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A B S T R A C T

The advent of Computing Power Network (CPN) has opened up vast opportunities for machine learning
inference, yet the challenge of reducing high operational cost due to intensive computations and the sheer
volume of inference tasks cannot be overlooked. Scheduling inference tasks for mitigating operational cost
involves various challenges, such as migrating tasks under unpredictable CPN status, making time-coupled
decisions for resource provisioning, and selecting computing sites based on dynamic electricity prices. To
address these issues, we introduce CPN-Inference, a novel and flexible inference framework built upon CPN.
Specifically, we formulate a time-varying integer program problem that aims to minimize long-term cost,
involving switching cost, operational cost, communication cost, queuing cost, and accuracy loss. We also
propose a group of polynomial-time online algorithms for supporting the formulated problem by solving
delicately constructed subproblems based on the inputs predicted via online learning. Furthermore, our
algorithms are proven for their competitive ratio, showcasing the performance gap between our approach
and the offline optimum. A testbed is constructed to evaluate inference performance on real devices. Our
comprehensive evaluations, based on datasets from real systems, demonstrate that our algorithms outperform
multiple alternatives, by achieving an average cost reduction of 35%.

1. Introduction

Highlighted in the Network 2030 report [1], the continuous conver-
gence of computing power and networks has led to the emergence of a
new concept, namely, Computing Power Network (CPN). Specifically,
CPN integrates a rich abundance of computational resources including
clouds, edges, and devices of different enterprises or organizations,
aiming at scheduling resources for different users on demand [2–4].
Presently, with the ITU-T’s initial release of the CPN standard [5],
massive enterprises and organizations have begun incorporating CPN
into their strategic plans, as evidenced by initiatives such as China’s
‘‘Eastern Data and Western Computing" [6] and UC Berkeley’s ‘‘Sky
Computing’’ plan [7]. This illustrates that CPN is a promising techno-
logical architecture to support a multitude of emerging AI services [8,
9].
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As machine learning inference (e.g., DNN inference [10–12]) plays
a significant role in various fields (e.g., Virtual Reality [13] and Aug-
mented Reality [14]), these applications are expected to be key services
deployed on CPN [15]. However, existing inference frameworks often
neglect the variability in operational cost across different regions [8],
which can lead to increased economic cost and hinder the flexible
deployment of inference services within CPN. Although we can reduce
energy consumption by switching to a lower version of the model (low
computation), the accuracy of this version is relatively poor, making it
difficult to meet users’ QoS by relying solely on low-accuracy models
in the long term. To address these kinds of challenges, we introduce
the CPN-Inference framework, as illustrated in Fig. 1. Service providers
(e.g., AR providers) only need to provide us with their model types and
the number of inference queries per time slot. CPN-Inference controller
will take over the resource scheduling and inference migration in a
cost-minimal manner.

https://doi.org/10.1016/j.comnet.2024.110903
Received 26 April 2024; Received in revised form 11 October 2024; Accepted 5 November 2024

Computer�Networks�256������ �110903�

Available�online�14�November�2024�
1389-1286/©�2024�Elsevier�B.V.�All�rights�are�,
�
,�
	��including�those�for�text�and�data�
)�)�(��AI��,�)�)�(��and�similar�technologies.�

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:jmt@smail.nju.edu.cn
mailto:qiji@cmss.chinamobile.com
mailto:jiao@cs.uoregon.edu
mailto:luogangyi2@cmss.chinamobile.com
mailto:hehan.zhao@mail.utoronto.ca
mailto:lics@nuaa.edu.cn
mailto:yebl@nju.edu.cn
mailto:qzz@nju.edu.cn
https://doi.org/10.1016/j.comnet.2024.110903
https://doi.org/10.1016/j.comnet.2024.110903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110903&domain=pdf


M. Ji et al.

Fig. 1. Inference service framework in CPN.

Yet, it is non-trivial to design such a service controller to optimally
conduct inference upon Computing Power Network, facing multiple
challenges: computing site selections upon dynamic electricity prices,
the time-coupled decision for resource provisioning, and task migration
under the unpredictable CPN status.

Firstly, the dynamic and uncertain nature of real-world CPN plat-
forms [16], especially concerning the link latency between computing
sites, further complicates the migration of workloads. Specifically, as
for one computing site where the number of inference workloads is
too slight, we consider not using any servers of this site and migrating
the inference workloads to another site for executions, as shown in
Fig. 1. The uncertain network status [17] hinders us from making
decisions for workload migrations since we likely choose migration
paths with high latency, influencing the response time of inference
queries. Especially, this kind of migration decision often has to be
made without prior knowledge of network latency. Although one could
employ a predictive mechanism to predict them and adjust the system
accordingly, ensuring the accuracy of such predictions is challenging,
particularly when compared to an offline optimum achieved through
hindsight.

Secondly, managing these resources online remains challenging as
the scale of inference workloads in each computing site often changes
dynamically over time. In general, we often consider dynamic man-
agement of resources according to the inference workloads [8]. For
example, as shown in Fig. 1, each computing site has different capaci-
ties for servers and we prefer to use (switch on) the high-performance
servers when the inference workload is high and do not choose to use
(switch off) them but use low-performance servers when the inference
workload is low. However, this kind of dynamic management results
in additional cost, called switching cost, such as the time required
for booting the server hardware and initializing service software on
the server, when we use a new server that has not been used be-
fore. Therefore, determining the on/off status in the long term for
servers is complex: keeping a server always on might lead to additional
operational cost (i.e., electricity cost or rental prices in each time
slot), while turning it off could result in additional switching cost
if we need to reuse it in the following time slot. The decisions of
managing resources are time-coupled and complicated, when designing
CPN-Inference Controller.

Thirdly, the fluctuating nature of electricity prices further com-
plicates the scheduling of inference tasks. As shown in Fig. 2, we
obtained real-time electricity prices for a certain period from public
datasets [18] in California, covering four regions serviced by the power
companies PGAE, SCE, SDGE, and VEA, respectively. Electricity prices
not only vary significantly across regions but also fluctuate within the
same region, impacting decision-making for optimal task scheduling.

Fig. 2. CAISO electricity price public dataset [18].

In China, commercial electricity prices are also set to be floating.
According to the report [19], the nationwide maximum peak-to-valley
price difference in October 2023 was 1.32 CNY/kWh. This variation in
electricity prices poses challenges in decision-making when scheduling
inference tasks in CPN. Specifically, inference tasks involve complex
calculations and often have high power consumption [20]. In order
to have low electricity cost, service providers often want to schedule
inference tasks to sites with low electricity prices. Due to the dynamic
changes in electricity prices, service providers are unable to achieve
optimal deployment through a single decision. It is necessary to make
decisions online according to the dynamic electricity prices. Moreover,
even if a site often has the lowest electricity price, migrating all infer-
ence tasks into this site incurs extra communication latency, prolonging
the response time. Thus, the electricity price of each computing site
should be considered, delicately, when designing the CPN-Inference
Controller.

Existing works are inadequate for addressing these challenges above.
Some works [3,4,21] have studied the architecture and standards
of CPN, but they do not capture the dynamic character of CPN,
which cannot be directly applied to machine learning inference. While
others [22–25] have explored online service provisioning, they have
not taken into account the specific characteristics of inference tasks
(e.g., model inference speed), easily resulting in long latency. A signifi-
cant amount of works [8,9,26–28] study inference tasks in cloud–edge
scenarios, but they assume the resources are all available, which
ignores the cost of using this computing power in a CPN scenario and
easily leads to high economic cost.

To address these challenges for the CPN-Inference Controller, this
study initially formulates the optimization problem as a time-varying
integer programming. The objective is to minimize long-term cost,
including the switching cost of initializing a new server, the operational
cost of maintaining servers, the communication cost for migrating the
inference workloads, the queuing cost for arrived inference queries, as
well as the accuracy loss. Note that, there exist stochastic inputs in
our problem, which are revealed only after decisions are made. These
stochastic inputs hinder us from designing an elegant online algorithm
with a theoretical guarantee.

Afterward, we propose a collection of polynomial-time online al-
gorithms that make decisions in an online manner. For Challenge
1: An online learning algorithm is designed to address the dynamic
fluctuations of the CPN network. This is essentially an online convex
optimization approach, which continually adjusts decisions for the
next time slot based on feedback from previously deployed decisions.
For Challenge 2: A decoupling & lazy switch algorithm is adopted to
make time-coupled decisions. The long-term optimization problem is
decoupled into single time-slot problems based on the switching cost,
dynamically limiting the ratio between the switching cost and the rest
terms. For Challenge 3: A relaxation & rounding algorithm is utilized
to balance the trade-off between electricity cost and response time.
Specifically, the original optimization problem with integer domain is
relaxed to the one with real domain, and a carefully designed rounding
algorithm is employed to obtain the integer solution. This proposed
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Table 1
Summary of previous works and comparison with ours.

Ref. Problem scenario Method Evaluation tools

CPN Inference task Dynamic
allocation

Electricity price Parameter
prediction

Theoretical
guarantee

TestBed Real
device

[3] Ç Ç
[4] Ç
[30] Ç Ç Ç Ç
[31] Ç Ç Ç Ç Ç
[32] Ç Ç
[24] Ç Ç Ç Ç
[8] Ç Ç Ç
[9] Ç Ç Ç Ç Ç
[26] Ç Ç Ç Ç Ç
[27] Ç Ç Ç
[28] Ç Ç Ç Ç
[33] Ç Ç Ç
[34] Ç Ç Ç
[35] Ç Ç Ç Ç
[36] Ç Ç Ç Ç
[37] Ç Ç
[10] Ç Ç
[38] Ç Ç Ç Ç Ç
Our Ç Ç Ç Ç Ç Ç Ç Ç

rounding method ensures that the feasible solution solved is as close
as possible to the optimal solution. The contributions of this paper are
shown as follows:

÷ To reduce the operational cost, we propose to schedule inference
in computing power network online and cast the time-varying
integer programming problem to wisely arbitrate the challenges
mentioned above, including the dynamic CPN, time-coupled de-
cision, and fluctuating of electricity prices.

÷ We propose a lazy-switching-based switching resource manage-
ment scheme, which invokes an online learning framework to
overcome uncertainty. Our rounding algorithm transforms the
fractional results into integers without violating any constraints.
Theoretical analysis shows that our approach has a parameterized
competitive ratio.

÷ Extensive experiments using real-world data under realistic set-
tings are conducted [29]. We observe that our algorithm reduces
the overall system cost by at least 12%, compared with the other
algorithms. Besides, our algorithm is evaluated under various
settings, achieving an average cost reduction of 35%, compared
to the other algorithms.

As a reminder, the organization of this paper is illustrated as fol-
lows: Section 2 reviews related work and identifies our research gap.
Section 3 provides a formal problem description and transformation.
Sections 4 and 5 cover the algorithm design and theoretical analysis,
respectively. Section 6 describes the testbed and presents experimental
evaluations. We conclude our work and introduce the future research
plan in Section 7.

2. Related work

We summarize previous works in three categories, and highlight the
drawbacks compared with our work.

2.1. Overview of computing power network

Computing Power Network (CPN) was extensively investigated in
work [2,39]. A lot of groups such as Internet Engineering Task Force
(IETF), China Unicom, China Mobile, Broadband Forum, etc., estab-
lished standardization [4] and/or released white papers for CPN. Then,
a computing-networking scheme called compute-first networking is
introduced [39]. This scheme is based on the deep fusion of cloud, edge,
and network technologies. It provides a detailed explanation of the

CFN technology framework and the CFN routing protocol. A prototype
testbed [30] was developed for CPN using Kubernetes and microser-
vice architecture, incorporating crucial technologies such as computing
modeling, computing awareness, computing announcement, and com-
puting offloading. This work demonstrated improved response times
and enhanced load balancing compared to traditional edge computing
models. Research [31] introduced CPN-FedSL, a new and adaptable
Federated Split Learning (FedSL) framework designed for implementa-
tion over the Computing Power Network (CPN), which incorporates an
integrated framework to handle basic settings and learning dynamics
like training flow, latency, and convergence. Work [32] introduced a
hybrid coded edge computing network to enable ubiquitous Artificial
Intelligence (AI) in next-generation wireless communication networks,
where energy-constrained end users can perform computation-intensive
tasks such as data processing and model training through local compu-
tation powered by wireless power transfer, coded edge offloading, or a
combination of both.

While most existing work extensively investigates the architecture
and standards of CPN, they may lack a focus on dynamically allocating
resources for specific tasks such as inference tasks. This could lead to
inefficient utilization of computing resources and high resource cost.

2.2. Online resource provisioning for inference

Yin et al. [22] proposed a decision support system named DISC
which helps service providers subscribe to the appropriate resource by
solving the tradeoff between the cost and performance. Then, Douros
et al. [23] considered sharing the profits fairly by maximizing the over-
all profits in the system. Tian et al. [24] proposed CCT to reduce flow
completion time by reducer placement and bandwidth allocation. Fur-
thermore, Dong et al. [25] introduced sub-optimal resource provision
solutions for content providers by using deep reinforcement learning-
based algorithms. Jin et al. [8] proposed to redistribute the inference
queries according to the network bandwidth between the edge devices.
Then, Sun et al. [9] proposed BIRP to accelerate the inference queries
by combining the inference from different edge devices. Bai et al. [26]
used a DNN ensemble to deploy the DL model on the edge devices, in
order to improve the performance of inference services at the edge. She
et al. [27] proposed to utilize several early-exit Deep Neural Networks
to provide different kinds of services for users in the edge. Xu et al. [28]
introduced iGniter to accelerate GPU interference in the cloud. Su
et al. [33] focused on edge scheduling for learning and inference tasks,
minimizing accuracy loss under resource constraints.
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While these works optimize a variety of applications and manage
resources for clusters, they do not consider the specific characteristics
of inference tasks (e.g., inference speed), resulting in long inference la-
tency. Although some works consider inference tasks in edge scenarios,
they assume the resources are all available, which ignores the cost of
using this computing power in the CPN scenario and easily leads to
high resource cost.

2.3. Electricity price prediction

This literature [40] reviews current works on electricity cost pre-
diction. Ugurlu et al. [34] employed a multi-layer gated recurrent
unit (GRU) to forecast electricity prices, and experimental evaluations
revealed that the effectiveness of a three-layer GRU surpassed other
recurrent neural network (RNN) models. Zhang et al. [35] proposed a
pricing approach and an auction approach to save electricity cost for
co-location data centers. Zheng et al. [36] addressed the significant op-
erating cost, primarily energy cost, that edge service providers incurred
due to the fluctuating power demand in edge cloud (EC) infrastructures,
where electricity cost comprise both energy and demand charges, with
the latter often forming a large portion due to peak power usage.
Jiang et al. [37] proposed using a long short-term memory (LSTM)
model to predict the electricity price for the next day. This model
comprehensively considers various factors such as holidays, weather
conditions, and oil prices. Tan et al. [10] designed a hybrid deep
learning model, combining convolutional neural networks with stacked
sparse denoising autoencoders, to predict electricity prices.

However, these works solely focus on predicting electricity prices
without considering their integration with the deployment of inference
tasks. This kind of separation of these two aspects may lead to a
dilemma: scheduling tasks to regions with low electricity prices may
result in high latency, hard to ensure timely response for inference
tasks; but scheduling tasks to low-latency sites without considering
electricity prices leads to high electricity cost.

2.4. Research gap

Table 1 summarizes all relevant studies considering problem sce-
narios, methods, and experimental evaluations, from which several key
conclusions can be drawn: (1) Most research on CPN often overlooks
the characteristics of inference tasks, such as accuracy loss, which can
easily lead to poor user QoS; (2) Studies on the deployment categories
of inference services often do not consider the operational cost, po-
tentially resulting in high economic expenses; (3) Work on operational
expenses frequently ignores the characteristics of CPN and the features
of inference tasks, making them inapplicable in our scenario.

Our research, based on CPN, takes into account the characteristics
of inference tasks and the fluctuating nature of electricity prices, pro-
poses a theoretically guaranteed algorithm, and constructs a testbed for
validation.

3. System model and problem formulation

3.1. System settings and models

CPN-Inference Infrastructure: The major notations utilized
throughout this work are summarized and explained in Table 2. We
consider our CPN-Inference as a specialized network slicing in the
computing power network, tailored specifically for the inference ser-
vice. As shown in Fig. 1, the data plane of CPN-Inference can be
formulated as a graph G = {N , E}, where N = {1, 2, .., N} represents
a group of computing sites (e.g., edge, metro, and cloud sites) and
E = {1, 2, .., E} represents a set of links. Each site has its own CPN router
(supporting segment routing) and all computing sites are connected
to one another through the network links. Typically, we consider
the computing power sites that are powered by the grid [5], rather

Table 2
Major notations used in our formulation.

Symbol Description

N , E Set of computing sites and network links in Computing Power
Network (CPN)

J , T Set of all types of servers and time slots
p
j

Processing capacity for the j type of server
$

j
Power of the j type of server

q
i,t*1 Remaining unresolved inference queries at computing site i after

time slot t * 1
*
i,t

Unit of electricity price for computing site i at time slot t

r
i,t

Number of queries submitted to site i at t

s
j

Switching cost per unit for activating server j

o
i,j ,t Operational (electricity/rental) cost of server j at computing site

i

◆
j ,t Accuracy of the model deployed on the jth type server
�t Length of each time slot in this system
M

i
Queuing capacity for computing site i

Decision Description

y
i,j ,t Whether to activate server j at computing site i at time slot t
z
i® ,i,t Ratio of queries migrated from computing site i

® to computing
site i

than the battery. At each computing site, we use J = {1, 2,… , J} to
represent the set of different types of servers constructed by service
providers or other enterprises/individuals [2]. Service providers can
use the servers owned by themselves and/or utilize the servers owned
by other enterprises/individuals if they do not have enough resources.
In general, the server with a larger processing capability is charged a
higher rental price by its owner [2,41]. We use pj ,≈j À J to represent
the computing/processing capability for server j. The control plane of
CPN-Inference comprehensively controls both computing and network
resources, ensuring (1) selecting the appropriate server resources from
multiple owners to deploy inference services, (2) efficient scheduling of
each inference task to the optimal site along the most efficient paths.

Operational Cost: We consider a group of consecutive time slots
denoted by T = {1, 2, .., T }. It will incur operational cost (denoted
by oi,j ,t,≈i À N , j À J , t À T ) if service providers utilize these
servers: when they use servers owned by themselves, the operational
cost is called the electricity cost; when they utilize servers from other
enterprises/individuals, it is called rental cost. (i) Electricity Cost : The
electricity cost for server j at computing site i can be calculated as
oi,j ,t ç *i,t$j�t,≈i À N , j À J , t À T , where *i,t represents the unit
of electricity price for computing site i at time slot t, $j indicates the
power of server j À J , and �t represents the length of each time
slot. (ii) Rental Cost : In each time slot, the owners of computing sites
set the rental prices for their servers, and the service providers lease
servers according to the decisions made by the service controller. After
paying the fee according to the rental prices, service providers deploy
inference services on these servers. In general, the prices of servers
at each time slot are also correlated with the electricity cost of the
servers. Specifically, the rental price for server j can be calculated by
oi,j ,t = o

1
i,j ,t + ⌥i,j ,t, where o

1
i,j ,t represents the electricity cost and ⌥i,j ,t

represents the profits for the server j of computing site i at time slot t.
Inference Workload Processing: We use ri,t,≈i À N , t À T

to represent the number of inference queries submitted by the users
around computing site i at time slot t. Each computing site maintains
a first-in-first-out (FIFO) queue and the total inference query tasks
enter the queue before being served. For the computing site without
activated servers, the inference queries from such a site can be migrated
to another site. For example, the grey servers in Fig. 1 are represented
inactivated. We use bi® ,i,t to represent the unit cost of migrating a single
inference task from the site i

® to i. Inference queries that were not
processed in the previous time slot will be delayed for processing in
the current time slot. We use qi,t*1 to represent the remaining/untreated
queries at time slot t* 1.

Control Decisions for INT-Inference Controller: We use yi,j ,t À
{0, 1},≈i À N ,≈j À J ,≈t À T to represent the resource provisioning
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(i.e., whether to activate (use/rent) server j at computing site i in time
slot t). We use zi® ,i,t À [0, 1],≈i® À N ,≈i À N ,≈t À T to denote the ratio
of inference tasks migrated from site i

® to site i.
Cost of Resource Provisioning: We consider the operational and

switching cost associated with maintaining the running servers at com-
puting sites. Operational cost is the electricity cost or the fees charged
by the resource owners (e.g., enterprises or individuals [2]). The oper-
ational cost of site i are calculated by

≥
j
yi,j ,toi,j ,t at time slot t, which

is incurred only if any one server in a site is in activated status. To
reduce operational cost, we allow the servers in sites to be switched on
and off, dynamically. In this work, we consider server and service as
a bundle [42]. When we activate a server, we not only boot the server
hardware, but also start and initialize the operating system, the runtime
environment, and the service software on the server. The start-up cost,
also called the switching cost, including the lead time on all of these
operations, is incurred only when we use a new server that has not been
used before. We use sj to represent the switching cost for initializing
the server j at time slot t, and define the corresponding switching cost
as [yi,j ,t*yi,j ,t*1]+sj , where [�]+ = max{�, 0}, linking two consecutive time
slots.

Cost of Inference Migration and Queuing (QoS): Since bi® ,i,t rep-
resents the unit cost when one inference query is migrated to com-
puting site i along path1

Li® ,i, the total migration cost is illustrated as≥
i® ,i bi® ,i,tzi® ,i,tri® ,t at time slot t. The total inference queries arrived at the

computing site i in time slot t consist of: (i) the remaining/unresolved
queries in the time slot t * 1, denoted by qt*1; (ii) the newly arrived
queries (i.e.,

≥
i® ri® ,tzi® ,i,t). We define the queuing cost for inference

queries as the queue’s length of site i at the end of the time slot,
which can be calculated by qi,tç [qi,t*1+

≥
i® ri® ,tzi® ,i,t*

≥
j
pjyi,j ,t]+, where≥

j
pjyi,j ,t represents the total processing capacity of computing site

i. In our machine learning inference system, deadlines for individual
queries are not applicable, as resolving each query typically occurs
quickly, in milliseconds based on real-world measurements. Instead, we
adopt a time-slotted model to represent system behavior, where each
time slot (in minutes or longer) handles multiple inference queries.
Thus, the quality of service (QoS) in this work is not measured by
meeting strict deadlines but by minimizing the unresolved queries at
each time slot.

Cost of Inference Accuracy Loss: There is a set of model versions
for each type of inference service, denoted by M = {1, 2,… , M},
where models with higher accuracy consume more resources (e.g., CPU
and memory). By default, we select the most suitable model for each
type of server, and use ◆j ,t to represent the accuracy of the model
deployed on the jth type of server at time slot t. Here, the inference
loss can be defined as 1 minus the model accuracy. Therefore, accuracy
loss for the overall system is then defined as

≥
i,j
(1 * ◆j ,t)yi,j ,t. We need

to ensure that the accuracy loss is minimized as much as possible, as a
smaller loss implies better performance (QoS) for the inference tasks.
But higher-version models offer better accuracy at the expense of higher
operational cost (involving complex calculations). On the other hand,
lower-version models incur lower operational cost but exhibit poorer
accuracy (QoS). Not only that, accuracy loss for inference queries often
varies over time. To validate this behavior, we conduct experiments on
a real device using YOLOv3 to process real-time video streams (Tokyo
streets from YouTube [44]). As shown in Fig. 3, the accuracy loss
continuously fluctuates along with the arrived video content, which is
a posterior parameter.

1 According to previous work [15,43], we also consider the conventional
approach of single-path routing (unsplittable flow). Then, we can use the
segment routing technique to implement it practically.

Fig. 3. Dynamic accuracy loss over time.

3.2. Problem formulations and challenges

Control Problem P: Based on the descriptions above, we formulate
the following optimization problem for our CPN-Inference Controller,
which controls resource provisioning for the inference tasks upon the
computing power network (CPN) infrastructure:

min P =
…
tÀT

{
…
i,j

[yi,j ,t*yi,j ,t*1]+sj+
…
i,j

yi,j ,toi,j ,t+
…
i,i®

zi® ,i,tbi® ,i,tri® ,t+
…
i

qi,t +
…
i,j

(1 * ◆j ,t)yi,j ,t}

s.t.

…

iÀN
zi® ,i,t = 1,≈i® À N ,≈t À T , (1)

…

i®ÀN
zi® ,i,tf

…
jÀJ

yi,j ,tMi,≈i À N ,≈t À T , (2)

var. yi,j ,t À {0, 1}, zi® ,i,t À [0, 1],
≈i® À N ,≈i À N ,≈j À J ,≈t À T , (3)

whose objective is to minimize the long-term cost of inference query
provisioning, specifically, including switching cost and operational
cost, communication cost for task migration, query queuing cost, and
inference loss. Constraint (1) ensures that all of the inference queries
reached have to be distributed. Constraint (2) ensures that the total
received queries respect the queuing capacity of the computing site.
Constraint (3) contains the domains of variables. Please note that our
problem is a multi-objective optimization problem, and any service
provider can adaptively set weights for the five items according to their
needs.

Control Problem öP with Predicted Inputs: In each time slot,
when we make decisions, we cannot observe the part real inputs of P
(i.e., bi® ,i,t, oi,j ,t and ◆j ,t). This means that we can only solve this problem
by using the predicted inputs instead of the real inputs. Therefore,
we first introduce an online learning based prediction mechanism to
generate these inputs. Specifically, the predicted unit cost for one query
migration, denoted by öbi® ,i,t, the predicted operational cost is denoted by
öoi,j ,t, and the predicted accuracy of model is denoted by ö◆j ,t. Then, the
problem constructed with the above-predicted inputs is reformulated
as öP:

min öP =
…
tÀT

{
…
i,j

[yi,j ,t*yi,j ,t*1]+sj+
…
i,j

yi,j ,töoi,j ,t+
…
i,i®

zi® ,i,t
öbi® ,i,tri® ,t+

…
i

qi,t +
…
i,j

(1 *ö◆j ,t)yi,j ,t}

s.t. C onstraints (1)Ì(3).

Algorithmic Goal: Based on the above two formulated problems,
we now introduce the goal of our algorithm. To this end, we first give
some notations: X are the aggregations2 of {yt, zt,≈t À T }; X< repre-
sents the optimal solutions of our problem P assuming that all inputs
are known in advance and define P

< = P(X<); ÑXÃ refers to the feasible
solutions solve from our problem öP. We aim to design algorithms that
generate solutions ÑXÃ in an online manner while ensuring the upper
bound for the competitive ratio defined as ⇠ = P( ÑXÃ)_P<.

Problem Challenges: However, designing algorithms to meet our
above goal is non-trivial due to the following several challenges:

2 Bold symbols denote column vector, e.g., zÒ
t
= [..., z

i® ,i,t,…].
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Fig. 4. Flowcharts of our proposed algorithms.

We first need to ensure that the solution derived from the problem öP
with predicted inputs has performance guarantees when they are substi-
tuted in the original problem P with the actual inputs. Specifically, we
need to compare such a solution with the offline optimum of problem
P, which is a strict requirement of algorithm design. To achieve this,
we need to jointly design both the online prediction algorithm (for
generating the predicted inputs) and the online control algorithm (for
decision-making).

Another hurdle is the unpredictability of real-time inputs in the CPN
system. Even if given the predicted inputs, problem öP must be solved
in real time. Furthermore, the switching cost in problem P links the
decisions in the current time slot and the decisions in the next time
slot. Making decisions for the current time slot to minimize the system
cost becomes challenging without foresight into the next time slot’s
decisions which are only revealed after we make these decisions.

The last challenge is that our proposed problem is highly complex. It
is a mixed-integer program problem with several non-linear discontin-
uous functions, e.g., the aforementioned switching cost. Even without
these non-linear functions, our problem is still an NP-hard [45] problem
that cannot be solved optimally in polynomial time.

In most countries and regions, commercial electricity prices fluc-
tuate, indicating that our work, focused on dynamic electricity pric-
ing, has broad applicability. Even for countries with fixed electricity
prices, the three challenges above still exist, and this research remains
practical value.

4. Algorithm design

To overcome all the challenges mentioned before, we design three
online polynomial-time algorithms. The relationships between the al-
gorithms are illustrated in Fig. 4. Specifically, our Algorithm 1 adopts
the ‘‘lazy switch’’ which maintains the on/off status of the servers until
a carefully designed condition is satisfied. Once satisfied, we solve the
constructed problem with fractional domains and obtain fractional so-
lutions. Then, Algorithm 3 rounds them into integers without violating
any constraints in P. Based on the current observations and decisions,
Algorithm 2 predicts the inputs of problem P for the next time slot via
an online learning method.

4.1. Algorithm overview with problem decomposition

We present auxiliary notations to aid in our algorithm design. First,
we split the objective function of problem öP according to the nonlinear
term [�]+. For t À T , we have the following two items:

C
t

S
(yt, yt*1, zt, zt*1) =

…
i,j

[yi,j ,t*yi,j ,t*1]+sj

öC
t

¬S (yt, zt) =
…
i,j

yi,j ,töoi,j ,t +
…
i,i®

zi® ,i,t
öbi® ,i,tri® ,t.

+
…
i

[qi,t*1+
…
i®

ri® ,tzi® ,i,t*
…
j

pjyi,j ,t]++
…
i,j

(1 *ö◆j ,t)yi,j ,t,

Then, we define two auxiliary problems Pt,1 and Pt,2 as follows:

min Pt,1 = öC
t

¬S (yt, zt)

Algorithm 1 Online Control Algorithm (OCA)

1: Initialize: t = t
® = 1; suitable z0, y0 = y1 = 0;

2: while t f T do
3: if öC

t
®
S
(yt® , zt® , yt®*1, zt®*1)f

1
⌘2

≥t*1
v=t®

öC
v

¬S (yv, zv) then
4: Obtain õyt,õzt by solving Pt,1 via solver [46];
5: yt = Algorithm 3(õyt);
6: zt } Pt,1, given yt if solvable;
7: Otherwise set yt = yt*1;
8: if yt ë yt*1 then
9: t

® = t;
10: end if
11: end if
12: if t® < t then
13: Obtain yt,õzt by solving Pt,2 via solver [46];
14: end if
15: t = t + 1;
16: öbi® ,i,t+1 =Algorithm 2(�t = bi® ,i,t, gt = zi® ,i,tri® ,t);
17: öoi,j ,t+1 =Algorithm 2(�t = oi,j ,t, gt = yi,j ,t);
18: ö◆j ,t+1 = 1* Algorithm 2(�t = ◆

®
j ,t, gt = yi,j ,t);

19: end while

Algorithm 2 Online Learning Based Prediction
Input: �t and gt,≈t À {1, 2, ..., T };
Output: ö�t+1,≈t À {1, 2, ..., T }.
1: Initialize: proper step size �;
2: for t = 1, 2, ..., T do
3: �t, gt is revealed, construct ft(�) = (� * �t)2g2t ;

4: ö�t+1 = argmin�{(ft(ö�t)(� * ö�t) + �*ö�t2
2� };

5: Submit ö�t+1 to Algorithm 1;
6: end for

s.t. C
t

S
(yt, yt*1, zt, zt*1) f ⌘1 öC

t

¬S (yt, zt), (4)

Constraints (1), (2),

var. yi,j ,t À [0, 1], zi® ,i,t À [0, 1],
which is denoted by Pt,1. Constraint (4) ensures a specified relationship
between the non-switching cost and the switching cost. Then, we define
problem Pt,2, as follows:

min Pt,2 = öC
t

¬S (yt, zt)
s.t. Constraints (1), (2),

var. yi,j ,t = Ñyi,j ,t*1, zi® ,i,t À [0, 1],
where the decisions of this problem are all taken from the previous
time slot. To overcome the challenge of [�]+ in Pt,1, we replace it with
an equivalent of substitute, i.e.,

[yi,j ,t * yi,j ,t*1]+ € ui,j ,t, s.t.
T

ui,j ,t g yi,j ,t * yi,j ,t*1,
ui,j ,t g 0,

[qi,t*1+
…
i®

ri® ,tzi® ,i,t*
…
j

pjyi,j ,t]+ €

vi,j ,t, s.t.
h
n
l
nj

vi,j ,t g qi,t*1+
…
i®

ri® ,tzi® ,i,t*
…
j

pjyi,j ,t,

vi,j ,t g 0,

After the above transformations, we introduce two types of new vari-
ables in Pt,1 (i.e., ui,j ,t and vi,j ,t). Here, both Pt,1 and Pt,2 can be
solved via standard optimization solvers [46], since they are convex
optimization problems.

Based on the transformations, we provide a detailed introduction
to the algorithm procedure below. Algorithm 1 does not change the
current on/off status of servers until the cumulative non-switching cost
surpass the ⌘2 times switching cost. As shown in line 3, ⌘2 is the
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‘‘laziness’’ parameter controlling the proportion of the switching cost
and non-switching cost over a period of time. We also use ⌘1 in problem
Pt,1 to control the proportion of them in each time slot. ⌘1 and ⌘2 are
jointly used to control the overall cost. Once the condition in line 3 for
switching is met, we use the existing mature solver (i.e., CVXPY [46])
to solve Pt,1 and obtain fractional solutions. Then, in line 5, we call
Algorithm 3 to round them into integers without constraint violation,
which will be introduced in detail in Section 4.3. After that, we will
plug the integer solutions Ñyt into problem Pt,1 and obtain the fractional
solutions for the ratio of inference queries migration (i.e., Ézt). Thus,
only when Pt,1 with the rounded integer solutions has feasible solutions
for Ézt, these rounded integer solutions are accepted by Algorithm 1, as
shown in lines 6Ì11; Otherwise, we will hold the solutions yt*1 used
in the previous time slot t* 1, and invoke solver [46] to solve problem
Pt,2, as illustrated in lines 12Ì14.

4.2. Inputs prediction with online learning

At the end of the current time slot, Algorithm 2 is called to predict
the inputs of the next time slot (i.e., öbi® ,i,t+1, öoi,j ,t+1 and ö◆j ,t+1) by using
an alternating ‘‘primal–dual’’ approach.

Specifically, we use L2-norm [47] (i.e., Ò�t+1 * ö�t+1Ò2), to measure
the distance between the actual value and the predicted value for the
next time slot. Then, our goal is to find the optimum � based on
L2-norm (i.e., ö�t+1 = ar g min� ÙÙ�t+1 * �ÙÙ2 g2t+1). However, in an online
manner, we cannot observe the actual inputs for the current time slot
(i.e., �t+1), before we make decisions for the current time slot. There-
fore, we consider the long-term version for this L2-norm-based prob-
lem. To minimize the cumulative distance between the actual values
and predicted values, the conventional approach often, equivalently,
converts the problem with the form of min�t

{≥
tÀT ft(�t)}, s.t. ht(�t) û

0, var. �t À X , into the problem with the form of

min�t
max!t

�≥
tÀT ft(�t) + !tht(�t)

�
, var. �t À X , !t À R+

,

where !t is the Lagrange multiplier [48,49], and ht(�) are the constraint
respect to �t. It is intuitive to employ the gradient generated from time
slot t to adjust the predicted value for time slot t + 1. Consequently,
we can solve the subproblem, alternately, between minimizing the
objective regarding the primal decision �t via a modified descent step
and maximizing the objective regarding the Lagrange multiplier via a
dual ascent step. Specifically, the first phase is described as follows:

min (ft(�t)(� * �t) + !t+1ht(�) +
Ò� * �tÒ2

2� . (5)

At time t + 1, the Lagrange multiplier can be calculated as

!t+1 = [!t + �
®(!(Lt(�t, !))]+ = [!t + �

®
ht(�t)]+, (6)

where Lt(�t, !) = ft(�t) +!tht(�t) and �, �® are the step size. Since the
variable �t has no constraint, the primal step !t often keep zero, !t =
0,≈t. Therefore, the primal phase can be further adjusted as follows:

min (�®{ÙÙ�t * �
®ÙÙ2 g2t }�®=ö�t (� * ö�t) + Ò� * ö�tÒ2_2�,

where ö�t represents the predicted input in time slot t.

4.3. Randomized rounding with preservation

Algorithm 3 is invoked after we obtain fractional solutions. Fig. 5
shows the process of this algorithm. Specifically, Algorithm 3 converts
these fractional solutions to integers ensuring that (1) the expectations
of integers equal the fractions and (2) the constraints are not violated.
In line 2, the algorithm maintains the sets É⌦i, tracking the indices
set for the decisions of server selection in computing site i. Then,
in line 4, Algorithm 3 selects a pair of fractional solutions to round,
stochastically, (i.e., Step 1 in Fig. 5). In line 6, we use Éyi,j ,t as the
probability to let the two fractions compensate for each other, and the

Algorithm 3 Randomized Rounding Mechanism
Input: The fractional solutions Éyt = { Éyi,j ,t≈i, j};
Output: The integer solutions Ñyt = { Ñyi,j ,t≈i, j}.
1: for each i À N do
2: Construct set É⌦i = {j Éyi,j ,t À Éyt};
3: while É⌦i g 2 do
4: Choose u, v À É⌦i, where u ë v;
5: ✓1=min{1 * Éyi,u,t, Éyi,v,t},✓2=min{ Éyi,u,t, 1 * Éyi,v,t};
6: Update ( Éyi,u,t, Éyi,v,t) according to Equality (7);
7: if Éyi,u,t À {0, 1}: Ñyu,j ,t = Éyi,u,t, É⌦i = É⌦i\{u};
8: if Éyi,v,t À {0, 1}: Ñyv,j ,t = Éyi,v,t, É⌦i = É⌦i\{v};
9: end while

10: if  É⌦i = 1 then
11: Ñyi,u,t = 1, u À É⌦i;
12: end if
13: end for
14: return Ñyt = { Ñyi,j ,t≈i, j};

Fig. 5. Flowcharts of our randomized rounding.

specific update step is shown in Equality (7), ensuring the sum of the
fractions is unchanged (i.e., Steps 2Ì3 in Fig. 5).

( Éyi,u,t, Éyi,v,t) =
h
n
l
nj

( Éyi,u,t+✓1, Éyi,v,t*✓1), Prob=
✓1

✓1 + ✓2
,

( Éyi,u,t*✓2, Éyi,v,t+✓2), Prob=
✓2

✓1 + ✓2
.

(7)

The expectation of Éyi,j ,t in lines 3Ì9 can be calculated by

E[ Ñyi,j ,t] = ( Éyi,j ,t+✓1) <
✓1

✓1+✓2
+ ( Éyi,j ,t*✓2) <

✓2
✓1+✓2

= Éyi,j ,t. (8)

which ensures the final integral solutions keep the expectation equal to
fractional ones, which is vital to our theoretical analysis in Section 5.
Due to that the sum of all the fractional solutions might not be an
integer, we set the last one as 1, ensuring no constraints are violated.

Lemma 1. For the total Éyi,j ,t,≈i, j , t, we have the following equality:≥
j
Ñyi,j ,t f

≥
j
õyi,j ,t + 1,≈i, t. Besides, the time complexity of our randomized

rounding mechanism is O(N < J ).

Proof. See Section 5.1 by randomization compensation. ∏

As shown in Fig. 6, we give a preliminary result on our rounding
strategy based upon different parameters and a different number of
rounds. We evaluate the difference between fractional solutions and
integral solutions, and the result shows that it gradually shrinks along
with rounds. After several tens of rounds, our proposed randomized
rounding strategy could have obvious performance, which benefits our
following evaluations.
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Fig. 6. Performance guarantee of randomized rounding.

Actually, our proposed mechanisms can be applied, either partially
or fully, to other similar scenarios. (1) Algorithm 1 can be applied when
the optimization problem includes a switching cost term (i.e., [Xt *
Xt*1]+ = max{Xt*Xt*1, 0}, where Xt is the decision variable at time slot
t and Xt*1 is the decision at time slot t * 1) that is common in many
fields. (2) Algorithm 2 is applicable when the optimization problem
involves posterior parameters that change smoothly and have bounded
variation. (3) Algorithm 3 can be applied when the optimization prob-
lem includes constraints, such as

≥
i
Xi f C, where Xi is the decision

variable and C is a constant.

4.4. Time complexity

The time complexity of Algorithm 1 is primarily determined by the
functions in lines 4, 5, 13, and 16Ì18.

(1) Lines 4 and 13: Since both Pt,1 and Pt,2 are convex optimization
problems, various algorithms [50,51] can be applied to solve them in
polynomial time. The time complexity depends on the solvers used, and
it is generally regarded in academia as O(N2

d
N

2.5
c

+N
3.5
c

) where Nd is
the number of decision variables and Nc is the number of constraints.

(2) Line 5: From Lemma 1, the time complexity of Algorithm 3 is
O(N J ), where N represents the number of sites and J represents the
number of different types of servers.

(3) Lines 16Ì18: For each line, the time complexity is primarily
dependent on the time taken to solve the optimization problem in line
4 of Algorithm 2, which, being a convex optimization problem, has the
same time complexity as problems Pt,1 and Pt,2.

In summary, the time complexity of Algorithm 1 is O(N2
d
N

2.5
c

+
N

3.5
c

) + O(N J ). Moreover, since certain functions can run in parallel
(e.g., lines 16, 17, and 18 in Algorithm 1), the actual running time
of our algorithm is often acceptable in practice, which is verified in
Section 6.3.

5. Performance analysis

Preliminaries: We first present some notations to illustrate our
analysis. For our original problem P with objective function P , we
use õX to represent the optimum solutions and õX<

to denote the opti-
mum fractional solutions. For our prediction problem öP with objective
function öP , we use ÑXÃ and õXÃ to represent the feasible integral
solutions and corresponding fractional solutions without the rounding
step, respectively. And we use õX<

Ã to denote the optimal fractional
solutions for problem öP.

Assumptions: Before giving our theoretical analysis, we first intro-
duce some assumptions which are common and easy to meet. Besides,
they are widely adopted by similar problems [51–53].

÷ The gradients of ft( ÉXt) in Algorithm 2 can be bounded by
Ò(ft(Xt)Ò f Rf , where Rf is a constant.

÷ The radius of fractional domain ÉX can be bounded by Rr

(i.e., Ò ÉXi * ÉXjÒ f Rr,≈ ÉXi,
ÉXj À ÉX , where Rr is a constant).

Then, we present our Proposition 1, Lemma 2Ì3 and Theorem 1.
Specifically, Proposition 1 is used for Algorithm 2. Lemma 2 is used for
Algorithm 1 without the rounding step. Lemma 3 is used for Algorithm
3. Theorem 1 is used for our total prediction-based online approach,
i.e., Algorithm 1.

Proposition 1. When we take the step size � = O(T *✏1 ) [8,51,54],
the dynamic regret produced by Algorithm 2 has sub-linearly growth,
i.e., ≥T

t=1 Òö�t * �tÒ2g2t = O(T ✏2 ), where ✏1 À (0, 1) and ✏2 À (0, 1).

Lemma 2. Before the rounding step, Algorithm 1 achieves �1-competitive,
i.e., öP(õXÃ) f �1 öP(õX<

Ã), where �1 = �
®
1(1 + max{⌘1,

1
⌘2
}). Parameters �1, � ®1,

⌘1 and ⌘2 are all constants.

Proof. See Section 5.2 via the ‘‘laziness’’ parameters. ∏

Lemma 3. After the rounding step, Algorithm 3 achieves the relation-
ship E[öP( ÑXÃ)] f !1 öP(õXÃ) between the integral solutions and fractional
solutions, where !1 is a constant.

Proof. See Section 5.3 via the expectation preservation. ∏

Theorem 1. The competitive ratio ⇠ of total online algorithm is illustrated
as follows:
E[P( ÑXÃ)]_P(X<) f !1�1 + O(T 2(✏2*1)) ç ⇠ , (9)

where T 2(✏2*1), !1 and �1 are all constants, given T .

Proof. See Section 5.4, via Proposition 1, Lemma 2Ì3. ∏

5.1. Proof of Lemma 1

Proof. We first prove the boundedness of
≥

i
yi,j ,t,≈j , t. Our random-

ized rounding mechanism employs a compensatory approach which
randomly adds values to one variable and subtracts the same random
value from another variable. Then, ≈u, v À J we have

Ñyi,u,t + Ñyi,v,t

O R=
T

Éyi,u,t+✓1 + Éyi,v,t*✓1
Éyi,u,t*✓2 + Éyi,v,t+✓2

U
= Éyi,u,t+ Éyi,v,t.

From lines 3Ì9 of Algorithm 3, we have the equality:

≥
jÀ É⌦i& É⌦ig2 Ñyi,j ,t =

≥
jÀ É⌦i& É⌦ig2 Éyi,j ,t,≈i, t. (10)

Since that, the last Éyi,j® ,t (if it exists) is set to 1 as shown in line 10, we
have the following inequality:

≥
j®À Ñ⌦i& É⌦i=1 Ñyi,j® ,t

O R=
T

1
0

U
f1+≥

j®À É⌦i& É⌦i=1 Éyi,j® ,t,≈i, t. (11)

After adding Equality (10) to (11), we have the conclusion:
≥

j
Ñyi,j ,t f≥

j
õyi,j ,t + 1,≈i, t.
Then, we give the time complexity for our randomized rounding

algorithm. It can be calculated by: (i) The outer loop (i.e., lines 1Ì13 in
Algorithm 3) has N iterations; (ii) For the inner loop (i.e., lines 3Ì9): In
each iteration, this algorithm typically rounds at least one real variable,
causing it to either increase to 1 or decrease to 0. As shown in Step
3 of Fig. 5, the rounding results for every iteration within the inner
loop can be categorized into four distinct types. Each of these result
types is characterized by the presence of either 1 or 0. Then, after each
iteration, such an integral solution’s index will be removed from set
É⌦i defined in line 2. Thus, the inner loop has N iterations. The time
complexity of Algorithm 3 is O(N < J ). ∏
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Table 3
Inference performance upon heterogeneous servers with GPUs.

Model type Throughput Inference latency (ms) Average power (W)

RTX 2080Ti 3090 Tesla V100 2080Ti 3090 V100 2080Ti 3090 V100

YOLOv4 [55] 22 35 41 49 29 25 86 155 97
DeepLabv3 [56] 26 40 42 39 25 24 80 140 66
BERT [57] 30 62 66 33 16 15 65 131 47
VGG16 [58] 146 150 184 7 7 5 68 152 63
Inceptionv3 [59] 36 52 50 28 19 20 65 125 43

5.2. Proof of Lemma 2

Proof. We first build the connection between switching cost term
(Cv

S
(õXÃ)) and non-switching cost item ( öCv

¬S (õXÃ)) via the ‘‘laziness’’
parameters ⌘1 and ⌘2. Then, we link the non-switching cost item
( öCv

¬S (õXÃ)) with its fractional optimum ( öCv(õX<
Ã)) via the defined con-

stant � ®1.
For the switching cost incurred in the previous time slots, i.e.,

C
t
®
u

S
(õXÃ), where t

®
u

represents the timestamp when switching on servers,
1 f u f u

®, and u
® represents the maximum record when incurring a

switch. Then, the non-switching cost in the period [t®
u
, t®
u+1 * 1], is at

least ⌘2 times the switching cost, where t represents the current time
slot. Besides, the potential switching cost in [t®

u®
, t] is at most ⌘1 times

the non-switching cost. Thus, ≈t f T , we have

t…
v=1

C
v

S
(õXÃ) =

…
ufu®

t
®
u+1*1…

v=t®u

C
v

S
(õXÃ) +

t…

v=t®
u®+1

C
v

S
(õXÃ)

=
…
ufu®

{Ct
®
u

S
(õXÃ) +

t
®
u+1*1…

v=t®u+1
0} + {Ct

®
u®
S

(õXÃ) +
t…

v=t®
u®+1

0}

f

…
ufu®

{ 1
⌘2

t
®
u+1*1…

v=t®u

öC
v

¬S (õXÃ) + 0} + {⌘1 öC
t
®
u®
¬S (õXÃ) + 0}

f max{⌘1, 1_⌘2}
t…

v=1

öC
v

¬S (õXÃ). (12)

Then, we take �
®
1 ç maxv

maxõX öC
v

¬S (õX)
minõX öC

v

¬S (õX)
, and have

öC
v

¬S (õXÃ) f �
®
1
öC
v

¬S (õX
<
Ã),≈v f T . (13)

After that, ≈t f T , we have the following inequality:
t…

v=1

öC
v

¬S (õXÃ) f �
®
1

t…
v=1

öC
v

¬S (õX
<
Ã) f

�
®
1

t…
v=1

{Cv

S
(õX<

Ã) + öC
v

¬S (õX
<
Ã)} f �

®
1

t…
v=1

öC
v(õX<

Ã). (14)

Therefore, the overall cost of Algorithm 1 without the rounding step
under the prediction could be bounded by
T…
v=1

[Cv

S
(õXÃ) + öC

v

¬S (õXÃ)]f(1 + max{⌘1,
1
⌘2

})
T…
v=1

öC
v

¬S (õXÃ)

f�
®
1(1 + max{⌘1,

1
⌘2

})
T…
v=1

öC
v(õX<

Ã) ç �1

T…
v=1

öC
v(õX<

Ã). ∏

5.3. Proof of Lemma 3

Proof. When problem Pt,1 is solvable, the rounding algorithm is just
triggered; Otherwise, the rounding results will be dropped and use the
decisions of the previous time slot. When Pt,1 is invoked in line 5 of
Algorithm 1, we use õyi,j ,t, õzi® ,i,t to represent the fractional solutions. We
further use yi,j ,t, zi® ,i,t to denote the integral solution after the rounding
step (i.e., line 5 of Algorithm 1). Note that, decision variable zt is in
the fraction domain which does not require rounding to be integers.

First, we link the rounding fractional solutions and integral solu-
tions. We use index u : 1 f u f u

® to record the timestamp regarding
the server switches. Then, we have the following inequalities:
…
i,j ,t

yi,j ,t =
…
ufu®

{(t®
u+1 * t

®
u
)(
…
i,j

y
i,j ,t®u )}

((15)a)
f

…
ufu®

{(t®
u+1 * t

®
u
)(
…
i,j

õy
i,j ,t®u + 1)}

((15)b)=
…
ufu®

{(t®
u+1 * t

®
u
)(
…
i,j

õy
i,j ,t®u +

≥
i®
≥

i
õz
i® ,i,t®u

N  )}

((15)c)
f

…
ufu®

{(t®
u+1 * t

®
u
)(
…
i,j

õy
i,j ,t®u +

≥
i,j
y
i,j ,t®uMi

N  )}

f (1 +Mi_N )
…
i,j ,t

õyt,j ç 0
…
i,j ,t

õyt,j , (15)

where Inequality ((15)a) holds due to our rounding strategy ensures
≈j ,≥

i
yi,j ,t f

≥
i
õyi,j ,t + 1 (i.e., Lemma 1). Inequality ((15)b) holds since≥

i
õz
i® ,i,t®u

= 1 in Constraint (1). Note that, problem Pt,1 also includes
Constraint (1); Inequality ((15)c) holds due to Constraint (2); Finally,
0 is a constant.

Then, we consider all of the four terms in the objective of Pt,1
(i.e., öC

t

¬S (�)). For
≥

i

≥
j

≥
t
yi,j ,töoi,j ,t, we have

…
t

…
i

…
j

yi,j ,töoi,j ,t
((16)a)
f 0omax

…
t,j ,i

õyi,j ,t ç 1
…
t,j ,i

õyi,j ,t, (16)

where Inequality ((16)a) holds due to Inequality (15) and omax ç

maxi,j ,t{oi,j ,t}.
For the second term

≥
i,i® zi® ,i,t

öbi® ,i,tri® ,t, we have
…
t

…
i,i®

zi® ,i,t
öbi® ,i,tri® ,tf

…
t,j ,i

õyi,j ,tMç2
…
t,j ,i

õyi,j ,t. (17)

where Inequality ((17)a) holds since Constraint (2).
For the third term in the objective function, we have

…
t,i

[qi,t*1 +
…
i®

ri® ,tzi® ,i,t *
…
j

pjyi,j ,t]+

f

…
t

…
i

…
j

õyi,j ,tM ç 2
…
t,j ,i

õyi,j ,t. (18)

For the fourth term in the objective function, we have
…
i,j ,t

(1 *ö◆j ,t)yi,j ,tf
…
i,j ,t

yi,j ,t
((19)a)
f 0

…
t,j ,i

õyi,j ,t, (19)

where ((19)a) holds since Inequality (15). Then, based on Equal-
ity (16)Ì(19), the sum of objective function of Pt,1 is
…
t

öC
t

S
( ÑXÃ) =

…
i,j ,t

yi,j ,töoi,j ,t +
…
i,i® ,t

zi® ,i,t
öbi® ,i,tri® ,t

+
…
i,t

qi,t +
…
i,j ,t

(1 *ö◆j ,t)yi,j ,t f (0 + 1 + 22)
…
i,j ,t

õyi,j ,t. (20)

Then, we have the following inequality

öP( ÑXÃ) =
…
t

( öCt

¬S + öC
t

S
)
((21)a)
f (1 + 1_⌘1)

…
t

öC
t

S
( ÑXÃ)

((21)b)
f (1 + 1_⌘1)(0+1+22)

…
t,j ,i

õyi,j ,t
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Table 4
Model and dataset.

YOLOv4 DeepLabv3 BERT VGG16 Inceptionv3

VOC07+12 VOC-Val12 THUCNews CIFAR10 CIFAR10
CV CV NLP CV CV

((21)c)
f (1 + 1_⌘1)(0+1+22)öP(õXÃ) ç !1 öP(õXÃ), (21)

where ((21)a) holds since Constraint (4); ((21)b) holds since Inequality
(20); ((21)c) holds since

≥
t,j ,i õyi,j ,t is a part of objective function öP(õXÃ).

We have Lemma 3, where !1 ç (1 + 1_⌘1)(0+1+ 22) is a constant. ∏

5.4. Proof of Theorem 1

Proof. From Proposition 1, we can link the real objective function
P( ÑXÃ) with the predicted function öP( ÑXÃ), via

P( ÑXÃ) = öP( ÑXÃ) + O(T ✏2 ). (22)

Then, we introduce the following equation, where on the right-hand
side, there exists a product of two terms:

E[P( ÑXÃ)]
P< =

E[P( ÑXÃ)]
öP(õXÃ)

<
öP(õXÃ)
P< . (23)

Then, for the first term on the right-hand side of Equality (23), we have
the following inequalities:

E[P( ÑXÃ)]
öP(õXÃ)

((24)a)=
E[öP( ÑXÃ) + O(T ✏2 )]

öP(õXÃ)

((24)b)
f

!1 öP(õXÃ) + O(T ✏2 )
öP(õXÃ)

((24)c)
f !1 +

O(T ✏2 )
öP(õX<

Ã)
f !1 +

O(T ✏2 )
T < ⇤1

= !1 + O(T ✏2*1), (24)

where ((24)a) holds since Equality (22); ((24)b) holds since Equal-
ity (21) in Lemma 3; ((24)c) holds since the optimum öP(õX<

Ã) is less
than öP(õXÃ); Constant ⇤1 represents the lower bound cost in each time
slot.

For the second term on the right-hand side of Equality (23), we also
have the following inequalities:

öP(õXÃ)
P< = 1 +

öP(õXÃ) * P(õX<) + P(õX<) * P
<

P<

((25)a)
f 1 +

öP(õXÃ) * P(õX<)
P<

((25)b)
f 1 + �1 öP(õX<) * P(õX<)

P<

((25)c)
f 1 + �1P(õX<) +O(T ✏2 ) *P(õX<)

P< = 1 + (�1*1)P(õX<)+O(T ✏2 )
P<

((25)d)
f 1 +�1* 1 +O(T ✏2 )

P<
((25)e)
f �1+

O(T ✏2 )
T < ⇤1

=�1+O(T ✏2*1), (25)

where ((25)a) holds since P(õX<) *P
<
f 0; ((25)b) holds since Lemma 2;

((25)c) holds since Equality (22); ((25)d) holds since P(õX<)
P< f 1;

((25)e) holds for the same reason with above Inequality ((24)c) (i.e., ⇤1
represents the lower bound).

Combining Equality (23) and Inequality (24)Ì(25), we have the
competitive ratio as follows:

E[P( ÑXÃ)]
P< = !1�1 + O(T 2(✏2*1)). ∏ (26)

6. Experiment

6.1. Testbed and results

As shown in Fig. 7, we build a testbed to evaluate the performance
of heterogeneous resources for inference tasks in computing power net-
work (CPN). Specifically, our testbed consists of five real devices (two
types): servers equipped with GPUs (i.e., GeForce RTX 2080Ti, GeForce

Fig. 7. Real device in our testbed.

RTX 3090, and Nvidia Tesla V100) and edge devices (i.e., Huawei
Atals 200DK and Nvidia Jetson NX). Then, we select five widely used
inference models from the fields of computer vision and natural lan-
guage processing (i.e., YOLOv4 [55], DeepLabv3 [56], BERT [57],
VGG16 [58] and Inceptionv3 [59]). We test the inference performance
(e.g., throughput, inference latency, and energy consumption) of five
models on these two types of devices.

Testbed Configurations:We select diverse datasets (e.g., VOC [60],
THUCNews [61], and CIFAR-10 [62]) to assess the inference per-
formance of these models. The specific correspondences are outlined
in Table 4. Suitable batch and chunk sizes are configured for these
inference tasks. For each dataset, we conducted repetitions ranging
from 100 to 500 times, and the average results are presented in both
Tables 3 and 5.

Results on GPU Servers: Table 3 shows the inference performance of
five models on three different GPUs, including throughput, inference
latency, and average GPU power. We conclude that for the same
model, there is a noticeable disparity in throughput/latency across
different hardware configurations. For instance, YOLOv4 exhibits vary-
ing throughput and latency on the three hardware configurations.
Additionally, there is a significant difference in power across different
hardware, with power consumption ranging from 65w to 86w for
2080Ti, 125w to 155w for 3090, and 43w to 97w for Tesla V100.

Results on Edge Devices: From Table 5, it can be observed that
the inference latency on the Nvidia Jetson NX is lower than that on the
Huawei Atlas 200DK. This difference is particularly obvious for compu-
tationally intensive models (e.g., DeepLabv3). This difference is mainly
caused by the heterogeneity of the hardware. Specifically, in Fig. 8, we
depict the distribution of inference latency for multiple executions of
the same inference task on Jetson NX. We obtain that, for a specific
model, the inference latency exhibits a centralized distribution pattern.
Therefore, in our experimental evaluations, we use the average as a
replacement for the inference latency. Besides, we also observe that the
power of 200DK AI Cores remains constant (i.e., 12.8 W) regardless of
the model being run and the power fluctuations of NX are minor (less
than 8 W), even varying GPU utilization from 0% to 99%.

Preliminary Conclusion: The data obtained from the testbed will
be applied in our subsequent experimental evaluations. Besides, we
have the following conclusions: (1) The inference latency for the same
model is significantly different across different types of devices. For
instance, the inference latency on GPU servers (20 msÌ30 ms) is superior
to that on edge devices (100 msÌ300 ms). (2) The inference latency for
the different models on the same device is also different due to differ-
ences in computational complexity. Particularly, on low-performance
edge devices, the inference latency tends to be longer.

6.2. Simulation setting

Our experimental environment is shown in Fig. 7. And we conduct
the evaluation for our algorithms by using the data from our testbed
above.
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Table 5
Inference performance upon edge devices.

Device Model Y.4t D.3 B.T In.v3

Atlas Latency 111 311 304 230
TP. 9 3 3 4

Jetson Latency 110 191 212 198
TP. 10 5 5 5

Y.4t is YOLOv4-tiny; D.3 is DeepLabv3, B.T is BERT;
In.v3 denotes Inceptionv3 and TP. is throughput;
Power of Atlas is 12.9 W; Power of Jetson is in [1 W, 9 W].

Fig. 8. Results upon edge devices in our testbed.

Fig. 9. Computing power network topology.

Fig. 10. Motivation study (see Refs. [8,33,54,68–71]).

Network Topology, Link, Computing Site Server: Based on the
realistic US backbone network topology, named janos-us-ca, from the
SNDlib project [63], we build our network topology by using Net-
workX [64], which consists of fifty computing sites and eighty-six links
as shown in Fig. 9. The latency of each link is obtained from [65],
which is collected from two public network platforms (i.e., Planet-
Lab [66] and Seattle [67]). As shown in Fig. 10, we use a heatmap
to illustrate the latency between some sites. Each computing site is
equipped with 20 different types of servers for various inference work-
loads. We use the parameters of real virtual machine instances from
Alibaba Cloud [41], including, ecs.c7.largeÌecs.c7.32xlarge, where the
number of vcpu is from set from 1 to 128 and the size of Mem is set
from 0.5 GiB to 258 GiB.

Inference Workload, Processing and Resource Cost: We use the
latency of the inference model (i.e., YOLOv4 [55], DeepLabv3 [56],

Fig. 11. (a) Real-time total cost and (b) Cumulative cost.

Fig. 12. Real-time switching cost and decisions.

BERT [57], VGG16 [58] and Inceptionv3 [59]) from our testbed men-
tioned before. The inference workloads of each computing site are
obtained from passenger data of the 268 London underground sta-
tions [72] which is collected in 15-minute intervals over a four-day
period on November 16, 2016, resulting in a total of about 300 time
slots. We calculate the average number of passengers at these sta-
tions and classify them into three categories: Low (<150 passengers),
Medium (150Ì250 passengers), and High (250Ì500 passengers). Then,
we assume that each passenger emits 5Ì45 inference queries to his cor-
responding computing site. The computing capacity for each instance in
the computing site is randomly configured as 15Ì300 [8,73]. The oper-
ational cost for these virtual machine instances is set from 0.063$/hour
to 26.092733$/hour which are the real prices obtained from [74]. The
electricity price data are from CAISO [18], and the operational cost of
servers at a specific site fluctuates with its local electricity price. The
unit switching cost is twice the operational cost [71].

Other Parameters: We consider 300 time slots where each time
slot consists of 15 min. Then, step size � of Algorithm 2 is set as 0.15
˘ O(300*

1
3 ) [8]. In Algorithm 1, we set parameters ⌘1 = 1_2 and

⌘2 = 2 which are derived from previous work [75]. Our time window
length is selected based on a survey of recent research about scheduling
for AI workloads. As shown in Fig. 10(b), the time windows used in
these works range in [15, 60] minutes. We set the time window to
15 minutes, as it provides a smaller and more granular time window.

Algorithms and Metrics: For CPN-Inference Controller, our pro-
posed approach is called OCA which uses lazy switch and online
learning prediction (via CVXPY [46] to solve the subproblems). We
implement various algorithm combinations for comparison.3 For the
prediction of network latency, the algorithms are as follows:

• <-3 indicates predictions made based on the average inputs from
the previous three time slots.

• <-7 indicates predictions made based on the average inputs from
the previous seven time slots.

• <-A indicates predictions made based on the average inputs from
the previous all-time slots.

3 The mark of * is a wildcard to match different prediction algorithms and
subproblems solving algorithms.
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Fig. 13. Further results of our proposed OCA.

For solving subproblems, we consider algorithms as follows:

• G-< indicates the general approach by using solver [46] without
considering controlling the switching cost item and non-switching
cost item.

• R indicates the random approach by setting decisions variables
from [0, 1], randomly, satisfying the constraints.

Besides, we implement the state-of-the-art (SOTA) algorithm from
work [33] for comparison. Specifically, this study [33] employs a
modified online saddle-point method for edge resource scheduling
to reduce the system cost. Subsequently, we observe the cumulative
system cost incurred by SOTA and our proposed OCA algorithm.

6.3. Experimental results

Fig. 11(a) initially depicts the real-time total cost for each time
slot. Our OCA consistently outperforms other algorithms, leading to
an average cost reduction of 70%. When compared to random al-
gorithms, denoted as R, our OCA achieves a significant reduction in
total cost. Specifically, the total real-time cost consists of operational
cost, communication cost, etc. Some of them include time-varying
environmental parameters (e.g., *i,t, bi® ,i,t), whose values are taken from
real-world datasets [18,67]. Figs. 2 and 10 show some samples from
these datasets. It is clear that these parameters fluctuate over time,
leading to the dynamic changes in the system cost seen in Fig. 11(a).
Moreover, as observed in Fig. 11(a), although the total cost produced
by each algorithm differs, their overall fluctuation trends (e.g., the
time slots of peaks and troughs) are similar. This further emphasizes
the significant impact of environmental parameters on the system cost.
Nonetheless, our designed prediction algorithm with theoretical bounds
accurately tracks the trends of these posterior parameters. In contrast,
other algorithms (e.g., <-3, <-7, and <-A) use prediction mechanisms
without guarantees, which fail to capture these parameter fluctuations
effectively. Consequently, the decisions from such algorithms tend to
deviate significantly from the optimum.

Fig. 11(b) extends this analysis by visualizing the normalized cu-
mulative cost for various algorithms over consecutive time slots. We
note that the cumulative cost for our OCA grows more slowly than
for the other four algorithms. Specifically, our OCA algorithm uses a
theoretically bounded decoupling method, which dynamically balances
the switching cost with the other terms to minimize long-term cost.
In contrast, other algorithms, such as G-< or R, do not account for
switching cost, resulting in significantly higher system cost over time.

Fig. 12 shows the switching cost (above) separately and the resource
provisioning decisions on servers (below). Our OCA often outperforms
G-* and R, in terms of switching cost, achieving an overall reduction
of 55% and 72%, respectively. The figure also reveals that algorithm R
has the highest switching cost since such an algorithm often neglects
time coupling between adjacent decisions on resource provisioning. Ad-
ditionally, we illustrate the decisions on resource provisioning (below).
We find that our OCA dynamic switches on/off the servers according

Fig. 14. (a) Running time and (b) Dynamic regret.

Fig. 15. (a) Comparison with SOTA and (b) Competitive ratio.

to the status of the system, which ensures a low switching cost in the
long term.

Fig. 13 illustrates the cumulative total cost throughout the entire
time horizon for various algorithms. In Fig. 13(a), the cumulative cost
change along the variation of network size. Note that, in the small
network topology (i.e., 10 computing sites), the average cost reduction
of OCA is only 14% and 23%, compared to G-3 and G-7, respectively.
With the growth of network size, our OCA shows better performance
and the average cost reduction is about 21.2%. Fig. 13(b) shows the
various results as the inference query workloads for each user vary
from 5 to 45. Our OCA consistently has stable performance, achieving
an average cost reduction of 19%. Specifically, the 0.2xÌ1.7x in
Fig. 13(b) refer to the following number of queries for each user:
5Ì10, 10Ì15, 15Ì20, 20Ì25, 25Ì30, 30Ì40, and 35Ì45, respectively. In
Fig. 13(c), the cumulative cost rises as the unit of switching cost
increases. When compared to G-* algorithms, our lazy switch based
algorithm performs the best, particularly when the unit switching cost
is high. OCA achieves a cost reduction ranging from 8% to 28%, with
an average reduction of 12%. In Fig. 13(d), the cumulative cost notably
increases as the unit latency cost grows. Notably, G-3 algorithm tends to
be advantageous when the unit latency cost is low. Overall, compared
to other algorithms, OCA improves performance by an average of 35%.

Fig. 14(a) illustrates the dissection running time of our proposed
OCA which finishes within tens of milliseconds achieving an average of
70 ms. Specifically, the 0.2xÌ1.7x in the x-axis of Fig. 14(a) are 500,
825, 1200, 2100, 3200, 3825, 4500, respectively. Fig. 14(b) further
presents the dynamic regret of the prediction on network latency and
electricity prices, where the cost grows sub-linearly along with time,
and we also observe the dynamic regret of our Algorithm 2, named OL,
has the best performance compared to other methods.
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As shown in Fig. 15(a), the cumulative system cost generated by our
proposed OCA algorithm and SOTA are compared. Since our OCA takes
both switching cost and communication cost into account, it achieves
lower overall system cost. Overall, our OCA algorithm outperforms
SOTA, achieving a 10%Ì20% improvement in system performance,
demonstrating its practical advantages in real-world scenarios. Further-
more, we make a clear distinction between the ‘‘theoretical competitive
ratio’’ and the ‘‘empirical competitive ratio’’. The former refers to the
worst-case performance, as proven in Section 5, whereas the latter
reflects the model’s practical performance in real-world settings. Im-
portantly, a large theoretical competitive ratio does not necessarily
imply that the empirical ratio will also be high. In fact, as illustrated in
Fig. 15(b), our experiments demonstrate that the empirical competitive
ratio remains between 1.1 and 2.5 across different time slots, which is
a reasonable and manageable result in practice.

7. Conclusion

Scheduling inference tasks at computing power network (CPN) in an
online manner is a nontrivial problem. In this work, we advocate CPN-
Inference, a flexible inference service framework upon CPN, and model
an online time-varying non-linear integer programming problem. This
formulation takes into account various factors including switching cost,
operational cost, query communication cost, queuing cost (QoS), and
accuracy loss. To tackle this problem, we design a group of online
polynomial-time algorithms containing a lazy-switch control approach
for efficient resource management, an online learning method for accu-
rate and dynamic prediction, and a randomized rounding mechanism
for fractional decision deployment. We rigorously analyze the perfor-
mance of our control approach, demonstrating its competitive ratio
in comparison to the offline optimum. Additionally, we show that
the dynamic regret for our online learning method grows sub-linearly
along with time. Through comprehensive evaluations using real-world
datasets, our evaluations of real-world data demonstrate the advantages
of our approach, achieving an average cost reduction of 35% compared
to other algorithms. Although our mechanism focused on single-type
applications (e.g., either object detection or image classification), it can
be easily extended to handle multiple types of applications after reusing
the mechanism. Moving forward, we plan to explore the optimization
of hybrid application scenarios, expanding the system’s capability to
support diverse and mixed application tasks.
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