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Abstract—Facing the growing demand for Low Earth Orbit
(LEO) edge services, in order to address the manageability and
economic issues in LEO edge computing, this study introduces
an innovative two-timescale optimization approach designed
to dynamically optimize satellite access selection, user request
dispatching, and service replica placement. Integrating both
online and offline optimizations, our method adapts to real-time
fluctuations in user demand and satellite resources, effectively
managing long-term decisions such as service migration and
replica placement. We formalize this optimization challenge as
a finite-horizon, integer-variable problem, taking into account
both switching costs and resource utilization. Through extensive
experimentation, our approach is proven to significantly balance
performance enhancement and resource efficiency, and we prove
the approximation ratio for each time slot the competitive ratio
for the long-term cost. Our work contributes to the understanding
of multi-timescale optimization in LEO edge computing and pro-
vides valuable insights for designing efficient control mechanisms
in satellite-based systems.

Index Terms—LEO satellite networks, edge computing, request
dispatching, computation offloading.

I. INTRODUCTION

In the rapidly evolving frontier of technological innovation,
the assimilation of Low Earth Orbit (LEO) satellites with edge
computing services [1], [2] heralds a new era of connectivity.
These satellites, in their low-altitude orbits, provide a critical
advantage—reduced signal latency, which is pivotal for a host
of modern applications that demand real-time data exchange.
The deployment of LEO satellites in close proximity to the
Earth markedly enhances communication networks, extend-
ing the reach of edge services to previously underserved
or inaccessible areas, and offering seamless integration with
terrestrial networks. The establishment of a space backbone
[3], [4] serves as a cornerstone, fortifying the underlying
infrastructure. It provides a resilient framework for commu-
nication between satellites, further bolstering the deployment
of sophisticated network topologies. The integration of the
Walker Delta topology, in conjunction with the grid pattern
framework [5], [6], significantly contributes to the overall ef-
ficiency and resilience of the satellite communication system.
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The imperative for service migration within this context can
be traced to two fundamental factors. Firstly, the presence of
stateful services [7] necessitates the dynamic relocation of
services. This is crucial to accommodate the ever-evolving
user requirements and ensure the continuous and optimal
functionality of services. Secondly, the intrinsic limitation in
resources on satellites [8] underscores the need for a strategic
approach to managing and distributing services. This involves
avoiding resource exhaustion, thus optimizing the overall
system performance. With the rapid advancement of edge
computing and Internet of Things (IoT) technologies, LEO
satellites have emerged as a crucial component for delivering
edge services. These satellites operate in close proximity to
the Earth’s surface, enabling low-latency and high-bandwidth
connectivity to a wide range of applications and devices.
Leveraging the capabilities of LEO satellites, edge services can
be efficiently deployed to serve users in diverse environments.

The fact that a ground station is often covered by multiple
satellites simultaneously means that, during specific time peri-
ods, the ground station can choose to establish communication
with different satellites. Each satellite provides a window of
visibility as it flies over the ground station, during which
the ground station can establish a connection and perform
data transmission. However, due to the orbital dynamics of
the satellites, their visibility windows are typically limited
[6]. Therefore, the ground station needs to intelligently select
the appropriate satellite to establish a connection, ensuring
communication reliability and efficiency.

The scenario of a ground station being covered by multiple
satellites is prevalent in LEO satellite communication systems,
this scenario is illustrated in Fig. 1. This situation can be
attributed to factors such as satellite orbit designs, increased
satellite density, and requirements of the communication net-
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work [9]–[11]. Having a ground station covered by multiple
satellites allows for better utilization of satellite resources
and a wider service coverage [12]. However, the coverage
of multiple satellites also presents some challenges. Firstly,
the ground station needs to select the most suitable satellite
for communication among the multiple visible satellites. This
involves considering factors such as satellite positions, trans-
mission quality, signal strength, and the distance between the
ground station and the satellites. Secondly, the ground station
may need to switch connections between different satellites to
meet user demands and manage system resource allocation.
This can result in connection switching overhead and impact
on service quality [13], [14].

To respond to constantly changing environments in a cost-
efficient manner, we advocate for dynamically controlled LEO
edge services with multi-timescale flexibility [15]. This ap-
proach enables intertwined decisions regarding access satellite
selection for ground stations, user request dispatching from
access satellites to service satellites, and service replica place-
ment in satellite constellations. User requests from different
regions often fluctuate, necessitating continuous migration of
services across satellites. However, in satellite networks with
rapidly changing topology, a myopic approach that optimizes
decisions in isolation can be counterproductive. While this
may seem optimal in the short term, it overlooks the aggregate
impact of frequent handovers, leading to service degradation
due to interruptions and delays [16]. Excessive migration
incurs high performance costs, while conservative approaches
may force users to suboptimal satellites, hindering timely
adaptation to request dynamics [9], [11], [17]. Moreover,
multiple satellites are visible with varying time windows, com-
plicating access satellite selection [18]. Choosing the satellite
with the longest visibility may be impractical due to capacity
restrictions, and frequent switching can incur handover over-
head, damaging perceived service quality. Thus, synchronizing
service migration and satellite selection poses a significant
challenge, underscoring the need for a strategic approach that
balances immediate access with long-term stability and sus-
tainability [19], [20]. The problem involves multiple objective
functions, such as minimizing total costs and maximizing
service quality. These objectives may conflict, necessitating
careful trade-offs and optimization strategies. Handling multi-
objective optimization requires developing algorithms to iden-
tify optimal or approximately optimal solutions, which is
particularly challenging given the previous complexities.

To the best of our knowledge, our work is the first to (1)
investigate the three dimensions of satellite selection, request
dispatching, and service provisioning jointly in LEO edge
computing, and (2) model and solve this problem from a two-
timescale online optimization perspective [21].

In this paper, we initiate our exploration by formulating the
problem of social cost minimization as a non-convex mixed-
integer program spanning the entire time horizon. Our goal
is to devise effective solutions to this challenging problem,
and to this end, we propose a series of polynomial-time
online algorithms. To address the intricacies of the problem,
we introduce two innovative algorithms, namely primal-dual-
based Algorithm 1 and Algorithm 2. These algorithms are

specifically designed to tackle the one-shot problem, involving
the strategic placement of offline classifiers, data dispatching,
and inference aggregation. It is important to note that our
algorithmic approach assumes that all other control decisions
have been pre-determined. An additional facet of our approach
is the derivation of a parameterized-constant competitive ratio
for the total cost concerning the offline optimum. This ratio is
established under the assumption that all inputs over the entire
time horizon are observed simultaneously beforehand. This
implies that our algorithms are not only efficient in their online
execution but also yield competitive results when compared
to the optimal solution derived from full knowledge of inputs
across the entire temporal span.

Through these algorithmic innovations and competitive ratio
considerations, our methodology presents a comprehensive and
efficient framework for addressing the social cost minimization
problem. In the subsequent sections, we delve into the specifics
of our algorithms, their theoretical underpinnings, and the
empirical evaluations conducted to validate their efficacy in
real-world scenarios.

II. RELATED WORK

In this section, we provide an overview of the existing stud-
ies related to LEO satellite edge computing and two-timescale
optimization approaches for edge services. We categorize the
related work into two groups and highlight their limitations
compared to our proposed approach.

LEO Satellite Edge Computing:
Research on LEO satellite edge computing has focused

on various aspects, including server placement, controller
placement, resource placement. Li et al. [10] studied how to
efficiently deploy services on satellite edge computing nodes.
Zhang et al. [22] reduced transmission costs by integrating
multiple access edge computing in the LEO network and use
decision variables to schedule requests. Yan et al. [23] con-
ducted research on edge computing server placement based on
various system delays. Tang et al. [24], [25] introduced novel
strategies and algorithm for controller placement problem and
load balancing in satellite networks. Both Pfandzelter and Lai’
teams built content delivery networks (CDN) to reduce system
latency and bandwidth usage in satellite networks [5], [26].

However, these existing studies have certain limitations
when compared to our work. Firstly, they often overlook the
interdependencies and interactions among the placement deci-
sions, failing to capture the holistic optimization perspective
required for efficient edge service management. Moreover, the
nonlinear relationship between handover penalties and service
migration costs poses a significant challenge that has not
been adequately addressed in the literature [27]. Lastly, most
existing approaches focus solely on online control decisions,
neglecting the benefits of incorporating multi-timescale flexi-
bility into the optimization framework.

Service Migration:
A significant and noteworthy extension within the realm of

related work revolves around the thoughtful consideration of
service migration. The exploration of this aspect involves an
in-depth analysis of service migration, a process that dynam-
ically relocates services to adapt to evolving user demands,
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TABLE I: Comparison of Existing Work on LEO Edge Optimization to This Work

Reference Mechanism Problem
Online /
Offline

Optimization
Objective

Constraints Performance Guarantees

[10] Heuristic
Convex,
Linear

Offline
Latency

Minimization
Instantaneous No Theoretical Bound

[16]
Single-

Timescale
Convex Online Energy Efficiency Steady-state Lyapunov Stability

[17] Heuristic
Mixed-
integer

Offline Service Continuity Resource limits No Theoretical Bound

[23] Heuristic Linear Offline
Server Placement

Cost
Capacity No Theoretical Bound

[24]
Controller

Game
Non-convex Offline Load Balancing Instantaneous Nash Equilibrium

[28] Heuristic Linear Offline Link Stability Orbital dynamics No Theoretical Bound

[35]
Decoupled

Control
Mixed-
boolean

Online
Microservice

Reliability
Time-averaged Learning Regret Bound

[36]
Potential

Game
Non-convex Offline

Interference
Mitigation

Channel capacity Nash Equilibrium

[37] Deep RL Non-convex Online Adaptive MIMO
Nonstationary

channels
Convergence Analysis

[38]
Two-

Timescale
Learning

Mixed-
integer

Online
Task Offloading

Cost
Hybrid resources Learning Regret Bound

This Work
Two-

Timescale
Optimization

Mixed-
integer

Nonlinear
Online

Total Cost
Minimization
(Global/Local

Accuracy,
Comm/Comp

Costs)

Long-term,
Instantaneous

Competitive Ratio

thereby ensuring the continuous and optimal functionality
of the system [17], [28]. Several studies have dedicated
efforts to delve into the nuanced aspects of service migration,
recognizing its pivotal role in maintaining a responsive and
adaptable system [29], [30]. Jin et al. [31] proposed an
online learning framework for provisioning edge inference
services, which dynamically adapts to fluctuating workloads
but focuses on terrestrial edge networks rather than satellite
environments. Separately, Liu et al. [32] introduced a dynamic
relocation mechanism to enhance service delivery efficiency
in distributed systems, providing a foundational strategy for
resource adaptation.

However, despite the strides made in understanding service
migration, the existing literature in this domain often exhibits
certain limitations. One notable gap lies in the lack of a
comprehensive understanding of how service migration intri-
cately interacts with other pivotal placement decisions within
the system. The interplay between service migration and
other decision-making processes, such as server placement,
controller placement, and resource allocation, is not always
sufficiently explored [33], [34]. Moreover, a critical aspect
that the current body of literature may not effectively address
pertains to the intricacies associated with multi-timescale
optimization. Service migration, when considered in isolation,
might not seamlessly align with the broader spectrum of
decision-making processes operating at different timescales.
The need for a holistic and integrated approach, considering
the multi-faceted temporal dimensions of system optimization,

remains an area where the existing literature falls short.

Two-Timescale Optimization for Edge:

Existing literature has mainly focused on single-timescale
optimization, where decisions are made either in real-time or
with long-term planning. These approaches often overlook the
need for coordinating control decisions at different timescales
to adapt to dynamic environments and achieve optimal perfor-
mance. Thus, they may fail to effectively balance the trade-
off between resource allocation and service quality, Chai et
al. [35] use Lyapunov optimization methods to decouple the
joint optimization problem of LEO, but there are also some
existing research on two-timescale optimization, Shi et al.
[36] constructed a novel two-timescale resource management
framework for mobile edge computing. Moreover, the existing
literature lacks comprehensive solutions that consider both
online and offline optimization. Online optimization aims to
dynamically adjust control decisions in response to real-time
changes in user demands and satellite resources. On the other
hand, offline optimization focuses on long-term planning,
such as service migration and replica placement, considering
factors like service performance, resource utilization, and cost
efficiency [15].

The two-timescale division (time frames and slots) is justi-
fied by LEO orbital dynamics and service demand charac-
teristics. Large-timescale frames align with satellite orbital
periods (90–120 mins) and hourly demand patterns, while
small-timescale slots address millisecond-level channel vari-
ations and bursty requests. This hierarchy is theoretically
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grounded in prior works: Chen et al. [37] for topology-aware
resource allocation, Lin et al. [38] for adaptive nonstationary
optimization, Shi et al. [36] for MEC-based two-timescale
co-design, and Han et al. [39] for satellite-terrestrial hybrid
networks. Such decoupling enables stable long-term planning
and agile short-term adaptation. Our work significantly differs
from the existing literature in multiple aspects. Firstly, we
explicitly consider the two-timescale nature of the control
decisions, encompassing both online and offline optimization.
This allows us to capture the dynamic changes in user demands
and satellite resources while optimizing long-term decisions
such as service migration and replica placement. Secondly,
we formulate the optimization problem as a finite-horizon,
integer-variable optimization problem, taking into account the
switching costs associated with accessing different satellites
and managing service replicas. This formulation enables us
to find near-optimal solutions that balance performance and
resource utilization effectively.

Regarding the advantages of our approach over the two
aforementioned papers [40], [41]: Both of these existing
papers rely on the Lyapunov optimization framework [42]
to design their dual-timescale optimization algorithms. They
feature the following aspects: (i) Their problems need to
be formulated in the format of optimizing a time-averaged
objective subject to time-averaged constraints, while often
pushing the length of the time horizon into infinity; (ii)
Their algorithms need to be generally in a control theory
style, i.e., constructing virtual queues and stabilizing such
virtual queues through drift-plus-penalty functions; (iii) Their
theoretical analysis focuses on upper-bounding the regret,
i.e., the difference between the objective value incurred by
their proposed online approach and the objective value of the
offline optimum. In contrast, our proposed approach is never
related to Lyapunov optimization, and features the following
aspects: (i) Our problem optimizes a cumulative objective over
a time horizon of realistic finite length, subject to long-term
cumulative constraints for the large timescale and the small
timescale, respectively; (ii) Our algorithms are novel, with a
unique switching-cost-aware online optimization structure for
solving both timescales; (iii) Our theoretical analysis includes
upper-bounding the competitive ratio, i.e., the ratio of the
objective value incurred by our proposed online approach over
the objective value of the offline optimum. Due to all such
stark discrepancies, while the algorithmic approaches in the
two reference papers have their own advantages, it is unclear
to us how they, with or without adaptions, can be applied
to solving our problem; our own proposed dual-timescale
approach is yet dedicatedly designed to solve our problem
with provable performance guarantees. Our work also uniquely
captures and addresses the LEO-specific challenges arising
from orbital dynamics and intermittent connectivity, explicitly
modeling time-varying satellite visibility and inter-satellite
handover penalties and enabling adaptive cost minimization
under LEO’s unique spatiotemporal conditions.

1 2 3 ... K 1 2 3 ... K 1

Small-timescale decisions {{xt1
,zt1},{xt2

,zt2}...{xtK
,ztK}}

Large-timescale decision yt

TimeTime frame t

Time slot K
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Fig. 2: Two-timescale decision making

III. MODELS AND FORMULATION

A. System Models

In this section, we present our system model and formulate
the total cost minimization problem. For the quick reference,
we summarize all our major notations in Table II.

LEO Edge Constellation: We consider a LEO constellation
of one orbit shell which consists of M orbit plains in total
and N satellites evenly spreading in each orbit plain. We use
I “ t1, 2, ...,MNu to denote the set of all the satellites in
the constellation. We also consider the set J “ t1, 2, ..., Ju
of ground stations that are geographically distributed around
the globe. To access the services hosted in the LEO edge
constellation, a user connects to one of the ground stations
via terrestrial networks (e.g., Internet), which further connects
to the LEO satellite network. We do not explicitly consider the
case where a user directly connects to the satellite network via
a dedicated terminal device without ground stations, since this
terminal device can be regarded as a “virtual” ground station
and then our models and formulations still apply.

Control Decisions: We study the system over a series of
time frames T “ t1, 2, ..., T u, where each time frame further
consists of a series of time slots K “ t1, 2, ...,Ku. Time
frames correspond to service placement decisions, and time
slots correspond to satellite selection and request dispatching
decisions. To facilitate subsequent explanations, we define the
series of time frames as the large time scale, and the series
time slots as the small time scale. That is, we make control
decisions as follows: xtk

ij P t1, 0u, @i P I, @j P J , @k P K,
@t P T , denoting whether or not the ground station j selects
and connects to the satellite i as the access satellite at the
time slot k of the time frame t; yti P t1, 0u, @i P I, @t P T ,
denoting whether or not the satellite i hosts a service replica
at the time frame t; ztkim ě 0, @i,m P I, @k P K, @t P T ,
denoting the amount of user workload (e.g., requests) sent via
the access satellite i to the service satellite m at the time slot
k of the time frame t.

Two-Timescale: Fig. 2 illustrates the hierarchical two-
timescale decision framework central to our LEO edge com-
puting model, we divide the time frame t into multiple small
time slots k. Each frame spans has the same fixed length
and minutes to hours, aligning with the orbital periodicity
of LEO satellites and global service demand trends. At this
scale, decisions focus on service placement (e.g., determining
which satellites host service replicas) and service migration
(e.g., relocating replicas between satellites). These decisions
are updated at the beginning of each frame. Each slot spans has
the same fixed length and seconds to minutes, corresponding
to rapid environmental variations such as bursty user requests,
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TABLE II: Notations

Inputs Meaning

I Set of all satellites

J Set of ground stations

T Set of time frames

K Set of time slots

ztkim Amount of user workload sent via i to m at k of t

Qi Access capacity of satellite i

Ci Service capacity of the satellite i

dtkij Transmission delay between i and j at k of t

λtk
j User requests sent from j at k of t

ej Handover penalty for j to change access satellite

ltkim Network delay between i and m at k of t

ati Cost of i hosting service replica at t

ltim Average network delay for t

R The total number of service replicas

Decisions Meaning

xtk
ij Whether or not the ground station j selects i as the

access satellite at k of t

yti Whether or not the satellite i hosts a service replica
at t

ztkim Amount of user workload sent via the access satellite
i to the service satellite m at k of t

satellite-ground visibility windows, and instantaneous channel
fading. At this scale, decisions involve satellite selection
(e.g., choosing an optimal access satellite for ground stations)
and request dispatching (e.g., distributing user workloads to
service satellites). These decisions are updated at the beginning
of each slot.

Satellite Selection: In Fig. 2, at any time slot k of any
time frame t, we denote the set of the satellites that fly over
the ground station j as Itk

j . Correspondingly, we use J tk
i

to denote the set of the ground stations that are within the
connection range of the satellite i at the time slot k of the time
frame t. Thus, at k of t, the ground station j needs to choose
one and only one satellite in Itk

j as its access satellite, i.e., the
first-hop satellite to connect to in order to access the satellite
network. We use Qi (@i) to denote the access capacity of the
satellite i, i.e., the number of ground stations it can accept at
most at any given time, which can be in terms of, for example,
the number of beam signals equipped on the satellite. We also
use dtkij to represent the unit transmission cost between the
ground station j and the satellite i at the time slot k of the
time frame t. We further use ej to denote the handover penalty
for the ground station j to change the access satellite across
time slots. Based on these notations, we can represent the user
requests’ total delay from ground stations to access satellites asř

t

ř
k

ř
j

ř
iPItk

j
dtkij λ

tk
j xtk

ij , where λtk
j is described as below,

and represent all the handover penalty of the system across
time slots as

Ctk
H pxtk,xtk´1q “

ř
j

ř
iPItk

j
ej maxtxtk

ij ´ xtk´1

ij , 0u.

Request Dispatching: At any time slot k of any time frame
t, we denote the number of user requests received at the
ground station j as λtk

j . The user requests will firstly reach
the access satellite of the ground station j and then be sent
to those satellites with service replicas, i.e., service satellites,
for processing. We denote by ltkim the network delay between
satellites i and m at the time slot k of time frame t, and by Ci

the service capacity of satellite i. Note that, depending on the
request dispatching decisions, the requests from a single access
satellite may be split and sent to multiple service satellites.
We can then represent the user requests’ total delay within
the satellite network as

ř
t

ř
k

ř
i

ř
m ltkimztkim.

Service Placement: We suppose there exist R service
replicas of one service at any time in the system, where each
service replica is placed at a different satellite. We consider
only one service in this paper, and our work can be easily
extended to multiple services. We use ati to denote the cost
of hosting the service replica at the satellite i at the time
frame t. In fact, given any existing satellite-network routing
algorithm, we can use ltim to denote the number of hops, or the
average network delay for t, or the instant network delay as
the service migration occurs during t, for migrating a service
replica from the satellite i to the satellite m at the time frame
t in our satellite network, and use wt

im to denote the decision
variable of whether or not to move the service replica from
the satellite i to the satellite m at t. Then, we can define the
service migration cost:

Ct
M pyt,yt´1q “ min

ř
i

ř
m ltimwt

im

s.t.
ř

m wt
im ď yt´1

i R,@i, (1a)ř
i w

t
im “ ytm,@m, (1b)

wt
im P t1, 0u,@i,@m.

We denote the optimal solution to Ct
M as pwt. Note that even

though we use a standard linear program solver to solve Ct
M

in polynomial time, our optimal solutions are automatically
integers because the coefficient matrix of the constraints in
Ct

M is a “totally unimodular matrix” [43].
In the above, (1a) ensures that any service replica at t ´ 1

can be replicated to up to R service replicas (or satellites) at t;
(1b) ensures that any service replica at t can only be replicated
from an existing service replica at t ´ 1. That is, the service
migration cost is the minimum cost needed to accomplish all
the service replica movements within the satellite network
from the time frame t ´ 1 to the time frame t. Based on
these, we represent the service operational cost and the service
migration cost as

ř
t

ř
i a

t
iy

t
i `

ř
t C

t
M pyt,yt´1q.

Regarding service migration costs, we acknowledge that
satellites have greater computing and communication capabil-
ities compared to Internet of Things (IoT) devices and small
base stations. Yet, it is important to note that, compared to
typical ground-based cloud or edge computing infrastructures,
satellite resources are still restrictive due to size, weight, and
power constraints, and thus the cost of service migration in
satellite edge computing is not negligible and is still a serious
concern. Frequent migrations can lead to significant perfor-
mance overhead, including increased latency, energy consump-
tion, and potential service disruptions, which are critical in
a highly dynamic and resource-constrained environment like
satellites. To further illustrate the impact of service migration
costs, we provide two practical use cases as follows.

Global IoT Data Collection: In LEO edge computing,
satellites are often used for global IoT data collection, such
as agricultural sensor networks that require periodic data
transmission to ground stations for processing. In this sce-
nario, frequent service migration can lead to increased data
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transmission delays, impacting real-time decision making. For
example, if agricultural sensors need to transmit data to a
satellite, frequent migration of the processing task between
satellites can cause delays in data analysis, which may hinder
timely decisions on irrigation or pest control. This is supported
by [10].

Emergency Rescue and Disaster Response: In emergency
scenarios, LEO satellites are tasked with rapidly processing
and analyzing large volumes of data to support rescue opera-
tions. For instance, during a natural disaster, satellites may be
used to process real-time data from ground sensors to identify
affected areas and coordinate rescue efforts. Frequent service
migration in such high-stakes environments can lead to task
interruptions and delays in data processing, severely impacting
rescue efficiency. This is supported by [16].

B. Problem Formulation and Algorithmic Challenges

Total Cost Minimization:

Having the models as the above, we can then formulate the
optimization problem of minimizing the long-term total cost
of the system as follows:

P0 : min
ř
t

ř
k

ř
j

ř

iPItk
j

dtkij λ
tk
j xtk

ij `
ř
t

ř
k

Ctk
H pxtk,xtk´1q

`
ř
t

ř
k

ř
i

ř
m
ltkimztkim `

ř
t

ř
i

atiy
t
i `

ř
t
Ct

M pyt,yt´1q

s.t.
ř

iPItk
j
xtk
ij “ 1, @j,@k,@t, (2a)

ř
jPJ tk

i
xtk
ij ď Qi, @i,@k,@t, (2b)

ř
m ztkim ě

ř
jPJ tk

i
λtk
j xtk

ij , @i,@k,@t, (2c)
ř

i z
tk
im ď ytmCm, @m,@k,@t, (2d)ř

i y
t
i “ R, @t, (2e)

xtk
ij , y

t
i Pt0, 1u, ztkim ě0, @i,@m,@j,@k,@t. (2f)

Constraint (2a) ensures that every ground station selects
one satellite only as the access satellite at every time slot.
Constraint (2b) ensures that the access capacity of every
satellite is respected at every time slot. Constraint (2c) ensures
that the user requests received at every access satellite are fully
dispatched at every time slot. Constraint (2d) ensures that the
service capacity of every satellite is respected at every time
slot. Constraint (2e) ensures that the total number of service
replicas that exist in the satellite network is always as specified
at every time frame. Constraint (2f) just enforces the domains
of all the decision variables.

Algorithmic Challenges:

Solving our total cost minimization problem in an online
manner confronts critical challenges.

First, the handover penalty
ř

j

ř
iPItk

j
ej maxtxtk

ij ´

xtk´1

ij , 0u couples every time slot k´1 and its next time slot k,

it is important to make the decision of xtk´1

ij at k´1 for min-

imizing the long-term cost because any decision of xtk´1

ij will
potentially impact the handover penalty between k ´ 1 and k,
however, we can not know xtk

ij at k´1, our xtk´1

ij at k´1 can

therefore hardly optimize
ř

j

ř
iPItk

j
ej maxtxtk

ij ´ xtk´1

ij , 0u.

Attempting to solve each individual component of a series of
single-round problems optimally or frequently switching the
access satellite for each time slot can lead to an accumulation

Social cost 
minimization

P0

tk
HC

Primal dual

Primal dual

Algorithm 3

0
t

3
tk

1
t

Solve

Algorithm 2

Algorithm 1

t
MC

tk tkx z,

Solve

2
tk

Switch
Condition

Set 1tk tkx x

Switch
Condition

Set
1t ty y

tkx

tkz
ty

Algorithm 4

Solve

tk tk tx z y, ,

Fig. 3: Algorithm design

of handover penalties over time. This occurs because each
switch may involve significant overhead in terms of commu-
nication interruptions, additional signal processing, and the
re-establishment of connections, all of which contribute to
reduced efficiency and increased latency.

Second, the total cost minimization problem is NP-hard. It
is difficult to achieve in an offline situation, and it will be far
more difficult in an online setting. Even without replacement
cost, our problem is made up of a succession of single-round
problems, each of which can be reduced from the NP-hard
weighted set cover problem. To address our NP-hard, we desire
polynomial-time online approximation algorithms.

Third, the problem involves multiple constraints related
to ground station and satellite capacity limitations, user re-
quest dispatching requirements, and other system-specific con-
straints. These constraints can be nonlinear, coupled, or have
complex structures. Effectively handling these constraints to
ensure compliance with system requirements is a significant
challenge [44]. This is not easy, especially considering the
existence of the previous two challenges.

Our proposed algorithms provide a parameterized-constant
competitive ratio, ensuring that the gap between the approxi-
mate solution and the theoretical optimal solution is bounded
and stable under the given assumptions. This is validated by
both theoretical analysis and experimental results.

IV. ALGORITHM DESIGN

We design a polynomial-time approximation algorithm to
solve the aforementioned problems while simultaneously solv-
ing the total cost minimization problem and determining
satellite selection, satellite migration, and mission scheduling
problems. We rigorously prove the approximation ratio, the
truthfulness, and the individual rationality as the performance
guarantees for our algorithm. We then determine content place-
ments strategically in an online manner in the next section. Our
entire approach can be structured as in Fig. 3.

A. Primal-Dual Algorithm

We choose to split the single-shot problem Pt
0 into multiple

subproblems for analysis. We design Algorithm 1 to simul-
taneously construct integral feasible solutions to the primal
problem Pt

1 and feasible solutions to the dual problem Dt
1. we

define the following problems:

P
t
1 : min f tpytq “

ř
i a

t
iy

t
i (3)
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Algorithm 1: Primal-Dual Algorithm for Pt
1, @t

1 Input ai, Ci, Lk, R
2 Initialize δk
3 for k P K do
4 i` “ argminiPIpδk ` ai)
5 i˚ “ i`

6 δk “ δkp1 ` 1

Lk
q `

a
i˚

Lkξ

7 R “ ´minpδk ` ai˚ q
8 y˚

i “ 1

9 end
10 Output pyt

s.t.
ř

i y
t
iCi ě

ř
j λ

tk
j ,@k, (3a)ř

i y
t
i “ R, (3b)

yti Pt0, 1u,@i. (3c)

By relaxing the variables yi into real domains and introducing
dual variables δk, R for (4a) and (4b), respectively, to solve
the problem P1 in an online manner, we write the Lagrange
dual problem D1 of the problem P1 as follows:

D
t
1 : max f tpytq “ ´

ř
k Lkδk ´ R (4)

s.t. ai ` δk ` R ě 0,@k, (4a)

var. δk ď 0. (4b)

We set
ř

j λ
tk
j “ Lk and then design a primal-dual-based

online algorithm, we design Algorithm 1 to simultaneously
construct integral feasible solutions to the primal problem (3)
and feasible solutions to the dual problem (4).

Algorithm 1 is devised to concurrently develop integral
feasible solutions for the primary problem (3) and viable
solutions for its counterpart dual problem (4). The conceptual
framework of the primal-dual approach involves progressively
increasing the dual variables until each dual constraint is
precisely met (i.e., a constraint of the nature ax ď b reaches
a state of tightness when ax “ b). At this juncture, the
corresponding primal variable can be adjusted to a non-zero
figure, ensuring the primal and dual solutions maintain the
complementarity required by the Karush-Kuhn-Tucker (KKT)
optimality conditions [45]. The algorithm is applied iteratively
at each time step t; therefore, the notation t is excluded for
brevity in the algorithm’s description.

Algorithm 1 is structured as a primal-dual method that
iteratively seeks feasible solutions for a set of constraints
represented by K. It begins by initializing dual variables,
δk, which are crucial for the dual aspect of the problem.
For each constraint k, the algorithm selects an action i that
minimizes the sum of the current value of δk and a cost
factor ai, reflecting the action’s relative expense or penalty.
The selected action’s index is denoted by i˚. Subsequently,
scaling up δk in proportion to the tightness of constraint k
and the cost of the chosen action i˚. This process essentially
evaluates the dual problem’s constraints, gradually increasing
their values until they are tight, meaning the inequality turns
into an equality. When a constraint’s requirements are deemed
adequately met—usually signaled by δk reaching a certain
threshold—the corresponding primal variable y˚

i is set to 1,
marking the selection of the action for constraint k in this
iteration. After iterating through all constraints in K, the
algorithm concludes by outputting the feasible solution pyt

Algorithm 2: Primal-Dual Algorithm for Ptk
2 , @k,@t

1 Input dij ,λj , Lk, yi
2 Initialize δk
3 for j P J do
4 i` “ argminiPIpdijλj ` ni)
5 i˚ “ i`

6 ni˚ “ ni˚ p1 ` 1

Qi
q `

d
i˚j

λj

QiP

7 µj “ ´pni˚ ` di˚jλjq
8 xi˚j “ 1

9 end

10 Output pxtk

from the primal problem P1, signifying the decisions or actions
determined to be feasible at time t. This output reflects a
balance between meeting immediate system constraints and
working towards long-term objectives, accounting for the
dynamic interplay between the primal and dual aspects of the
problem. The update of δk is carefully designed for achieving
low additive loss in approximation ratio, as in Line 6, where
ξ “ maxkPKtLku. Lines 7 and 8 update the dual variable R
and the primal variables y˚

i , respectively.

Similar to problem P1, where we formulate the dual prob-
lem D1 to enable an online solution approach, we also require
a feasible solution for P2.

P
tk
2 : min gtkpxtkq “

ř
j

ř
iPItk

j
dtkij λ

tk
j xtk

ij (5)

s.t.
ř

iPItk
j
xtk
ij “ 1, @j, (5a)

ř
jPJ tk

i
xtk
ij ď Qi,@i, (5b)

xtk
ij Pt0, 1u, @i,@j. (5c)

Given that P2 introduces an additional set of constraints and
objectives, it necessitates the construction of a tailored dual
problem, denoted as D2. By relaxing the variables xij into
real domains and introducing dual variables ni, µj for (6a)
and (6b), respectively, we write the Lagrange dual problem as

D
t
2 : max f tpytq “ ´

ř
i Dini ´

ř
j µj (6)

s.t. dijλj ` µj ` ni ě 0,@i, j, (6a)

var. ni ě 0,µj PR, . (6b)

Following the framework established by Algorithm 1, we
devise Algorithm 2, a similar primal-dual-based online algo-
rithm, aimed at constructing integral feasible solutions for the
primal problem (5) as well as viable solutions for the dual
problem (6).

The algorithm concludes by outputing the feasible solution
pxtk from the primal problem P2, signifying the decisions or
actions determined to be feasible at k of t. The update of
ni is carefully designed for achieving low additive loss in
approximation ratio, as in Line 6, where P “ maxiPItk

j
tDiu.

Lines 7 and 8 update the dual variable µj and the primal
variables xtk

ij , respectively.

For Algorithm 1, the time complexity is OpK ¨ |I|q, where
K is the number of time slots and |I| is the total number

of satellites. Algorithm 2 exhibits Op|J | ¨ |Itk
j |q complexity,

where |J | is the number of ground stations and and |Itk
j | is the

average visible satellites per station per time frame, computed
as 1

K

řK
k“1

|Itk
j | to reflect typical orbital visibility patterns.
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B. Two-Timescale Optimization Online Algorithm

We split the objective function Pt
0 into two components

Ct “ Ct
´M ` Ct

M in time frame scale, where Ct
M is the

service placement cost and

Ct
´M pxt, zt,ytq “

ř
k

`
Ctk

´Hpxtk, ztkq ` Ctk
H pxtk,xtk´1q

˘

`
ř

i a
t
iy

t
i

is other costs that need to be analyzed at the time slot scale,
where

Ctk
´Hpxtk, ztkq “

ř
j

ř
iPItk

j
dtkij λ

tk
j xtk

ij `
ř

i

ř
m ltkimztkim

corresponds to request dispatching decisions. Now, through
Ctk

´H and the corresponding constraints, we define the follow-
ing problem:

P
tk
3 : min htkpztkq “

ř
i

ř
m ltkimztkim

s.t.
ř

m ztkim ě
ř

jPJ tk
i

λtk
j xtk

ij , @i,
ř

i z
tk
im ď ytmCm, @m,

ztkim ě 0, @i,@m.

We denote the optimal solution to Ptk
3 as pztk. Note that even

though we use a standard linear program solver to solve Ptk
3

in polynomial time, our optimal solutions are automatically
integers because the coefficient matrix of the constraints in
Ptk
3 is a “totally unimodular matrix” [43], the other decision

variables xtk, yt and wt are all feasible.

P
tk
4 : min Ctk

´Hpxtk, ztkq
s.t. (2a), (2b), (2c),ř

i z
tk
im ď ytmCm, @m,

xtk
ij Pt0, 1u, ztkim ě 0,@i,@m,@j.

We also define the following problem that we do not need
to solve but use in our performance analysis.

Next, we designed Algorithm 3 and Algorithm 4, two online
algorithms that balance the different parts of the original
problem Pt

0 split at different time scales. Firstly, we implement
Algorithm 4 at a smaller time scale, time slot k , then
utilize the output of Algorithm 4 at a larger time scale, time
frame t, to implement Algorithm 3. This hierarchical approach
ensures that the real-time adjustments made by Algorithm 4
are effectively integrated and scaled up through Algorithm 3
to address the broader aspects and constraints of the original
problem over longer periods. This design not only enhances
the adaptability and efficiency of our solution in dynamically
changing environments but also ensures a consistent and
cohesive strategy that aligns short-term decisions with long-
term objectives.

Algorithm 4 operates within each individual time frame t
and makes decisions at smaller time scales, each represented
by k. It begins by initializing variables and getting the first
solution from Algorithm 2. Then it iteratively updates this
solution within the time frame as follows: The algorithm first
solves a sub-problem Ptk

3 using the output from Algorithms 1
and 2. In each subsequent time slot k, it checks if the current
solutions are still feasible within the defined thresholds. If not
feasible, it reverts to the last feasible solutions and solves
Ptk
3 again to update the solutions. The algorithm progresses

Algorithm 3: Online Algorithm on Large timescale

1 Initialize t̂ “ 1, ry0, 0 ă β1 ď 1;
2 Get py1 by Algorithm 1, and set ry1 “ py1;

3 Given ry1, get trx1k,rz1k,@ku by Algorithm 4;
4 for t “ 2, 3, ..., T do

5 if C t̂
M pryt̂, ryt̂´1q ď β1

řt´1

τ“t̂
Cτ

´M prxt,rzt, rytq, or Dk,

P
3

tk infeasible given ryt´1 then
6 Get pyt by Algorithm 1, and set ryt “ pyt;

7 Given ryt, get trxtk,rztk,@ku by Algorithm 4;
8 if ryt ‰ ryt´1 then

9 Set t̂ “ t;
10 end
11 end

12 if t̂ ă t then
13 Set ryt “ ryt´1;

14 Given ryt, get trxtk,rztk,@ku by Algorithm 4;
15 end
16 end

Algorithm 4: Online Algorithm for Each Time Frame t

1 Initialize k̂ “ 1, rxt0 “ rxt´1K , 0 ă β2 ď 1;
2 Get pxt1 by Algorithm 2, and set rxt1 “ pxt1;
3 Given rxt1, get rzt1 by solving P

t1
3 ;

4 for k “ 2, 3, ...,K do

5 if Ctk̂
H prxtk̂, rxtk̂´1q ď β2

řk´1

τ“k̂
Ctτ

´Hprxtk,rztkq, or P3

tk

infeasible given rxtk´1 then

6 Get pxtk by Algorithm 2, and set rxtk “ pxtk;

7 Given rxtk, get rztk by solving P
tk
3 ;

8 if rxtk ‰ rxtk´1 then

9 Set k̂ “ k;
10 end
11 end

12 if k̂ ă k then

13 Set rxtk “ rxtk´1;

14 Given rxtk, get rztk by solving P
tk
3 ;

15 end
16 end

through the time frame until it finalizes the solution for that
time frame.

We denote the optimal solution to Ptk
3 as rztk. Based on

this, we first design Algorithm 4, an online algorithm which
balances Ctk

´H and Ctk
H dynamically in the small time scale.

Our main strategy is to delay rotating the locations of content
caches, i.e., to prevent frequent changes to access satellites,
until either the current cache locations cause Ptk

1 or Ptk
2 to

become unfeasible for request dispatching, or until the cu-
mulative non-replacement cost times a pre-specified constant
(i.e., β2) exceeds the latest replacement cost. There is also
a special case where when our ground station is out of the
communication range of the access satellite, it is necessary
to forcibly switch to another access satellite. This situation
is illustrated by Line 5 of the algorithm, where we denote
the time slot of changing content caching locations as k̂. If
ground station needs to change access satellite, we solve Ptk

2

to get the new locations (Line 6) and given such new locations,
Otherwise, if it turns out that we do not change the access
satellite (Line 12), and we keep the access mission at current
locations (Line 13) and given such locations, invoking get all
the other control decisions [45], [46].
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Then we take rxtk and rztk by Algorithm 4 as inputs for
Algorithm 3, an online algorithm which balances Ct

´M and
Ct

M dynamically in the large time scale t. This key idea
is to delay changing the service satellite group and avoid
unnecessary migration costs for service replicas.

To put it in one sentence, our algorithmic framework works
as follows to address the complex coupling of the optimization
variables x

tk, @k, @t and z
tk, @k, @t, which are for each time

slot k in each time frame t, and also y
t, @t, which are for each

time frame t: As time goes to the beginning of the time frame
t, we determine the value of y

t, denoted as ryt; then, given
such ryt, for each time slot k sequentially within the current
time frame t, we determine the values of xtk and z

tk, denoted
as rxtk and rztk, respectively. The key here is that our Algorithm
3 determines ryt through balancing its switching cost (i.e.,
Ct

M p¨, ¨q) and non-switching cost; and Algorithm 4 determines
rxtk through balancing its switching cost (i.e., Ctk

H p¨, ¨q) and
non-switching cost, and determines rztk given rxtk. These
“balancing” operations are controlled by the parameters β1

and β2, respectively, and such operations require “initial” or
“tentative” decisions for y

t and x
tk without considering any

switching cost, denoted as pyt and pxtk, respectively, which are
then provided by our Algorithms 1 and 2, respectively. This
is also how our four algorithms work jointly together in an
online manner.

In each time slot, Algorithm 4 performs a polynomial
number of operations to optimize satellite selection and
request dispatching. The complexity is OpK ¨ |I| ¨ |J |q.
At the beginning of each time frame, Algorithm 3 solves
a linear program to optimize service placement driven by
linear programming for R service replicas. The complexity
is OpR ¨ |J |q. Combined with empirical results showing
stable real-time performance under varying network sizes,
the polynomial-time complexity at both scales confirms the
framework’s practicality in dynamic LEO environments.
The hierarchical design ensures responsiveness to immediate
changes while maintaining long-term resource stability.

V. PERFORMANCE ANALYSIS

We recap existing notations and also introduce some new
notations as follows.

‚

␣
trxtk,rztk,@ku, ryt,@t

(
, denoting the solutions produced

by our proposed algorithms;
‚

␣
tx̄tk, z̄tk,@ku, ȳt,@t

(
, denoting the offline optimal so-

lutions to the problem P0;
‚ qyt, denoting the optimal solution to the problem Pt

1 for
the time frame t;

‚ qxtk, denoting the optimal solution to the problem Ptk
2 for

the time slot k of the time frame t;
‚ tx˚tk, z˚tk,@ku, denoting the optimal solutions to the

problem Ptk
4 at the time frame t, given ryt.

Also, note that rztk is the optimal solution to the problem Ptk
3

for the time slot k of the time frame t, given ryt and rxtk.

Theorem 1. Approximation Ratios. By Algorithms 1 and 2,
we have f tppytq ď θ1f

tpqytq, @t and gtkppxtkq ď θ2g
tkpqxtkq,

@k, @t, respectively, where θ1 “ ξ
ξ´1

and θ2 “ P
P´1

are
constants.

Proof. Let ∆P1 and ∆D1 denote the increment of the
objective function P t

1 and Dt
1, respectively, ∆P1 “ ai˚ ,

∆D1 “ ´p∆R ` Lk˚∆δk˚ q, where ∆δk˚ “
δk˚

Lk
`

ai˚

Lkξ
and

∆R “ ´pδk˚ ` ai˚ q stands for the increment in δk˚ and

R. Thus, we have ´p∆R`Lk˚∆δk˚ q “ ´Lkp
δk˚

Lk
`

ai˚

Lkξ
q `

pδk˚ `ai˚ q “ ´δk˚ ´
ai˚

ξ
`´δk˚ `ai˚ “ ξ´1

ξ
ai˚ “ ξ´1

ξ
∆P1.

Due to PK
1 “

ř
kpP k

1 ´ P k´1

1
q “ ξ

ξ´1

ř
kpDk

1 ´ Dk´1

1
q “

ξ
ξ´1

pDK
1 ´D0

1q ď ξ
ξ´1

DK
1 , according to the nature of the orig-

inal duality, when two Linear programming are dual to each
other, any objective value of the Linear programming seeking
the maximum value will not be greater than any objective
value of the Linear programming seeking the minimum value,
so PK

1 ď ξ
ξ´1

DK
1 ď ξ

ξ´1
P k˚

1 , P k˚

1 refers to the optimal
objective function value of the primal problem P1, we obtain
θ1 “ ξ

ξ´1
.

Let ∆P2 and ∆D2 denote the increment of the objec-
tive function P tk

2 and Dtk
2 , respectively, ∆P2 “ di˚jλj ,

∆D2 “ ´pµj˚ ` Qi˚∆ni˚ q, where ∆ni˚ “
ni˚

Qi
`

di˚jλj

QiP

stands for the increment in ni˚ . We have ∆D2 “ ´pµj˚ `

Qi˚ni˚ q “ ´µj˚ ´ Qi˚ p
ni˚

Qi
`

di˚jλj

QiP
q “ ni˚ ` di˚jλj ´

Qi˚ p
ni˚

Qi
`

di˚jλj

QiP
“ p1 ´ 1

P
qdi˚jλj “ P´1

P
∆P2. Due

to P J
2 “

ř
jpP j

2
´ P j´1

2
q “ P

P´1

ř
jpDj

2
´ Dj´1

2
q “

P
P´1

pDJ
2 ´ D0

2q ď P
P´1

DJ
2 ď P

P´1
P˚
2

, P k˚

2 refers to the
optimal objective function value of the primal problem P2,
we obtain θ2 “ P

P´1

Theorem 2. Competitive Ratio. The The social cost achieved
via Algorithm 3 is at most α times the offline optimal social
cost. β1 and β2 are the parameters introduced in Algorithm 3
and Algorithm 4.

Proof. First, due to Algorithm 3 and Algorithm 4, we have
ř

t C
tprxt,rzt, rytq

“
ř

t

´
Ct

´M prxt,rzt, rytq ` Ct
M pryt, ryt´1q

¯

ď
`
1 ` β1q

ř
t C

t
´M prxt,rzt, rytq. (11a)

We explain (10a). Consider the set of the time frames
recorded by the variable t̂ when executing Algorithm 3. Let us
denote those time frames as tt̂1, t̂2, ...u. Consider any p ě 1.
For the consecutive time frames tt̂p, t̂p ` 1, ..., t̂p`1 ´ 1u, we
either have

C
t̂p
M pryt̂p , ryt̂p´1q ď β1 ¨

řt̂p`1´1

t“t̂p
Ct

´M prxt,rzt, rytq

Second, note that, analogously, due to Algorithm 4, for each
k, we have

řK
k“1

´
Ctk

´Hprxtk,rztkq ` Ctk
H prxtk, rxtk´1q

¯

ď
`
1 ` β2q

ř
k C

tk
´Hprxtk,rztkq. (12a)

Third, based on (10a) and (12a), now we can denote α “
p1`β1q

`
1`β2q, from the previous text, we know that β1 and

β2 are both positive real numbers, and then have
ř

t C
tprxt,rzt, rytq
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ďp1 ` β1q
ř

t C
t
´M prxt,rzt, rytq

ďp1 ` β1q
ř

t

`
p1 ` β2q

ř
k C

tk
´Hprxt,rztq `

ř
i a

t
iryti

˘

ďp1 ` β1qp1 ` β2q
ř

t

`ř
k C

tk
´Hprxt,rztq `

ř
i a

t
iryti

˘

ďp1 ` β1qp1 ` β2q
ř

t

`ř
k C

tk
´Hpx̄t, z̄tq `

ř
i a

t
iȳ

t
i

˘

ďp1 ` β1qp1 ` β2q
ř

t C
t
´M px̄t, z̄t, ȳtq

ďα
ř

t C
tpx̄t, z̄t, ȳtq.

Theorem 3. NP-Hard. The total cost minimization problem
P0 is NP-hard.

Proof. To prove the NP-hardness of our problem P0, we can
reduce an existing NP-hard problem “p-median” to P0. In the
following, we recap our problem P0, formulate the p-median
problem, and exhibit the reduction process. We have already
analyzed the gap between the obtained approximate solution
and the theoretical optimum, and we also explain that as below.
We have already listed the formulation of P0 in Section III.B.

1. Formulation of the p-median problem:

min
ř
i

ř
j

cijxij

s.t.
ř

ixij “ 1,@j, (14a)ř
iyi “ p, (14b)

xij ď yi,@i,@j, (14c)

xij , yi P t0, 1u,@i,@j.

2. Reduction: We set T “ 1 and K “ 1 while neglecting
the switching cost terms, i.e., we consider a time horizon of a
single time frame which contains a single time slot. We also
set Itk

j “ I, @j and J tk
i “ J , @i. That is, P0 becomes

min
ř
i

ř
j

dijλjxij `
ř
i

ř
m
limzim `

ř
i

aiyi

s.t.
ř

i xij “ 1,@j, (15a)ř
j xij ď Qi,@i, (15b)ř
m zim ě

ř
j λjxij ,@i, (15c)ř

i zim ď ymCm,@m, (15d)ř
i yi “ R, (15e)

xij , yi Pt0, 1u, zim ě0, @i,@m,@j.

In this P0, we further set

dij “ cij ,@i,@j,

λj “ 1,@j,

ai “ 0,@i,

Qi “ |J |,@i,

Cm “ |J |,@m,

R “ p,

lim “
ř

i

ř
jcij ` 1 pfor i ‰ mq and 0 pfor i “ mq,@m.

P0’s objective becoming p-median’s objective: Note that
the objective function of P0 is now the same as the objective
function of p-median, except that the former contains the extra
term

ř
i,m limzim. Yet, for every m, the coefficient li,m is set

to 0 if i “ m and set to a large constant (i.e.,
ř

i

ř
j cij ` 1,

or any larger constant) if i ‰ m. This indeed means that, in
the optimum of P0, for every m, zim is 0 for i ‰ m and could
take any non-negative value for i “ m; this further means that,

in this case, the optimal objective value of P0 is exactly the
same as that of p-median.

P0’s constraints becoming p-median’s constraints: Note
that (15a) is actually (14a), and (15e) is actually (14b). With
Qi “ |J |, (15b) always holds and can be ignored. Next, we
show how (15c) and (15d) jointly lead to (14c). Following
the above analysis of

ř
i,m limzim, the left-hand side of (15c)

becomes zii and the right-hand side of it becomes
ř

j xij ,
i.e., (15c) becomes zii ě

ř
j xij ; similarly, (15d) becomes

zii ď yi|J |. Connecting them, we have
ř

j xij ď yi|J |, which
is equivalent to xij ď yi, i.e., (14c). That is, in this case, the
constraints of P0 are exactly the same as those of p-median.

Gap: The gap between P0’s objective value incurred by the
approximate solution from our proposed algorithms and P0’s
own optimal objective value is analyzed and mathematically
proved in Theorem 2. In Theorem 2, we have proved a
parameterized-constant competitive ratio to characterize the
multiplicative gap, defined as the ratio of the optimization
objective’s value incurred by the online decisions over that
incurred by the offline optimal decisions. While the approxi-
mation ratio is often used in the offline setting, the competitive
ratio is the online version of the approximation ratio in the
online setting (where “online” vs. “offline” will be discussed
in our response to the next comment). The competitive ratio
holds for all inputs, and is thus stable in this sense. A constant
competitive ratio implies that the multiplicative gap does not
grow as the length of the time horizon (e.g., the total number
of the time frames) grows, even though it may still depend on
other parameters. In our case, the competitive ratio depends on
the control parameters β1 and β2 introduced in our Algorithms
3 and 4.

VI. EXPERIMENTAL EVALUATIONS

In this section, we present the experimental evaluations
conducted to assess the performance and effectiveness of the
proposed system.

A. Experimental Settings

Edge System: We simulate a Walker-Delta constellation
with an orbital height of 1000km and an inclination of 53
degrees through Satellite Tool Kit (STK) platform [47], [48],
along with the deployment of 20 ground stations in China,
each satellite has a communication coverage with a 30˝ cone
half angle and different satellites have overlapped coverage.
Coverage at a location varies over time as satellites move in
and out of view [49]. We set the total length of the time range
to 10 consecutive time frames, each with 12 time slots, and
obtain content requests for each time slot [50].

Content Requests: We export the position and connection
relationship data of the ground station and satellite simulated
in STK to form all Itk

j and J tk
i at the current moment. We

set the cost of each hosting service replica as within the range
of r0.2, 1s. We use the geographical distance to estimate the
network delay between the two edges and the delay between
ground stations and satellites. We note that we can associate
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proper non-negative weights to these different types of costs
to indicate how the importance of each type of cost can impact
the results.

Algorithms for Comparison: We implement the following
algorithms for comparison: (1) Proposed refers to our proposed
online algorithms; (2) Offline Optimum, this method considers
the long-term issue as an offline issue, with all inputs identical
to the online algorithm but known in advance; (3) Greedy
seeks the current optimal solution in each corresponding time
slot without considering the global optimal solution, and does
not postpone ground station changing access satellite across
time slots; (4) Random selects access satellites and service
satellites considering any cost-related optimization. (5) Single-
Timescale, solving on a single time scale as a comparative
algorithm for our dual time scales. (6) An advanced Markov
decision process Approach for User Allocation in Edge Com-
puting called MDP [51], the core idea of this method is to
describe the interaction between the server and the edge nodes
in the form of evolutionary games.

B. Experimental Results

Fig. 4 depicts the impact of satellite size on set Itk
j , i.e. the

number of satellites flying over one of the ground stations at k
of t. It can be observed that smaller constellations fail to ensure
a satellite presence in every time slot for connectivity. This is
attributed to the sparse distribution of satellites determined by
the constellation size [6]. To avoid situations where ground
stations cannot choose to access satellites, it is advisable to
opt for larger-scale constellations whenever possible, that is,
a large constellation ensures that at least one satellite in each
time slot can be connected to a ground station.

Fig. 5 depicts the total cost under different constellation
sizes. Based on Fig.4, we can find that when pM,Nq is
p16, 12q and p12, 8q, ground stations may sometimes stop
working due to missing access to satellites, therefore the total
total cost under small-scale constellations are much lower than
those under large-scale constellations. On the contrary, as long
as the ground station can be ensured to be within the communi-
cation coverage range of at least one satellite in each time slot,
the total cost gap between different large-scale constellations
will not be very significant. The additional portion arises from
the migration costs incurred in the service transfer within the
more extensive constellation, we can see that our proposed
method performs better than Single-Timescale and MDP.

Fig. 6 depicts the total cost of different algorithms per time
slot.Due to the transition process of the satellite i from becom-
ing an access satellite to performing access handover (trans-
ferring the access role to the next satellite), a certain number
of time slots are required. During this period, the connections
established by the ground stations are stable. However, when
the handover occurs, the cost increases significantly due to
the associated handover penalty and the migration cost of
tasks from the partially serviced satellite. Consequently, there
is a noticeable elevation in cost. The simulation in Systems
Tool Kit maintains a fixed starting time and initial topology.
Therefore, when running different algorithms, the handover
occurs at the same time point. Our approach outperforms

Random and Greedy by reducing 5% „ 50% total cost and is
also close to the offline optimum. Fig. 5 and Fig. 6 showing
that our approach achieves near-optimal performance with
low computational overhead, and validates the scalability of
our approach in terms of its running time under different
network sizes. These results collectively demonstrate that
our algorithms converge quickly, scale well with increasing
network sizes, and achieve near-optimal performance with low
computational overhead.

Fig. 7 depicts the influence of changes in the service cost
weight per satellite on the total cost across different numbers
of service satellites. In this scenario, we ensure that the
service capacity of satellites can meet all task requirements.
As the total number of specified service satellites in the entire
system increases, the incurred task migration delay and hosting
costs also rise, thereby impacting the overall total cost. This
dynamic may arise due to the escalation in the complexity
of internal communication and resource scheduling within
the system as the number of service satellites grows. With
the augmentation of service satellites, there is an increase
in the frequency of task migration and hosting operations,
consequently leading to elevated resource consumption and
communication overhead. In this context, the rise in total cost
reflects a relative decline in system performance under the
burden of increased service workload

Fig. 8 illustrates the impact of the control parameter β2 as
in Algorithm 2 on the total cost, in this case, we give β1

in Algorithm 1 as 0.25. When the weight of the handover
penalty is provided, increasing β2 makes it easier to meet
the control requirement in Algorithm 2. Although a larger
value of β2 may delay the handover of satellite access as
much as possible, it not only faces increased costs due to
frequent downloading of copies from other satellites, but
also leads to excessive time slot delay, which can cause the
ground station to deviate from the coverage range of the
currently connected satellites, and then force satellite handover
to generate handover penalties. Similarly, when the parameter
β2 Given the timing, a higher handover penalty weight may
delay the necessary content download, leading to an increase
in the cumulative non replacement cost, thus increasing the
total cost. Similarly, Fig. 9 illustrates the impact of the control
parameter β1 as in Algorithm 1 on the total cost. We compared
the two graphs and found that the change in β2 has a greater
impact on total costs than β1. Algorithm 1 operates at the
time frame scale, and Algorithm 2 performs computations at
the time slot scale. Since a time frame encompasses multiple
time slots, the impact of β2 in Algorithm 2 on total costs
is slightly larger than the impact of β1 in Algorithm 1. This
difference in impact arises from the fact that the decisions
made in each time slot accumulate over the entire time frame,
and β2 affects the total costs within each time slot, leading to
a more significant overall impact.

Fig. 10 illustrates the correlation between the total number
of service satellites R in the system and the service capacity
Ci weight per individual service satellite. This is crucial as
our system must ensure that, in each time slot, it respects the
service capacity to avoid situations where service satellites
cannot meet the demand for task assignments. For instance,
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Fig. 4: The impact of constellation Fig. 5: Total cost comparison Fig. 6: Cost per time slot

Fig. 7: Impact of hosting service ai Fig. 8: Impact of parameter β2 Fig. 9: Impact of parameter β1

Fig. 10: Impact of capacity limitation Fig. 11: Competitive ratio Fig. 12: Algorithms running time

if the specified total number of service satellites is too low
and their service capacity is insufficient, some task demands
may remain unallocated to service satellites in the current time
slot. Consequently, we observe relatively low total costs in
such scenarios because those task demands neither consume
resources nor are handled by the system. On the other hand,
when the system capacity is large enough to handle all task
demands, with an increase in the weight of Ci, total costs
decrease. This is because a single service satellite can accom-
modate as many task demands as possible, thereby alleviating
the migration costs associated with the dispersed transmission
of some task demands.

Fig. 11 indicates that our approach effectively achieves
a remarkably low approximation ratio. Specifically, for any
individual time slot, the approximation ratio is less than
2, considering constellations with sizes (16, 24) and (20,
30). Additionally, the constellation with parameters (16, 24),
characterized by a smaller scale, exhibits an even smaller
approximation ratio, approximately below 1.7. Furthermore,

the stability of the approximation ratio in larger constellations
is not as robust as in smaller constellations.

Fig. 12 respectively show the time spent on execution time
of our proposed online algorithms. Although collecting various
satellite data from STK took a lot of time, fortunately, data
acquisition and our algorithm are two independent processes
that do not affect the performance of our algorithm. Because
the size of the constellation has almost no impact on the
algorithm we propose, while ensuring that ground stations
have access to satellites at each time slot, we choose to
compare the running time of the algorithm with different
numbers of ground stations. As the length of the entire time
horizon in terms of the total number of time slots increases,
the total execution time of our approach grows moderately.

VII. CONCLUSION

In this paper, we address the dynamic resource manage-
ment challenges in LEO satellite edge computing by propos-
ing a novel two-timescale optimization framework. We first
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formulate the social cost minimization problem as a non-
convex mixed-integer program spanning the time horizon,
considering joint optimization of satellite access selection, user
request dispatching, and service replica placement. To solve
this problem efficiently, we design polynomial-time online
algorithms including a hierarchical framework (Algorithms
3-4) that coordinates long-term service migration decisions
with short-term resource allocation, supported by primal-
dual based subproblem solvers (Algorithms 1-2) for service
placement and access selection. The exceptional performance
of our technique in practice has been validated by conducting
comprehensive evaluations, and by carefully demonstrating
many theoretical features and guarantees.

REFERENCES

[1] D. Bhattacherjee, S. Kassing, M. Licciardello, and A. Singla, “In-orbit
computing: An outlandish thought experiment?” in Proceedings of the
19th ACM Workshop on Hot Topics in Networks, 2020, pp. 197–204.

[2] Y. Guo and S. Wang, “Challenges and opportunities in space service
computing,” in 2021 IEEE International Conference on Services Com-
puting (SCC). IEEE, 2021, pp. 44–51.

[3] Y. Li, H. Li, L. Liu, W. Liu, J. Liu, J. Wu, Q. Wu, J. Liu, and
Z. Lai, “” Internet in Space” for Terrestrial Users via Cyber-Physical
Convergence,” in Proceedings of the 20th ACM Workshop on Hot Topics
in Networks, 2021, pp. 163–170.

[4] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and A. Singla,
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