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ABSTRACT

There is a growing interest in cell-type-speci�c analysis from bulk samples with a mixture of di�erent cell
types. A critical �rst step in such analyses is the accurate estimation of cell-type proportions in a bulk sample.
Although many methods have been proposed recently, quantifying the uncertainties associated with the
estimated cell-type proportions has not been well studied. Lack of consideration of these uncertainties can
lead to missed or false �ndings in downstream analyses. In this article, we introduce a �exible statistical
deconvolution framework that allows a general and subject-speci�c covariance of bulk gene expressions.
Under this framework, we propose a decorrelated constrained least squares method called DECALS that
estimates cell-type proportions as well as the sampling distribution of the estimates. Simulation studies
demonstrate that DECALS can accurately quantify the uncertainties in the estimated proportions whereas
other methods fail. Applying DECALS to analyze bulk gene expression data of post mortem brain samples
from the ROSMAP and GTEx projects, we show that taking into account the uncertainties in the estimated
cell-type proportions can lead to more accurate identi�cations of cell-type-speci�c di�erentially expressed
genes and transcripts between di�erent subject groups, such as between Alzheimer’s disease patients and
controls and between males and females. Supplementary materials for this article are available online,
including a standardized description of the materials available for reproducing the work.
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1. Introduction

The need to analyze gene expression data collected either
through microarrays or sequencing to answer di�erent biologi-
cal questions has motivated the developments of a great number
of statistical methods in the last two decades. The applications of
these methods have gained novel biological insights on disease
mechanisms, identi�ed informative biomarkers, and led to novel
treatments for some diseases (e.g., Zhang and Horvath 2005;
Barabási, Gulbahce, and Loscalzo 2011; Trapnell et al. 2012;
Zhang et al. 2013; Mostafavi et al. 2018; Zhang and Li 2022).
While the literature on gene expression analysis is steadily
growing, most gene expression data gathered to date are from
bulk samples which consist of distinct cell types. For example, a
brain sample usually has astrocytes, endothelial cells, microglia,
neurons, oligodendrocytes, and oligodendrocyte precursor cells
(Darmanis et al. 2015). Therefore, even if two samples have
the same gene expression pro�les at the cell type level, their
aggregated bulk expression pro�les may di�er if their cell-type
proportions are di�erent. Due to the heterogeneous cell-type
proportions across samples, the analysis of gene expression data
at the bulk level may lead to false positive �ndings and miss
true biological signals. Moreover, such an analysis only o�ers
an aggregated view of the biological mechanisms in di�erent
cell types, while most disease etiologies are cell-type-speci�c
(Hekselman and Yeger-Lotem 2020; Li et al. 2021; Zhu et al.
2022). To gain a more accurate and comprehensive view of the
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underlying biological mechanisms, a desirable approach is to
analyze gene expressions in speci�c cell types. While such cell-
type-speci�c gene expressions are not directly available from
bulk sample data, it can be inferred if the cell-type proportions
for bulk samples are given. This task of inferring cell-type
proportions and/or expressions from bulk samples is o�en
referred as deconvolution.

In recent years, many deconvolutionmethods have been pro-
posed (Abbas et al. 2009; Newman et al. 2015; Wang et al. 2019;
Jew et al. 2020; Tang, Park, and Zhao 2020; Yang et al. 2021).
These methods rely on the availability of signature genes for
di�erent cell types with their expressions usually gathered from
single-cell RNA sequencing (scRNA-seq) data, and they di�er in
the details on how the information from these signature genes is
used. The estimated cell-type proportions from these methods
together with the bulk expression data have made it possible
to address a number of important cell-type-speci�c (CTS) bio-
logical questions, For example, based on gene expression data
collected from two groups of bulk samples, it may be possible
to infer genes having di�erent CTS expression levels between
the two groups (Jin et al. 2021; Wang, Roeder, and Devlin 2021;
Tang, Park, and Zhao 2022). It is also possible to infer CTS
co-expression patterns (Su, Zhang, and Zhao 2021) and CTS
expression quantitative trait loci (eQTLs) (Patel et al. 2021; Little
et al. 2022) from bulk samples. Furthermore, instead of making
group-level CTS inference, methods have also been proposed
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to infer CTS expression levels at the individual sample level
(Newman et al. 2019; Jaakkola andElo 2022). These sample-level
inferred CTS expressions have been used to infer CTS di�eren-
tially expressed genes between groups, genetic variants that have
CTS e�ects on gene expressions, and CTS co-expressions (Jin
et al. 2021; Wang, Roeder, and Devlin 2021; Jaakkola and Elo
2022).

1.1. The ROSMAP Study on Alzheimer’s Disease

Alzheimer’s disease is a neurodegenerative disorder that causes
progressive and irreversible loss of neurons in the brain (Win-
blad et al. 2016), and is estimated to a�ect 5.8 million people in
the United States. Genetic factors are known to be important in
Alzheimer’s disease, with an estimated heritability of 58–79% for
late-onset Alzheimer’s disease (Sims, Hill, and Williams 2020).
In recent years, increasing evidence suggests cell-type-speci�c
pathogenesis of Alzheimer’s disease (De Strooper and Karran
2016). Our work considers the bulk RNA-seq data collected
from the Religious Orders Study and Rush Memory and Aging
Project (ROSMAP; Bennett et al. 2018), a clinical-pathologic
cohort study of Alzheimer’s disease. In the ROSMAP study,
postmortembrain samples fromn = 541 subjects were collected
from the dorsolateral prefrontal cortex, a brain region that is
strongly associated with Alzheimer’s disease pathology (Salat,
Kaye, and Janowsky 2001;Montembeault et al. 2016). Among the
541 subjects, 219 were Alzheimer’s disease patients and 322 were
controls. The bulk gene expression levels for each subject were
collected in Mostafavi et al. (2018)1 and measured in units of
FPKM (Trapnell et al. 2010). Single cell data from the same study
(Mathys et al. 2019) found several major brain cell types in these
tissue samples including neuron, astrocyte, oligodendrocyte,
microglia and endothelial cell. See more details in Section 4.2.

The large sample size of the ROSMAP study and the grow-
ing literature on deconvolution methods together enable the
inference of genes having di�erent expression levels between
Alzheimer’s disease patients and controls in speci�c cell types
(Jin et al. 2021; Wang, Roeder, and Devlin 2021; Tang, Park,
and Zhao 2022), providing a better understanding of the CTS
etiology of Alzheimer’s disease. However, existing methods for
this purpose o�en ignore the uncertainty in estimated cell-
type proportions and treat them as known quantities. This can
lead to missed or false �ndings in identifying CTS di�erentially
expressed genes. To overcome this challenge, our study aims
to develop a statistical deconvolution framework that estimates
both the cell-type proportions and their sampling distributions,
and can incorporate uncertainties from estimated cell-type pro-
portions when inferring CTS di�erentially expressed genes.

1.2. ExistingMethods andOur Approach

The majority of the existing CTS analysis methods implicitly
assume that the true cell-type proportions for bulk samples are
available, even though they are o�en estimated with errors from
deconvolutionmodels. Limited e�orts have beenmade to inves-
tigate and quantify the impacts of uncertainties in estimated

1https://www.synapse.org/#!Synapse:syn3388564

cell-type proportions on downstream CTS analysis methods,
even though not considering such uncertainties in estimated
cell-type proportions can lead to missed or false �ndings in
downstream CTS analyses. Two recent methods have been pro-
posed in the literature to quantify the uncertainties in estimated
cell-type proportions. Erdmann-Pham et al. (2021) proposed a
likelihood-based deconvolution method using single-cell refer-
ence data, referred to as RNA-Sieve, and con�dence intervals
of the estimated proportions can be calculated as a by-product
of the estimation procedure. Their approach assumes that the
error terms from modeling the signature gene expressions are
independent and Gaussian. However, this assumption will likely
fail for real data because there are correlations among genes and
RNA-seq data are more appropriately modeled by nonnormal
distributions, for example negative binomial distributions. Xie
andWang (2022) developed a method based on a measurement
error model that incorporates the errors in inferring signature
gene expression levels from single cell data in the estimates
of cell-type proportions in bulk samples, referred to as MEAD.
The estimated proportions are shown to be asymptotically nor-
mal and the covariance is estimated through a sandwich type
estimator with an estimated gene-gene dependence set. How-
ever, this covariance estimator may be biased as the subject-
speci�c covariance among signature genes is not consistently
estimated in MEAD, and this can reduce the accuracy of infer-
ential tasks such as constructing con�dence intervals. Specif-
ically, in our simulation studies in Section 3.3, we show that
the con�dence intervals for cell-type proportions calculated
usingRNA-Sieve andMEAD both su�er from under-coverage,
sometimes substantially.

In this article, we use a new statistical deconvolution frame-
work to estimate the cell-type proportions and their sampling
distributions, and to incorporate the uncertainties in down-
stream CTS analysis methods. Our approach does not impose
parametric assumptions on the distributions of bulk expressions
and allows a general covariance among the signature genes that
can be cell-type- and subject- speci�c. Speci�cally, we consider
a decorrelated constrained least squares framework (DECALS)
to estimate the cell-type proportions, such that the estimated
proportions are nonnegative and add up to 1, and the distri-
bution of the estimated proportions is derived by decorrelating
the signature gene expressions in each bulk sample via their
sample-speci�c covariance. One major challenge in estimating
the distribution of estimated proportions in a sample, say i
denoted as π i, is the need to characterize the covariance among
signature gene expressions in this sample, denoted as�i. As bulk
expressions are aggregated over di�erent cell types, covariance
�i is a function of π i and the unknown CTS covariances. To
consistently estimate the CTS covariances, we consider a novel
moment-based estimator that borrows information across all
bulk samples and further consider a �nite sample bias correction
to improve accuracy. We demonstrate in simulation studies that
DECALS can accurately quantify the uncertainties in the esti-
mated proportions whereas other methods fail to o�er accurate
uncertainty estimates. In Section 4, we apply DECALS to analyze
bulk gene expression data frompostmortembrain samples from
the ROSMAP and GTEx projects and show that taking into
account the uncertainties in the estimated cell-type proportions
can lead to more accurate identi�cations of cell-type-speci�c
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di�erentially expressed genes and transcripts between di�erent
subject groups, such as betweenAlzheimer’s disease patients and
controls and betweenmales and females. As DECALS is �exible,
easy to compute and free from parametric assumptions, it can
be easily combined with most CTS analysis methods based on
bulk samples to incorporate the uncertainties of estimated cell-
type proportions and improve the accuracy and interpretability
of the biological �ndings.

The rest of the article is organized as follows. Section 2 intro-
duces the cell type convolutionmodel, the estimation of cell-type
proportions and their sampling distributions. Section 3 reports
the simulation results. Section 4 performs downstream analysis
to identify CTS di�erentially expressed genes and transcripts
between groups of samples for two real studies, demonstrating
that taking into account the uncertainties in the cell-type pro-
portions can lead to more enriched and interpretable biological
�ndings. The article is concluded with a discussion section.

2. Estimation and Inference of Cell-Type Proportions

2.1. Cell Type DeconvolutionModel

Suppose we have gene expression data y1, . . . , yn ∈ R
p collected

from n bulk RNA-seq samples across p signature genes. We
assume that there are K cell types, and the bulk level expression
for sample i is the sum of these K cell types written as

yi =
K

∑

k=1

πikx
(k)
i , (1)

where πik and x
(k)
i are the proportion and expression pro�le of

cell type k in sample i, respectively, and
∑K

k=1 πik = 1. This
deconvolution model has been commonly considered (Abbas
et al. 2009; Newman et al. 2015; Wang et al. 2019; Jew et al.
2020; Tang, Park, and Zhao 2020; Yang et al. 2021). See more
discussions in Section A3.3. In this article, we do not make any
parametric assumptions on the distributions of CTS expression

pro�le x
(k)
i and bulk expression yi. Denoting E(x

(k)
i ) = wk,

wherewk represents the signature gene expression pro�le for the
kth cell type, we may write

yi =
K

∑

k=1

πikwk + εi, E(εi) = 0, (2)

where εi = (εi1, . . . , εip) is a vector of random variables with
mean zero. In cell type deconvolution analysis, the CTS mean
expressions {wk}1≤i≤K are usually gathered from pure cell types
(Newman et al. 2015; Li et al. 2016) or scRNA-seq data (Wang
et al. 2019; Newman et al. 2019; Jew et al. 2020). For our model,
we recommend using mRNA abundance measure FPKM (Trap-
nell et al. 2010) and without log transformation (see discussions
in Section A1). Given bulk expressions {yi}1≤i≤n and CTSmean
expressions {wk}1≤i≤K , we focus on the inference of {π i}1≤i≤n,
where π i = (πi1, . . . ,πiK) denotes the vector of cell-type
proportions in sample i.

Before we proceed, we �rst highlight some important dif-
ferences between (2) and a standard linear regression problem.
First, model (2) estimates π i with p observations (yi1, . . . , yip)
representing the bulk expressions of p signature genes in sample

i. The statistical units in (2) are the p signature genes, rather
than the n bulk samples. Hence, the estimation accuracy of π i is
expected to bemore closely related to p, the number of signature
genes, than n, the number of samples. Second, the error terms
(εi1, . . . , εip) in (2) are not independent. Speci�cally, cov(εi) can
be written as a sum of CTS covariances between the signature
genes weighted by cell-type proportions (πi1, . . . ,πiK); see (5).
As a result, drawing inference on π i via (2) demands estimating
cov(εi), termed subject-speci�c covariance in this article. Third,
as πik’s are cell-type proportions in sample i, they must satisfy

the constraints that πik ≥ 0 and
∑K

k=1 πik = 1. The above
unique aspects in (2) pose new and signi�cant challenges in
the statistical inference of cell-type proportions, which we will
address in the ensuing development.

2.2. Estimation of Cell-Type Proportions

From (2), we estimate the cell-type proportion vector π i in sam-
ple i via solving the following constrained least-squares problem:

min
π i∈RK

p
∑

j=1

(

yij −
K

∑

k=1

πikwkj

)2

,

s.t. πik ≥ 0 and

K
∑

k=1

πik = 1.

(3)

The solution to (3) is denoted as π̂ i. Note that πik ≤ 1 is implied
by the constraints in (3). In (3), we consider a constrained
ordinary least squares. Alternatively, one may wish to consider a
constrained generalized least squares that multiplies the regres-
sion equation (2) by cov(εi)

−1/2. While the generalized least
squares estimator can be more e�cient, we demonstrate in
Section 2.4 that it may su�er from large biases in practice, due
to the uncertainty in estimating cov(εi)

−1/2 for each sample
i. On the other hand, our empirical investigations show that
π̂ i is more robust and computationally e�cient. See detailed
discussions and comparisons in Section 2.4. The nonnegative
constraint on cell type proportions in (3) is important and leads
to more biologically interpretable results in real data analysis.
See Section A3.6 in the supplement for details.

The optimization problem in (3) is a quadratic programming
problem and we solve it via the standard dual method (Goldfarb
and Idnani 1982, 1983). Writing W = [w�

1 , . . . ,w
�
K ] ∈ R

p×K ,
the dual function of (3) can be written as

max
λ

c�λ + 1

2
(y�

i yi − π
�
i W

�Wπ i),

s.t. A�
λ + W�yi = (W�W)π i,

(4)

where λ ∈ R
K+1 is the dual vector, A = (IK , 1K)� ∈ R

(K+1)×K ,
1K = (1, . . . , 1) ∈ R

K , c = (0, . . . , 0, 1)� ∈ R
K+1 and π i is

a solution to (3). Given (3) and (4), the standard dual method
(Goldfarb and Idnani 1982, 1983) that uses the unconstrained
least squares estimator as the initial value and the Cholesky
and QR factorizations for parameter updates is applied to
calculate π̂ i.

To quantify the uncertainties in the estimated proportions,
we establish the asymptotic distribution in Theorem 1 in
the supplementary materials. According to this theorem,
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cov(
√
pπ̂ i) converges to V i where V i = UDU�, cov(εi) = �i

and

D =
(

1

p
W�W

)−1 (

1

p
W�

�iW

) (

1

p
W�W

)−1

,

U = I −
(

1

p
W�W

)−1

1�
K

{

1K

(

1

p
W�W

)−1

1�
K

}−1

1K .

This result is useful for uncertainty quanti�cation in down-
stream analyses that require cell-type proportions, such as CTS
di�erential expression analysis and CTS eQTL analysis. We will
demonstrate two such real data examples in Section 4.2. As pre-
viously commented, onemajor challenge in deriving the asymp-
totic properties of π̂ i is that the random variables (yi1, . . . , yip)
in (2) are not independent and need to be decorrelated using
the subject-speci�c covariance �i. In practice, covariance �i is
unknown and we discuss its estimation in the next section.

2.3. Estimation of Subject-Speci�c Covariances

In this section, we discuss the estimation of subject-speci�c
covariance�i in (S6). Assuming that theCTS expression pro�les

x
(1)
i , . . . , x

(K)
i are independent, the covariance between bulk

expressions reduces to a weighted sum of cell-type-speci�c
covariances and it is written as

�i = cov

(

K
∑

k=1

πikx
(k)
i

)

=
K

∑

k=1

π2
ik�

(k). (5)

To evaluate the plausibility of (5), we leveraged single-cell
RNA-seq data (Fujita et al. 2022) to examine the magnitude

of cov(x
(k1)
i , x

(k2)
i )’s in Section A3.7 and found they are small

when compared to �
(k)’s.

In order to estimate �i, we �rst focus on the estimation of
�

(k). Centering by zij = yij −
∑K

k=1 πikwkj, it is easy to see that

E(zijzij′) =
K

∑

k=1

π2
ik�

(k)
jj′ , 1 ≤ j, j′ ≤ p.

The above observation facilities an e�cient least squares

estimation of (�
(1)
jj′ , . . . ,�

(K)

jj′ ) by taking zijzij′ as the response

and (π2
i1, . . . ,π

2
iK) as the vector of predictors. Writing zj =

(z1j, . . . , znj) and H =
(

π2
ik

)

n×K
, the CTS covariances between

genes j and j′, that is, (�
(1)
jj′ , . . . ,�

(K)

jj′ ), can be consistently

estimated with

bjj′ = (H�H)−1H�(zj ◦ zj′),

where ◦ denotes the element-wise product. The above CTS
covariance estimation was �rst considered by Su, Zhang, and
Zhao (2021), where true cell-type proportions are assumed to
be available.

In our setting, the true cell-type proportions are unknown

and we only have access to Ĥ =
(

π̂2
ik

)

n×K
and ẑj’s, where ẑij =

yij −
∑K

k=1 π̂ikwkj. In this case, a natural estimator to consider is

b̂jj′ = (Ĥ
�
Ĥ)−1Ĥ

�
(ẑj ◦ ẑj′). (6)

Our result in Theorem 1 suggests that bjj′ − b̂jj′ = Op(1/
√
p).

Hence, b̂jj′ is also a consistent estimator for (�
(1)
jj′ , . . . ,�

(K)

jj′ ) as
p increases.

In our empirical studies, we �nd that the �nite-sample bias

in b̂jj′ o�en leads to a de�ated estimation of V i = cov(π̂ i)

and correspondingly, an under-coverage of the con�dence
intervals calculated for π i. As an example, Figure 1(a) shows the
coverage probabilities of 95% con�dence intervals calculated
with (6) under the simulation setting in Section 3.1 and some
under-coverage is seen. A further investigation shows that
the bias is majorly caused by the �nite-sample di�erence

between Ĥ and H and that between Ĥ
�
Ĥ and H�H. To

address this issue, we consider a �nite-sample bias-corrected
estimator

b̂
correct

jj′ =
{

Ĥ
�
Ĥ − B1

}−1
(Ĥ − B2)

�(ẑj ◦ ẑj′), (7)

where B1 and B2 are calculated by explicitly quantifying

E(Ĥ
�
Ĥ) − H�H and E(Ĥ) − H, respectively, and given in

Proposition 1 below. The proof is given in Section A8.

Proposition 1. Letting π
◦2
i = (π2

i1, . . . ,π
2
iK). If

√
p(π̂ i − π i) ∼

N (0,V i), it holds that

Figure 1. The coverage probabilities of 95% con�dence intervals (CI) in three cell types under the simulation setting in Section 3.1. The (a) without correction CIs
are calculated with (6) and the (b) with correction CIs are calculated with (7).
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B1 = 1

p

n
∑

i=1

π
◦2
i u�

i + 1

p

n
∑

i=1

uiπ
◦2
i

�

+ 4

p

n
∑

i=1

(π◦2
i

�
π

◦2
i ) ◦ V i +

1

p2

n
∑

i=1

Ti,

B2 = 1

p
[u1, . . . , un]�,

(8)

where ui = (V i,11, . . . ,V i,KK)� and Ti is a K × K matrix with
Ti,jj′ = 2V2

i,jj′ + Vi,jjVi,j′j′ .

Based on Proposition 1 and given V i, we can estimate B1 by

B̂1 = 1

p

n
∑

i=1

π̂
◦2
i u�

i + 1

p

n
∑

i=1

uiπ̂
◦2
i

�

+4

p

n
∑

i=1

(π̂
◦2
i

�
π̂

◦2
i ) ◦ V i +

1

p2

n
∑

i=1

Ti. (9)

AsV i is unknown in practice, we propose to iteratively update�i

andV i in the estimation procedure. The details are summarized
in Algorithm 1.

In Step 2 of Algorithm 1, we initialize V
[0]
i by estimating

σ 2
i with 1

p−1

∑p
j=1

(

yij −
∑K

k=1 πikwkj

)2
. When p is large, the

accumulated errors acrossO(p2) entries in �̂
(k)

can be excessive,
especially when p, the number of signature genes, exceeds n, the
number of bulk samples. Hence, in Step 3.3, we consider a sparse
estimation of �(k), which is plausible as gene co-expressions are
expected to be sparse when p is large (Zhang andHorvath 2005).

Speci�cally, a�er calculating (�̃
(k)

)[t] in Step 3.2, we consider
a SCAD thresholding procedure (Rothman, Levina, and Zhu
2009) with the tuning parameter selected using cross validation
(see Section A2.1). Our results in Sections 3–4 are calculated
with the SCAD thresholding procedure.

Algorithm 1 The DEcorrelated ConstrAined Least Squares
(DECALS) algorithm

Input: Bulk expressions {yi}1≤i≤n and the signature gene
matrixW.

Step 1: Calculate the constrained least squares estimator
π̂ i from (3) for 1 ≤ i ≤ n.
Step 2: Initialize V

[0]
i for 1 ≤ i ≤ n.

Repeat the following steps for t = 0, 1, . . . until
convergence.

Step 3.1:CalculateB
[t]
1 andB

[t]
2 with (9), π̂ i andV

[t]
i .

Step 3.2: Calculate (�̃
(k)

)[t] with (7), Ĥ, ẑj, B
[t]
1 and

B
[t]
2 .

Step 3.3: Calculate (�(k))[t] by applying SCAD

thresholding to (�̃
(k)

)[t].
Step 3.4: Calculate �

[t]
i with (5), π̂ i and (�(k))[t].

Step 3.5: Calculate V
[t+1]
i with (S6),W and �

[t]
i .

Output: The estimated proportions {π̂ i}1≤i≤n and covari-
ances {V̂ i}1≤i≤n.

2.4. The Constrained Generalized Least Squares

In our approach, we estimateπ i via the constrained least squares
in (3). Recalling cov(εi) = �i and assuming �i is positive de�-
nite, one may prefer to estimate π i via the following constrained
generalized least squares (GLS):

min
π i∈Rk

∥

∥

∥
�

−1/2
i yi − �

−1/2
i Wπ i

∥

∥

∥

2

2
,

s.t. πik ≥ 0 and

K
∑

k=1

πik = 1.

(10)

The solution to (10), denoted as π̂
GLS
i , is expected to be

more e�cient than π̂ i (Greene 2003). Speci�cally, denoting

cov(π̂GLS
i ), we have that

VGLS
i = (W�

�
−1
i W)−1

{

I − 1{1�(W�
�

−1
i W)−11�}−11�(W�

�
−1
i W)−1

}

.(11)

As demonstrated in Section 2.3, the estimation of the subject-
speci�c covariance �i in our problem is nontrivial. When �i is
unknown but estimated with potentially high noise, the estimate
of π

GLS
i from (10) and its variance from (11), which further

requires �
−1
i , can much deteriorate. As an example, Figure 2

shows the coverage probabilities of 95% con�dence intervals cal-

culated with π̂ i and π̂
GLS
i , respectively, with the true�i, referred

to as oracle, and estimated �̂i (see details in Section A2.2)
in the simulation setting in Section 3.1. By comparing plots
(a) and (b), it is seen that the GLS estimator is slightly more
e�cient than DECALS when �i is known. However, when �i

is unknown and needs to be estimated from data, π̂
GLS
i and

its estimated sampling variance can be biased and the coverage
probabilities of the 95% con�dence intervals are unsatisfactory.
We also considered di�erent constraint weighted least squares
estimation and the results are presented in Section A2.3 of the
supplement.

3. Simulation Studies

We conduct simulations to evaluate the performance of
DECALS in two types of settings. In Section 3.1, we generate
both the signature gene matrix W and cell-type proportions
π i’s from pre-speci�ed parametric distributions. In Section 3.3,
we use the signature gene matrix W and cell-type proportions
π i’s inferred from real data (see more details in Section 3.3).
Additionally, in Section 3.2, we conduct a sensitivity analysis
that examines the performance of DECALSwhenW is observed
with errors.

We compare DECALS with three alternative inferential
methods including a naive OLS method, referred to as OLS,
RNA-Sieve from Erdmann-Pham et al. (2021) and MEAD

from Xie and Wang (2022). In OLS, the cell-type proportions
are estimated from ordinary least squares with no constraints;
the proportion estimates are taken to be approximately normal
and the covariance is calculated assuming the error terms
in (3) are iid. RNA-Sieve (Erdmann-Pham et al. 2021) is
a likelihood-based deconvolution method that estimates the
cell-type proportions from bulk samples and uses single-
cell reference data to infer the distribution of the signature
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Figure 2. The coverage probabilities of 95% con�dence intervals (CI) for three cell types under the simulation setting in Section 3.1. The (a) DECALS oracle and (c)
DECALS CIs are calculated as in Section 2.2 with the true and estimated covariance V i , respectively; the (b) GLS oracle and (d) GLS estimate CIs are calculated

with the true and estimated covarianceVGLS
i , respectively.

Figure 3. An illustration of the CTS correlation matrices in Section 3.1.

gene matrix. In RNA-Sieve, con�dence intervals of the
estimated proportions can be calculated as a by-product of the
estimation procedure. Note that RNA-Sieve requires names
of the signature genes to link to single cell reference data and
hence, it is only implemented in Section 3.3, where such gene
information is available. MEAD (Xie and Wang 2022) uses an
error-in-variable regression framework, where the signature
gene matrix is estimated from single cell data with noise,
to make inference on cell-type proportions. The estimated
proportions are shown to be asymptotically normal and the
subject-speci�c covariance is estimated through a sandwich
type estimator with an estimated gene-gene dependence set,
though this subject-speci�c covariance estimator may not be
consistent. In our implementation of MEAD, we supply the
true signature gene matrix without measurement errors and
the true gene-gene dependence set under each simulation
setting. We compare the performance of these methods through
evaluating the coverage probabilities of the con�dence intervals
constructed by these methods in our experiments. In Section
A3.4, we also compare with Bisque (Jew et al. 2020) on
the accuracy of estimating bulk expressions and cell type
proportions.

3.1. Experiments with SimulatedW and π i’s

We consider three cell types K = 3 and sample π i, the cell-
type proportions in sample i, from π i ∼ Dirichlet(3, 2, 1).
Under this setting, the three cell types have average proportions
of 1/2, 1/3, and 1/6, respectively. The bulk gene expression for

sample i is calculated as yi =
∑K

k=1 πikx
(k)
i , where the expression

pro�le x
(k)
i is simulated from x

(k)
i ∼ N (wk,�

(k)). Non-Gaussian
distributions are considered in Section 3.3. Entries in wk are iid
fromN (0, 12) and�

(k) = 10×R(k), whereR(k) is the correlation
matrix in cell type k. We let

R(1) = diag(R1,R2,R2); R(2) = diag(R2,R1,R2);

R(3) = diag(R2,R2,R1),

whereR1 ∈ R
p
3× p

3 withR1,jj′ = 0.3 andR2 ∈ R
p
3× p

3 withR2,jj′ =
0.7×0.9|j−j′−1|, j 
= j′; see Figure 3 for an illustration.We let the
number of signature genes p = 300 and the number of samples
n = 500.

We apply OLS, MEAD, and DECALS to infer cell-type pro-
portions for each subject. Speci�cally, we construct 95% con-
�dence intervals for πik’s using each method and estimate the
coverage probabilities using 100 data replicates. The results are
summarized in Figure 4. It is seen that DECALS has the best
performance for all three cell types, with coverage probabilities
close to the nominal level of 95%. OLS tends to overestimate
the CTS proportion variances and the resulting coverage proba-
bilities for the 95% con�dence intervals are consistently greater
than 95%. This is majorly because the correlations among sig-
nature genes are ignored in OLS. As all CTS correlations are
positive in this simulation setting, ignoring these positive cor-
relations in�ates the variance estimates of OLS, leading to an
over-coverage of the OLS con�dence intervals. MEAD tends to
underestimate the variances for the estimated cell-type propor-
tions, likely because the subject-speci�c covariance is not consis-
tently estimated using the sandwich estimator. Additionally, we
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Figure 4. The coverage probabilities of 95% con�dence intervals in three cell types with (a) OLS, (b) MEAD, and (c) DECALS.

Figure 5. The coverage probabilities in three cell types as the noise level a0 varies.

investigated how the sparsity levels of�i’s a�ect the performance
of DECALS and the results are discussed in Section A2.7 in the
supplement. Finally, we also investigate the estimation accuracy
of V i with varying p and W and the results are shown in Table
S1 in the supplementary materials. The estimation accuracy of
DECALS is satisfactory and it improves with the number of
signature genes and the variance of signature gene expressions.

3.2. Sensitivity Analysis

In this section, we conduct a sensitivity analysis to examine the
performance of DECALS when the signature gene expression
matrix W is inaccurate and observed with errors. Consider the
simulation settings in Section 3.1, where the mean signature

gene expression is generated using wkj
iid∼ N(0, 12). In this

sensitivity analysis, we assume that instead of wkj, we observe

w̃kj = wkj + ekj, where ekj
iid∼ N(0, a20) and a0 varies between

0.1 and 1. Figure 5 reports the coverage probabilities of 95%
con�dence intervals with DECALS under various noise levels.
It is seen that under this inaccurate signature gene matrix set-
ting, DECALS still performs reasonably well, with the coverage
probabilities close to the nominal level of 95%when a0 is as large
as 0.6.

3.3. Experiments withW and π i’s Inferred fromReal Data

For experiments in this section, we use the signature gene
matrixW, cell-type proportions π i’s and CTS covariances�

(k)’s
inferred from the real data analysis in Section 4.2. There are
K = 5 �ve cell types in this dataset, n = 541 bulk samples and
p = 159 signature genes.

As the dataset in Section 4.2 uses expression unit FPKM
(Trapnell et al. 2010) to measure gene expression, which is con-

tinuous and positive, we generate CTS expression pro�le x
(k)
ij ’s

from Gamma distributions. Speci�cally, given the mean wk and

target covariance �
(k) inferred from real data, we simulate x

(k)
i

using a copula approach (see Section A2.6 in the supplement),
similar to that in Tian,Wang, and Roeder (2021).We apply OLS,
MEAD,RNA-Sieve andDECALS to infer cell-type proportions
for each subject. Speci�cally, we construct 95% con�dence inter-
vals for πik’s by each method and estimate the coverage prob-
abilities using 100 data replicates. The results are summarized
in Figure 6. It is seen that DECALS has the best performance
in all �ve cell types, with coverage probabilities close to the
nominal level of 95%. Similar as before, MEAD tends to under-
estimate the variance for the estimated cell-type proportions,
which results in con�dence intervals with under-coverage. It is
seen that RNA-Sieve also su�ers from under-coverage, which
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Figure 6. The coverage probabilities of 95% con�dence intervals with (a) OLS, (b) RNA-Sieve, (c) MEAD, and (d) DECALS.

could be due to violations of key RNA-Sieve model assump-
tions. For example, RNA-Sieve assumes that the expression
levels in di�erent genes are independent and Gaussian dis-
tributed, which does not hold under this simulation setting. We
also simulate gene expression data from Gaussian distributions.
The results are similar and can be found in Section A2.5 in the
supplement.

4. Using DECALS in CTS Analysis from Bulk Samples

4.1. A Sampling Approach to Incorporating Uncertainties

As mentioned above, most CTS analysis methods using bulk
samples require cell-type proportions across samples as input,
including methods that infer CTS gene expressions (Wang,
Roeder, and Devlin 2021), CTS di�erentially expressed genes
(Jin et al. 2021; Wang, Roeder, and Devlin 2021), CTS eQTLs
(Patel et al. 2021; Little et al. 2022) and CTS co-expressions
(Su, Zhang, and Zhao 2021). As the cell-type proportions used
in these methods are not known but estimated from bulk
sample data, incorporating the uncertainties in the estimated
proportions with DECALS can mitigate the potential bias
resulting from treating the proportions as known, a common
assumption made in the existing CTS methods, and lead to
more accurate and biologically more interpretable �ndings.

One possible approach to incorporating the inferred uncer-
tainties for a speci�c CTS analysis method is to repeatedly
sample the cell-type proportions from the distributions of π̂ i’s
inferred fromDECALS and perform analysis for each set of these
sampled proportions. We can then summarize the results across
these repeats.More speci�cally, we sampleM sets of proportions

denoted as {π̂ [m]
i }1≤i≤n for m = 1, . . . ,M. For each set of

sampled proportions {π̂ [m]
i }1≤i≤n, we apply the CTS analysis

method and get an output, denoted as S[m]. Here S[m] can be
CTS gene expression estimates or a set of CTS di�erentially
expresssed genes. With the results S[1], . . . ,S[M] fromM sets of
sampled proportions, we can incorporate uncertainty from cell-

type proportion estimates in the CTS analysis method via, for
example, computing con�dence intervals.

In Sections 4.2 and 4.3, we implement the above procedure
by applying DECALS to two real datasets to infer uncertainties
associated with cell-type proportion estimates, and incorporate
these uncertainties in downstream analysis that identi�es di�er-
entially expressed genes/transcripts in a speci�c cell type. Specif-
ically, we combine DECALS with a downstream CTS analysis
method in Wang, Roeder, and Devlin (2021), referred to as
bMIND, that uses bulk sample data and cell-type proportions to
identify CTS di�erentially expressed genes/transcripts. bMIND
adopts a Bayesian approach to estimating CTS expressions from
bulk RNA-seq data, which are then used to detect CTS di�er-
entially expressed genes/transcripts. The method takes the bulk
RNA-seq data and cell-type proportions across samples as the
input and outputs the set of genes/transcripts inferred to be
di�erentially expressed in each cell type. We show that, by con-
sidering uncertainties of the estimated proportions in bMIND,
we can get results that aremore enriched for biologically relevant
functions andmore interpretable. Note that when estimating cell
type proportions, DECALS uses signature genes and assumes
they share the same mean expressions for subjects in di�erent
groups. This assumption on signature genes is evaluated in
Section A3.5 of the supplement.

4.2. ROSMAPData

Weconsider the bulkRNA-seq data collected from theROSMAP
study. Using the single-nucleus RNA-seq data fromMathys et al.
(2019),2 we applied the CIBERSORTx S-mode (Newman et al.
2019) to correct for batch e�ects and to obtain a candidate
signature genematrix for �vemajor cell types, including neurons
(Neu), oligodendrocytes (Oli), astrocytes (Ast), microglia (Mic),
and endothelials (End). To ensure that the �nal selected signa-
ture genes had strong di�erential signals across these �ve cell
types, we further took the intersection of this candidate gene set

2https://www.synapse.org/#!Synapse:syn21261143
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Figure 7. Estimated cell-type proportions across all samples in the ROSMAP data.

with the di�erentially expressed marker genes for each cell type
from Mathys et al. (2019), which �nally gave a signature matrix
with p = 159 genes for the �ve cell types.

Given the bulk sample expressions and the signature gene
matrix, we applied DECALS to estimate the cell-type propor-
tions and their sampling distributions. Figure 7 presents the
estimated proportions across 541 samples, which shows a good
agreement with the cell-type abundances reported in Patrick
et al. (2020) on a subset of ROSMAP samples. More discussions
about CTS proportions can be found in Section A3 of the
supplement.

Next, we focused a set of 9328 protein coding genes with
FPKM≥ 4 in at least half of the samples, and applied bMIND
to identify CTS di�erentially expressed (DE) genes between
Alzheimer’s disease patients and controls. We considered two
di�erent approaches to inferring DE genes. The �rst approach
directly applied bMIND with π̂ i’s estimated from (3) and cal-
culated a p-value for each gene j in each cell type k, denoted
as pjk. In bMIND, gene j is considered a DE gene in cell type
k if pjk < 0.05. The second approach combines bMIND with
DECALS as described in Section 4.1. More speci�cally, given
the estimated sampling distributions of π̂ i’s from DECALS, we

sampled 100 sets of proportions denoted as {π̂ [m]
i }1≤i≤n form =

1, . . . , 100. For each set of sampled proportions {π̂ [m]
i }1≤i≤n, we

applied bMIND and calculated the p-value for gene j in cell type

k, denoted as p
[m]
jk . A�er 100 repeats, gene jwas considered a DE

gene in cell type k if
∑100

m=1 1{p
(m)

jk < 0.05} > 10, where the cut-

o� value of 10 was calculated as two standard deviations above
the expected value of

∑100
m=1 1{p

(m)

jk < 0.05} for a non DE gene.

Speci�cally, the number of times a non DE gene is selected fol-
lows a Binomial(100,0.05), with a mean 5 and variance 4.75. We
refer to these two approaches as bMIND and bMIND+DECALS,
respectively. We focus on gene set enrichment analysis, which
aims to capture coordinated expression changes of groups of
genes instead of individual genes. To identify a set of DE genes
for this purpose, a less stringent p-value cuto�, such as the
threshold of 0.05 we used, is o�en employed (Labonté et al.
2017; Tian et al. 2020) and sometimes even all genes are included
(Mootha et al. 2003).

To compare the DE gene sets identi�ed from the two
approaches for each of the �ve cell types, we performed
enrichment analysis usingQIAGEN Ingenuity PathwayAnalysis
(IPA, QIAGEN Inc., https://digitalinsights.qiagen.com/IPA). IPA
identi�es pathways enriched with DE genes by testing the
association between the input genes and canonical pathways by
�rst calculating the ratio of the number of genes in the input gene
set that map to each pathway, and then using a Fisher’s exact test

to assess the statistical signi�cance for the association between
the input gene sets and canonical pathways (Krämer et al.
2013). We hypothesized that as bMIND+DECALS considered
uncertainties in the cell-type proportion estimates, the inferred
DE gene sets should be more enriched with biological signals
as re�ected from the IPA analysis. Because a larger gene set is
likely more enriched for biological signals, when the gene sets
inferred from bMIND and bMIND+DECALS di�ered in size, we
only kept the top signi�cant genes from the method with the
larger gene set so that the resulting two gene sets had the same
size in the enrichment analysis.

Enriched biological �ndings from bMIND+DECALS.
Table 1 shows that the bMIND+DECALS approach implied a
larger number of signi�cant IPA canonical pathways than the
bMIND approach in most cell types (see signi�cant IPA canon-
ical pathways in Section A9 in the supplementary materials).
This result suggests that the DE gene sets identi�ed from the
bMIND+DECALS procedure can potentially o�er more biologi-
cal insights than those from the bMIND procedure. Moreover, a
further investigation shows that bMIND+DECALSmight better
identify canonical pathways related to Alzheimer’s disease. For
instance, in oligodendrocyte (Oli), the Sumoylation pathway
was only identi�ed in bMIND+DECALS (Benjamini–Hochberg
adjusted [BH] p-value = 3.24 × 10−7). This pathway was
previously reported to regulate amyloid precursor proteins,
which are central to Alzheimer’s disease (Li et al. 2003; Martin
et al. 2007; Anderson et al. 2017). In astrocytes (Ast), the
top three pathways identi�ed in bMIND+DECALS were EIF2
Signaling (BH p-value = 1.16 × 10−25), mTOR Signaling (BH
p-value = 1.07 × 10−8) and Regulation of eIF4 and p70S6K
Signaling (BH p-value = 2.40×10−8). These three pathwayswere
previously reported to have associationswith the development of
Alzheimer’s disease through meta-analysis (Yussof et al. 2020).
Speci�cally, mTOR Signaling, which was already shown to be
associated with Alzheimer’s disease (Congdon and Sigurdsson
2018; Butter�eld and Halliwell 2019), was not identi�ed by
bMIND. In microglia (Mic), Cholesterol Biosynthesis I (BH
p-value = 2.63 × 10−5), Cholesterol Biosynthesis II (BH p-
value = 2.63 × 10−5), Cholesterol Biosynthesis III (BH p-value
= 2.63 × 10−5) and Putrescine Degradation III (BH p-value =
7.08×10−5) pathwayswere only identi�ed bybMIND+DECALS.
These pathways were reported to be related to amyloid-β
peptide (Reitz, Brayne, and Mayeux 2011; Chun et al. 2020),

Table 1. Numbers of pathways selected in the IPA enrichment analysis.

Neu Oli Ast Mic End

bMIND 0 0 6 19 0
bMIND+DECALS 1 7 5 55 0

Figure 8. Estimated cell-type proportions across all samples in the GTEx data.
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Figure 9. Identi�ed CTS DE transcripts using the GTEx data with proportions of CTS DE transcripts on Chromosomes X and Y (top panel) and proportions of concordant CTS
DE transcripts on Chromosomes X and Y, respectively (bottom panel). The red dashed lines mark mean± 2×standard errors.

which is important in Alzheimer’s disease. These results further
demonstrate the bene�t of considering uncertainties in cell-type
proportion estimates in identifying CTS DE genes.

4.3. GTEx Data

The Genotype-Tissue Expression (GTEx) project (Consortium
2020) is a major e�ort to collect gene expression data from
postmortem donor samples at a number of non-diseased tis-
sue sites. Our analysis focused on identifying CTS DE tran-
scripts between males and female in brain tissues, as considered
in Wang, Roeder, and Devlin (2021). We focused on n =
1671 brain samples from the GTEx project (https://www.ncbi.
nlm.nih.gov/gap/), as considered in Wang, Roeder, and Devlin
(2021). Among them, 509 were collected from female group
and 1162 were collected from male group. The signature matrix
was derived from Darmanis et al. (2015) with six cell types,
including astrocyte (Ast), endothelial (End), microglia (Mic),
excitatory (Ext) neuron, inhibitory (Inh) neuron and oligoden-
drocyte (Oli), and the same set of p = 754 signature genes
as in Wang, Roeder, and Devlin (2021). Given the bulk sample
expressions and the signature gene matrix in GTEx data, the
estimated cell-type proportions from DECALS are shown in
Figure 8, consistent with those reported in Wang, Roeder, and
Devlin (2021). More discussions about CTS proportions can be
found in Section A3.2 of the supplement.

More biologically interpretable �ndings from bMIND+

DECALS. There are a total of 54,271 transcripts in the GTEx
dataset and we consider all of them in our analysis. Following

the procedure in Section 4.2, we identi�ed CTS DE transcript
sets using bMIND and bMIND+DECALS, respectively. We
mapped these DE transcripts to all chromosomes including sex
chromosomes X and Y. For a method that can better detect
DE transcripts between males and females, we would expect
larger proportions of the identi�ed DE transcripts on the sex
chromosomes. For a transcript set A, denote AX and AY as
the subsets of A that are mapped to chromosomes X and Y,
respectively. We calculate the proportions of DE transcripts that
are mapped to the sex chromosomes as |AX|/|A| and |AY |/|A|,
where | · | denotes the cardinality of a set. The top panel of
Figure 9 shows that bMIND+DECALS has higher proportions
of DE transcripts mapped to the sex chromosomes in most cell
types than bMIND.

Next, we compare the concordance of DE transcripts on sex
chromosomes. Speci�cally, it is expected that females will more
likely have higher expression levels for DE transcripts on the X
chromosome and males will more likely have higher expression
levels for DE transcripts on the Y chromosome. Correspond-
ingly, if a DE transcript on the X (Y) chromosome is over-
expressed in females (males), we referred to it as a concordant
DE transcript. For the set of DE transcripts AX mapped to the
chromosome X, we denote AXF and AXM as the subsets of
AX that are over-expressed in females and males, respectively.
Similarly, for the set of DE transcripts AY mapped to the Y
chromosome, we can de�ne subsetsAYF andAYM . We calculate
the proportions of concordant DE transcripts as |AXF|/|AX|
and |AYM|/|AY |, respectively. The bottom panel of Figure 9
shows that the majority of CTS DE transcripts identi�ed by



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2531

both methods are concordant. Moreover, bMIND+DECALS has
higher proportions of concordant DE transcripts in most cell
types, further suggesting considering the uncertainties in the
estimated cell-type proportions can improve the detection of
CTS DE transcripts.

5. Discussion

We have proposed a decorrelated constrained least squares
(DECALS) framework that estimates cell-type proportions as
well as their sampling distributions under a �exible statistical
deconvolution framework that allows a general and subject-
speci�c covariance of bulk gene expressions. We demonstrate
through the analyses of bulk gene expression data from post
mortem brain samples that considering the uncertainties in the
estimated cell type proportions can lead to more enriched and
interpretable biological �ndings in downstream CTS analysis.
Our proposed method DECALS is �exible, easy to compute
and can be combined with most CTS analysis methods using
bulk samples, such as CTS gene expression and co-expression
estimation, CTS DE gene and eQTL identi�cation, to improve
the accuracy and interpretability of the results.

Although our procedure estimates the covariance�i for each
individual, it in fact borrows information across individuals
when making such estimates. Speci�cally, based on our model,
�i is calculated as the weighted sum of cell-type-speci�c covari-
ances �

(k)’s, that is, �i =
∑

k π2
ik�

(k). When estimating �
(k),

the covariance in cell type k, our procedure uses the bulk expres-
sions from all subjects in the moment-based estimation. That
is, the cell-type-speci�c covariances are estimated by pooling
information across all subjects, which are then used to estimate
�i’s.

In Section A3.8, we discuss the selection of signature genes in
real data analysis and evaluate the sensitivity to signature gene
sets using simulation studies. Next, our approach assumes that
the mean expression levels of signature genes in W are given.
In cell type deconvolution analysis, W is usually gathered from
pure cell types (Newman et al. 2015; Li et al. 2016) or single
cell RNA-sequencing data (Wang et al. 2019; Newman et al.
2019; Jew et al. 2020). Our empirical investigations showed that
DECALS is not sensitive to errors in W (see Section 3.2). As a
future direction, it is possible to further extend our framework
to accommodate a noisy W by formulating (2) as a measure-
ment error model, similar to that in Xie and Wang (2022). The
errors inW can possibly be quanti�ed via modeling the scRNA-
seq data. We leave the full investigation of this topic as future
research.

Supplementary Materials

The online supplemental materials include proofs of theorems, additional
simulation results, and details of the real data analysis.
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