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ABSTRACT

Inferring and characterizing gene co-expression networks has led to important insights on the molecular
mechanisms of complex diseases. Most co-expression analyses to date have been performed on gene
expression data collected from bulk tissues with different cell type compositions across samples. As a result,
the co-expression estimates only offer an aggregated view of the underlying gene regulations and can be
confounded by heterogeneity in cell type compositions, failing to reveal gene coordination that may be
distinct across different cell types. In this article, we introduce a flexible framework for estimating cell-type-
specific gene co-expression networks from bulk sample data, without making specific assumptions on the
distributions of gene expression profiles in different cell types. We develop a novel sparse least squares
estimator, referred to as CSNet, that is efficient to implement and has good theoretical properties. Using
CSNet, we analyzed the bulk gene expression data from a cohort study on Alzheimer’s disease and identified
previously unknown cell-type-specific co-expressions among Alzheimer’s disease risk genes, suggesting
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cell-type-specific disease mechanisms. Supplementary materials for this article are available online.

1. Introduction

Alzheimer’s disease is a neurodegenerative disorder that causes
progressive and irreversible loss of neurons in the brain (Win-
blad et al. 2016). It is estimated to affect 5.8 million people in the
United States and has become the fifth leading cause of death
among Americans over 64 years old (Alzheimer’s Association
2019). Genetic factors are known to play an important role in
Alzheimer’s disease, with an estimated heritability of 58%-79%
for late-onset Alzheimer’s disease, and large scale genome wide
association studies (GWAS) have implicated dozens of regions
of the human genome for their relevance for Alzheimer’s disease
(Sims, Hill, and Williams 2020). To understand the mechanisms
of these disease associated risk genes and the pathogenesis of
Alzheimer’s disease, gene co-expression networks have been
widely employed (Zhang et al. 2013; Wang et al. 2016; Mostafavi
et al. 2018; Meng and Mei 2019; Wan et al. 2020; Wang et al.
2021a).

Gene co-expression networks characterize correlations
of gene expression levels across biological samples and co-
expressed genes may be regulated by the same transcription
factors, functionally related, or involved in the same pathways
(Gaiteri et al. 2014). Gene co-expression networks have been
extensively used to identify functional modules of genes
and pathways, which were further associated with disease
phenotypes (Wang et al. 2016; Mostafavi et al. 2018; Meng
and Mei 2019; Wang et al. 2021a). For example, a gene co-
expression analysis in Zhang et al. (2013) identified TYROBP

as a key regulator in an immune related module upregulated
in late-onset Alzheimer’s disease, which was recapitulated
in vivo in mice. In this article, the links in a co-expression
network characterize associations of gene expression levels
across samples and do not necessarily imply gene regulatory
relationships.

While the literature on gene co-expression networks is
rapidly growing, most co-expression analyses to date have been
performed on data collected from bulk tissue samples that
aggregated the expression profiles from different cell types.
As a result, the estimated co-expression networks only offer
an aggregated view of the underlying gene regulations, while
gene regulations may differ considerably in different cell types
(Heintzman et al. 2009), and the co-expression estimates can
be dominated by signals from the more abundant cell types.
Moreover, as different bulk samples may have different cell type
compositions, the observed co-expressions may be confounded
with cell type proportions. For example, consider two genes
that are both highly expressed in one cell type but are not co-
expressed at the cell type level. Bulk sample data may show that
these two genes co-express as their expression levels co-vary
with the proportion of this specific cell type in the bulk sample.
Meanwhile, increasing evidence suggests cell-type-specific
pathogenesis of Alzheimer’s disease (De Strooper and Karran
2016). For example, neuroinflammation represents a key causal
pathway in Alzheimer’s disease and involves primarily glial cells
in the brain including microglia and astrocytes (Heneka et al.
2015); myelination is also implicated in the disease, which is
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mainly contributed by oligodendrocytes (Cai and Xiao 2016). To
gain a more accurate and comprehensive view of the biological
processes underlying Alzheimer’s disease, a better approach is
to estimate cell-type-specific co-expression networks.

Cell-type-specific co-expressions can possibly be estimated
from single cell RNA sequencing (RNA-seq) data (Hwang, Lee,
and Bang 2018) that measure expression profiles in single cells.
However, these data are much more limited in the number of
biological samples analyzed (Stower 2019), have high noises
and sparsity due to low coverage and biological noises (Kiselev,
Andrews, and Hemberg 2019), and may be biased due to cell
isolation and sequencing protocols (Denisenko et al. 2020). For
example, a recent single cell study on Alzheimer’s disease has
profiled 18 samples and conducted a gene co-expression analysis
after aggregating the sparse expression data over single cells
(Morabito et al. 2021). The co-expression analysis findings were
only made for oligodendrocytes and did not cover astrocytes
and microglia which are arguably more closely related to the
Alzheimer’s disease mechanisms, potentially due to their lower
proportions in the brain and the high sparsity of single cell data.
Real data results in Section 4 show that cell-type-specific co-
expressions estimated from single cell RNA-seq data are noisy
and co-expressions are often only seen in the highly abundant
cell types. Instead of resorting to single cell data for estimating
cell-type-specific co-expressions in Alzheimer’s disease, we con-
sider the use of bulk sample data in this article.

1.1. The ROSMAP Study on Alzheimer’s Disease

Our work focuses on the bulk RNA-seq data from the Religious
Orders Study and Rush Memory and Aging Project (Bennett
et al. ROSMAP; 2018), a clinical-pathologic cohort study of
Alzheimer’s disease. In the ROSMAP study, postmortem brain
samples from n = 541 subjects were collected from the grey
matter of dorsolateral prefrontal cortex, a brain region heavily
implicated in Alzheimer’s disease pathology. Single cell data
from the same study found eight common brain cell types in
these tissue samples (Mathys et al. 2019) including excitatory
neuron, astrocyte, oligodendrocyte, microglia, inhibitory neu-
ron, endothelial cell, pericyte, oligodendrocyte precursor cell,
where the average estimated proportions for the first four major
cell types in the bulk RNA-seq samples are 0.50, 0.20, 0.19, 0.08,
respectively, adding together to 97% (see Section 4).

While the large sample size of the ROSMAP study facilitates a
better estimation of gene co-expressions in the brain (Mostafavi
et al. 2018), co-expressions directly estimated via correlations of
the aggregated bulk samples are subject to the issues discussed
before, including confounding by cell type proportions and
estimates dominated by signals from the more abundant cell
types. In particular, these estimates may fail to reveal the bio-
logical functions and pathways in different brain cell types that
underlie the pathogenesis of Alzheimer’s disease. This motivates
our study that aims to estimate cell-type-specific co-expression
networks from bulk RNA-seq data, by leveraging the estimated
cell type proportions in bulk samples (Newman et al. 2019),
and to examine the estimated networks in cell types relevant
to Alzheimer’s disease for a better understanding of disease
mechanisms.

1.2. Existing Methods and Our Approach

There is a recently growing literature on decomposing bulk gene
expression profiles into cell-type-specific profiles (Cobos et al.
2020). Using the bulk data, various methods are available to
infer mean expression levels in each cell type (Newman et al.
2019) and to infer cell type proportions (Abbas et al. 2009; Wang
et al. 2019; Newman et al. 2019; Tang, Park, and Zhao 2020;
Jew et al. 2020; Yang et al. 2021). More recently, methods have
been proposed to infer cell-type-specific expressions in each
sample, such as CIBERSORTx (Newman et al. 2019), bMIND
(Wang, Roeder, and Devlin 2021), and ENIGMA (Wang et al.
2021b). For each cell type, these methods offer an indirect way
to estimate the co-expressions, by calculating the correlations of
estimated expression profiles across samples. However, we show
in Sections 3 and 4 that these methods rely on either restrictive
assumptions, or high-quality external information that is not
readily available in practice.

In our work, we consider a different statistical approach and
propose a flexible method to estimate Cell-type-Specific gene
co-expression Networks using bulk gene expression data, and
call this method CSNet. Specifically, we formulate the problem
as estimating the means and covariances of unknown densities
from different cell types using data (i.e., bulk samples) generated
from a convolution of these densities with varying compositions.
Our method CSNet does not make specific assumptions on the
distributions of expression levels from different cell types, and it
overcomes the computational challenge in estimating the covari-
ances in a convolution of densities, especially when the number
of genes is large, through a novel least squares approach that is
efficient to implement and has good theoretical properties. We
further propose a sparse estimator with SCAD penalty in the
high dimension regime where the number of genes p can far
exceed the sample size n.

Using CSNet, we analyzed the bulk RNA-seq data from the
ROSMAP study and estimated gene co-expression networks for
eight common cell types in the brain, including four major
cell types, excitatory neuron, oligodendrocyte, astrocyte and
microglia, on genes with known genetic risk for Alzheimer’s
disease, where modules of risk genes that uniquely co-express
in astrocytes and microglia were uncovered. In contrast, the
estimator based on cell-type-specific expression levels imputed
by Wang, Roeder, and Devlin (2021) generated co-expression
estimates that were similar in all cell types and did not identify
any cell-type-specific modules (see Figure S10(a)). Both astro-
cyte and microglia are cell types that are less abundant (less
than 20%), and the co-expressions estimated from single cell
RNA-seq data showed no correlations in these two cell types
(see Figure S10(b)). We have also considered gene sets that
function primarily in specific cell types to validate CSNet and
conducted several sensitivity analyses to further validate our
results.

The rest of the article is organized as follows. Section 2
introduces the data problem and discusses estimating cell-type-
specific co-expressions from bulk samples using CSNet. Sec-
tion 3 reports the simulation results, and Section 4 conducts
an analysis of cell-type-specific gene co-expression networks
on gene sets with known cell-type-specific functions and on
an Alzheimer’s disease risk gene set using bulk RNA-seq data



from the ROSMAP study. Section 5 concludes the article with
discussions.

2. Model and Estimation
2.1. Problem Formulation

Suppose we have expression data x1, . . ., x, € R? collected from
nbulk RNA-seq samples across p genes. We assume that there are
K cell types, and the observed bulk level expression is the sum
of these K cell types written as

K
k
xi = Zﬂikx,( ) (1)
k=1

where mjx and xl(k) represent the proportion and expression
profile of the kth cell type in the ith sample, respectively. Let
xfk) be independent from a multivariate distribution with mean
p® e RP and covariance =0 e RP*P, where p® and £®
characterize the cell-type-specific mean gene expression and co-
expression, respectively. Correspondingly, we can write

K
E(x) = Z i ®,
k=1

K K
Covlx) = 3 mg=® + 3 w240, (2)
k=1 k£K

where £*K) — cov(x?k), xl(k/)). As the gene regulation mecha-
nisms in functionally distinct cell types are different (Heintzman
et al. 2009), it is expected that the within-cell-type covariance
Zle niZkZ(k) is much larger than the across-cell-type covari-
ance Zf " mkmkrE(k’k/). This assumption is supported by our
real data analysis using a large single nucleus RNA-seq data
from brain tissues in Fujita et al. (2022) with 436 individuals
(see Section S2). Hence, to reduce model complexity, we assume
Zf;ek’ mpmie %K) = 0 and consider

K K
E@) =) mn®,  Covix) =) mz®.  (3)
k=1 k=1

Also using the dataset in Fujita et al. (2022), we demonstrate that
our method is not sensitive to the misspecification of assuming
the across-cell-type covariance ZIk{ e TUikTCik! »®K) = 0. Details
of this analysis are included in Section S2. As £*®) does not relate
directly to the strength of gene co-expressions, due to hetero-
geneity in variances, we further consider correlation matrices in
our analysis denoted as R® = D,:l/ 2E(k)Dk_1/ *, where Dy is a
p x p diagonal matrix with the same diagonal as =*.

Denote [m] = {1,2,...,m} for a positive integer m. We
shall assume the cell type proportions s in (3) are given in
the ensuing development, and later demonstrate in experiments
that our method is not sensitive to biases and errors in 7;;’s; see
results in Sections 3.2, A5.1 and discussions in Section 5. To infer
mix’s from bulk samples, many methods have been developed
that use cell type marker genes (i.e., genes that are only highly
expressed in one cell type of interest) with expression profiles
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gathered from pure cell types (Newman et al. 2015; Li et al. 2016)
or single cell RNA-seq data (Wang et al. 2019; Newman et al.
2019; Jew et al. 2020; Dong et al. 2021; Yang et al. 2021; Chu
etal. 2022). In these methods, the proportions mj;’s are estimated
by, for example, nonnegative least squares (Wang et al. 2019) or
support vector regression (Newman et al. 2019). Given the bulk
samples {x;}ic[s) and cell type proportions {mik}ic[n) ke[x]> OUr
goal is to estimate the cell-type-specific correlations {R(k)}ke[K].

2.2. Estimating R® with Large p

It is easily seen from (1) and (3) that each bulk sample x; is
from a convolution of K distributions. In this case, estimating
(z®y kerk] from {x;};c[»] is very challenging. For example, even
in the simple Gaussian case, the loglikelihood function is, up to
a constant,

n
Z log

i=1

K n K -1
k=1 i=1 k=1

where tr(-) denotes the trace of a matrix and z; = x; — E(x;).
This loglikelihood is not convex or biconvex with respect to
(2R} ix]> and cannot be directly optimized using existing iter-
ative algorithmic solutions such as EM and coordinate descent.
To our knowledge, there are no existing methods that can effec-
tively estimate the covariances in a convolution of densities.

To tackle this challenge, we propose a novel moment-based
approach that is efficient to implement and flexible, in that it
does not assume the distributions from the K cell types to be
known or of the same type. The proposed approach, named
CSNet, first estimates R® efficiently in an element-wise fashion
and then applies a thresholding step, in the case of a large p, to
give a sparse estimator. Next, we introduce the CSNet estimator.

Letting p® = (uﬁk),...,u;k)) and T = (a.(./k))pxp, (1)

j
and (3) together imply

K
k .
Xij = Z”ik“} "tz jelp) (4)
k=1
K
k ..
zjzy =y mgoy +en jj €[p) )
k=1

where E(z;;) = 0 and E(¢;7) = 0. This formulation facilitates
an efficient least squares estimation procedure to be detailed in
the next paragraph. Note that (4)-(5) hold generally without
parametric assumptions on the distributions from the K cell
types.

Denote ¥ = (x1js - - - Xnj) and Py = (k) nx k. Equation (4)

entails estimation of the cell-type-specific mean u® via
2® _ [ (pTp,)  pTa ; K
@ =[(P/P) P/¥|, jelpl, kelK]l, (6)
k

where [x]i is the kth entry in x € RK. Let Zij = xj —
K ~ (k ~ ~

ZkzlmkM; ) and zi = (21,

(711%(),1X &> (5) entails estimation of the cell-type-specific covari-

ance o(k) i
57 via
I

,24j) € R Denoting P, =

-1
o = (vr) WG ozp) L i et ke @
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where o denotes element-wise product. Then, the cell-type-
specific correlation ﬁgf) is estimated as

s®Ps®

5k _ Ak
Rjj/ - jj// /A

j.j € lpl, k € [K]. (8)

In Section S6.2, we show that element-wisely R](JI,() is consistent

with a /n-convergence rate under certain regularity conditions.
In our implementation, as cell-type-specific means /L;k)

: (k)
variances o

’s and

s are positive parameters, we adopt non-negative
least squares (NNLS) to improve their estimation accuracy in
finite samples. To reduce the variability in the estimates of cell-
type-specific covariances o ™5, we further consider a weighted
least squares approach with carefully chosen weights (see details
in Section S3.1).

Though each entry in the correlation matrix estimated in (8)
has a y/n-convergence rate, the accumulated errors across O(p?)

N . .
entriesin R canbe excessive, especially as the number of genes

where X is a tuning parameter and we discuss its selection in
Section 2.3. As has been well established in the sparse covariance
estimation literature (e.g., Bickel and Levina 2008a,b; Rothman
et al. 2008; Rothman, Levina, and Zhu 2009), the thresholding
procedure is easy to implement and enjoys good theoretical
properties. Moreover, the SCAD thresholding has been found
to give better numerical performances when compared to soft
or hard thresholding (Rothman, Levina, and Zhu 2009). We
set a = 3.7 in our experiments as recommended by Fan and
Li (2001). The thresholds ;s may differ across different cell
types to accommodate varying sparsity among different cell
types. We note that the Ax’s can be selected separately (without a
joint tuning) in our tuning procedure (see Section 2.3), which
is an attractive computational property of our procedure. In
Section S1, we show the convergence rates of CSNet, that is,

A (k
Toy (R( )), in spectral and Frobenius norms, and establish its
selection consistency.

As with all thresholding approaches, 7y, (ﬁ(k)) is not guaran-
teed to be positive definite; see more discussions in Section 5 on
considerations for positive definiteness. To ensure the finite sam-
ple validity of correlation estimates, we threshold the correlation
estimates to be within [—1,1] in our experiments.

2.3. Time Complexity and Parameter Tuning

We first discuss the time complexity of solving (7) for all entries
in covariance matrices. Though (7) is computed element-wisely,
the matrix (P;'—Pg)_l P, e RK*" is common and only needs
to be calculated once. Hence, entries in X1,..., Xx can be
estimated efficiently via (P;Pz)_1 P, U, where U is an n x p?

p often far exceeds the sample size # in co-expression network
analysis, which can negatively impact downstream analyses such
as ranking, principal component analysis or clustering. This
same challenge also arises in estimating large sample covariance
(Bickel and Levina 2008a,b; Rothman et al. 2008; Rothman,
Levina, and Zhu 2009) and correlation matrices (El Karoui 2008;
Jiang 2013). To facilitate estimability and interpretability, we
assume that ©® (or equivalently R®) is approximately sparse
for all k; see the definition of approximate sparsity in Assump-
tion 2 (Section S1). Sparsity is plausible in our data problem, as
gene co-expressions are expected to be sparse when p is large
(Zhang and Horvath 2005).

A~ (k
Based on R' ), the proposed CSNet estimator computes
sparse cell-type-specific correlation estimates via thresholding.
Specifically, CSNet applies an element-wise SCAD (Fan and Li

~ ~ (k
2001) thresholding operator to R(k), written as Ty, (R( )), with
the (j, j)th thresholded entry calculated as

~(k
IRY| < 24

€ Ak, ary) (9)

B ~ (K
2Ak) ‘Rjj,

otherwise,

matrix with the jj'th column set to 2; o zy. Correspondingly,
the time complexity of estimating X1, . . ., Xk is O(Knp?), while
that of a naive sample covariance estimation is O(np?). As the
number of cell types K is usually small, the two computing times
are comparable.

Next, we discuss parameter tuning. In our procedure, the
tuning parameters Ag’s are selected using cross-validation or, if
available, an independent validation dataset. Here, we introduce
the cross-validation procedure and note that selection with a
validation dataset can be carried out similarly. We randomly
split the data into two equal-sized pieces and estimate for each
piece, the cell-type-specific correlation matrices as in (8). We
denote the estimated correlation matrices from these two data
splits as ﬁik) and ﬁ;k), k € [K], respectively. For each k, the

A~ (k
tuning parameter Aj is selected by minimizing |7, (RE )) —

A (k A~ (k A (k
R; )||12? + ||7}k(R; )) - Ri )||12? among a set of working values,
where || - || r denotes the Frobenius norm. We consider two equal

A~ (k
sized data splits as sufficient samples are needed to estimate Rg )

and ﬁ;k) well. This procedure is similar to what was proposed
in Bickel and Levina (2008a), where the theoretical justification
was provided, and it is found to give a good performance in
our numerical experiments. In practice, this procedure can be

overly conservative for less abundant cell types, as the estimates

~ (k A~ (k
Ri ) and R; " can be very noisy (see Figure S11). To mitigate

this issue, we propose to further consider a one standard error
rule for selecting the tuning parameters in less abundant cell
types (see Section S$3.2). An attractive feature of our proposed
tuning procedure is that Ay’s are selected separately without
the need of a joint tuning, further reducing the computational
cost.
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Figure 1. Correlation matrix estimate in one data replicate with p = 100 and n = 150, under a negative binomial distribution with a truncated AR(1) correlation structure
in Vq or V5 (see Section 3). From left to right: true correlation matrices, estimates from Bulk, CSNet, s-bMIND, and s-ENIGMA. Note the Bulk estimate is not cell-

type-specific.

3. Simulation Studies

We first investigate the finite sample performance of CSNet
and compare it with three existing methods, and then conduct a
sensitivity analysis to examine the performance of CSNet when
the provided cell type proportions have biased noises.

3.1. Comparing cSNet with Other Methods

We consider two classes of estimators: dense correlation estima-
tors without thresholding and sparse correlation estimators that
implement SCAD thresholding. For dense correlation estima-
tors, we consider the estimator calculated using bulk samples,
referred to as d-Bulk, the cell-type-specific estimator in (8)
without sparsity, referred to as d-CSNet, estimators that com-
pute the sample correlations of the cell-type-specific expressions
estimated by Wang, Roeder, and Devlin (2021) and Wang et al.
(2021b), referred to as bMIND and ENIGMA, respectively. We
apply SCAD thresholding to the above four dense estimators
and obtain sparse correlation estimators referred to as Bulk,
CSNet, s-bMIND, and s-ENIGMA, respectively. For these
sparse estimators, tuning parameters were selected using the
same cross-validation procedure to facilitate a fair comparison.
The method bMIND considers a Bayesian mixed effects model
that constructs priors using single cell data and estimates cell-
type-specific expressions in each sample with posterior means.
In our experiment, it was evaluated with non-informative pri-
ors to be comparable with the other methods, which do not
depend on prior knowledge. We also consider informative pri-
ors for bMIND in Tables S2 and S5 in the supplement and
the results remain similar. The method ENIGMA (Wang et al.
2021Db) is an optimization-based method that estimates cell-
type-specific expressions for each sample by minimizing the
difference between estimated and observed bulk data and it was
evaluated under the default parameter setting (see more details
in Section S4). We chose to not compare with CIBERSORTx
high-resolution expression purification (Newman et al. 2019) as
itis applicable only when there are both case and control samples
in the data. All methods under comparison were supplied with

true cell type proportions. Sensitivity analysis with biased noises
in cell type proportions is presented in Section 3.2.

We simulate #n bulk samples of dimension p following x; =
Zle nikxfk) in (1) with K = 2 cell types and m;1’s i.i.d from
Beta(2, 1). Correspondingly, cell type 1 (in = 2/3) is on average
twice as abundant as cell type 2 (m = 1/3), where m denotes
the average cell type proportions. We simulate xgk) s from multi-
variate negative binomial distributions, resembling read counts
from bulk RNA-seq data (Love, Huber, and Anders 2014), with
mean p®’s and covariance matrices ¥ ©’s specified as follows.
The p genes are divided into three equal-sized sets, denoted as
V1, V2, and V3; genes in V) and V; are set to co-express in cell
types 1 and 2, respectively, while all other correlations are set to
zero (see the left panel in Figure 1). For the co-expressed genes
in V7 or V3, two types of structures are considered, including a
truncated AR(1) structure with p;; = 0.8l for li—j1 <10,
and a correlation structure estimated from real single cell RNA-
seq data for j # j € V) or V, (see details in Section S3.3).

We set logoj(.l) = 8 for all j, logojj(.z) = 8forj € V1,V

]

@ _
and logo;” =

9 for j € V3 with sequencing depth set to
S = 6 x 107 to mimic highly-expressed protein-coding genes
in real sequencing data. The mean u(® is set to be a function of
= ®) (see details in Section $3.4), consistent with the observation
in real data that higher expression levels are often associated
with larger variances. To simulate correlated negative binomial
random variables as specified, we combine a marginal negative
binomial model (Section $3.4) and a copula-based approach that
can simulate multivariate count data following a pre-specified
correlation matrix (Tian, Wang, and Roeder 2021; Sun et al.
2021). The tuning parameters for CSNet and Bulk are selected
following Section 2.3 and the suggested procedure in Rothman,
Levina, and Zhu (2009), respectively, both using a validation
dataset with the same size as the observed samples. We consider
network sizes p = 100, 200 and sample sizes n = 150,600.

To evaluate the estimation accuracy, we report the estimation

. . ~(k
errors in the Frobenius norm ||R( ) R® || pand operator norm

~(k A~ (k
||R( ) _ g® I, where -3 ), with a slight overuse of notation,
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Table 1. Evaluation criteria of sparse estimators with varying sample size n and network size p under a negative binomial distribution with a truncated AR(1) correlation

structure for genes in V7 or V; (see Section 3).

Cell type 1 (m = 2/3)

Cell type 2 (m = 1/3)

n p Method F-norm Op.-norm FPR TPR F-norm Op.-norm FPR TPR
150 100 Bulk 28.11 27.29 0.26 0.79 30.16 27.29 0.28 0.39
(0.14) (0.12) (0.03) (0.06) (0.15) (0.12) (0.03) (0.06)
CSNet 4.34 2.36 0.11 0.75 7.56 4.53 0.08 0.51
(0.34) (0.39) (0.01) (0.06) (0.41) (0.44) (0.01) (0.07)
s-bMIND 5.97 413 0.14 0.59 11.76 6.60 0.09 0.08
(0.55) (0.41) (0.03) (0.06) (0.58) (0.04) (0.05) (0.06)
s-ENIGMA 25.07 23.51 1.00 1.00 31.59 29.81 1.00 1.00
(0.76) (0.81) (0.00) (0.00) (0.74) (0.78) (0.00) (0.00)
200 Bulk 54.74 53.79 0.20 0.73 56.89 53.79 0.22 0.32
(0.19) (0.18) (0.02) (0.05) (0.18) (0.18) (0.02) (0.04)
CSNet 7.07 3.10 0.07 0.69 11.84 5.37 0.05 0.44
(0.35) (0.30) (0.01) (0.05) (0.34) (0.26) (0.01) (0.04)
s-bMIND 8.48 4.36 0.08 0.60 17.17 6.97 0.05 0.05
(0.55) (0.34) (0.01) (0.05) (0.53) (0.02) (0.02) (0.03)
s-ENIGMA 48.97 46.45 1.00 1.00 62.01 59.22 1.00 1.00
(0.93) (0.99) (0.00) (0.00) (0.98) (1.05) (0.00) (0.00)
600 100 Bulk 28.05 2737 0.30 0.95 30.05 2737 0.31 0.67
(0.07) (0.06) (0.04) (0.03) (0.08) (0.06) (0.04) (0.05)
CSNet 2.08 0.99 0.10 0.93 3.69 1.88 0.10 0.80
(0.20) (0.20) (0.02) (0.03) (0.27) (0.31) (0.01) (0.05)
s-bMIND 4.49 3.37 035 0.79 10.18 5.87 0.21 0.50
(0.15) (0.20) (0.03) (0.03) (0.34) (0.25) (0.05) (0.09)
s-ENIGMA 18.77 17.68 1.00 1.00 25.26 23.89 1.00 1.00
(0.34) (0.36) (0.00) (0.00) (0.35) (0.36) (0.00) (0.00)
200 Bulk 54.64 53.93 0.23 0.94 56.88 53.93 0.24 0.61
(0.09) (0.08) (0.03) (0.02) (0.10) (0.08) (0.03) (0.04)
CSNet 3.4 1.30 0.07 0.91 5.89 2.40 0.07 0.76
(0.21) (0.19) (0.01) (0.03) (0.29) (0.25) (0.01) (0.04)
s-bMIND 5.07 276 0.15 0.83 14.98 6.17 0.1 0.49
(0.20) (0.15) (0.01) (0.03) (0.41) (0.20) (0.02) (0.06)
s-ENIGMA 36.25 34.92 1.00 1.00 49.17 4733 1.00 1.00
(0.51) (0.53) (0.00) (0.00) (0.48) (0.49) (0.00) (0.00)

NOTE: The four sparse estimators under comparison are Bulk, CSNet, s -bMIND, and s - ENIGMA. We use F-norm to denote the Frobenius norm and Op.-norm to denote
the operator norm. Marked in boldface are those achieving the best evaluation criteria in each setting.

Table 2. Evaluation criteria of dense estimators under the same setting as Table 1.

n 150 600
Cell type 1(m=2/3) 2(m=1/3) 1(m=2/3) 2(m=1/3)
p Method F norm Op. norm F norm Op. norm F norm Op. norm F norm Op. norm

100 d-Bulk 29.02 27.77 30.78 27.78 28.30 27.49 30.10 27.49
(0.18) (0.18) (0.19) (0.19) (0.07) (0.07) (0.08) (0.07)

d-CSNet 11.80 4.15 20.01 7.34 5.80 1.85 9.52 3.08
(0.23) (0.39) (0.58) (0.63) (0.10) (0.16) (0.19) (0.29)

bMIND 10.80 4.89 15.57 6.62 7.08 4.60 10.93 5.58

(0.24) (0.25) (0.36) (0.39) (0.08) (0.12) (0.31) (0.20)

ENIGMA 25.07 23.51 31.59 29.81 18.77 17.68 25.26 23.89

(0.76) (0.81) (0.74) (0.78) (0.34) (0.36) (0.35) (0.36)

200 d-Bulk 56.76 54.80 58.67 54.81 55.18 54.17 57.16 54.18
(0.24) (0.25) (0.23) (0.25) (0.09) (0.09) (0.10) (0.09)

d-CSNet 23.66 6.95 40.22 12.96 11.63 2,97 19.17 5.15
(0.27) (0.43) (0.74) (0.95) (0.12) (0.21) (0.20) (0.33)

bMIND 19.84 5.81 26.15 8.78 11.43 497 17.27 5.73

(0.22) (0.31) (0.35) (0.63) (0.11) (0.14) (0.34) (0.18)

ENIGMA 48.97 46.45 62.01 59.22 36.25 34.92 49.17 4733

(0.93) (0.99) (0.98) (1.05) (0.51) (0.53) (0.48) (0.49)

NOTE: The four dense estimators under comparison are d-Bulk, d-CSNet, bMIND, and ENIGMA.

denotes the estimate of R obtained by various methods. For
sparse estimators, we also report the true positive rate (TPR) and
false positive rate (FPR), which evaluate the selection accuracy
of nonzero entries in R®s. Tables 1 and 2 report the average
criteria under the truncated AR(1) model for sparse and dense
estimators, with standard deviations in the parentheses, over

200 data replications. Table 1 shows that CSNet achieved the
best performance in terms of both estimation accuracy and
selection accuracy. CSNet also performed the closest to an
oracle estimator that benchmarks the performance if true cell-
type-specific expressions within each bulk sample were available
(Table S1). In the supplement, we demonstrate in Tables S2 that
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Figure 2. ROC curves with a varying sample size n and network size p under a negative binomial distribution with a truncated AR(1) correlation structure in V; or V; (see
Section 3). The four methods under comparison are Bulk, CSNet, s-bMIND, and s-ENIGMA. The thresholds selected by CSNet are marked using red crosses on the

curves.

even with informative priors derived from simulated cell-type-
specific data, CSNet still performed better than s-bMIND.
Table 2 further shows that d-CSNet yielded satisfactory per-
formance among dense estimators. The errors of bMIND can
be smaller than d-CSNet in some cases. This is because the
true signal is highly sparse and bMIND tended to give a biased
but less variable estimate (see Figure S5). In Table S3, we show
that d-CSNet outperformed bMIND when denser signals were
considered. We also demonstrate in Table S4 that when the
true co-expressions were set by a correlation structure estimated
from real data, CSNet again achieved the best performance
among all methods.

To better visualize the estimates, Figure 1 plots heat maps of
the true cell-type-specific co-expression matrices and estimates
from Bulk, CSNet, s-bMIND, and s - ENIGMA. The estimates
from d-CSNet show similar patterns as CSNet plus some
additional noises (see Figure S5). From Figure 1, it is clearly seen
that Bulk, s-bMIND, and s - ENIGMA give a less accurate view
of the true co-expressions. Specifically, Bulk estimates high co-
expressions in V3 while genes in V3 are not co-coexpressed in
either cell type. True co-expression patterns in V, from cell type
2 are also notably attenuated in Bulk. Moreover, s-bMIND
does not perform well for cell type 2, the less abundant cell
type. It is seen that the true co-expressions in V> are not iden-
tified while co-expressions specific to cell type 1 are incor-
rectly inferred. s-ENIGMA also estimate high co-expressions
in V3 and generally give correlations with large magnitude,
potentially caused by the penalty used in ENIGMA, where cell-
type-specific expressions are encouraged to be similar to the
reference cell-type-specific expressions. In comparison, CSNet
was able to identify the true co-expression patterns in both
cell types.

To evaluate the threshold selection procedure in Section 2.3,
we plot the ROC curves that plot the TPR against the FPR
across a fine grid of thresholding parameters for Bulk, CSNet,
s-bMIND, and s-ENIGMA. The thresholds selected by our
proposed procedure in Section 2.3 are marked on the curves
for cSNet. The ROC curves in Figure 2 show that CSNet
achieves the best performance and the selected thresholds gener-
ally strike a reasonable balance between TPR and FPR. As shown
in Tables 1, 2 and Figures 1, 2, the improvement of CSNet over
others is the most notable for the less abundant cell type, and this
demonstrates the efficacy of our proposed method for cell types
whose signals are attenuated in bulk samples.

We also consider a setting where there are K = 4 cell types
(see Section S3.5). To mimic microglia analyzed in Section 4,
a less abundant cell type with important roles in Alzheimer’s
disease (Tansey, Cameron, and Hill 2018), we simulate a cell
type with an average proportion of 10%. Table S6 shows that
CSNet performed better than the other methods for this cell
type. We also consider a setting with K = 10 cell types that
includes 6 rare cell types whose average proportions add up
to 10% (see Section S3.5). This setting resembles our real data
analysis in Section 4, as the brain tissue studied in our real data
analysis have eight common brain cell types and the four least
abundant cell types add up to less than 10%. Table S7 shows that
the estimation and selection accuracy of CSNet on the four
major cell types remained similar with the addition of six cell
types when compared to Table S6.

3.2. Sensitivity Analysis of CSNet

In this section, we conduct a sensitivity analysis to examine the
performance of our method when the cell type proportions ;s
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Table 3. Sensitivity analysis of CSNet with n = 600 and p = 100, under the same setting as Table S4.

Cell type 1 (m = 2/3)

Cell type 2 (m = 1/3)

K b cor  r-RMSE F-norm Op.-norm FPR TPR F-norm Op.-norm FPR TPR
00 -02 1.00 0.26 1.32 0.57 0.05 0.42 2.56 1.54 0.07 043
(0.08) (0.10) (0.01) (0.02) (0.19) (0.22) (0.01) (0.02)

—0.1  1.00 0.13 1.22 0.56 0.04 0.43 2.50 143 0.06 043
(0.09) (0.10) (0.01) (0.02) (0.19) (0.22) (0.01) (0.02)

00 100 0.00 1.16 0.58 0.04 0.43 248 133 0.06 043
(0.09) (0.12) (0.01) (0.02) (0.18) (0.23) (0.01) (0.02)

0.1 100 0.13 1.16 0.59 0.05 0.43 253 1.23 0.06 043
(0.09) (0.12) (0.01) (0.02) (0.17) (0.22) (0.01) (0.02)

02 099 0.24 3.72 2.80 0.27 0.54 2.71 1.17 0.07 043
(0.31) (0.32) (0.02) (0.04) (0.16) (0.21) (0.01) (0.03)

06 —02 096 0.30 10.63 10.07 0.31 0.55 10.26 9.26 0.35 0.56
(0.33) (0.35) (0.01) (0.03) (0.46) (0.50) (0.02) (0.03)

-0.1 096 0.19 10.48 9.98 0.30 0.55 10.32 9.23 035 0.56
(0.29) (0.31) (0.02) (0.04) (0.49) (0.53) (0.01) (0.03)

00 096 0.14 10.16 9.69 032 0.56 1039 9.18 0.34 0.56
(0.27) (0.29) (0.02) (0.04) (0.54) (0.58) (0.01) (0.03)

0.1 096 0.18 9.96 9.55 0.29 0.55 10.02 8.58 0.34 0.56
(0.26) (0.27) (0.01) (0.03) (0.61) (0.65) (0.02) (0.03)

02 095 0.26 11.25 10.92 0.25 0.52 8.45 6.57 0.32 0.55
(0.22) (0.22) (0.02) (0.04) (0.58) (0.64) (0.01) (0.03)

09 —02 083 0.40 20.85 20.47 0.17 0.44 26.50 25.88 0.20 042
(0.29) (0.28) (0.01) (0.03) (0.30) (0.30) (0.02) (0.03)

-0.1 083 033 21.26 20.89 0.16 0.43 27.39 26.78 0.19 042
(0.27) (0.27) (0.01) (0.02) (0.34) (0.34) (0.02) (0.03)

00 083 0.29 21.34 20.98 0.16 0.43 28.11 27.45 0.19 0.42
(0.25) (0.25) (0.01) (0.03) (0.36) (0.34) (0.01) (0.03)

0.1 083 0.30 21.35 20.99 0.16 043 28.39 27.57 0.19 042
(0.23) (0.22) (0.01) (0.02) (0.34) (0.34) (0.01) (0.03)

02 083 0.34 2151 21.15 0.16 0.44 28.06 27.10 0.22 044
(0.20) (0.20) (0.01) (0.03) (0.36) (0.38) (0.01) (0.03)

NOTE: Noisy cell type proportions were set to 7zj; + N(b x 71, k x 0.04), and then thresholded to be within [0, 1]. We use cor to denote the Pearson correlation cor(rjq, Tj1)

and r-RMSE to denote the relative root mean squared error ./ Zf’=1 (mi1 — 7j1)2/n/7.

used in CSNet are measured with biased noises. We consider
n = 600, p = 100 and the same simulation setting as in Table S4
where the co-expression structures are those estimated from real
data. Let {m;1}; and {7;1}_, denote the true and noisy cell type
proportions for cell type 1, respectively. We let

i1 =min +e, e~ N(Dbxima,k x0.04),

where 7; = Y, 7ii/n and b controls the magnitude of
relative bias (e.g., b = 0.2 indicates that cell type proportions
are on average over-estimated by 20% in cell type 1). We con-
sider b € {-0.2,—0.1,0,0.1,0.2} and « € {0,0.6,0.9}. We
threshold 7;; to be between [0,1] and set 7y = 1 — ;.
To quantify the noise level, we adopt two metrics: Pearson
correlation cor (w1, 77;1) and relative root mean squared error
(r-RMSE) \/% Yo (win — 7i1)? /7. We present these metrics
for cell type 1 as there are two cell types in the experiment. The
noise levels in this sensitive analysis (see Table 3) are similar to
those achieved by recently developed methods for estimating
cell type proportions from bulk RNA-seq data. For example,
Newman et al. (2019) and Chu et al. (2022) showed that the cor-
relations between their estimated proportions and ground truth
proportions, measured by technologies such as flow cytometry,
were generally around 0.9.

Table 3 presents the sensitivity analysis results. It is seen that
at any fixed value of « (i.e., noise variance), the estimation and
selection errors are similar across different values of b (i.e., noise
bias), suggesting that CSNet is not overly sensitive to biases.

When « = 0 (only bias, no random errors), the evaluation
metrics are comparable to the case with accurate cell type pro-
portions (i.e., k = b = 0). When ¥ = 0.6, the TPRs remain
high in both cell types with a reasonable false positive control,
though the estimation errors increase. When ¥ = 0.9, the
correlations can be as low as 0.83 and r-RMSE can be as large
as 0.40, suggesting a considerable amount of noises in cell type
proportions. Though the estimation errors increase, the FPRs
and TPRs remain reasonably satisfactory.

4, Cell-Type-Specific Co-expressions of Different Gene
Sets for an Alzheimer’s Disease Cohort

We focus on estimating cell-type-specific co-expressions using
bulk RNA-seq data from the Religious Orders Study and Rush
Memory and Aging Project (ROSMAP) study on Alzheimer’s
disease (Bennett et al. 2018). Gene expressions were profiled
by bulk RNA-seq for n = 541 postmortem brain samples,
expression unit FPKM (Trapnell et al. 2010) was used to quantify
gene expressions, and no notable batch effects were observed
from these samples (see Figure S6). The cell type proportions for
K = 8 cell types were estimated using CIBERSORTx (Newman
et al. 2019) with the signature matrix built from the single
nucleus RNA-seq data (Mathys et al. 2019) collected on the same
brain region in a subset of 48 samples.

We applied CSNet as defined in (9), with the tuning param-
eters selected using the cross-validation procedure discussed
in Section 2.3, to estimate cell-type-specific co-expressions for
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Figure 3. Co-expressions of excitatory synapse genes in different cell types. From left to right: (a) sample correlation matrix estimated from bulk RNA-seq data, (b) CSNet
estimates and (c) s -bMIND estimates. For s-bMIND, genes with constant expression estimates across samples are marked in gray.

all K = 8 cell types. Additionally, we compared CSNet to
two alternative approaches, one through s-bMIND, the best
performing alternative in Section 3, and one using single cell
data (Mathys et al. 2019), respectively. For s -bMIND estimates,
we followed Wang, Roeder, and Devlin (2021) to infer priors
from single cell data and supplied these priors to estimate cell-
type-specific expressions in each sample; see details in Sec-
tion S4; correlation estimates were then computed using the
estimated cell-type-specific expressions across different sam-
ples. To estimate cell-type-specific co-expressions from single
cell data, we first calculated cell-type-specific expressions in
each sample. Specifically, the expression profile of gene j in cell
type k for sample i was calculated by first summing over the
UMI counts of gene j from all cells of cell type k in sample
i, and then normalized by the total number of UMI counts
in cell type k from sample i. These cell-type-specific expres-
sions calculated for different samples were then used to estimate
the co-expression (i.e., correlation matrix) in each cell type,
and the correlation matrices were further thresholded following
the procedure in Rothman, Levina, and Zhu (2009) with the
SCAD penalty. For all methods, we visualized the estimated co-
expressions using heat maps, with genes ordered into clusters
(or modules) identified by WGCNA (Langfelder and Horvath
2008), a gene clustering method, applied to bulk samples. In the
ensuing analysis, we focus on the four most abundant cell types:
excitatory neuron (Ex), oligodendrocyte (Oli), astrocyte (Ast),
and microglia (Mic). The average proportions for these four cell
types are 0.50, 0.19, 0.20, 0.08, respectively.

4.1. Gene Sets with Known Cell-type-specific Functions

The gene co-expressions estimated from different methods were
compared on a few sets of genes. We first considered three sets
of genes obtained from Gene Ontology (GO) (Ashburner et al.
2000; Consortium 2021) including the excitatory synapse genes
(GO:0060076, p = 46), myelin sheath genes (GO:0043209, p =
42) and astrocyte differentiation genes (GO:0048708, p = 72),
primarily functioning in excitatory neurons, oligodendrocytes
and astrocytes, respectively. Specifically, the excitatory synapse

gene set contains genes whose products function mainly in
excitatory synapses, and the myelin sheath gene set has genes
related to myelin sheath, which is supplied by oligodendrocytes
to the central nervous system; the astrocyte differentiation gene
set contains genes involved in the differentiation process of an
astrocyte. These gene sets, according to their GO definitions, are
expected to express and/or co-express primarily in the cell types
that are relevant to their functions. In our analysis of these three
gene sets, we focused on genes expressed in more than 25% of
the ROSMAP bulk samples, resulting in sets of sizes p = 45,41
and 68, respectively.

Figure 3 shows the co-expression estimates from Bulk,
CSNet, and s-bMIND for the excitatory synapse gene set. It is
seen that CSNet identified co-expressions specific to excitatory
neurons, while s-bMIND suggested similar co-expression
patterns in all four cell types. We also estimated cell-type-specific
co-expressions for the myelin sheath and astrocyte differentiation
gene sets, shown in Figures S7 and S8, respectively. These
plots show that CSNet identified co-expressions specific to
oligodendrocytes and astrocytes, respectively, while s -bMIND
again estimated similar co-expressions across four cell types.
We also conducted an analysis that simultaneously considers
all three GO gene sets and found that CSNet can distinguish
the three gene sets in the corresponding cell types (Figure S9).
In comparison, the bulk estimates cannot distinguish them and
the co-expressions of myelin sheath and astrocyte differentiation
gene sets are much weaker (Figure S9), suggesting that bulk
estimates may miss co-expressions from these less abundant
cell types. Finally, Figure 4 shows that the estimates based on
single cell data are noisy and do not show any cell-type-specific
co-expression patterns. Also in Figure 4, for all three gene sets,
the strongest co-expressions are always observed in excitatory
neurons, likely driven by the fact that it is the most abundant
cell type (Mathys et al. 2019).

4.2. Alzheimer’s Disease Risk Gene Set

Next, we focused on Alzheimer’s disease risk genes from GWAS
(see gene names in Table 4), which capture around 50% of the
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Figure 4. Co-expressions of excitatory synapse, myelin sheath, and astrocyte differentiation genes in different cell types, estimated using the ROSMAP single cell data (Mathys
et al. 2019). Marked in gray are genes with no variation or no expression within a given cell type.

Table 4. The list of Alzheimer’s disease risk genes.

Cluster Genes

1 MEF2C, PILRA, MS4A8, EPHA1, IL34, CELF1, KAT8, KANSL1, HS3ST1, ACE,
PTK2B, MAPT, NDUFAF7, TSPOAP1-AS1, SLC24A4, SORL1, PPARGC1A,
C170rf107, APP, TPBG, CNTNAP2

2 IGHG3, HLA-DRB1, TRIP4, CASS4, MS4A14, PLCG2, INPP5D, SCIMP, MS4A7,
CD33, TREM2, MS4A4A, MS4A6A, ABI3, SPI1

3 PRKD3, TP53INP1, CD2AP, ZNF423, CLU, SPPL2A, FERMT2, IQCK, RORA,
ECHDC3

4 APOE, MS4A4E, ZCWPW1, ABCA7, BIN1, SHARPIN

5 HESX1, APH1B, ADAM10, PICALM, ZNF655

6 CR1, HBEGF, ADAMTS1, ADAMTS4

NOTE: Gene names are displayed by cluster and in the same order as they appear in
Figure 5. Our analysis included only the sequenced genes with an FPKM greater
than 0.1 in at least 50 ROSMAP samples.

heritability in late-onset AD (Sims, Hill, and Williams 2020).
Our analysis focused on 61 genes with an FPKM greater than
0.1 in at least 50 ROSMAP samples. There is a growing literature
on the molecular mechanisms and related cell types for these
risk genes. Besides the well studied pathways of amyloid-8 and
tau processing, several other pathways have also been implicated
(Pimenova, Raj, and Goate 2018; Sims, Hill, and Williams 2020),
among which neuroinflammation was recently highlighted as
one of the most important causal pathways in Alzheimer’s dis-
ease (Heneka et al. 2015). Both microglia and astrocyte are
the key cell types involved in such immune responses, and
microglia, the innate immune cells in central nervous system,
was prioritized as the cell type most enriched for GWAS associ-
ations (Skene and Grant 2016; Tansey, Cameron, and Hill 2018).
Our analysis aims to use CSNet to explore the cell-type-specific
co-expression patterns among these Alzheimer’s disease risk
genes.

Figure 5 shows the estimates from Bulk, d-CSNet, and
CSNet, respectively. We applied the one standard error rule
when selecting the tuning parameters for less abundant cell types
(Section S3.2). The s-bMIND estimates are again similar across
cell types, and are relegated to Figure S10(a) in the supple-
ment. In Figure 5, some within cluster co-expressions from bulk
samples are no longer seen in the cell-type-specific estimates,
likely due to the confounding effect of cell type proportions. The
d-CSNet and CSNet estimates in Figure 5(b) and (c) show that
genes in Cluster 4 (colored in yellow) were co-expressed in astro-

cytes. This gene cluster includes APOE, a major Alzheimer’s
disease risk gene known to be highly expressed in astrocytes
(Yamazaki et al. 2019). APOE protein is primarily produced
in astrocytes, which then interacts with amyloid-8, which is
involved in a central pathway of Alzheimer’s disease (Yamazaki
et al. 2019). Besides, both APOE and ABCA7 contribute to
lipid metabolism and phagocytosis (Pimenova, Raj, and Goate
2018), consistent with their high co-expressions found in Cluster
4. The CSNet estimates for Cluster 4 further highlight their
connections with several other Alzheimer’s disease risk genes
in astrocytes. Additionally, the d-CSNet and CSNet estimates
in Figure 5(b) and (c) suggest that genes in Cluster 2 (colored
in blue) were co-expressed in microglia, a finding supported
by existing literature on Alzheimer’s disease. First, 9 out of
15 genes in Cluster 2 are known to be involved in neuroin-
flammation and Alzheimer’s disease mechanisms via microglia.
Among them, the coding variants in PLCG2, TREM2, ABI3
implicate innate immunity in Alzheimer’s disease as mediated
by microglia (Sims et al. 2017); CD33 inhibits the uptake of
amyloid-B8 in microglia (Griciuc et al. 2013); MS4A gene clus-
ter is a key modulator of TREM2 in microglia (Deming et al.
2019) and SPII is a central regulator of microglia expression
and Alzheimer’s disease risk (Kosoy et al. 2021). In addition,
9 genes are known to express uniquely in microglia, including
HLA-DRBI, PLCG2, CD33, TREM2, ABI3 and the MS4A gene
cluster (Sims et al. 2017; Pimenova, Raj, and Goate 2018). The
d-CSNet and CSNet estimates were able to identify cell-type-
specific co-expression patterns of these genes, while single cell
data based estimates could not (see Figure S10(b)), which possi-
bly offered new insights into regulations of Alzheimer’s disease
risk genes. The estimated co-expressions in gene Clusters 2 and
4 reveal previously unknown cell-type-specific co-expressions
among Alzheimer’s disease risk genes, and may suggest cell-
type-specific disease mechanisms.

Finally, the sensitivity analysis in Section S5.1 shows that
CSNet remained robust as a reasonable amount of noise was
added to the cell type proportions. We have also conducted
a negative control experiment where cell type proportion vec-
tors for different samples were randomly permuted. Figure S14
shows that the resulting estimates in excitatory neurons, the
most abundant cell type, always resemble the bulk co-expression
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Figure 5. Co-expression networks of Alzheimer’s disease risk genes inferred from the ROSMAP data. From left to right: sample correlation matrix estimated from bulk RNA-

seq data, d-CSNet estimates, and CSNet estimates.

estimate, while the previously uncovered cell-type-specific co-
expression patterns are no longer seen.

5. Discussion

Our model (1) is designed for gene expression data measured
by the RNA-seq protocol, where sequencing read counts capture
the expression levels for all cells in a tissue sample. We caution
that the same model may not be applicable to microarray data,
where expression levels have been transformed for normaliza-
tion (Zhong and Liu 2012).

We have assumed that the cell type proportions mj’s are
given in our analysis. In practice, they are estimated with exist-
ing methods such as Newman et al. (2019) and Chu et al.
(2022), where it is shown that the correlations between their esti-
mated proportions and ground truth proportions were generally
around 0.9. Our empirical investigations showed that CSNet is
not overly sensitive to errors in ;s (see sensitivity analysis in
Sections 3.2 and S5.1). It is possible to further extend our frame-
work to accommodate noisy 7y ’s. In this case, we may further
consider the oﬂ(k) s to be estimated from z;iziy = K k 1 7 KO ® 4
Eijjo] € [plwhere & = e+ Y4, (rh — 20
should still be well estimated.
We leave the full investigation of this topic as future research.

Our proposed work focuses on the estimation of correlation
matrices R®)’s that characterize marginal associations amongst
genes. It may also be of interest to estimate the precision matrix

defined as Q% = £®~', Under the Gaussian assumption, a
zero (nonzero) entry in Q® indicates independence (depen-
dence) between two genes conditional on all other genes.
Without making the Gaussian assumption, the nonzero entries
in Q® characterize partial correlations instead of conditional
dependence. Under our framework, one feasible approach to
estimate Q% is to consider

. Hence, if

the error |711.2k - ﬁil is small, 0.(.,k)

min |S®Q®

(10)
Q)

— Il + Pi (")

where $® is estimated from the first step of CSNet and Py, ()
is a sparse penalty function. This type of problems can be solved,
for example, using the CLIME method (Cai, Liu, and Luo 2011).
The formulation in (10) may incur a high computational cost,
and the results can be sensitive to the selection of gene sets.
We leave a full investigation of (10) to future work. In our
current work, we focus on a co-expression network due to its
computational efficiency, model flexibility and wide adoption in
biomedical research (Langfelder and Horvath 2008).

In terms of estimation, instead of the two-step procedure
considered in CSNet, an alternative approach is to integrate
these two steps and consider

35 (s - Yot

=1 jj

K
k
DAY
k=1 jAf
where Py (x) denotes a penalty function, such as lasso or SCAD,

a(k)ofk)) , (11)

with a regularization parameter A. Estimating o( s from (11)

can be computationally costly, as there are O(Kp ) parameters
to optimize together and it is necessary to tune the regular-
ization parameters Aj,. .., Ak jointly. In comparison, the two-
step procedure in CSNet allows for a separate tuning of A,
and given the tuning parameters, the computational complexity
of CSNet is comparable to that of naive covariance estimators
for ii.d. samples. While the two-step procedure in CSNet is
not guaranteed to optimize (11), it is highly computationally
efficient, which is appealing for practitioners. We also show
in Theorem S1.1 that the error rate of CSNet is comparable
to that of estimating sparse covariance matrices directly from
i.i.d samples (Rothman et al. 2008). For finite sample cases, it
may be desirable to ensure the positive definiteness of the final
estimator. One strategy is to solve a constrained optimization
problem, subject to positive definiteness, to find the nearest
correlation matrix in Frobenius norm. This can be carried out
efficiently using existing solvers (e.g., Qi and Sun 2006; Sun and
Vandenberghe 2015).
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Some recent methods have been developed to estimate cell-
specific co-expression networks using single cell data, including
Dai etal. (2019) and Wang, Choi, and Roeder (2021). It is impor-
tant to note that cell-specific and cell-type-specific networks do
not necessarily capture the same type of correlation of expression
levels. For example, if two genes have the same expression level
for all cells in a tissue sample and this expression level varies
from sample to sample, then these two genes are not corre-
lated in the cell-specific networks but are highly correlated in
the network estimated using bulk samples, and this correlation
may be due to regulations (e.g., genetic variants) at the sample
level. Moreover, cell-specific network estimates may be subject
to noises and may require averaging to facilitate interpretation
(Wang, Choi, and Roeder 2021).

Recently, new computational tools have been developed to
more accurately estimate the proportions of cell subtypes in bulk
tissues, such as Chu et al. (2022) and Huang et al. (2023). Our
proposed method can also be combined with these estimates
to understand co-expressions in cell subtypes and to address
potential confounding due to cell subtypes.

Finally, with an increasing number of studies collecting sin-
gle cell data, we may also obtain more accurate co-expression
estimates. For example, if a more accurate or refined reference
signature matrix is available from the new single cell studies, one
can generate updated cell type proportion estimates for bulk data
(Newman et al. 2019) and use them in our procedure. As cells
can be annotated into cell types, statistical methods have also
been developed to directly infer cell-type-specific co-expression
networks from single cell data, such as Su et al. (2022) and Lu
and Keles (2023). Moreover, an integrated analysis of bulk and
single cell data may also improve the co-expression estimates.
For example, bMIND and ENIGMA have explored ways to
extract information from single cell data to help with the estima-
tion. However, platform differences and batch effects are promi-
nent in integration, and have not been addressed well in these
methods. We plan to explore along this direction in our future
research.

Supplementary Materials

The supplementary materials comprise theoretical results, supplementary
methods, figures, and additional numerical results. The codes for
reproducing the results in this article are available at https://github.com/
ChangSuBiostats/ CSNet_analysis. An R package that implements CSNet is
provided at https://github.com/ChangSuBiostats/ CSNet.
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