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Abstract

Large scientific institutions, such as the Space Telescope Science Institute, track the usage of their facilities to
understand the needs of the research community. Astrophysicists incorporate facility usage data into their scientific
publications, embedding this information in plain text. Traditional automatic search queries prove unreliable for
accurate tracking due to the misidentification of facility names in plain text. As automatic search queries fail,
researchers are required to manually classify publications for facility usage, which consumes valuable research
time. In this work, we introduce a machine learning classification framework for the automatic identification of
facility usage of observation sections in astrophysics publications. Our framework identifies sentences containing
telescope mission keywords (e.g., Kepler and TESS) in each publication. Subsequently, the identified sentences are
transformed using term frequency—inverse document frequency and classified with a support vector machine. The
classification framework leverages the context surrounding the identified telescope mission keywords to provide
relevant information to the classifier. The framework successfully classifies the usage of MAST-hosted missions
with a 92.9% accuracy. Furthermore, our framework demonstrates robustness when compared to other approaches,
considering common metrics and computational complexity. The framework’s interpretability makes it adaptable
for use across observatories and other scientific facilities worldwide.

Unified Astronomy Thesaurus concepts: Support vector machine (1936); Random Forests (1935); Classification

(1907); Open source software (1866)

1. Introduction

The global astronomical community identifies the scientific
output of telescope facilities, which is essential for under-
standing the needs of the community, effectively allocating
resources, and planning current and future facility manage-
ment. A primary metric for measuring this scientific output is
tracking the usage of telescope facilities in scientific publica-
tions (see, e.g., U. Grothkopf et al. 2018). However, simple
programmatic attempts at identifying telescope usage based on
the appearance of mission keywords fail because the descrip-
tions of telescope usage are embedded in an unstructured way
throughout the plain text of publications. Consequently, for
now, researchers are required to manually identify publications
and leverage specific subject knowledge needed for accurate
identification.

The exponential growth of the astronomical literature
requires researchers to continually spend additional time
manually classifying publications, a mundane task that diverts
researchers from their primary research (see, for example,
W. E. Kerzendorf 2019; L. Bornmann et al. 2021). At the
Space Telescope Science Institute (STScI), a small team of
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researchers queries the Smithsonian Astrophysical Observa-
tory/NASA Astrophysics Data System (NASA/ADS)’ each
month, dedicating part of their time to identifying and
classifying as many relevant publications as possible, alongside
their other responsibilities. For example, from 2021 to 2023, on
average, ~550 new publications per month were identified for
classification. Given workforce capacity and resource limita-
tions, on average, 14% of these publications remain unclassi-
fied, contributing to a growing backlog (B. Cherinka 2024,
private communication). The accurate and scalable tracking of
telescope usage can potentially be met by automatic text
classification.

Simple automatic solutions, such as full-text searches,
cannot accurately distinguish the nuances that indicate
telescope usage in astrophysics publications (T. Barnett et al.
2009). Facility names (e.g., FUSE, Copernicus, and Kepler)
can be misidentified owing to their lack of uniqueness and
potential overlap with common words (see Figure 1). While the
lack of structure in the plain text of publications requires
initially searching for telescope names, accurate classification
requires leveraging the context to identify telescope usage.

Text classification is a principle task in the field of natural
language processing (NLP), with various recent advancements
with the specific aim of allowing for the inclusion of domain
knowledge and feedback processes (e.g., fine-tuning; I. Beltagy
et al. 2019). Accordingly, much research has been directed at

7 https://ui.adsabs.harvard.edu/
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Figure 1. The filtered data set comprises sentences that include MAST-hosted mission keywords. For example, when filtering publications for the space telescope
“Kepler,” we identify three sentences shown in these two publications. Contextual cues guide the reader or classifier to distinguish that, on the left, one publication
references the “Kepler” space telescope and is a MAST publication, while on the right, the other publication discusses “Keplerian physics’ and the research does not

utilize the Kepler space telescope.

presenting efficient, generalizable, and accurate methodologies
with more applications appearing recently in the scientific
domain (M. Khadhraoui et al. 2022; D. Farshid & M. Dastani
2023). As simple automatic solutions fail, the advancements of
computational techniques, like machine learning, are leveraged
for the task of identifying telescope or data usage from
publications (T. X. Chen et al. 2022, hereafter C22).

In the domain of astrophysics, C22 presents a classification
framework trained to categorize publications relevant to
NASA/IPAC Extragalactic Database (NED) data products.
Utilizing the Stanford NLP classifier, C22 identifies NED-
relevant publications. Nevertheless, various limitations exist,
specifically the resource-intensive data preprocessing and
inclusion of less informative features. These limitations
introduce challenges when adapting the classification frame-
work presented in C22 for our objective of identifying
telescope usage (refer to Section 3 for detailed insights).

To overcome the limitations, we present a robust, inter-
pretable, and scalable text classification framework using
machine learning to automatically identify telescope usage in
publications. We train and validate the text classification
framework using labeled data from The Barbara A. Mikulski
Archive for Space Telescopes (MAST)® as a case study.

In Section 2, we introduce the data used in the binary text
classification task and outline the data preprocessing workflow.
Additionally, we discuss the training process for the selected
classifiers along with their hyperparameter tuning. In Section 3,
we present the performance of the selected classifiers, utilizing
various commonly used metrics, which we draw comparisons
with C22. Finally, in Section 4, we draw conclusions from our
findings and emphasize the effectiveness of the developed
classification framework in correctly tracking the usage of
MAST-hosted missions.

2. Methods

Our text classification framework is designed and trained to
determine whether a publication contains the usage of any
MAST-hosted mission. In collaboration with MAST scientists,
we utilize manually classified data to train a supervised binary
classifier, employing the labels MAST and Not MAST along
with associated publication metadata in the training process.
Figure 2 presents the framework, which identifies the
observation sections in astrophysics publications by filtering
the full text for sentences containing mission keywords (e.g.,
MAST and TUES). The identified observation sections are

8 https:/ /archive.stsci.edu/

numerically represented using term frequency—inverse docu-
ment frequency (TF-IDF) for classifier training. We assess
various classifiers’ performance classifying the numerically
transformed sentences into the two classes. Notably, the
framework leverages contextual information around identified
mission keywords to provide informative features for the
classifier.

2.1. Data

Historically, MAST researchers manually classified astro-
physics publications from NASA/ADS. Specifically, they
classified 32,518 publications from 1996 to 2022, that were
identified by querying NASA /ADS for publications containing
one or more of the specific keywords listed in Appendix A.
Publications are labeled either as MAST or Not MAST based
on the presence or absence of MAST-hosted mission usage (see
Appendix B for details on the classification process at MAST).
To be exact, there are 10,638 MAST publications and 21,881
Not MAST publications in the database. Additionally, relevant
metadata (e.g., arXiv identifier,” bibcode, mission, and year) is
aggregated along with the label.

To compile a data set to train, validate, and test a supervised
text classifier, we first obtained the full-text publications from
the Semantic Scholar Open Research Corpus (S20RC).'°
S20RC is an open-access collection of scientific publications
that allows for bulk access to full-text articles developed by the
Allen Institute for AI (K. Lo et al. 2020). We extend the
metadata provided by MAST scientists by leveraging the full
text of the manually labeled astrophysics publications. The full
text contains informative features, including the MAST-hosted
mission usage description, which is not available in the
metadata.

We then crossmatched the astrophysics publications avail-
able in S20RC with the metadata from the labeled data set
from MAST, utilizing the available arXiv IDs to identify the
full text. The crossmatching resulted in a total of 14,808
publications in our corpus (i.e., the collection of publications)
with full-text data available, comprising 7664 MAST and 7144
Not MAST publications. The balanced subset was utilized to
train, validate, and test a classification model.

2.2. Tokenization and Transformation

We began our data preprocessing by splitting each
publication in our corpus into smaller pieces, specifically by

° hups: //info.arxiv.org/help/arxiv_identifier.html

10 https://allenai.org/data/s2orc



THE ASTRONOMICAL JOURNAL, 169:42 (8pp), 2025 January

Identification

Y N\

Keyword
Search

NASA Astrophysics -—>T6|ESCOPE MBSM”—{ Text Vectorization =

Data System

Cross-match ArXiv Identifiers  Tokenization

Amado Olivo et al.

Train Classify New
Classifier Publications

MAST Labels

4

Figure 2. Our classification framework, presented here, follows a supervised training structure. First, we identify relevant sentences in each publication containing
mission keywords (e.g., Kepler and TESS) and then we vectorize and classify the text.

sentence, using the sentence tokenizer from the NATURAL
LANGUAGE TOOLKIT library in Python (S. Bird &
E. Loper 2004). Next, we parsed the text to identify the
sentences containing specific mission keywords (e.g., Kepler,
K2, MAST, TESS, etc.).

We experimented with varying the sentences surrounding a
mission keyword identified in the full text as input. The context
varied from zero sentences either preceding or following a
sentence containing an identified mission keyword to the entire
full text of the publication. Table 1 presents the varied number
of sentences surrounding a mission keyword utilized in training
the classifiers. The context words surrounding a mission
keyword included in each class differ and inform the classifier
differently for the classification of publications. The prelimin-
ary testing found that exclusively utilizing the sentences
containing keywords generally leads to the highest perfor-
mance. Notably, the restricted context window enables the
model to better distinguish between the two classes. Therefore,
we chose to limit classifier training to exclusively the sentences
containing mission keywords in the classification framework.

Figure 1 displays two publications filtered for a mission
keyword and the context words included in the identified
sentences. The classification is informed by the contextual
words around a mission keyword.

We utilize TF-IDF to numerically represent the identified
relevant sentences for training (H. P. Luhn 1957; K. Sparck
Jones 1972). We utilize the TF-IDF formulation presented by
the SCIKIT-LEARN TF-IDF vectorizer'' (F. Pedregosa et al.
2011):

TF — IDF(t, d) = TF(t, d) x IDF(t) (1)
TE(t, d) = _count(r, d) 2)
maxCount(d)
1+n
IDF(t) =1 _— 1
) Og(DF(I)+1)+ , 3

where ¢ represents a term (word) in the document d across the
total documents (n). The count(z, d) indicates the number of
times that term ¢ occurs in the document d, while maxCount(d)
denotes the total number of terms in the document; d and DF(¢)
is the number of documents containing the term ¢ across all

' hitps: / /scikit-learn.org /stable /modules/ generated /sklearn.feature_
extraction.text. TfidfVectorizer.html

Table 1
The Table Displays the Performance of Three Classifiers (Support Vector
Machine, Random Forest, and Multilayer Perceptron) as the Number of Input
Sentences for Training Varies, Assessing the Required Context for

Classification

Support Vector Random Multilayer
# of Sentences Machine Forest Perceptron
Before, After
0,0 0.929 0.905 0.908
2,0 0.919 0.899 0.911
0,2 0.920 0.896 0912
2,2 0.915 0.897 0.910
4,2 0.904 0.888 0.904
2,4 0.904 0.894 0.902
4,4 0.899 0.884 0.904
Full text 0.815 0.814 0.848

Note. The Support Vector Machine classifier, trained exclusively on sentences
containing mission keywords, achieves a successful accuracy of 92.9% on the
test set.

documents in the set. The final TF-IDF score for each term 7 in
each document d is given by TF-IDF(z, d).

TF-IDF uses a vocabulary to construct the numerical
transformation of each publication by considering all words
present across publications. To optimize our classification
framework, we tuned the TF-IDF vectorizer’s hyperparameters
by adjusting the vocabulary size, excluding terms appearing in
less than 0.001 and more than 0.999 of the publications. We
also used an ngram range of (1, 2) to include two-word
sequences (e.g., white dwarf), which are relevant in the domain
of astrophysics. This reduced the default vocabulary from over
40,620 unique words to 29,605 words. Consequently, the
chosen minimum and maximum document frequency thresh-
olds may lead to certain rare and ubiquitous contextual words
being omitted from the final TF-IDF vector representations.
Each publication is transformed into a vector using the
constructed vocabulary, which resulted in each TF-IDF vector
representation being 1 x 29,605. The hyperparameter tuning
reduced the computational complexity by reducing the
vocabulary size and, in turn, reducing the vector representation
size. TF-IDF is an interpretable representation technique as
each word in a given text is directly mapped to a corresponding
element in the vector representation based on the vocabulary
(P. Sitikhu et al. 2019). The constructed vocabulary guides the
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Figure 3. We present the receiver operating characteristic (ROC) curves displaying the performances of the SVM, random forest, and MLP classifiers. Notably, the
SVM model trained exclusively on sentences containing mission keywords has an area under the curve (AUC) of 0.97. An AUC of 0.5 indicates that the model’s
ability to differentiate between the two classes is no better than random chance, while an AUC of 1 indicates the model’s ability to perfectly distinguish between the
two classes. The red point displays the optimum true-positive and false-positive rates from the classifier in paper C22, with a true-positive rate of 0.93 and a false-
positive rate of 0.07. In comparison, the dark green point displays that our SVM model has a higher true-positive rate of 0.96. However, this improvement is
accompanied by a slightly higher false-positive rate of 0.1, indicating the inclusion of some irrelevant papers.

model in recognizing informative contextual words surround-
ing mission keywords for classification.

2.3. Classifier Training

We chose to explore three classification algorithms: support
vector machine (SVM), random forest, and multilayer
perceptron (MLP), implemented in Scikit-learn. For training
and evaluation, we adopted a commonly used approach by
randomly splitting our data set of 14,808 publications into
training, validation, and test sets. The respective ratios were set
at 60%, 20%, and 20%, as determined to be close to optimal
across various settings (see, e.g., K. K. Dobbin &
R. M. Simon 2011).

We manually tuned the hyperparameters of the three
classifiers. For the SVM, we experimented with adjusting the
class weight parameters to modify the weight assigned to the
MAST publications class to decrease the false-negative rate. In
the case of the random forest, we configured the hyperpara-
meters to include 500 estimators, set a verbosity level of 1,
used 4 jobs, and specified a minimum of 10 samples per leaf.
Similarly, we tuned the MLP utilizing an adaptive learning rate,
100 hidden layers, a ReLLU activation function, and an ADAM
optimizer (see, e.g., D. P. Kingma & J. Ba 2017).

There is a trade-off when adjusting the class weight
parameter to decrease the false-negative rate—it will include
more false positives, increasing the number of Not MAST
publications classified as MAST. We prioritize minimizing the
false-negative rate by maximizing the accurate classification of
publications containing MAST-hosted mission usage, while
retaining an acceptable false-positive rate currently set at 0.1 or
lower. The threshold was determined based on its impact on the
workload of MAST scientists at STScl. With the current
monthly rate of approximately 550 new publications for
classification and a false-positive rate of 0.1, resulting in ~55
incorrectly classified papers requiring manual review each
month. The threshold of acceptable false positives is set by
balancing both the classification accuracy and workload
management, reducing the number of papers requiring manual

review to a level that allows MAST scientists to efficiently
conduct verification while maintaining time for their research.

3. Results and Discussion

The SVM classifier, trained exclusively on sentences
containing mission keywords, achieves the highest accuracy
of 92.9%, up from 81.6% when trained on the full text.
Throughout the rest of the paper, when mentioning the SVM
model, we refer to the highest-performing SVM. In classifica-
tion tasks, the common metrics used are (for more details, see
B. Juba & H. S. Le 2019)

Recall = L
(TP + FN)
.. TP
Precision = ———
(TP + FP)
TP + TN
Accuracy =

(TP + FP + TN + FN)

The SVM classifier achieves a recall of 96.0%, a precision of
90.1%, and an accuracy of 92.9%. Meanwhile, the highest-
performing random forest classifier exhibits a recall of 92.0%, a
precision of 90.0%, and an accuracy of 90.5%, and the highest-
performing MLP exhibits a recall of 92.0%, a precision of
92.3%, and an accuracy of 91.2%.

To provide a more comprehensive view of the three
classifiers’ performances, we examine the receiver operating
characteristic (ROC) curve, depicted in Figure 3. An ROC
curve with an area under the curve value of 0.97 signifies a
high probability for the SVM model to distinguish between true
positives and false positives.

Figure 4 presents the confusion matrices for the three
classifiers. The SVM model demonstrates a true-positive rate of
96%, accurately predicting labeled MAST publications, and a
true-negative rate of 90%, correctly identifying labeled
publications as Not MAST publications. Additionally, the
random forest model achieves a true-positive rate of 92% and a
true-negative rate of 89%, while the MLP exhibits a true-
positive rate of 92% and a true-negative rate of 92%. Manual
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Figure 4. A confusion matrix delineates the rates of predicted and true labels, enabling the evaluation of true and false predictions for each label in our binary
classification (J. Maria Navin & R. Pankaja 2016). The SVM model exhibits a true-positive rate of 96% in accurately predicting labeled MAST publications and a
true-negative rate of 90% in correctly identifying labeled Not MAST publications. In comparison, both the random forest model and MLP have lower true-positive

rates, while the MLP has a slightly higher true-negative rate.

classification, while more accurate, is time-consuming. The
objective of employing machine learning is to automate the
process and ensure comprehensive identification of publica-
tions containing mission usage. These results above underscore
how well the SVM model aligns with our goal of reducing the
likelihood of excluding MAST publications by minimizing the
false-negative rate.

We trained the classifier presented in C22 on our data set,
achieving a 90.2% accuracy. We note the limitations of
comparing our work to C22, as there are differences in data,
preprocessing, and the specific problem addressed with the
classifier. The C22 classifier is designed for the broader needs
of NED, utilizing a comprehensive full-text feature extraction
method. This approach is better suited for -classifying
observational data across a wide range of astronomical topics,
where relying on a fixed set of keywords would be insufficient.
In contrast, our classifier is specifically tailored to track the
usage of individual facilities, a more focused task that allows
for a flexible and faster method.

Our approach, trained exclusively on sentences containing
MAST-hosted mission keywords, offers several advantages.
Unlike the resource-intensive feature extraction process in C22,
which requires days of CPU time, our method is significantly
faster and more scalable. Additionally, our classifier is less
sensitive to changes in text structure or formatting, as it focuses
on specific sentences in the text, compared to C22, which utilizes
HTML files extracted from various astronomical journals as
training data. The NED classification framework’s sensitivity to
text structure nuances, such as document formatting or HTML
templates, necessitates periodic retraining. Particularly, the
alteration of a journal’s HTML template would require retraining
for new publications. As the volume of publications grows
exponentially, our framework scales more effectively, requiring
minimal retraining, which is primarily necessary when new
mission keywords are added, making it more adaptable to
evolving needs (see Appendix C for performance character-
istics). While the C22 classifier offers advantages for tasks
across broad astronomical topics, our method provides a more
targeted and efficient solution for tracking facility usage in
MAST. This comparison highlights that the choice of classifica-
tion method should be driven by the specific requirements of the
problem at hand, with our approach being particularly well-
suited for the needs of facility tracking.

4. Conclusion

We present a classification framework designed for large
scientific institutions to effectively monitor the utilization of
their scientific instruments and gain valuable insights into the
evolving needs of the scientific community. The exponentially
growing scientific literature has burdened MAST scientists who
manually classify publications to track MAST-hosted mission
usage, leading to a persistent backlog of unclassified
publications.

Our classification framework leverages NLP techniques to
automatically and accurately extract usage information. The
presented framework workflow mirrors the interpretable
classification methodology employed by MAST scientists,
emphasizing the identification of sentences containing mission
keywords within the plain text of publications. Notably, the
identification of relevant sentences containing mission key-
words enhances accuracy by highlighting contextual informa-
tion. Considering only sentences containing mission keywords
improved classification accuracy from 81.6% to 92.9%, when
compared to using the full-text publication (see Appendix D for
further metrics regarding full text).

The interpretability of TF-IDF enhances the framework’s
robustness by enabling direct evaluation of classifier perfor-
mance at the word level. The explicit mapping of context words
to elements of the vector representations facilitates the
transparent assessment of the framework’s effectiveness across
various observatories. The integration of this classification model
into the MAST workflow promises to alleviate manual
classification and assist scientific institutions, such as STScl, in
identifying the evolving needs of the global astronomical
community. Future work will refine publication tracking for
observatories, incorporating mission-specific and publication-
type information to customize the framework for diverse
observatory needs and enhance resource utilization tracking.
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Appendix A
MAST Keywords

Full list of keywords used by MAST Scientists to search for
candidate MAST publications.

1. PAN STARRS 22. AIDA
2. PANSTARRS 23. BEFS
3. PS1 24. Copernicus
4. Pan-STARRS 25. EUVE
5. Pan-STARRS-1 26. Extreme Ultraviolet
6. Pan-STARRS1 27. FUSE
7. PanSTARRS-1 28. Far Ultraviolet
8. PanSTARRS1 29. GALEX
9. WUPPE 30. Galaxy Evolution
10. UIT 31. HUT
11. TESS 32. Hopkins Ultraviolet
12. TUES 33. IMAPS
13. Berkeley Extreme and Far-UV 34. IUE
Spectrometer
14. Berkeley Spectrometer 35.10.17909
15. Transiting Exoplanet Survey Satellite 36. K2
16. Tubingen Ultraviolet Echelle 37. KTWOCANDELS
Spectrometer
17. Ultraviolet Imaging Telescope 38. Kepler
18. International Ultraviolet Explorer 39. MAST
19. Interstellar Medium Absorption Profile 40. OAO-3
Spectrograph
20. Wisconsin Ultraviolet Photo-Polari- 41. ORFEUS

meter Experiment
21. Orbiting Retrievable Far and Extreme
Ultraviolet Spectrometers

Appendix B
MAST Manual Classification Process

In the following, we describe the manual classification
process utilized by the MAST scientists.

B.1. Keyword Search

The MAST archive scientists classify only a subset of papers
from NASA/ADS. First, a full-text keyword search is done for

Amado Olivo et al.

all papers that contain any mission or MAST-related keywords,
e.g., MAST, Kepler, and TESS (see the full list in Appendix A).
Flagship missions like the Hubble Space Telescope Mission and
James Webb Space Telescope Mission are separately classified.
This search is done periodically, aggregated by month, currently
producing, on average, roughly 550 publication results each
month for further human verification.

B.2. Classification Criteria

Next, the publications are classified and labeled with the
following information:

1. Mission: the relevant mission name (i.e., TESS, Kepler).

2. Paper type: which paper category the publication fits into
(e.g., a “science paper” or a “mention”).

3. Ignored: whether the publication should be ignored
altogether.

Publications marked as Ignored are typically papers where
the matched keyword refers to something unrelated to
astronomical mission data at MAST. For example, the MAST
acronym keyword can reference “Mega Amp Spherical
tokamak,” rather than “Mikulski Archive for Space Tele-
scopes,” or the K2 mission keyword can reference a variable in
a mathematical equation, k2, rather than NASA’s K2 mission.
The contaminations in the initial keyword search are due to
limitations with the NASA/ADS keyword search and must be
accounted for during classification. See the Not MAST box in
Figure 1 for an additional example of a keyword mismatch.

For binary classification, the archive scientists created a new
column indicating for each paper whether it is a MAST paper
or not. Any paper with at least a mention of a relevant keyword
is considered a MAST paper. All papers that were classified as
“ignores” are considered as Not MAST papers.

Appendix C
Performance of Classifiers

C.1. Code Availability

The code and data are open-source and are available here'”
as a Zenodo repository.

C.2. Profiling

The performance of our classification framework was
profiled for execution time utilizing Python’s timing function-
ality, with all measurements repeated over seven runs to
calculate mean times and standard deviations. We profiled the
best-performing SVM, random forest, and MLP classifiers. The
data processing steps, comprising tokenization, keyword
search, and TF-IDF computation, exhibited the following
execution times per run: tokenization required 4 minutes 8 s
(£694 ms), keyword search took 12.3 s (+56.7 ms), and TF-
IDF computation lasted 5.5 s (£27.7 ms).

The random forest classifier trains in 11.7 s (£47.4 ms) per
run with an accuracy of 90.5% on the test set. In comparison,
the MLP trains in 210 s (£29.6 s) with an accuracy of 90.8%.
The SVM, as discussed in Section 3, is the classifier used in the
framework as the accuracy of 92.9% is the highest of the tested
classifiers, while the training time is 40.3 s (218 ms) per run.

12 40i:10.5281 /zenodo. 14014142.
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Appendix D
SVM Full-text Metrics

In Figures 5 and 6 we plot the ROC curve and confusion
matrix for an SVM model trained on the full-text publications.
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Figure 5. The ROC curve of the SVM model trained on the full-text publications has an area under the curve (AUC) of 0.90 compared to 0.97 when identifying the
sections of the publication containing keywords.

MAST

True label

NoT MAST

0.32

MAST Not MAST
Predicted label

Figure 6. The SVM model using the full-text publications, instead of identifying the sections with keywords, exhibits a true-positive rate of 94% in accurately
predicting labeled MAST publications and a true-negative rate of 68% in correctly identifying labeled Not MAST publications.
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