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Abstract. We study the problem of information sampling with a group
of mobile robots from an unknown environment. Each robot is given a
unique region in the environment for the sampling task. The objective
of the robots is to visit a subset of locations in the environment such
that the collected information is maximized, and consequently, the un-
derlying information model matches as close to reality as possible. The
robots have limited communication ranges, and therefore can only com-
municate when nearby one another. The robots operate in a stochastic
environment and their control uncertainty is handled using factored De-
centralized Markov Decision Processes (Dec-MDP). When two or more
robots communicate, they share their past noisy observations and use a
Gaussian mixture model to update their local information models. This
in turn helps them to obtain a better Dec-MDP policy. Simulation re-
sults show that our proposed strategy is able to predict the information
model closer to the ground truth version than compared to other algo-
rithms. Furthermore, the reduction in the overall uncertainty is more
than comparable algorithms.

Keywords: Information Sampling, Markov Decision Process, Gaussian
Mixture

1 Introduction

Coverage path planning by a group of autonomous mobile robots has many real-
world applications including area cleaning, painting, and precision agriculture
and the problem has been extensively studied in the literature. The goal in this
task is to cover all the locations in the environment [7]. Recently, researchers
have looked into more constrained scenarios, in which the robots can only visit
a subset of points in the environment due to the budget constraints, while col-
lecting maximal information from an unknown environment [5, 10, 12, 14, 19].
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We study such a multi-robot information sampling problem in this paper. This
problem is known to be NP-hard problem to solve optimally [19].

In a real-world setting, the robots not only have a budget constraint, but
they also have limited communication ranges, and therefore, they are not always
guaranteed to maintain a global communication network unless the underlying
control mechanism makes them do so continuously or periodically [1]. We use a
less restrictive model in which connectivity is opportunistic — the robots form
ad-hoc local networks with the nearby robots whenever possible. The robots lo-
cally share their history of noisy sensor measurements for better developing the
global information model. This significantly reduces the communication over-
head and execution time compared to continuous connectivity models [5,12]. On
the other hand, for applications in extreme environmental conditions, e.g., ocean
surface mapping [3], the control of the robots becomes stochastic. Our presented
solution gracefully handles this uncertainty by modeling the planning problem
as a Decentralized Markov Decision Process (Dec-MDP), where the coordinating
robots share a joint reward system while their state and action spaces are inde-
pendent. Simulation results show that our proposed approach is up to 71.68%
faster than a comparable continuous connectivity approach while performing at
par in terms of the modeling of the underlying information field.

Our primary contributions in this paper are two-fold:

– First, to the best of our knowledge, this is the first work that employs a
decentralized MDP technique for multi-robot information collection under
control uncertainty.

– Secondly, we address another practical challenge, i.e., limited communication
ranges of the robots, by developing an opportunistic connectivity-based novel
decentralized coordination mechanism.

2 Related Work

Autonomous mobile robots are used for information collection in real-world ap-
plications such as precision agriculture, search and rescue, monitoring, among
others. One of the first approaches is due to Krause et al. [10], who proposed
greedy strategies to find the informative locations to place a set of sensors,
utilizing Gaussian Processes to model the phenomena [16]. Singh et al. [19] pro-
posed the first informative path planning solution for mobile robots. A decentral-
ized multi-robot online informative sampling method is proposed by Viseras et
al. [20]. Similar to ours, the sensing is assumed to be noisy. However, the robots
exchange a significant amount of information (e.g., past visited locations and
corresponding measurements, next locations, etc.), which might be infeasible to
achieve in a real-world setting. Similar to our work, Luo and Sycara partition
the environment a priori and assign each robot to a unique Voronoi cell. Region
partitioning has also been used for multi-robot information collection in [4,6,9].
A multi-robot information collection approach with dynamic goal location plan-
ning is proposed in [14]. Most of these studies introduce centralized methods,
which do not take robots’ communication constraints into account. In the real
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world, the robots have limited communication ranges, which poses a challenge for
coordinated environmental sampling. A survey of various connectivity strategies
is presented in [1]. Three primary connectivity methods are found: periodic [17],
continuous [5], and no requirement, e.g., opportunistic connectivity [4]. The first
two requirements are more stringent — the robots have to plan their future lo-
cations jointly. However, in an opportunistic setting, the robots’ primary goal
is to collect maximal information. When two or more robots come within each
other’s communication ranges, they share their findings in order to make more
informative decision in the future [4]. Although real robots exhibit stochastic
motion in applications such as underwater monitoring, most of the prior work
on multi-robot information collection does not handle control uncertainty. The
only informative sampling work for a single robot, to the best of our knowledge,
that models stochastic motion using a Markov Decision Process (MDP) is due
to Ma et al. [13]. In this work, we consider n robots instead of one, and thus
we propose a decentralized (Dec) MDP-based coordination technique for infor-
mation collection under control uncertainty. An optimal solution for Dec-MDP
is proposed in [2], but it is not scalable to large multi-robot systems due to its
NEXP-completeness. A heuristic solution is presented in [15]. Our Dec-MDP
solution is greedy for better scalability, similar to the ones proposed in [11,18].

3 Problem Setup and Basic Algorithm

A homogeneous team of n mobile robots r1, r2, . . . , rn moves through a shared
planar environment. Each robot is equipped with sufficient on-board sensing (i.e.
GPS) to localize itself within the environment, a sensor that measures a phe-
nomenon of interest at the robot’s current location, and a communication device
that enables limited-range communication with other nearby robots. Let V de-
note a given finite set of information collection points, or nodes, that cover the
environment in a grid pattern. Each robot ri, starting from a unique node si0 in
V, is responsible for a subset of nodes Vi containing si0 such that V = ∪ni=1Vi and,
for every other robot rj , the subsets Vi and Vj are disjoint. We use k-medoids
clustering to achieve such a partitioning [8]. The centroids of the partitions are
selected to be the start nodes. (Other partitioning techniques such as Voronoi
partitioning or k-means can also be used without affecting our presented solu-
tion.) The robots, having common knowledge of this size-n partition, each move
sequentially over time in the cardinal directions to adjacent nodes within their
own regions, until a given movement budget B expires. The outcome of each
action in finite set U is stochastic, modeled by a transition probability function
f : V × U × V → [0, 1], under which f(s, u, s′) represents the probability for ar-
riving at node s′ upon executing action u at node s. For example, this transition
probability function f should assign high probability to cardinal movements in
the intended direction, and smaller probabilities to movements that represent
imperfect movements. The robots are interested in some ambient real-valued
phenomenon, which varies across the environment. We model this phenomenon
as a random vector X, so that component Xs denotes the value of the phe-
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(a) (b) (c)

Fig. 1. (a) Illustration of the problem setup with six robots moving on a grid of nodes
from which to gather information. Nearby robots may communicate either directly or
via multiple hops. (b) A specific 14-by-14 node grid (with the spatially-varying “ground
truth” phenomenon conveyed by the blue/yellow shading) to be explored by three
robots with given start nodes (red circles) and component static partitions (color-coded
node markers). (c) An instance of the initial and final per-node variances, quantifying
the reduction in prediction uncertainty, using our proposed solution (n = 3).

nomenon at node s. The multi-robot objective is to navigate the environment
in order to maximally reduce prediction uncertainty in X subject to the budget
constraint. Figure 1 illustrates (a) the conceptual setup as well as (b) a specific
partition instance of the problem and (c) the character of its solution in our
simulation experiments. The following subsections detail the basic models and
algorithms by which the robots pursue this objective in the absence of inter-robot
communication, leaving the extensions to leverage communication for Section 4.

3.1 Prediction via Gaussian Processes (GPs)

We use the Gaussian Process (GP) to model the uncertain environment, specif-
ically assuming that (i) the phenomenon of interest at every node takes a scalar
real value and (ii) all nodes generate information according to a length-|V| Gaus-
sian random vector X with known (prior) mean vector µ and covariance matrix
Σ. It is well known that the optimal prediction, in the sense of minimum mean
square error, is the mean vector µ for which the covariance matrix Σ charac-
terizes the prediction’s uncertainty [16]. Its (differential) entropy, a volumetric

measure of that uncertainty, is given by H(X) = 1
2 log |Σ|+ |V|

2 log(2πe), where
|V| denotes set cardinality but |Σ| denotes matrix determinant.

Each robot’s sensing process is imperfect, specifically assuming that mea-
surements are corrupted by zero-mean stationary additive white Gaussian noise,
independently and identically distributed (across robots and nodes) with vari-
ance σ2

n. We suppose that (i) all robots are initialized with the same prior model
GP 0 = {µ,Σ} and (ii) each robot ri takes measurement yi0 at its start node si0.
It follows that, before any movement decisions are made, the model GP i

0 local
to robot ri is given by (posterior) statistics
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where C
(
si0
)

denotes the length-|V| row vector of all zeros except for a one in

component si0, C
(
si0
)′

is its matrix transpose (i.e., the analogous column vector)

and I
(
si0
)

denotes the 1-by-1 identity matrix (i.e., the scalar value of one).
The matrix notation within (1) prepares for processing measurements in

batch. That is, suppose y denotes a length-p column vector representing a se-
quence of collected measurements and let s be the associated sequence of vis-
ited nodes (possibly with repetition). Then, the posterior second-order statistics
µX|Y and ΣX|Y are computed via (1) upon letting C (s) denote the p-by-|V|
matrix whose rows consist of successive unit vectors, each having direction cor-
responding to the successive components of s, while I (s) denotes the p-by-p
identity matrix. Under our noise assumptions, whether (1) is implemented in
batch or recursively over measurements gives the same statistics: the resulting
mean µX|Y is the minimum mean-square-error predictor of X, given Y = y, and
the resulting covariance ΣX|Y analogously implies posterior entropy H(X|Y).

A final remark concerns the determinant |Σ| being an expensive computation,
scaling roughly cubically with matrix dimensions. It is common (e.g., in kernel-
based parametrizations of GPs) that there are diminishing correlations among
nodes as the distance between them grows. This motivates approximation of its
determinant by the product of the per-node variances σ2

1 , σ
2
2 , σ

2
3 , . . . along its

diagonal e.g., log |Σ| ≈
∑|V|

s=1 log(σ2
s). The approximation is, in fact, an upper

bound on the true determinant (via Hadamard’s inequality), achieving equality
if and only if the matrix is truly diagonal. It follows for posterior entropy that

H(X|Y) ≤
|V|∑
s=1

H(Xs|Y) with H(Xs|Y) =
1

2
log
(

2πeσ2
s|Y

)
. (2)

We utilize these per-node entropies {H(Xs|Y); s ∈ V} to define a reward func-
tion that directs the robots’ movements, as described in the next section.

3.2 Control via Markov Decision Processes (MDPs)

Before deployment, the robots are provided with a common set of initial train-
ing data D to generate their local initial GP models, GP i, and calculate the
local hyper-parameters. The initial rewards are then calculated based on GP i

using (2). In a single-robot system, to handle the control uncertainty, we can
model the problem as a Markov Decision Process (MDP), where the states are
represented by the node set V and the reward can be calculated using (2). We
can use standard algorithms such as value iteration or policy iteration to solve
the MDP and compute an optimal policy π, which the robot can then follow
to collect information. At the start of the multi-robot deployment, similar to a
single-robot system, each robot ri generates such an initial policy πi by which
control ui0 ∈ U is selected and the first (stochastic) move from node si0 to node
si1 is realized. We assume temporarily (for the simplified presentation in this
section) that no communication is available, so multi-robot system reduces to
n independent single-robot systems, each having its local πi and GP i. When a
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new node is visited by robot ri, it senses the data at the node, incorporates the
new observation into its local GP i and estimates the posterior statistics given
by (1), and finally executes the next control, following the policy πi. This sense-
estimate-move cycle repeats until the budget of ri is exhausted. As this process
proceeds, ri will adapt its policy πi, by re-planning using its updated local model
GP i, after every τ cycles to reflect its improved knowledge of the phenomenon.

4 Algorithm with Opportunistic Communication

Section 3 characterized the basic algorithms by which each robot ri explores
its own subset of nodes Vi in the absence of inter-robot communication. We
certainly expect improved prediction and control when full inter-robot com-
munication during navigation is permitted, but we consider the challenge of a
connectivity model that is only opportunistic, meaning we neither require the
robots to remain in continuous communication with each other nor to plan to
establish communication after a certain time interval. Instead, the robots focus
primarily upon exploring in essentially the same distributed fashion described
in Section 3, communicating during exploration only when within each other’s
communication ranges. Let CR denote the maximum communication range and
define Ri

k = {rj | ||sik − s
j
k|| ≤ CR} as the set of robots that are within ri’s

communication range in stage k, where sik denotes the location of ri at stage k.
Thus R̄i

k = Ri
k∪{ri} forms a connected communication graph such that any two

robots in this network can send/receive messages from each other either directly
or via hops. Note that, because communication is assumed to be symmetric, all
the robots in R̄i

k form the same local communication graph.

4.1 Prediction via GP Mixtures

With respect to prediction, the main challenge raised by distributed control with
only opportunistic communication is that robots, because each explores a unique
subset of nodes, are likely to meet possessing GPs that imply different posterior
statistics. We thus seek a method by which to combine, or “fuse,” different Gaus-
sian statistics. The approach taken in [12], albeit under continuous connectivity,
casts the problem as learning parameters within a set of Gaussian mixtures from
data via an Expectation-Maximization (EM) algorithm. We shall adopt the same
approach, but suitably modified for only opportunistic communication.

Recall from Section 3 that, in the basic algorithm, our use of GPs results
in two essential outputs: the mean vector that represents the minimum-mean-
square-error prediction of process X, and the per-node variances that determine
the per-node entropies H(Xs). Consider assigning a length-n probability vector
(q1s , q

2
s , . . . , q

n
s ) to every node s in V, where qis represents the probability that

component Xs is described by the Gaussian statistics of robot ri. Denoting for
each i the associated mean and variance by mi

s and vis, respectively, the Gaussian
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mixture’s statistics describing Xs are given by

m∗s =
n∑

i=1

qism
i
s and v∗s =

n∑
i=1

qis
(
vis + (mi

s)
2 − (m∗s)2

)
. (3)

The statistics in (3) may be used to obtain the same essential outputs discussed
in the basic algorithm: the mean vector m∗ = (m∗1,m

∗
2, . . . ,m

∗
|V|) represents the

fused minimum-mean-square-error prediction of process X, while the per-node
variances v∗s permit approximate per-node entropies via H(Xs) ≈ 1

2 log (2πev∗s ).
We proceed to describe the EM algorithm that determines (i) the per-node

mixture probabilities {qis} as well as (ii) the associated n per-robot Gaussian
statistics i.e., per-node means {mi

s} and variances {vis} of each robot ri The
data in the algorithm is a batch of p measurements, in the sense discussed for
(1) in Section 3 i.e., length-p column vectors y and s that represent, respectively,
the collected measurements (possibly by multiple robots) and the associated
sequence of visited nodes (possibly with repetition). The algorithm is iterative,
initialized assuming n distinct GPs are available, each associated with a mean
vector µi and covariance matrix Σi representing the prior statistics local to robot
ri. For every node s in V and index i = 1, 2, . . . n, assign

mi
s := C(s)µi, vis := C(s)ΣiC(s)′ and qis :=

{
1− ε , if s ∈ Vi
ε/(n− 1) , otherwise

with matrix C as defined in (1) and 0 < ε � 1 denoting a “small” probability.
The algorithm then repeats the following two-step procedure until convergence:

Expectation: For every node s in V, denote by ys the subvector of batch
measurements y collected at node s and, for every index i = 1, 2, . . . n, assign qis
proportional to 1/vis if ys is empty and otherwise assign qis proportional to qisL

i
s,

where Li
s (ys) denotes the likelihood of ys assuming independent measurements

under a (univariate) Gaussian PDF with mean mi
s and variance vis.

Maximization: For every index i = 1, 2, . . . n, denote by yi the length-pi

subvector of batch measurements collected by robot ri and by si the associated
sequence of visited nodes. If yi is empty, assign Λi := Σi and νi := µi; otherwise,

Λi := Σi −ΣiC
(
si
)′ (

C
(
si
)
ΣiC

(
si
)′

+ σ2
nQ
(
si
)−1)−1

C
(
si
)
Σi

νi := µi + ΛiC
(
si
)′
Q
(
si
) (

yi −C
(
si
)
µi
)
/σ2

n

(4)

with Q
(
si
)

denoting the pi-by-pi diagonal matrix of probabilities qis ordered
along the diagonal in correspondence with subvector si. Then, for every node s
in V and index i = 1, 2, . . . n assign mi

s := C(s)νi and vis := C(s)ΛiC(s)′.
The EM initialization assumes all robots’ prior models {GP i

k−1} are available,
which is not necessarily the case under only opportunistic communication. For
example, consider the stage-0 perspective of a particular robot ri, who will know
only its local model GP i

0 and the prior model GP 0 from which it evolved. It can
simply assign GP j

0 := GP 0 for every j 6= i and proceed in subsequent stages as
described. Of course, until robot ri enters a stage k in which communication with
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another robot rj is possible (i.e., until Ri
k is non-empty), the non-local models

will not change (i.e., the maximization step renders GP j
k := GP j

k−1) and thus

be mismatched from the stage-k prior model local to robot rj . Stages k with Ri
k

non-empty begin with synchronizing the prior models {GP i
k−1 | ri ∈ R̄i

k} and
sharing the local measurements {(yj , sj) | rj ∈ R̄i

k} to form batch data (y, s)
upon which each connected robot proceeds to locally execute its EM algorithm.
It should be noted that the algorithm concludes with synchronised posterior
models {GP j

k | rj ∈ R̄i
k}, but if any models {GP j

k | rj /∈ R̄i
k} over disconnected

robots remain mismatched then the statistics in (3) will also likely differ.

4.2 Control via Decentralized MDPs

For multi-robot systems, where one robot’s reward might be affected by the ob-
servations made by the other robots, we can extend the n independent MDP
model to Decentralized MDPs (Dec-MDP). We consider a factored-state (the lo-
cal states are unique to the robots, e.g., the node set is partitioned into n subsets),
transition-independent, and non-reward-independent Dec-MDP model [2,11,15].
This is due to the fact that the robots are placed in unique regions in the envi-
ronment, but following (2), one robot’s local reward is affected by other robots’
sensed information. Unfortunately, this has been proved to be a NP-complete
problem to solve optimally [2], and therefore, we adopt a greedy strategy to
solve it [18]. The pseudocode for the approach is presented in Algorithm 1. Es-
sentially, each robot rj ∈ Ri

k∪ri updates its GP model following the formulation
in Section 4.1. Next, rj augments its local MDP with the updated joint rewards
calculated using (2) and generates a new local optimal policy to follow.

5 Evaluation

We have tested our proposed opportunistic online information sampling planner
in simulation using MATLAB. The experiments are run on a laptop computer
with a 1.80 GHz. Intel Core i7-8500U Processor, 16 GB RAM. We varied the
number of robots between {2, 4, 6}. The robots were placed in a 4-connected grid
environment of size 14×14 meters having unit-length square cells. Each robot was
given a budget of 20 meters of travel. The policy update frequency, τ , is set to 5, a
fraction of B. We use the Value Iteration algorithm available in the MDP-toolbox
(https://bit.ly/38PPPcf) to obtain the policies. Our ground truth environment
is modeled by a zero-mean Gaussian random vector X = (X1, X2, . . . , X196)
with covariance matrix built upon an exponential kernel function: specifically,
for any pair of nodes s and t at spatial locations ps and pt, respectively, let
Cov(Xs, Xt) = β2 exp (−||ps − pt||/`), where hyperparameters β > 0 is the
local standard deviation and ` (in meters) is the exponential rate of diminishing
covariance between increasingly distant states. Our experiments assume β = 1
and ` = 25 and then sample the resulting isotropic Gaussian Markov random
field to simulate ground truth; Figure 1(b) depicts such an instance. The noisy
sensing process at any node is simulated by adding to its ground truth value
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Algorithm 1: Decentralized Environmental Sampling Using Oppor-
tunistic Connectivity and Dec-MDP

1 Procedure sampleInformation()
Input: Vi ← robot ri’s unique, static partition – calculated offline.

B ← Exploration budget of the robots.
2 k ← the number of total moves, initially set to 0.
3 Each robot ri will follow the exploration scheme – <Move, Sense, Connect,

Estimate, Adapt> – within Vi:
4 Sense data in the starting node and add it to the initial training set.
5 Each robot 1) begins having the same prior GP learned from the initial

training set, 2) then updates to GP i
0 using the measurement at the start

node and 3) predicts the initial per-node entropies.
6 πi

0 ← ri’s initial MDP policy based on initial rewards.
7 while k < B do
8 k ← k + 1.

9 Ri
k ← ∅.

10 Move to the next node sik following the local policy πi
k−1.

11 Sense data in the current node; add the observation to the training set.

12 Broadcast message and update Ri
k (Section 4.1).

13 if Ri
k 6= ∅ then

14 if ri has previously encountered with some robots R′′ ⊆ Ri
k then

15 Use the mixture parameters from this last encounter along
with the newly observed data to update the local Gaussian
model GP i

k.
16 else
17 Share all observed data with rj ∈ Ri

k and use the EM

algorithm to update GP i
k.

18 Update the rewards (2) based on GP i
k.

19 Adapt by executing solveDecMDP(Ri
k) and updating the local

MDP policy πi
k ← π∗i .

20 else
21 Estimate Use the newly locally observed data and update GP i

k.

22 Adapt the local policy πi
k based on revised rewards from GP i

k after
every τ cycles.

23 Procedure solveDecMDP()
Input: R′ ← robots that are within CR distance of robot ri
Output: Solution of the local MDP of robot ri

24 MDP ∗i ← Augmented local MDP with the joint reward function for
∀rj ∈ R′.

25 π∗i ← Solve MDP ∗i using the Value/Policy Iteration algorithm.
26 return π∗i .

a sample from the zero-mean univariate Gaussian distribution with variance
σ2
n = 0.25. The probability parameters in the EM algorithm are set to ε = 10−3

and δ = 10−4.
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We measured the performance of our approach by testing five other variants:
1) control strategies were varied between Dec-MDP and greedy — in the Dec-
MDP variant, robots’ actions are decided based on the MDP policy and in
the greedy variant, a greedy action, i.e., that maximizes the one-step reward is
chosen; 2) connectivity strategies were varied between no communication (NC),
opportunistic (OC), and continuous communication (CC) among the robots.
In cases of CC and NC, the robots were assumed to have infinite and zero
communication ranges respectively. Note that the greedy-CC strategy is similar
to the centralized technique proposed in [12]. In case of OC, the CR is set to 0.3
times of the environment’s diagonal. Ten trials were conducted for each scenario.
Results. First, we are interested in investigating the most important metric
to measure the performance of the proposed multi-robot information sampling
approach – Mean Square Error (MSE), which depicts how closely the robots
could model the underlying information field. The average MSE between the
final predicted measurements and the ground truth measurements for different
robot counts are shown in Figure 2. The standard deviation of our algorithm’s
yielded MSE is also shown in shaded blue. As can be observed, for n ∈ {2, 4, 6},
average MSE over time has reduced. Although this is true for all the implemented
algorithms, for our proposed one (Dec-MDP-OC), the final MSE is one of the
lowest amongst all. As expected, if there is no communication available, regard-
less of the control strategies, the MSE values are the highest, indicating a worse
difference between the predicted and the ground truth information model. Sim-
ilarly, if there is continuous communication, regardless of the control strategy,
the average MSE is always better (lower) than our approach. However, the max-
imum final difference is only 11% with n = 4. Recall that this approach requires
continuous communication among the robots, which is not only non-trivial to
maintain [5], but also incurs high run-time cost. Our algorithm outperforms the
comparable greedy strategy except for n = 4, since our approach looks into an
infinite horizon to find the solution as opposed to the one-step look ahead used
by the greedy strategy.

Fig. 2. Comparison of the MSE metric among the algorithms [lower is better].

A similar trend can be seen for the variance metric as well. The results for this
metric are presented in Fig. 3. We have calculated the per-node variance after
every GP prediction and the average across n robots are shown here. As discussed
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Fig. 3. Comparison of the variance metric among the algorithms [lower is better].

earlier, the variance indicates the uncertainty in the Gaussian Process prediction.
Similar to MSE, the average variance decreases as the robots visit more nodes
in the environment. In case of NC, the variance does not decrease as sharply as
in the OC and CC cases since there is no Gaussian mixture process involved. On
the other hand, the proposed Dec-MDP-OC strategy performs better or at par
with the greedy-OC method while averaging very close to the CC strategies (the
minimum being only 50% higher than the Dec-MDP-CC solution with n = 6).

Next, we investigated the run times of the proposed solution and compare
it against other implemented algorithms. As can be seen in Fig. 4.(a), the run
times of the proposed Dec-MDP-OC strategy are low and grow in a quadratic
fashion with n. For example, with n = 6, the run time for the proposed approach
is only 27.87 sec., whereas for the Dec-MDP and greedy-CC approaches they are
35.78 and 32.89 sec. respectively. A connected component is defined as a maxi-
mal set of robots for which the member robots can communicate directly or via
multiple hops. These are the robots that participate in the proposed Gaussian
mixture-based coordination strategy. The lower-bound on the number of con-
nected components in a communication graph is 1, which essentially represents
a CC strategy at that time. However, we have found that in the presented OC
strategy, the connected component count is always greater than 1, which indi-
cates a lower communication and coordination overhead than the centralized CC
strategy such as used in [12]. This is also supported by the fact that the greedy
and Dec-MDP CC strategies take more time than our OC technique. The num-
ber of messages required to be sent for the Gaussian mixture algorithm to be
converged is also negligible, as shown in Fig. 4.(b).

The average reward collected by the robots is reported in Fig. 4.(c). This re-
sult shows that our proposed Dec-MDP-based control mechanism always collects
higher reward than the greedy approach with the greatest difference occurring
with n = 4. Finally, we visually compare the ground truth information field
against the final predicted model across various algorithms. We can notice in
Figs. 5 that the proposed Dec-MDP-OC approach makes more fine-grained and
close-to-reality prediction than that of the greedy-OC and the NC strategies.
This observation is supported by the numerical MSE data presented in Fig. 2.
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(a) (b) (c)

Fig. 4. Comparison of a) Run times, b) Average number of messages sent by each
robot, and c) Collected average rewards.

Fig. 5. Solution instance: visual comparison of predicted models by various algorithms
against the ground truth measurements (n = 2).

6 Conclusions and Future Work

We have proposed an online multi-robot information sampling technique for an
unknown environment. Our presented approach gracefully handles real-world
constraints such as limited communication ranges and stochastic motion of the
robots. The proposed strategy relies on robots’ opportunistic communication
patterns instead of forcing the robots to stay in continuous communication or
connect after regular intervals. Results show that this technique can reduce the
robots’ run times significantly while performing at par in terms of modeling the
underlying information field and reducing the uncertainty in the environment,
compared to (potentially centralized) techniques that maintain continuous com-
munication connectivity. In the future, we plan to investigate a better mixture
method, in which each robot will maintain a history of past coordinated Gaus-
sian mixtures. Finally, we plan to test the proposed solution with real robots for
applications in domains such as precision agriculture and underwater robotics.
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