell including general energy production and conversation, translational,
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ribosomal structure and biogenesis, transcription, and nucleotide transport and metabolism were
also under high selective pressure (Table 2). Two genes involved in regulatory systems for
responses to acidity and glycine were among the top 25 core genes with the most purifying
selection. The low pN/pS values for these genes supports that although Pelagibacteraceae may
have few regulatory genes generally (Giovannoni et al. 2014), the ones it does have likely impact
the performance and survival of Pelagibacteraceae cells.

Only two genes related to nutrient acquisition were found among the top 25 core genes
with the highest purifying selection. This included both subunits of an adenylylsulfate reductase
(aprAB), which is involved in dissimilatory sulfur metabolism through the introconversion of
adenylyl sulfate (APS) to sulfite. Incomplete dissimilatory and assimilatory sulfate reduction
pathways were core among all Pelagibacteraceae examined in this study (Extended Data Fig.
7), in line with past analysis of Pelagibacteraceae genomes (Tripp et al. 2008). As reported by
Smith et al. (2016), adenylylsulfate reductase likely removes sulfite that accumulates during
organic sulfur compound degradation. Further supporting this hypothesis, we found multiple
core or near core genes involved in the production of sulfite from reduced organosulfur
compounds: (2R)-sulfolactate sulfo-lyase (suyAB), a sulfoacetaldehyde acetyltransferase (xsc),
and a sulfur dioxygenase (Extended Data Fig. 7). Our analyses reveal the genetic potential to
metabolize a wide diversity of reduced organosulfur compounds as alternative sources of sulfur
and that adenylylsulfate reductases (apr4B) likely plays an important role in accommodating

Pelagibacteraceae’s unique sulfur metabolisms.
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Table 2. Core Pelagibacteraceae genes under high selective pressures in the KByT system.
The lowest 25 mean pN/pS values for core Pelagibacteraceae genes with shared KOfam
annotations examined from genomes representing the seven Pelagibacteraceae genera that are
highly abundant in the tropical Pacific. pN/pS: proportion of non-synonymous to synonymous.
Enzymes involved in regulatory processes are denoted by a pound sign (#).

Accession  Description pN/pS
(meanss.d.)
K02946 small subunit ribosomal protein S10 0.012+0.004
K00340 NADH-quinone oxidoreductase subunit K 0.013+0.008
K03560 biopolymer transport protein TolR 0.014+0.007
K03628 transcription termination factor Rho 0.014+0.004
K02078 acyl carrier protein 0.014+0.007
K03544 ATP-dependent Clp protease, subunit ClpX 0.017+0.004
K00053 ketol-acid reductoisomerase 0.017+0.005
K00395 adenylylsulfate reductase, subunit B 0.018+0.008
K00394 adenylylsulfate reductase, subunit A 0.018+0.005
K00412 ubiquinol-cytochrome c reductase cytochrome b subunit 0.018+0.006
K02274 cytochrome c oxidase subunit | 0.018+0.005
K02982 small subunit ribosomal protein S3 0.019+0.007
K03566# LysR family transcriptional regulator, glycine cleavage system 0.019+0.011
transcriptional activator
K01494 dCTP deaminase 0.019+0.006
K02878 large subunit ribosomal protein L16 0.019+0.008
K03798 cell division protease FtsH 0.019+0.005
K03702 excinuclease ABC subunit B 0.020+0.008
K00330 NADH-quinone oxidoreductase subunit A 0.020+0.010
K03569 rod shape-determining protein MreB 0.020+0.011
K02874 large subunit ribosomal protein L14 0.020+0.011
K14981# two-component system, OmpR family, response regulator Chvl  0.020+0.01
K02988 small subunit ribosomal protein S5 0.021+0.005
K03046 DNA-directed RNA polymerase subunit beta 0.02140.003
K03701 excinuclease ABC subunit A 0.021+0.003
K00331 NADH-quinone oxidoreductase subunit B 0.021+0.006
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Discussion

Through genomic and metagenomic characterizations of a recently expanded collection
of SAR11 isolates (Freel et al. 2024), our study reveals a polyphyletic distribution of coastal
ocean versus offshore habitat specialists among closely related SAR11 populations, where the
emergence of key genetic features that underlie this strong habitat preferences seem to have
occurred through independent evolutionary events rather than transfer from a single common
ancestor. Genera that share the same environment (e.g. coastal or offshore) have also
accumulated shared and unique gene content that is predominantly involved in the metabolism of
organic carbon and the acquisition of nitrogen from organic sources. A subset of these metabolic
genes were under high purifying selection, emphasizing the importance of these functions to the
fitness of distinct Pelagibacteraceae genera and highlighting potential determinants of niche
differentiation of Pelagibacteraceae in coastal and offshore environments.

The cohesion of both ecological and genetic diversity observed within genera of
Pelagibacteraceae most closely resembles ecotypes: ecologically homogeneous groups of
closely related bacteria whose genetic diversity is guided by cohesive forces of selection,
recombination, and genetic drift (Cohan 2006; Koeppel et al. 2008). Ecotypic differentiation has
previously been suggested to describe the spatial and temporal variation partitioning genetic and
genomic SARI1 diversity (Field et al. 1997; Schwalbach et al. 2010; Brown et al. 2012; Vergin
et al. 2013; Tsementzi et al. 2019; Haro-Moreno et al. 2020; Kraemer et al. 2020; Tucker et al.
2021; Larkin et al. 2023; Freel et al. 2024), however the underlying evolutionary processes or
functional differences contributing to this diversification have rarely been linked to patterns of

distribution. Our findings reveal evolutionary drivers behind ecotypic differentiation by
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explaining distinct ecological distribution patterns with differences in gene content, metabolic
potential, and selective pressures across ecotypes. The use of a constrained model system that
provided both metagenomic sequence data as well as isolate genomes from local
Pelagibacteraceae populations was paramount to being able to resolve signatures of
environmental selection in sympatric and parapatric SAR11 populations. The power of this
approach is further demonstrated in the fact that most of the Pelagibacteraceae ecotypes defined
in this constrained system as having preferences for coastal oceans or the open ocean appear to
hold when global read recruitment data were examined (Freel et al. 2024).

Our results suggest that Pelagibacteraceae has transitioned between offshore and coastal
environments multiple times, with a handful of genes that support these lifestyles likely acquired
through multiple independent processes. The small number of adaptive genes are shared among
ecologically similar, but polyphyletically-distributed genera, where genomes have maintained a
substantial amount of genetic diversity. Given the distribution patterns of the adaptive genes and
the genetic diversity maintained within the populations that carry them, the proliferation of
adaptive genes unlikely occurred via genome-wide selective sweep (Shapiro et al. 2016), a
process that describes the clonal expansion of an individual subpopulation that carries an
adaptive gene leading to a genome-wide reduction in genetic diversity. Instead, the maintenance
of genetic diversity and the relatively strong purifying selection to maintain the functional
identity of these adaptive genes is consistent with a gene-specific selective sweep (Falush et al.
2001; Whitaker et al. 2005; Shapiro et al. 2012; Rosen et al. 2015; Bendall et al. 2016).
Consistent with previous studies that have identified a handful of genes responsible for
habitat-specific adaptation (Shapiro et al. 2012; Bendall et al. 2016; Delmont and Eren 2018), the

gene content differences attributed to stable ecological speciation here are generally found within
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the relatively stable genomic backbone, rather than within hyper-variable genomic islands. This
is a critical observation as it links eco-evolutionary processes to specific portions of the immense
genomic diversity that exists within Pelagibacteraceae, and underscores the importance of
analyses informed by genomic architecture. Future studies that examine the contribution of gene
content found within hyper-variable islands to stable ecological speciation as opposed to
incipient speciation or intraspecific diversity would provide a better understanding of the role of
hyper-variable regions in long-term evolutionary processes.

In closing, our analyses broaden the metabolic diversity known from Pelagibacteraceae
genomes and suggest that metabolic versatility has contributed to SAR11’s success in the global
ocean. While metabolic reconstructions are subject to uncertainties that necessitate physiological
exploration with controlled experimentation in the laboratory, the metabolic analysis of
high-quality genomes from cultivated isolates provides the opportunity to delineate metabolic
specialization that could advance cultivation approaches and allow for more targeted media
recipes (Rappé et al. 2002; Stingl et al. 2007; Song et al. 2009; Henson et al. 2016). SAR11 is
estimated to oxidize between 6% to 37% of gross ocean primary productivity (White et al. 2019).
Future work combining these metabolic predictions with in situ measures will greatly improve
our understanding of how SAR11 impacts the dissolved organic matter pool and biogeochemical

cycles in the ocean.
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Methods

Pangenome analyses

Publicly-available Pelagibacteraceae isolate genomes downloaded from the National
Center for Biotechnology Information (NCBI) or the Joint Genome Institute (JGI) were
combined with genomes sequenced from newly isolated strains (Freel et al. 2024;
Supplementary file 1a). Genome completion and contamination were examined with checkM
v1.1.2 (Parks et al. 2015) and only isolates above 90% completion with less than 5% redundancy
(Bowers et al. 2017) and fewer than 50 contigs were kept (Supplementary file 1a). High-quality
Pelagibacteraceae genomes were used to construct a pangenome using anvi’o v8.0 (Eren et al.
2021) following previously described pipelines (Delmont and Eren 2018). Briefly, an anvi’o

database was created using "anvi-gen-contigs-db = and Prodigal v2.6.3 (Hyatt et al. 2010) was

used to identify open reading frames (ORFs) from contigs. Single-copy core genes were
identified using HMMER v3.2.1 (Eddy 2011). ORFs with associated functions were annotated
from NCBI’s Clusters of Orthologous Groups (COGs; Tatusov et al. 2003) and a customized
HMM database of KEGG orthologs (KOfams; Kanehisa and Goto 2000; Aramaki et al. 2020).
The pangenome was created with “anvi-pan-genome’, which uses NCBI’s Basic Local
Alignment Search Tool (BLAST; Altschul et al. 1990) to quantify the similarity between pairs of
gene clusters and the Markov Cluster algorithm (MCL; Enright et al. 2002) to define

homologous gene clusters with a MCL inflation parameter of 2. The pangenomes were

visualized using the command ‘anvi-display-pan = and summary tables exported using the

command ‘anvi-summarize .
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Genome-wide average nucleotide identity (gANI) was estimated using FastANI in anvi’o
(Jain et al. 2018). A phylogenomic tree of the Pelagibacteraceae was estimated using 1Q-Tree
v2.12 (Minh et al. 2020) using 1000 ultrafast bootstraps and model LG+F+R10 from a
concatenated alignment of a custom gene set for SAR11 (SAR11_165; Freel et al. 2024).
Phylogenies were rooted and branches trimmed in R v 4.4.1 (R Core Team 2023) using treeio
v1.28.0 (Wang et al. 2020) and visulized in R using phytools v 2.3.0 (Revell 2012) to examine
the phylogenomic relationships between Pelagibacteraceae groups detected in our
environmental study.

Gene clusters found in 100% of Pelagibacteraceae genomes were considered core while
gene clusters found in only one genome were considered singletons. Gene clusters were also
assessed as genus specific (shared among all representatives of a genus and not found in other
genera) and multi-genus specific (shared among all representatives of two or more genera and
not found among all others). Shared gene content between genera was assessed using

ComplexUpset v 1.3.3 (Lex et al. 2014).

Metagenomic read recruitment and environmental analyses

To examine the distribution of Pelagibacteraceae genera within the environments from
where the majority were isolated, metagenomic read recruitment was conducted using surface
ocean metagenomes from 10 stations within and adjacent to Kan‘eohe Bay, Hawai‘i (Fig. 1)
collected as part of the Kane‘ohe Bay Time-series (KByT; PRINA971314; Tucker et al. 2021,
2024). In addition, metagenomes collected in the surrounding North Pacific Subtropical Gyre at
Station ALOHA, a sampling location within the Hawaii Ocean Time-series (Fig. 1;

Supplementary file 1¢; PRINA352737; Mende et al. 2017) were also used. Metagenomes were
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competitively mapped with Bowtie2 v 2.3.5 (Langmead and Salzberg 2012) to the anvi’o contig
database of Pelagibacteraceae isolate genomes. The “anvi-profile ~ function stored coverage and
detection statistics of each Pelagibacteraceae genome found in the KByT and Station ALOHA
metagenomic samples and the ‘anvi-meta-pan-genome = function (Delmont and Eren 2018) was

used to bring together the pangenomic information with the read recruitment data.

To evaluate the distribution of individual genomes, a detection metric- the proportion of
the nucleotides in a given sequence that are covered by at least one short read- was used to define
whether a population was detected in a metagenomic sample. A detection value of at least 0.25
was used as criteria to eliminate false positives that could arise if an isolate genome was falsely
found within a sample (Utter et al. 2020).

The average depth of coverage excluding nucleotide positions with coverages in the 1%
and 4™ quartiles (mean coverage Q2Q3) was mapped for each genome in each sample. To avoid
biased estimates of coverage that can occur due to highly recruiting accessory genes, read
recruitment was analyzed using only single-copy genes core to each genus. Using a custom script
in R, gene clusters that were found within all genomes of the genus (e.g. core), but found only in
a single copy within each genome were identified. Then the mean coverage Q2Q3 read
recruitment data per gene were then subsetted for only single copy core genes. The mean
coverage Q2Q3 of each single-copy core gene was summed per genome per sample and then this
value was normalized per genome per sample, based on whether the genome was detected at
>(0.25 (Utter et al. 2020). Next, when evaluating read recruitment at the genus-level, the read
recruitment was summed for all genomes in a genus per sample. These outputs were then divided
across the total Pelagibacteraceae read recruitment for the sample to yield a relative estimate of

each genome or genus within a sample. For the genus with only a single genome representative
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(Semelpelagibacter), the single-copy core genes shared with the HIMB1483 genome and nearest
neighbor, genus Lacunapelagibacter, were used.

K-means clustering analysis of a scaled matrix of biogeochemical conditions was used to
characterize the environmental background from which the metagenomic data were derived.
Metadata from Station ALOHA were downloaded from
https://hahana.soest.hawaii.edu/hot/hot-dogs/ (accessed 11 Oct 2021). All KByT (n=158) and
Station ALOHA (n=34) surface seawater samples (depth of <30m) with data for flow
cytometrically-determined cellular abundance, chlorophyll a concentrations, silicate

concentrations, temperature, pH, and salinity were included in the analyses (Supplementary file
1c). The number of clusters were estimated using the "kmeansruns ~ command in the R fpc v
2.2.13 package (Hennig 2024) using a Calinski Harabasz index. Principal Component Analysis
(PCA) was conducted using the ‘prcomp = function in R v 4.4.1 (R Core Team 2023) and
visualized using 'ggbiplot' in the ggplot2 v 3.5.1 (Wickham 2016).

The sampling locations of the Kane‘ohe Bay Time-series and Station ALOHA were
mapped using R with ‘geom_sf™ from ggplot2 with geospatial data of the main Hawaiian Islands
(USGS Digital Line Graphs). To visualize Prochlorococcus cellular abundance across the
Kane‘ohe Bay Time-series, ‘mba.surf” from MBA v 0.1.2 (Finley et al. 2017) was used to

interpolate data over the KByT stations.

Functional inferences from Pelagibacteraceae genera

Functional enrichment analysis was performed in anvi’o and has been described

previously (Shaiber et al. 2020). Briefly, the “anvi-compute-functional-enrichment = command,

as well as the ‘anvi-script-gen-function-matrix-across-genomes *, was used to assess the
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enrichment of Clusters of Orthologous Groups (COG), KEGG orthologs (KOs), and KEGG
modules across genomes and genus affiliations. The degree of completeness of individual KEGG
modules (Kanehisa et al. 2014, 2017) in the genomes and genera was evaluated using

‘anvi-estimate-metabolism ~ (Veseli et al. 2023), prior to ‘anvi-compute-functional-enrichment .
The functional pangenome was visualized using "anvi-display-functions . Central and

alternative carbon metabolisms, amino acid, vitamin, and cofactor biosynthesis, and genes to
cope with nutrient, osmotic, and oxidative stress were examined across the Pelagibacteraceae
isolate genomes. The distribution of functional genes were evaluated for each genus as follows:
core genes found in all genomes of a genus, intermediate genes found in 15-99% of genomes,
and rare genes found in less than 15%. Heatmaps of the metabolic gene distribution across

genera were made in the R package pheatmap v 1.0.12 (Kolde 2019).

Selection within Pelagibacteraceae genes

To evaluate the selective pressures on individual metabolic genes of interest, the
proportion of non-synonymous to synonymous (pN/pS) sites per gene across genomes was
evaluated. The pipeline followed those developed in Kiefl et al., (2023). Briefly, contig databases
from the type genomes of each of the Pelagibacteraceae genera (Freel et al. 2024) were first
functionally annotated in anvi’o (see above) and metagenomic reads from deeply sequenced
metagenomes from either coastal Kane‘ohe Bay or the adjacent offshore were non-competitively
recruited using Bowtie2 v 2.3.5 (Langmead and Salzberg 2012; Supplementary file 1c¢).

Next, the'anvi-profile * function with the flag *--profile-SCVs ™ was used to characterize
single codon variants across the read recruitment data and then ‘anvi-gen-variability-profile *

was used to export the single codon variants per gene per sample using the flags --engine CDN
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--include-site-pN/pS --kiefl-mode (Kiefl et al. 2023). Finally, pN/pS values were reported per
gene with at least 20x coverage in each sample using 'anvi-get-pn-ps-ratio = with the -m 20 flag.
Per gene coverage statistics were exported using “anvi-summarize = with the
‘--init-gene-coverages' flag. Functional annotations were exported using

‘anvi-export-functions .

To evaluate whether a single genome representative contained similar pN/pS gene values
as other genomes within a given genus, these steps were repeated with all representatives of the
genus sharing the lowest minimum gANI (among the genera that were abundant in the tropical
Pacific): genus Coralipelagibacter. The exported data files were brought into R, where variation
in pN/pS per sample, per genome, and across genomes of the same genus was evaluated.
Relationships between pN/pS and coverage were examined and genes per genome were ranked
from lowest pN/pS value to highest and visualized in R using ggplot2 v 3.5.1 (Wickham 2016).
Figures were made in R v 4.4.1 (R Core Team 2023) or anvi’o (Eren et al. 2021) and further

edited with Inkscape (https://inkscape.org/).

Data availability

Accession numbers for genome sequences used to conduct pangenomic analyses and read
recruitment in this study are found in Supplementary file 1a. Short-read metagenome accession
IDs and environmental data used in this study are provided in Supplementary file 1¢. Long-read

metagenomes from coastal Kane‘ohe Bay are available under NCBI Project PRINA1201851.
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Code to run analyses and create figures can be found at

https://github.com/tucker4/SAR11 metabolism.
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Extended Data Fig. 1. Phylogenomic position of Pelagibacteraceae isolate genomes and
detection in the tropical Pacific. a) Phylogenomic tree showing 11 monophyletic clusters
within the Pelagibacteraceae, their genus assignments, and source of isolation. The majority of
Pelagibacteraceae isolate genomes were isolated from the KByT system. Circles at nodes
indicate ultrafast bootstrap support values >90% from 1000 replicates. b) Detection of
Pelagibacteraceae genomes in metagenomic samples from KByT and HOT at Station ALOHA.
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Pelagibacteraceae genera that contained KByT isolate genomes were commonly detected within
the KByT system and sometimes at Station ALOHA. The three genera not containing KByT
isolates were rarely detected in tropical Pacific, with little detection in samples collected in the

KByT system or at Station ALOHA. The order of metagenomes presented follows the order in
Supplementary file 1d.
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Environmental parameters
A) pH
B) seawater temperature
C) Synechococcus cellular abundance
D) silicate concentration
E) photosynthetic picoeukaryotes cellular abundance
F) heterotrophic bacteria cellular abundance
G) chlorophyll a concentration
H) salinity
1) Prochlorococcus cellular abundance

0.01

Clusters
251 ® Offshore @ Coastal

Time-series
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standardized PC2 (14.7% explained var.)

-2 0 2 4
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Extended Data Fig. 2. Surface ocean samples from KByT and HOT at Station ALOHA
grouped into two clusters. K-means analyses of environmental parameters from 192 surface
ocean samples from KBy T and HOT at Station ALOHA grouped into two clusters, herein
referred to as coastal and offshore. The underlying environmental covariates from the clustering
analysis were mapped using Principal Components Analysis (PCA), which

explained 45.1% and 14.7% of the variation across PC1 and PC2, respectively.
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Extended Data Fig. 3. Pelagibacteraceae genomes sharing the same genus show similar
biogeographies. Relative read recruitment of each isolate genome across the coastal and
offshore environment shows that genomes belonging to the same genus share similar distribution
patterns. Genera tend to be either highly prevalent in coastal samples or in the offshore samples,
but not both. Data for genomes that are not detected at >0.25 or have a relative recruitment less
than 0.25% are not shown. The order of metagenomes presented follows the order in
Supplementary file 1d.
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Extended Data Fig. 4. Protein structure models and homolog searches with long-read
metagenomes supports autotransporter adhesion genes in coastal Pelagibacteraceae. a) A
protein structure model of a gene annotated as an autotransporter adhesin from KByT long-read
metagenomes that shares close sequence similarity to gene sequences in Pelagibacteraceae
genomes has characteristics expected of autotransporter proteins: 1) a-helical linker, 2) B-barrel
translocator domain, and 3) passenger domains containing 3 helices (Leyton et al., 2012). b)
Homolog searches to autotransporter adhesin genes in long-read metagenomes recovered nine
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non-redundant gene sequences that were near exact matches to most gene sequences in
Pelagibacteraceae genomes (33 of 43). ¢) Patterns of detection of short-read metagenomic read
recruitment data across genes in two genomes of Pelagibacteraceae show that autotransporter
adhesion genes are sometimes located in hypervariable regions and sometimes not. Genes for
each Pelagibacteraceae genome are ordered by genome synteny with detection values of read
recruitment data per gene shown as a bar per metagenomic sample. Areas of low detection are
indicative of hypervariable regions (HVRs), and the autotransporter adhesin genes were located
in HVRs within the HIMBS5 genome, but not within HIMB4 genome. The autotransport adhesion
genes were always positioned next to genes involved in type IV pilus systems and/or type 11
secretory systems.
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Extended Data Fig. 5. Relationship between pN/pS values and gene coverages in
Pelagibacteraceae genomes. Reads from deeply sequenced metagenomes collected at coastal
(KDe747HP, KMy817HP) and offshore (KDe743ST, KMy813ST) Kane‘ohe Bay Time-series
(KByT) stations were recruited to type genomes for each of the seven Pelagibacteraceae genera
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abundant in the KByT system. The relationship between coverage per gene and pN/pS values per
gene were compared for each of the genomes, showing that gene coverage did not correlate with
pN/pS value. Data were normalized with log transformations. pN/pS: proportion of
non-synonymous to synonymous.
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Extended Data Fig. 6. Selective pressures on habitat-specific genes in Pelagibacteraceae. All
genes in a genome are ordered by lowest pN/pS value (high purifying selection) to highest pN/pS
values (low purifying selection). Genes that are differentially distributed between offshore and
coastal Pelagibacteraceae genera in Fig. 4 are colored red (offshore) or black (coastal) across the
genomes. Gene labels that are colored in red or black are those that were highlighted in the main
text and shown in Fig. 5. pN/pS values of 0.01, 0.025, 0.05, 0.075, 0.1, and 0.25 are shown in
blue. Genomes are ordered by the phylogenomic relationships. pN/pS: proportion of
non-synonymous to synonymous.
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Extended Data Fig. 7. Sulfur metabolisms within Pelagibacteraceae. Pelagibacteraceae
genomes have incomplete dissimilatory and assimilatory sulfur reduction pathways and the
capacity to utilize a wide variety of organosulfate compounds. APS: adenylyl sulfate, PAPS:
3'-phosphoadenylyl sulfate, DHSP: 2,3-dihydroxypropane-1-sulfonate, DMSP:
dimethylsulfoniopropionate, MMPA: methylmercaptopropionate.
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