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ABSTRACT: A diastereoselective addition and rearrangement reaction Ph O,
has been developed for the synthesis of pyrrolidine-2-ylidenes from NH- Me%
isoxazolines and electron-deficient allenes. This method proceeds via the

rearrangement of a proposed N-alkenylisoxazoline intermediate to generate
densely functionalized pyrrolidine-2-ylidenes under simple catalyst-free
conditions that tolerate ketone substituents and install relative stereo-

chemistry at positions 3 and 4 of the heterocycle. Reaction optimization
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and the substrate scope are described in addition to studies evaluating the
reactivity of the gem-dione and enaminone groups of the products.

yrrolidine-2-ylidenes are N-heterocycles found in bio-
logically active natural products such as plakoridine A,
carzinophilin, azinomycin A, and batzelladine (Scheme 1A).' >
The enaminone functional group embedded in these molecules
has also been used as an intermediate in the synthesis of other

Scheme 1. Pyrrolidine-2-ylidene Targets and Synthesis
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pyrrolidine targets.”> The most common method used for the
synthesis of pyrrolidine-2-ylidenes is the olefination of lactams
or thiolactams.'® Additional synthetic approaches to these
molecules include using intermolecular cycloaddition of
enediones with imines, intramolecular cycloaddition of azides
with Michael acceptors, titanium-catalyzed cyclization of
ynamines in the presence of acyl cynanides, and ring opening
of isoxazoles and isoxazolines (Scheme 1B).””'® While these
methods have proven to be effective for pyrrolidine-2-ylidene
synthesis, olefination reactions limit compatibility with ketone
and aldehyde substituents, and installing stereocenters at
positions 3 and 4 of these heterocycles is usually dependent on
the synthesis of precursors. Recently, we reported that gold-
catalyzed N-alkenylation of isoxazolines with ynamides
generates N-alkenylisoxazoline intermediates that undergo
[3,3]-sigmatropic rearrangement to give 2-aminopyrrolines
(Scheme 1C)."" We wondered if the nucleophilic reactivity of
NH-isoxazolines could also be applied to allenones for the
preparation of pyrrolidine-2-ylidenes 3 under mild conditions
that would accommodate ketone substituents and install
relative stereochemistry. While conjugate additions of NH-
isoxazolines appear to be straightforward, limited methods for
the preparation of NH-isoxazolines have inhibited studies of
their reactivity and potential to engage in cascade reac-
tions.'""? Herein, we describe the synthesis of pyrrolidine-2-
ylidenes 3 from NH-isoxazolines 1 and allenes 2 via conjugate
addition and rearrangement under simple catalyst-free
conditions or with the addition of a Lewis acid (Scheme
1D)."” This reaction gives highly functionalized pyrrolidine-2-

Received: August 6, 2024

Revised:  October 28, 2024

Accepted: November 4, 2024

Published: November 14, 2024
https://doi.org/10.1021/acs.joc.4c01976
J. Org. Chem. 2024, 89, 17804—17812


https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Dylan+C.+Keane%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Guanqun+Zhang%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Abdullah+S.+Alshreimi%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Donald+J.+Wink%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Laura+L.+Anderson%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.joc.4c01976&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?fig=agr1&ref=pdf
https://pubs.acs.org/toc/joceah/89/23?ref=pdf
https://pubs.acs.org/toc/joceah/89/23?ref=pdf
https://pubs.acs.org/toc/joceah/89/23?ref=pdf
https://pubs.acs.org/toc/joceah/89/23?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.4c01976?fig=sch1&ref=pdf
pubs.acs.org/joc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.joc.4c01976?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/joc?ref=pdf
https://pubs.acs.org/joc?ref=pdf

The Journal of Organic Chemistry

pubs.acs.org/joc

ylidenes with up to three contiguous stereocenters and expands
the synthetic utility of NH-isoxazolines as modular precursors
to diastereoselective rearrangements for stereoselective hetero-
cycle formation. The scope of this method and investigation of
the novel reactivity of 3 are described below.

The addition of NH-isoxazolines to allenones to generate N-
alkenylisoxazolines and synthesize pyrrolidines was initially
investigated with 1a and 2a (Table 1). NH-Isoxazoline 1a was

Table 1. Optimization of the Synthesis of Pyrrolidine-2-
ylidenes from Isoxazoline 1a and Allene 2a“”

Bn o
1 a\(}(}q H
Me
o, Ph
Me/\- \)(123
7 Ph (dr =>20:1)

entry additive solvent [1a] (M) yield” (%)
1 K,CO, CH,CL, 0.1 80
2 quinoline CH,Cl, 0.1 86
3 - CH,Cl, 0.1 89
4 - MeOH 0.1 76
S - THF 0.1 69
6 - EtOAc 0.1 78
7 - acetone 0.1 S1
8¢ - CH,CL, 0.05 85
9o - CH,Cl, 0.05 90

Condltlons la (1 equlv), 2a (2 equiv), additive (2 equiv), 25 °C, 1
h. "Determined by 'H NMR spectroscopy. CH,Br, used as an
internal standard. “For 3 h. “With 1.5 equiv of 2a.

prepared as reported by Zhang and co-workers."? As described
in our previous work, the addition of N-hydroxyenamines to
allenoates can be achieved in the presence of a mild base to
initiate a sigmatropic rearrangement.14 When a mixture of
isoxazoline 1a and allene 2a in CH,Cl, was treated with either
K,COj; or quinoline, the desired addition and rearrangement
product 3a was observed in good yield (Table 1, entries 1 and
2). Surprisingly, removal of the base additive led to a small
increase in yield for 3, and optimal conditions for the synthesis
of 3a were determined to be simply a 2:3 mixture of 1a and 2a
in CH,Cl, (Table 1, entry 9). The reaction was shown to be
tolerant of other solvents and different concentrations but
worked best as a 0.05 M solution (Table 1 entries 4—9). In
analogy to our previous work,'"'> we propose N-alkenylisox-
azoline 4a (or related tautomers) as the intermediate in this
process that can undergo rearrangement through a boat
transition state to form pyrrolidine 3a with the illustrated
relative stereochemistry.

With optimal conditions in hand, the scope of the reaction
was investigated by varying the substituents on the allene and
the NH-isoxazoline. As shown in Scheme 2, allenes with alkyl
and aryl ketone functional groups smoothly underwent
conversion to 3a—3c with NH-isoxazoline la. A somewhat
attenuated yield was observed for 3¢ presumably due to the
lower electrophilicity of 2c. Branched alkyl groups were also
tolerated on the allenone, as shown for 3d. To interrogate the
effect of substituents on the NH-isoxazoline, the procedure by
Zhang and co-workers'® was expanded to prepare NH-
isoxazolines 1b—1f. NH-Isoxazolines with aryl and heteroaryl
groups adjacent to the N atom were tolerated to give 3e—3h.
When the acyl group of la was changed to a furanyl

Scheme 2. Scope of the Synthesis of Pyrrolidine-2-ylidenes
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substituent, pyrrolidines 3i and 3j were prepared in good
yields. More significant changes to the structure of the
substrates required additional changes in the reaction
conditions. For example, allenoate 2e gave 3k in only 42%
yield and dr 10:1 under the optimal conditions shown in Table
1 but gave 3k in 75% yield with dr >20:1 when treated with 1a
in MeOH and H,O. These protic conditions were also tested
for a mixture of la and 2a but shown to be inferior to the
optimized conditions determined in Table 1. The structure and
relative stereochemistry of 3 were confirmed with an X-ray
crystal structure of 31.'° NH-Isoxazolines 1g—1i were prepared
from the corresponding azetidine nitrones ' but did not form
the corresponding pyrrolidines under standard conditions. In
contrast, when 1g—1i were treated with allene 2a in the
presence of catalytic Sc(OTf);, pyrrolidines 3m—30, respec-
tively, were formed in moderate yields. With several examples
of pyrrolidine-2-ylidenes 3 in hand, the reactivity of these
compounds was evaluated.

Investigations into the reactivity of pyrrolidine-2-ylidenes 3
focused on interrogating the effect of the carbonyl function-
alities decorating these molecules. Initial attempts to reduce
the enaminone with hydride reagents and hydrogenation were

https://doi.org/10.1021/acs.joc.4c01976
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met with a lack of reactivity or formation of alternative product
mixtures (Scheme 3A). Further analysis showed that treatment

Scheme 3. Conversion of 3 into Fused Pyrrolidines 5

A) Reactivity of vinylogous amide pyrrolines under basic conditions.
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of 3a with a base leads to the formation of Sa as a single
diastereomer. The relative stereochemistry of Sa was
confirmed by X-ray crystal structure analysis.'® While a variety
of bases such as NaH and KOt-Bu were shown to trigger this
reactivity, DBU was determined to be optimal for the synthesis
of Sa from 3a. This reaction was general for several
pyrrolidine-2-ylidenes 3 as illustrated by successful formation
of Sb—Se, but no reaction was observed for 3m—3o0, which do
not have gem-dione functionalities (Scheme 3B). A proposed
mechanism for this reaction is shown in Scheme 3C. Either an
intramolecular or a DBU-facilitated acyl migration could form
intermediate 6a,'” which could be converted into Sa via
enolization at the benzyl ketone followed by addition to the
adjacent acyl group and elimination of H,0. No crossover
products were observed when a mixture of 3b and 3i was
subjected to reaction conditions supporting the absence of
solvent-separated fragments during the acyl transfer. Inde-
pendent synthesis of a diastereomeric mixture of 7 via dipolar
cycloaddition'® followed by treatment with DBU also did not
form the analogous fused pyrrolidine, suggesting that the
enaminone functionality of 3 is required for the initial acyl
transfer (Scheme 3D). These studies identified the gem-dione
of 3 to be activated by the vinylogous amide toward
preferential rearrangement to fused pyrrolidines $.

Having discovered that the gem-dione functionality domi-
nates the reactivity of 3 under basic conditions, we next
considered the reactivity of 3 after removal of the acyl group.
As shown in Scheme 4A, deacylation of 3a with NaOMe gave
8a in good yield and high diastereoselectivity.'” This
compound smoothly underwent sodium cyanoborohydride
reduction to give 9a in good yield, albeit with low
diastereoselectivity.”’ Cyclization of 8a with acrylate gave
10a in moderate yield and high diastereoselectivity following a

Scheme 4. Reactivity of Deacylated Pyrrolidine-2-ylidenes
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procedure reported by Tian, Loh, and co-workers.”" Further
following the trend that the vinylogous amide of 3 reacts as
expected in the absence of the gem-dione, we also showed that
fused pyrrolidine Sa smoothly underwent reduction to 11a
with NaBCNH,; (Scheme 4B).”° Taken together, these
investigations demonstrate the synthetic utility of 3 and how
the gem-dione of 3a—31 can be used as a reactivity-controlling
element.

In summary, we have discovered a conjugate addition and
[3,3]-sigmatropic rearrangement reaction to form pyrrolidine-
2-ylidenes from NH-isoxazolines and allenes. This diaster-
eoselective transformation occurs under mild catalyst-free
conditions and provides access to pyrrolidine-2-ylidenes that
are challenging to achieve by other methods. Further studies
have also identified an unusual reactivity pattern of these
compounds, in which a gem-dione preferentially undergoes acyl
migration and cyclization under basic conditions. Removal of
one of the ketones then allows for the use of known reduction
and cyclization conditions of enaminones to functionalize the
heterocycle. This work expands the chemical space of
accessible pyrrolidine-2-ylidenes and showcases the versatility
of NH-isoxazoline conjugate addition reactions to initiate
cascade reactions for the stereoselective synthesis of different
types of pyrrolines.

B EXPERIMENTAL SECTION

General Considerations. 'H and "*C nuclear magnetic resonance
(NMR) spectra were recorded by using a Bruker AV 500 MHz
spectrometer at ambient temperature. The data are reported as
follows: chemical shift in parts per million from internal
tetramethylsilane on the & scale, multiplicity (br, broad; s, singlet;
d, doublet; t, triplet; q, quartet; m, multiplet), coupling constants
(hertz), and integration. Infrared (IR) spectra were recorded at
ambient temperature using a Thermo Scientific Nicolet iSS FT-IR
spectrometer with an iDS ATR sampler. High-resolution mass spectra
were acquired on an LTQ hybride ion trap Fourier transform
spectrometer using electrospray to ionize the sample and were
obtained by peak matching. Melting points are reported uncorrected.
Analytical thin layer chromatography (TLC) was performed on 0.25
mm extra hard silica gel plates with a UV,s, fluorescent indicator.
Medium-pressure liquid chromatography was performed using the
force flow of the indicated solvent system down columns packed with
60 A (40—60 pm) of mesh silica gel (SiO,). All reagents and solvents
were obtained from commercial sources and, where appropriate,
purified prior to use. CH,Cl,, toluene, and tetrahydrofuran (THF)
were dried by filtration through alumina according to the procedure of
Grubbs.”> MeOH was dried by filtration through a column loaded

https://doi.org/10.1021/acs.joc.4c01976
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with activated 4 A molecular sieves. NH-Isoxazolines la—1f were
prepared following a procedure reported by Zhang and co-
workers.'”!"  NH-Isoxazolines 1g—1i were prepared following a
procedure reported by our group.' Allenes 2 were prepared following
procedures previously reported by our group and others.'**

General Procedure for Table 1. A 5 mL glass vial was charged
with a 0.100 M solution of isoxazoline 1a'? in the given solvent, mixed
with a 0.150 M solution of allene 2a'* in the same solvent, and treated
with an additive to form a reaction mixture. The vial was then sealed
with a Teflon-sealed screw cap, and the mixture was allowed to stir at
25 °C for the given amount of time. The reaction mixture was then
concentrated under vacuum and mixed with 1.0 equiv of 1,4-
dimethoxybenzene to act as an internal standard for crude yield
determination of pyrrolidine 3a by '"H NMR spectroscopy.

General Procedure A for the Synthesis of Pyrrolidine-2-
ylidenes 3. A 5§ mL glass vial was charged with a solution of NH-
isoxazoline 1 in CH,Cl, (1.50 mL, 0.100 M, 0.150 mmol, 1.00 equiv)
and treated with a solution of allene 2 in CH,Cl, (1.50 mL, 0.150 M,
0.225 mmol, 1.50 equiv). The vial was then sealed with a Teflon screw
cap and allowed to stir at 25 °C for 2—23 h while the reaction was
monitored by TLC. Upon complete consumption of 1, the reaction
mixture was concentrated under vacuum, wet-loaded onto silica gel
using CH,Cl, (~0.5 mL), and purified by medium-pressure
chromatography (8—25% EtOAc/hexanes) to afford pyrrolidine-2-
ylidenes 3a—3j.

General Procedure B for the Synthesis of Pyrrolidine-2-
ylidenes 3. A 20 mL scintillation vial was charged with NH-
isoxazoline 1 (1.0 equiv), 20% H,0 in MeOH (0.01 M), and allene 2
(2.0 equiv) and sealed with a Teflon screw cap. After the mixture had
been stirred for 16 h at 25 °C, pyrrolidine-2-ylidenes 3k and 31
precipitated from the reaction mixture and were collected by filtration.
The crude product was wet-loaded onto silica gel using CH,Cl, (~1
mL). Subsequent medium-pressure chromatography (12% EtOAc/
hexanes) afforded pyrrolidine-2-ylidenes 3k and 31

General Procedure C for the Synthesis of Pyrrolidine-2-
ylidenes 3. A S mL glass vial was charged with Sc(OTf); (0.007 g,
0.0150 mmol, 10 mol %), diluted with a solution of NH-isoxazoline
1'" in CH,Cl, (1.50 mL, 0.100 M, 0.150 mmol, 1.00 equiv), and
treated with a solution of allene 2'* in CH,Cl, (1.50 mL, 0.150 M,
0.225 mmol, 1.50 equiv). The vial was then sealed with a Teflon screw
cap, and the mixture allowed to stir at 25 °C for 2—23 h while the
reaction was monitored by TLC. Upon complete consumption of 1,
the reaction mixture was concentrated under vacuum, wet-loaded
onto silica gel using CH,Cl, (~0.5 mL), and purified by medium-
pressure chromatography (8—25% EtOAc/hexanes) to afford
pyrrolidine-2-ylidenes 3m—3o.

Pyrrolidine-2-ylidene 3a was prepared by general procedure A using
NH-isoxazoline 1a"* (1.50 mL, 0.100 M in CH,Cl,, 0.160 mmol, 1.00
equiv) and allene 2a'* (1.50 mL, 0.150 M in CH,Cl,, 0.218 mmol,
1.36 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 4 h (TLC eluent, 30% EtOAc/hexanes; Ry of 1a = 029,
and R; of 3a = 0.32; UV, lamp). Chromatography (15% EtOAc/
hexanes) afforded pyrrolidine 3a as a yellow solid (0.065 g, 93%, dr
>20:1): 'H NMR (500 MHz, CDCl;) 6 10.48 (s, 1H), 7.93—7.92 (m,
2H), 7.55—7.53 (m, 2H), 7.48—7.42 (m, 3H), 7.40—7.35 (m, 3H),
7.17—7.15 (m, 3H), 6.65—6.63 (m, 2H), 5.90 (s, 1H), 5.80 (s, 1H),
332 (q,J = 6.9 Hz, 1H), 3.19 (d, ] = 17.2 Hz, 1H), 2.77 (d, ] = 17.2
Hz, 1H), 2.36 (s, 3H), 1.56 (d, ] = 6.9 Hz, 3H); *C{'H} NMR (125
MHz, CDCL,) 5 204.8, 201.1, 189.6, 167.9, 140.0, 135.9, 131.9, 131.0,
129.7, 129.0, 128.9, 128.3, 128.3, 127.9, 127.2, 127.0, 85.7, 78.2, 65.3,
49.0, 45.4, 30.2, 12.8; IR (thin film) 3305, 1694, 1614, 1576, 1520,
1453, 1360, 1291, 1259, 1243 cm™'; HRMS (ESI) m/z calcd for
CooHgNO; (M + H)* 4382069, found 438.2062; mp 170—172 °C.

Pyrrolidine-2-ylidene 3a was prepared by general procedure B using
NH-isoxazoline 1a'® (9.75 mL, 0.020 M in CH,Cl,, 0.195 mmol, 1.00
equiv) and allene 2a'* (9.75 mL, 0.030 M in CH,Cl,, 0.303 mmol,
1.56 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 16 h (TLC eluent, 30% EtOAc/hexanes; R, of 1a = 0.29,
and R; of 3a = 0.32; UV, lamp). Chromatography (15% EtOAc/
hexanes) afforded pyrrolidine 3a as a yellow solid (0.054 g, 64%, dr

>20:1). 'H and BC{'H} NMR data matched the values presented
above.

Pyrrolidine-2-ylidene 3b was prepared by general procedure A using
NH-isoxazoline 1a"* (1.80 mL, 0.100 M in CH,Cl,, 0.184 mmol, 1.00
equiv) and allene 2b (1.80 mL, 0.120 M in CH,Cl,, 0.220 mmol, 1.20
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 23 h (TLC eluent, 30% EtOAc/hexanes; Ryof 1a=0.29, and
R; of 3b = 0.53; UV,5, lamp). Chromatography (12% EtOAc/
hexanes) afforded pyrrolidine 3b as a yellow solid (0.058 g, 76%, dr
>20:1): 'H NMR (500 MHz, CDCl;) 6 10.08 (s, 1H), 7.50—7.48 (m,
2H), 7.37—7.34 (m, 3H), 7.17-7.14 (m, 3H), 6.62—6.60 (m, 2H),
5.70 (s, 1H), 5.37 (s, 1H), 3.23 (q, J = 6.9 Hz, 1H), 3.18 (d, ] = 17.3
Hz, 1H), 2.76 (d, ] = 17.3 Hz, 1H), 2.35 (s, 3H), 1.48 (d, ] = 6.9 Hz,
3H), 1.19 (s, 9H); *C{'H} NMR (125 MHz, CDCl;) § 205.6, 205.0,
201.4, 166.6, 136.0, 132.1, 129.7, 128.9, 128.7, 128.2, 127.8, 127.0,
84.4,78.0, 65.0, 49.0, 45.3, 41.9, 30.2, 27.8, 12.8; IR (thin film) 3308,
1738, 1695, 1624, 1525, 1498, 1454, 1360, 1300, 1264 cm™'; HRMS
(ESI) m/z caled for C,,H;,NO; (M + H)* 418.2382, found
418.2379; mp 114—116 °C.

Pyrrolidine-2-ylidene 3¢ was prepared by general procedure A using
NH-isoxazoline 1a"* (1.80 mL, 0.100 M in CH,Cl,, 0.188 mmol, 1.00
equiv) and allene 2c (1.80 mL, 0.150 M in CH,Cl,, 0.270 mmol, 1.44
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 5 h (TLC eluent, 30% EtOAc/hexanes; R¢of 1a = 0.29, and
R; of 3¢ = 021; UV, lamp). Chromatography (20% EtOAc/
hexanes) afforded pyrrolidine 3¢ as an orange solid (0.061 g, 69%, dr
>20:1): 'H NMR (500 MHz, CDCL,) & 10.41 (s, 1H), 7.92—7.91 (m,
2H), 7.54—7.52 (m, 2H), 7.38—7.36 (m, 3H), 7.16—7.15 (m, 3H),
6.94—6.92 (m, 2H), 6.64—6.63 (m, 2H), 5.86 (s, 1H), 5.78 (s, 1H),
3.85 (s, 3H), 3.31 (q, ] = 7.2 Hz, 1H), 3.19 (d, ] = 17.2 Hz, 1H), 2.79
(d, J = 17.2 Hz, 1H), 2.36 (s, 3H), 1.56 (d, ] = 6.9 Hz, 3H); “C{'H}
NMR (125 MHz, CDCL,) & 204.9, 201.2, 188.7, 167.2, 162.0, 136.0,
1327, 132.0, 129.7, 129.1, 129.0, 128.8, 128.2, 127.9, 127.0, 113.5,
85.2, 78.1, 65.1, 55.4, 48.9, 45.4, 30.2, 12.9; IR (thin film) 3305, 1693,
1613, 1600, 1573, 1522, 1490, 1454, 1290, 1243 cm™'; HRMS (ESI)
m/z caled for C3)H3oNO, (M + H)* 468.2175, found 468.217S; mp
152—162 °C.

Pyrrolidine-2-ylidene 3d was prepared by general procedure A using
NH-isoxazoline 1a'* (1.80 mL, 0.100 M in CH,Cl,, 0.186 mmol, 1.00
equiv) and allene 2d (1.80 mL, 0.170 M in CH,Cl,, 0.300 mmol, 1.61
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 4 h (TLC eluent, 30% EtOAc/hexanes; Ry of 1a = 0.29, and
R; of 3d = 042; UV,5, lamp). Chromatography (12% EtOAc/
hexanes) afforded pyrrolidine 3d as an orange solid (0.062 g, 72%, dr
>20:1): 'H NMR (500 MHz, CDCl;) 6§ 10.74 (s, 1H), 7.91—7.89 (m,
2H), 7.48=7.39 (m, 6H), 7.32—=7.30 (m, 2H), 7.20—7.13 (m, 3H),
6.70—6.69 (m, 2H), 6.07 (s, 1H), 5.46 (s, 1H), 3.76 (d, ] = 18.1 Hz,
1H), 3.54 (d, ] = 6.9 Hz, 1H), 2.84 (d, ] = 18.1 Hz, 1H), 2.56 (s, 3H),
2.42 (sextet, ] = 6.8 Hz, 1H), 1.33 (d, ] = 6.5 Hz, 3H), 0.93 (d,] = 7.1
Hz, 3H); “C{'H} NMR (125 MHz, CDCl;) § 205.8, 202.7, 189.5,
168.4, 140.1, 135.0, 133.2, 131.0, 129.9, 129.3, 129.1, 128.3, 128.1,
127.4, 127.2, 126.7, 87.0, 77.9, 67.9, 58.7, 50.2, 29.9, 27.3, 23.7, 22.7;
IR (thin film) 2959, 1738, 1708, 1610, 1578, 1521, 1453, 1366, 1263,
1231 cm™'; HRMS (ESI) m/z caled for CyH3,NO; (M + H)*
466.2382, found 466.2379; mp 116—117 °C.

Pyrrolidine-2-ylidene 3e was prepared by general procedure A using
NH-isoxazoline 1b (1.45 mL, 0.100 M in CH,Cl,, 0.124 mmol, 1.00
equiv) and allene 2a'* (1.30 mL, 0.150 M in CH,Cl,, 0.196 mmol,
1.58 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for $ h (TLC eluent, 30% EtOAc/hexanes; Ry of 1b = 0.26,
and R; of 3e = 0.29; UV, lamp). Chromatography (15% EtOAc/
hexanes) afforded pyrrolidine 3e as a yellow solid (0.054 g, 95%, dr
>20:1): "H NMR (500 MHz, CDCL;) § 10.43 (s, 1H), 7.92—7.91 (m,
2H), 7.54—7.51 (m, 2H), 7.47—7.42 (m, 3H), 7.19-7.18 (m, 3H),
7.05 (t, ] = 8.6 Hz, 2H), 6.70—6.68 (m, 2H), 5.90 (s, 1H), 5.74 (s,
1H), 3.30 (q, ] = 6.9 Hz, 1H), 3.16 (d, ] = 16.9 Hz, 1H), 2.84 (d, ] =
16.9 Hz, 1H), 2.31 (s, 3H), 1.57 (d, ] = 6.9 Hz, 3H); *C{'H} NMR
(125 MHz, CDCL,) & 205.0, 200.8, 189.7 167.8, 162.9 (d, ] = 248.4
Hz), 139.9, 131.6, 131.1, 129.9 (2C), 129.6, 128.4, 128.3, 127.2 (2C),
115.8 (d, ] = 21.3 Hz), 85.8, 78.1, 64.8, 48.9, 45.2, 30.2, 13.0; IR (thin
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film) 3290, 1694, 1613, 1579, 1517, 1323, 1297, 1251, 1149, 1121
cm™'; HRMS (ESI) m/z caled for C,0H,, FNO; (M + H)* 456.1975,
found 456.1970; mp 157—160 °C.

Pyrrolidine-2-ylidene 3e (1 mmol scale) was prepared by general
procedure A using NH-isoxazoline 1b (10.0 mL, 0.100 M in CH,Cl,
1.00 mmol, 1.00 equiv) and allene 2a'* (10.0 mL, 0.125 M in CH,Cl,,
1.25 mmol, 1.25 equiv). The reaction mixture was stirred at 25 °C
and monitored by TLC for 12 h (TLC eluent, 30% EtOAc/hexanes;
R;of 1b = 0.26, and Ry of 3e = 0.29; UV, lamp). Chromatography
(15% EtOAc/hexanes) afforded pyrrolidine 3e as a yellow solid
(0.405 g, 89%, dr >20:1). 'H and *C{'H} NMR data matched the
values presented above.

Pyrrolidine-2-ylidene 3f was prepared by general procedure A using
NH-isoxazoline 1c'' (0.500 mL, 0.100 M in CH,Cl,, 0.062 mmol,
1.00 equiv) and allene 2a'* (0.500 mL, 0.230 M in CH,Cl,, 0.114
mmol, 1.84 equiv). The reaction mixture was stirred at 25 °C and
monitored by TLC for 6 h (TLC eluent, 30% EtOAc/hexanes; Ry of
Ic = 0.20, and Ry of 3f = 0.31; UV,s, lamp). Chromatography (17%
EtOAc/hexanes) afforded pyrrolidine 3f as an orange solid (0.022 g,
75%, dr >20:1): "H NMR (500 MHz, CDCl,) 5 10.39 (s, 1H), 7.93—
7.91 (m, 2H), 7.46—7.41 (m, SH), 7.18=7.17 (m, 3H), 6.89—6.87
(m, 2H), 6.72—6.70 (m, 2H), 5.88 (s, 1H), 5.72 (s, 1H), 3.81 (s, 3H),
3.28 (q,J = 7.0 Hz, 1H), 3.20 (d, J = 17.1 Hz, 1H), 2.80 (d, ] = 17.0
Hz, 1H), 2.33 (s, 3H), 1.55 (d, J = 6.9 Hz, 3H); C{*H} NMR (125
MHz, CDCl,) § 205.0, 201.1, 189.5, 167.9, 160.0, 140.1, 132.0, 131.0,
129.7,129.2, 128.3, 12822, 127.4, 127.2, 127.0, 114.3, 85.5, 78.0, 65.1,
55.4, 48.9, 45.3, 30.2, 12.8; IR (thin film) 3303, 1695, 1608, 1576,
1509, 1364, 1293, 1241, 1175, 1050 cm™; HRMS (ESI) m/z calcd
for C3oHyoNO, (M + H)* 4682175, found 468.2174; mp 157—159
°C.

Pyrrolidine-2-ylidene 3g was prepared by general procedure A using
NH-isoxazoline 1d"' (1.50 mL, 0.100 M in CH,Cl,, 0.156 mmol, 1.00
equiv) and allene 2a'* (1.50 mL, 0.180 M in CH,Cl,, 0.276 mmol,
1.77 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 7 h (TLC eluent, 30% EtOAc/hexanes; Ry of 1d = 0.26,
and Ry of 3g = 0.32; UV, lamp). Chromatography (15% EtOAc/
hexanes) afforded pyrrolidine 3g as a yellow solid (0.061 g, 82%, dr
>20:1): 'H NMR (500 MHz, CDCL;) 6 10.42 (s, 1H), 7.95—7.93 (m,
2H), 7.57-7.55 (m, 1H), 7.50—7.44 (m, 4H), 7.35=7.32 (m, 1H),
7.29=7.26 (m, 1H), 7.15—7.14 (m, 3H), 6.90 (s, 1H), 6.81—6.79 (m,
2H), 5.97 (s, 1H), 5.68 (s, 1H), 3.77 (d, J = 17.6 Hz, 1H), 3.62 (q, ] =
7.2 Hz, 1H), 3.31 (d, J = 17.5 Hz, 1H), 2.42 (s, 3H), 1.51 (d, J = 7.1
Hz, 3H); BC{'"H} NMR (125 MHz, CDCl;) § 203.7, 202.4, 190.0,
167.4, 154.9, 151.6, 139.6, 132.3, 131.3, 129.8, 128.4, 12822, 127.6,
127.3, 127.0, 125.3, 123.6, 121.5, 111.5, 107.3, 87.0, 78.0, 60.2, 48.3,
44.9,29.1, 12.9; IR (thin film) 2921, 1697, 1614, 1578, 1522, 1453,
1364, 1293, 1241, 1174 cm™'; HRMS (ESI) m/z caled for
C3 HoNO, (M + H)* 478.2018, found 478.2014; mp 110—114 °C.

Pyrrolidine-2-ylidene 3h was prepared by general procedure A using
NH-isoxazoline 1e (1.50 mL, 0.100 M in CH,Cl,, 0.148 mmol, 1.00
equiv) and allene 2a'* (1.50 mL, 0.160 M in CH,Cl,, 0.240 mmol,
1.60 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 4 h (TLC eluent, 30% EtOAc/hexanes; R of 1e = 0.68,
and R; of 3h = 0.39; UV, lamp). Chromatography (12% EtOAc/
hexanes) afforded pyrrolidine 3h as a yellow solid (0.063 g, 91%, dr
>20:1): 'TH NMR (500 MHz, CDCL;) § 10.34 (s, 1H), 7.93—7.91 (m,
2H), 7.46—7.41 (m, 3H), 7.17—7.16 (m, 3H), 7.08 (s, 2H), 6.98 (s,
1H), 6.64—6.62 (m, 2H), 5.88 (s, 1H), 5.72 (s, 1H), 3.29—-3.24 (m,
2H),2.74 (d, ] = 17.5 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 6H), 1.55 (d, ] =
6.9 Hz, 3H); BC{'H} NMR (125 MHz, CDCl;) § 204.7, 201.0,
189.6, 167.8, 140.1, 138.8, 135.5, 132.2, 130.9, 130.6, 129.7, 1283,
128.1, 127.2, 126.9, 125.6, 85.5, 78.1, 65.4, 49.1, 45.7, 30.2, 21.4, 12.6;
IR (thin film) 2918, 1698, 1615, 1578, 1526, 1455, 1379, 1256, 1286,
1244 cm™'; HRMS (ESI) m/z caled for C3H;,NO; (M + H)*
466.2382, found 466.2378; mp 68—72 °C.

Pyrrolidine—Z?flidene 3i was prepared by general procedure A using
isoxazoline 1f'" (1.50 mL, 0.090 M in CH,Cl,, 0.132 mmol, 1.00
equiv) and allene 2a'* (1.50 mL, 0.140 M in CH,Cl,, 0.203 mmol,
1.54 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 16 h (TLC eluent, 30% EtOAc/hexanes; Ry of 1f = 0.47,

and Ry of 3i = 0.39; UV,g, lamp). Chromatography (11% EtOAc/
hexanes) afforded pyrrolidine 3i as a brown solid (0.051 g, 79%, dr
>20:1): 'H NMR (500 MHz, CDCl;) § 10.45 (s, 1H), 7.92—7.90 (m,
2H), 7.56—7.55 (m, 2H), 7.49—7.48 (m, 1H), 7.45-7.35 (m, 7H),
7.13=7.12 (m, 3H), 6.63—6.62 (m, 1H), 6.60—6.58 (m, 2H), 6.26 (s,
1H), 5.88 (s, 1H), 3.38 (q, ] = 7.1 Hz, 1H), 3.04 (d, ] = 17.4 Hz, 1H),
225 (d, J = 17.4 Hz, 1H), 1.48 (d, ] = 7.1 Hz, 3H); BC{'"H} NMR
(125 MHz, CDCl,) & 199.5, 189.6, 185.0, 168.3, 151.6, 147.0, 140.3,
136.4, 132.8, 130.8, 129.5, 129.1 (2C), 128.2, 127.9 (2C), 127.2,
126.7, 120.5, 113.5, 85.3, 763, 64.9, 49.2, 48.1, 12.3; IR (thin film)
3264, 1711, 1656, 1612, 1577, 1562, 1521, 1496, 1455, 1366 cm™;
HRMS (ESI) m/z caled for C;,H,sNO, (M + H)* 490.2018, found
490.2025; mp 136—138 °C.

Pyrrolidine-2-ylidene 3j was prepared by general procedure A using
NH-isoxazoline 1f"’ (5.60 mL, 0.100 M in CH,Cl,, 0.558 mmol, 1.00
equiv) and allene 2b (5.60 mL, 0.195 M in CH,Cl,, 1.09 mmol, 1.94
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 18 h (TLC eluent, 30% EtOAc/hexanes; Ryof 1f = 0.47, and
Ry of 3j = 0.56; UV, lamp). Chromatography (7% EtOAc/hexanes)
afforded pyrrolidine 3j as a yellow solid (0.144 g, 55%, dr >20:1): 'H
NMR (500 MHz, CDCl;) 6 10.03 (s, 1H), 7.52—7.50 (m, 2H), 7.46—
7.45 (m, 1H), 7.43 (s, 1H), 7.37—7.31 (m, 3H), 7.12—7.11 (m, 3H),
6.61-6.60 (m, 1H), 6.58—6.57 (m, 2H), 6.15 (s, 1H), 5.34 (s, 1H),
326 (q, ] = 7.2 Hz, 1H), 3.02 (d, ] = 17.5 Hz, 1H), 221 (d, ] = 17.4
Hz, 1H), 1.38 (d, J = 7.1 Hz, 3H), 1.17 (s, 9H); *C{'H} NMR (125
MHz, CDCl,) 6 205.4, 199.6, 185.2, 167.1, 151.7, 146.9, 136.6, 132.9,
129.5, 129.0, 1289, 127.9 (2C), 126.7, 120.4, 113.4, 83.9, 76.2, 64.7,
492, 48.0, 41.8, 27.9, 12.1; IR (thin film) 2964, 1708, 1651, 1620,
1522, 1496, 1456, 1387, 1368, 1295 cm™'; HRMS (ESI) m/z calcd
for C;)H;,NO, (M + H)* 470.2331, found 470.2335; mp 135—140
°C.

Pyrrolidine-2-ylidene 3k was prepared by general procedure B using
NH-isoxazoline 1a'* (4.20 mL, 0.020 M, 0.084 mmol, 1.00 equiv) and
allene 2e*** (4.20 mL, 0.030 M, 0.127 mmol, 1.50 equiv). The
reaction mixture was stirred at 25 °C and monitored by TLC for 16 h
(TLC eluent, 30% EtOAc/hexanes; R, of 1a = 0.29, and Ry of 3k =
0.37; UV,s, lamp). Chromatography (12% EtOAc/hexanes) afforded
pyrrolidine 3k as a white solid (0.025 g, 75%, dr >20:1): '"H NMR
(500 MHz, CDCl,) 6 8.15 (bs, 1H), 7.51—7.49 (m, 2H), 7.36—7.34
(m, 3H), 7.17=7.14 (m, 3H), 6.65—6.63 (m, 2H), 5.66 (s, 1H), 4.69
(s, 1H), 3.68 (s, 3H), 3.20—3.17 (m, 2H), 2.79 (d, ] = 17.2 Hz, 1H),
2.32 (s, 3H), 1.44 (d, ] = 7.0 Hz, 3H); C{"H} NMR (125 MHz,
CDCl,) 8 205.0,201.3, 171.1, 165.5, 136.3, 132.1, 129.7, 128.9, 128.7,
128.2, 127.8, 127.0, 78.0, 77.3, 64.5, 50.4, 48.9, 44.8, 30.2, 12.7; IR
(thin film) 3361, 1737, 1694, 1660, 1589, 1579, 1483, 1453, 1363,
1294 cm™'; HRMS (ESI) m/z caled for C,,H,;NO, (M + H)*
392.1784, found 392; mp 118—120 °C.

Pyrrolidine-2-ylidene 3k was prepared by general procedure A using
NH-isoxazoline 1a'* (1.95 mL, 0.100 M, 0.195 mmol, 1.00 equiv) and
allene 2¢*** (1.95 mL, 0.165 M, 0.322 mmol, 1.65 equiv). The
reaction mixture was stirred at 25 °C and monitored by TLC for 16 h
(TLC eluent, 30% EtOAc/hexanes; R; of 1a = 0.29, and Ry of 3k =
0.37; UV,s, lamp). Chromatography (12% EtOAc/hexanes) afforded
pyrrolidine 3k as a white solid (0.032 g, 42%, dr 10:1). 'H and
BC{'H} NMR data matched the values presented above.

Pyrrolidine-2-ylidene 31 was prepared by general procedure B usin,
isoxazoline 1a" (0.0559 g, 0.200 mmol, 1.00 equiv), allene 27
(0.0753 g, 0.400 mmol, 2.00 equiv), and 10 mL of 20% H,O in
MeOH. After the mixture had been stirred for 16 h, pyrrolidine 31
precipitated from the reaction mixture and was collected by filtration
(0.0683 g, 73%, dr >20:1). A single crystal suitable for X-ray
crystallographic analysis was obtained by recrystallization of this solid
in iPrOAc (2.0 mL) with hexane (18 mL) at—20 °C. CCDC
deposition number 2390522: 'H NMR (500 MHz, CDCL;) § 8.22 (s,
1H), 7.49-7.47 (m, 2H), 7.41-7.37 (m, 3H), 7.32 (t, ] = 7.4 Hz,
2H), 7.24 (t, ] = 7.4 Hz, 1H), 7.21-7.18 (m, SH), 6.74—6.72 (m,
2H), 5.65 (s, 1H), 4.70 (s, 1H), 3.64 (s, 3H), 3.57 (dd, ] = 7.8, 2.4
Hz, 1H), 3.39 (dd, ] = 16.0, 7.9 Hz, 1H), 3.30 (d, ] = 17.1 Hz, 1H),
2.98 (dd, J = 16.0, 3.1 Hz, 1H), 2.77 (d, ] = 17.2 Hz, 1H), 2.26 (s,
3H); BC{'H} NMR (125 MHz, CDCL,) § 204.9, 201.7, 171.1, 165.5,
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139.5, 136.1, 1322, 129.8, 129.1, 129.0 (2C), 1283 (2C), 127.8,
127.0, 1269, 78.5, 782, 65.1, 51.2, 50.4, 49.1, 34.9, 30.0; IR (thin
flim) 3374, 1693, 1664, 1593, 1581, 1497, 1479, 1454, 1427, 1400
cm™; HRMS (ESI) m/z caled for C30H;)NO, (M + H)* 468.2175,
found 468.2176; mp 133—138 °C.

Pyrrolidine-2-ylidene 3m was prepared by general procedure C using
NH-isoxazoline 1g'' (1.50 mL, 0.100 M in CH,Cl,, 0.150 mmol, 1.00
equiv), 10 mol % Sc(OTf); (0.0070 g, 0.015 mmol, 0.10 equiv), and
allene 2a'* (1.50 mL, 0.150 M in CH,Cl,, 0.225 mmol, 1.50 equiv).
The reaction mixture was stirred at 25 °C and monitored by TLC for
18 h (TLC eluent, 30% EtOAc/hexanes; Ryof 1g = 0.53, and Rof 3m
= 0.34; UV, lamp). Chromatography (12% EtOAc/hexanes)
afforded pyrrolidine 3m as a yellow solid (0.045 g, 67%, dr >20:1):
'"H NMR (500 MHz, CDCl;) § 10.70 (s, 1H), 7.95 (d, ] = 6.6 Hz,
2H), 7.61 (d, ] = 7.2 Hz, 2H), 7.47—7.41 (m, 4H), 7.37 (t, ] = 7.9 Hz,
2H), 5.92 (s, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 3.40 (q, ] = 7.3 Hy,
1H), 2.39-2.32 (m, 1H), 2.05—1.98 (m, 1H), 1.38 (d, ] = 7.3 Hz,
3H), 0.90 (t, ] = 7.5 Hz, 3H); C{'H} NMR (125 MHz, CDCL,) §
202.5, 189.7, 168.6, 168.4, 168.2, 139.8, 139.6, 131.4, 131.1, 128.3
(2C), 128.1, 127.3, 87.2, 79.8, 66.2, 53.5, $3.3, 48.6, 29.3, 14.6, 9.8; IR
(thin film) 2969, 1738, 1660, 1614, 1580, 1533, 1445, 1365, 1323,
1304 cm™'; HRMS (ESI) m/z caled for CpgH,sNOg (M + H)*
450.1917, found 450.1915; mp 96—102 °C.

Pyrrolidine-2-ylidene 3n was prepared by general procedure C using
NH-isoxazoline 1h'" (0.9 mL, 0.093 M in CH,Cl,, 0.084 mmol, 1.00
equiv), 10 mol % Sc(OTf); (0.007 g 0.015 mmol, 0.10 equiv), and
allene 2a'* (0.9 mL, 0.131 M in CH,Cl,, 0.118 mmol, 1.40 equiv).
The reaction mixture was stirred at 25 °C and monitored by TLC for
18 h (TLC eluent, 30% EtOAc/hexanes; Ry of 1h = 0.53, and R; of 3n
= 0.18; UV, lamp). Chromatography (20% EtOAc/hexanes)
afforded pyrrolidine 3n as a yellow solid (0.020 g, 60%, dr >20:1):
'H NMR (500 MHz, CDCl,) & 10.64 (s, 1H), 7.88 (d, J = 7.7 Hz,
2H), 7.45—7.38 (m, 3H), 5.74 (s, 1H), 3.82 (s, 3H), 3.77 (s, 3H),
334 (g, J = 7.3 Hz, 1H), 2.67-2.63 (m, 1H), 2.40—2.34 (m, 1H),
2.25-2.18 (m, 1H), 1.99—1.94 (m, 3H), 1.90—1.77 (m, 2H), 1.33 (d,
J = 7.3 Hz, 3H); “C{'H} NMR (125 MHz, CDCl,) § 208.7, 189.5,
168.6, 168.4, 167.6, 140.0, 130.9, 128.2, 127.3, 87.1, 79.5, 61.0, 53.4,
53.1, 49.1, 42.6, 33.4, 23.3, 21.9, 14.6; IR (thin film) 2969, 2948,
1738, 1614, 1579, 1531, 1446, 1365, 1228, 1217 cm™'; HRMS (ESI)
m/z caled for C,,H,sNOg (M + H)* 400.1760, found 400.1747; mp
146—151 °C.

Pyrrolidine-2-ylidene 30 was prepared by general procedure C using
NH-isoxazoline 1i'' (2.0 mL, 0.098 M in CH,Cl,, 0.195 mmol, 1.00
equiv), 10 mol % Sc(OTf); (0.010 g, 0.020 mmol, 0.10 equiv), and
allene 2a'* (4.0 mL, 0.110 M in CH,Cl,, 0.439 mmol, 2.25 equiv).
The reaction mixture was stirred at 25 °C and monitored by TLC for
18 h (TLC eluent, 30% EtOAc/hexanes; Ry of 1i = 0.50, and Ry of 30
= 0.24; UV, lamp). Chromatography (20% EtOAc/hexanes)
afforded pyrrolidine 30 as an orange solid (0.054 g 47%, dr
>20:1): 'H NMR (500 MHz, CDCl,) 6 10.50 (s, 1H), 7.90 (d, ] = 7.5
Hz, 2H), 7.44—7.38 (m, 3H), 5.83 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H),
3.16 (q, J = 7.3 Hz, 1H), 2.04 (s, 3H), 1.44 (s, 3H), 1.09 (d, ] = 7.3
Hz, 3H); BC{'"H} NMR (125 MHz, CDCl;) § 206.0, 189.7, 168.5,
167.8, 167.2, 139.6, 131.2, 128.3, 127.3, 87.6, 78.6, 60.7, 53.5, 534,
473,293, 17.9, 10.5; IR (thin film) 2949, 1757, 1731, 1702, 1613,
1578, 1520, 1438, 1378, 1355 cm™'; HRMS (ESI) m/z caled for
CyoH,uNOg (M + H)* 374.1604, found 374.1590; mp 133—138 °C.

General Procedure D for the Synthesis of Fused
Pyrrolidines 5 from 3. A 20 mL scintillation vial was charged
with pyrrolidine 3 (0.700 mmol, 1.00 equiv), DBU (0.910 mmol, 1.30
equiv), and 10 mL of THF to form a 0.07 M solution of 3. The
reaction mixture was stirred at 25 °C for ~1 h and monitored by TLC
using a UV, lamp. Once pyrrolidine 3 was completely consumed,
the mixture was concentrated and the resulting crude residue was wet-
loaded onto silica gel using CH,Cl, and purified by medium-pressure
chromatography (5—15% EtOAc/hexanes) to afford fused pyrroli-
dines S.

Fused Pyrrolidine Sa was prepared by general procedure D using
pyrrolidine 3a (0.743 mmol, 1.00 equiv), DBU (0.966 mmol, 1.30
equiv), and THF (10.0 mL). The reaction mixture was stirred at 25

°C and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/
hexanes; Ry of 3a = 0.32, and R; of Sa = 0.63; UV, lamp).
Chromatography (5% EtOAc/hexanes) afforded fused pyrrolidine Sa
as a white solid (0.241 g, 77%, dr >20:1). A single crystal suitable for
X-ray crystallographic analysis was obtained by recrystallization of this
solid in CHCly (1.0 mL) with heptane (10 mL) by diffusion at —10
°C. CCDC deposition number 2370375:'° 'H NMR (500 MHz,
CDCl,) 6 10.61 (s, 1H), 7.96 (d, ] = 6.4 Hz, 2H), 7.51-7.42 (m,
6H), 7.40—7.37 (m, 4H), 7.32—7.31 (m, 3H), 6.06 (s, 1H), 5.17 (d, ]
= 3.5 Hz, 1H), 2.89 (d, J = 3.5 Hz, 1H), 2.36 (s, 3H), 1.67 (s, 3H);
BC{'H} NMR (125 MHz, CDCl;) § 204.1, 189.5, 172.1, 169.0,
142.6, 140.0, 139.8, 131.2, 130.8, 129.4, 129.2, 128.4 (2C), 128.3,
128.0, 127.2, 125.5, 86.9, 63.9, 63.1, 58.1, 23.4, 14.3; IR (thin film)
2968, 1739, 1707, 1624, 1596, 1579, 1538, 1491, 1479, 1456 cm™;
HRMS (ESI) m/z caled for C,oH,sNO, (M + H)* 420.1964, found
420.1964; mp 202—20S °C.

Fused Pyrrolidine Sb was prepared by general procedure D using
pyrrolidine 3b (0.575 mmol, 1.00 equiv), DBU (0.748 mmol, 1.30
equiv), and THF (8.0 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Ry
of 3b = 0.53, and R; of 5b = 0.60; UV, lamp). Chromatography
(10% EtOAc/hexanes) afforded fused pyrrolidine Sb as a yellow solid
(0.152 g, 66%, dr >20:1): '"H NMR (500 MHz, CDCLy) § 10.14 (s,
1H), 7.44—7.41 (m, 2H), 7.39—-7.34 (m, SH), 7.30—7.29 (m, 3H),
5.53 (s, 1H), 5.04 (d, J = 3.67 Hz, 1H), 2.83 (d, J = 3.7 Hz, 1H), 2.28
(s, 3H), 1.59 (s, 3H), 1.23 (s, 9H); “C{'H} NMR (125 MHz,
CDCLy) 5 205.4, 204.3, 172.3, 167.7, 142.8, 139.5, 130.8, 129.4, 129.1,
1284, 128.3, 127.9, 125.5, 85.6, 63.6, 63.0, 57.9, 41.9, 27.9, 23.5, 14.2;
IR (thin film) 2969, 1738, 1704, 1621, 1538, 1482, 1453, 1376, 1269,
1217 cm™'; HRMS (ESI) m/z caled for C,,H;NO, (M + H)*
400.2277, found 400.2272; mp 62—68 °C.

Fused Pyrrolidine Sc was prepared by general procedure D using
pyrrolidine 3f (0.629 mmol, 1.00 equiv), DBU (0.817 mmol, 1.30
equiv), and THF (9.0 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; R;
of 3f = 0.31, and R;of S¢ = 0.47; UV, lamp). Chromatography (10%
EtOAc/hexanes) afforded fused pyrrolidine Sc as a white solid (0.225
g, 80%, dr >20:1): "H NMR (500 MHz, CDCl;) § 10.56 (s, 1H), 7.94
(d, J = 8.1 Hz, 2H), 7.51-7.42 (m, 5H), 7.38—7.35 (m, 1H), 7.31—
7.29 (m, 4H), 6.92 (d, ] = 8.8 Hz, 2H), 6.04 (s, 1H), 5.11 (d, ] = 3.5
Hz, 1H), 3.81 (s, 3H), 2.86 (d, J = 3.5 Hz, 1H), 2.35 (s, 3H), 1.68 (s,
3H); BC{'H} NMR (125 MHz, CDCl;) § 204.2, 189.4, 172.1, 168.8,
159.4, 140.0, 139.8, 134.6, 131.1, 130.8, 129.4, 128.4 (2C), 128.3,
1272, 126.8, 114.5, 86.8, 63.6, 63.3, 58.2, 55.4, 23.5, 14.3; IR (thin
film) 3015, 2969, 1765, 1606, 1576, 1527, 1510, 1477, 1441, 1375
cm™!; HRMS (ESI) m/z caled for C;0H,sNO, (M + H)* 450.2069,
found 450.2075; mp 107—112 °C.

Fused Pyrrolidine Sd was prepared by general procedure D using
pyrrolidine 3i (0.470 mmol, 1.00 equiv), DBU (0.611 mmol, 1.30
equiv), and THF (6.5 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Ry
of 3i = 0.39, and Ry of 5d = 0.59; UV, lamp). Chromatography (15%
EtOAc/hexanes) afforded fused pyrrolidine 5d as a yellow solid
(0.205 g, 93%, dr >20:1): '"H NMR (500 MHz, CDCL,) § 10.78 (s,
1H), 7.82—7.80 (m, 2H), 7.75 (s, 1H), 7.45—7.39 (m, 10H), 7.34—
7.31 (m, 1H), 7.28—=7.26 (m, 2H), 6.45—6.44 (m, 1H), 6.34 (s, 1H),
6.27—6.26 (m, 1H), 5.31—5.30 (m, 1H), 2.99—2.99 (m, 1H), 1.97 (s,
3H); BC{'H} NMR (125 MHz, CDCl;) § 203.5, 189.8, 169.8, 157.5,
149.4, 144.4, 142.7, 140.1, 137.7, 131.9, 131.0, 129.1, 129.0 (2C),
1287, 128.3, 127.9, 127.2, 125.5, 1182, 112.9, 87.6, 64.3, 63.5, 57.8,
25.2; IR (thin film) 3143, 1738, 1689, 1609, 1574, 1525, 1498, 1463,
1343, 1307 cm™'; HRMS (ESI) m/z caled for C;,H,(NO; (M + H)*
472.1913, found 472.1908; mp 199—-202 °C.

Fused Pyrrolidine Se was prepared by general procedure D using
pyrrolidine 3j (0.132 mmol, 1.00 equiv), DBU (0.174 mmol, 1.32
equiv), and THF (2.0 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Ry
of 3j = 0.56, and R, of Se = 0.72; UV, lamp). Chromatography (6%
EtOAc/hexanes) afforded fused pyrrolidine Se as a yellow solid
(0.053 g, 89%, dr >20:1): 'H NMR (500 MHz, CDCl,) § 10.25 (s,
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1H), 7.66 (s, 1H), 7.43—7.38 (m, 7H), 7.31-7.29 (m, 1H), 7.26—
724 (m, 2H), 6.40—6.39 (m, 1H), 622621 (m, 1H), 5.72 (s, 1H),
5.18 (d, ] = 3.0 Hz, 1H), 2.93 (d, J = 2.9 Hz, 1H), 1.92 (s, 3H), 1.09
(s, 9H); BC{'H} NMR (125 MHz, CDCl;) § 205.8, 203.7, 168.4,
157.9, 149.4, 144.2, 142.9, 137.6, 131.9, 129.1, 129.0, 128.9, 128.6,
127.8, 125.5, 117.8, 112.6, 86.4, 64.1, 634, 57.7, 41.9, 27.8, 25.4; IR
(thin film) 2963, 1697, 1621, 1586, 1537, 1465, 1339, 1223, 1160,
1122 cm™'; HRMS (ESI) m/z caled for C;)H;0NO; (M + H)*
452.2226, found 452.2234; mp 65—70 °C.

Deacylation of 3a and Synthesis of 8a. A 20 mL scintillation
vial was charged with sodium metal (0.0250 g 1.09 mmol) and
purged with N,.** The vial was cooled to 0 °C with an ice bath, and
MeOH (6.0 mL) was added slowly. After being stirred for 15 min, the
reaction mixture was allowed to warm to ambient temperature. A
second scintillation vial was charged with pyrrolidine 3a (0.178 g,
0.407 mmol, 1.00 equiv) and MeOH (3.0 mL), and the mixture
added in one portion to the freshly prepared NaOMe solution. The
reaction mixture was then stirred for 2 h, and the reaction quenched
with aqueous NH,CI (10 mL). The mixture was diluted with EtOAc
(~75 mL), washed with water (2 X 20 mL) and brine (2 X 20 mL),
dried over anhydrous Na,SO,, and concentrated under vacuum. The
resulting crude residue was then wet-loaded onto silica gel using (0.5
mL) CH,Cl, and purified by medium-pressure chromatography (10%
EtOAc/hexanes), to afford deacylated pyrrolidine 8a as an orange
solid (0.138 g, 86%, dr >20:1): "H NMR (500 MHz, CDCl;) § 10.26
(s, 1H), 7.90—7.88 (m, 2H), 7.46—7.38 (m, 6H), 7.31—7.30 (m, 2H),
7.27=7.23 (m, 3H), 6.93—6.91 (m, 2H), 5.79 (s, 1H), 4.94 (d, ] = 8.8
Hz, 1H), 3.61 (d, ] = 15.2 Hz, 1H), 3.46 (d, ] = 15.1 Hz, 1H), 3.41—
3.36 (m, 1H), 3.07 (t, ] = 8.9 Hz, 1H), 1.17 (d, ] = 6.97 Hz, 3H);
BC{'H} NMR (125 MHz, CDCl;) § 206.2, 189.3, 169.6, 140.1,
139.8, 132.3, 1309, 129.5, 129.2, 128.8 (2C), 1282, 127.4, 127.1,
126.6, 85.6, 66.1, 64.5, 51.7, 43.1, 16.6; IR (thin film) 3260, 1719,
1607, 1577, 1525, 1498, 1481, 1453, 1394, 1366 cm™'; HRMS (ESI)
m/z caled for C,H,,NO, (M + H)* 396.1964, found 396.1971; mp
113—116 °C.

Reduction of Pyrrolidine 8a and Synthesis of 9a.°° A 20 mL
scintillation vial was charged with deacylated pyrrolidine 8a (0.130
mmol, 1.00 equiv), NaBH;CN (0.510 mmol, 3.92 equiv), and S mL of
MeCN to form a 0.026 M solution. A solution of HCI in MeOH (2.00
mL, 1.00 M) was added dropwise to the mixture, and the mixture
allowed to stir at 25 °C for ~16 h and monitored by TLC (TLC
eluent, 25% acetone/pentane; R; of 8a = 0.56, and R; of 9a = 0.18;
UV, lamp). Once 8a was fully consumed, the reaction was quenched
with saturated NaHCO; (~10 mL) and the mixture extracted with
EtOAc (3 X 25 mL). The combined organic layers were washed with
brine (~25 mL), dried over anhydrous Na,SO,, and concentrated
under vacuum. The resulting crude residue was wet-loaded onto silica
gel using CH,Cl, (0.5-1.0 mL) and purified by medium-pressure
chromatography (10—15% acetone/pentane) to afford reduced
pyrrolidine 9a as a yellow oil (0.040 g, 77%, dr 2:1): 'H NMR
(500 MHz, CDCl;, major diastereomer) § 7.96—7.95 (m, 2H), 7.57—
7.54 (m, 1H), 7.47-7.44 (m, 2H), 7.36—7.28 (m, SH), 7.26—7.20
(m, 3H), 6.95-6.93 (m, 2H), 4.36 (d, ] = 8.7 Hz, 1H), 3.69 (td, ] =
8.8, 3.2 Hz, 1H), 3.52 (d, ] = 15.2 Hz, 1H), 3.41 (d, ] = 15.2 Hz, 1H),
327 (dd, J = 17.1, 3.2 Hz, 1H), 3.18—3.13 (m, 1H), 2.99 (t, ] = 8.7
Hz, 1H), 2.55 (bs, 1H), 2.38—2.31 (m, 1H), 0.98 (t, ] = 6.6 Hz, 3H);
BC{'H} NMR (125 MHz, CDCl;, major diastereomer) & 208.3,
199.6, 143.4, 137.0, 133.2, 133.1, 129.6, 128.9, 128.6 (2C), 128.1,
127.8, 127.0, 126.6, 67.1, 65.9, 61.4, S1.5, 44.1, 44.0, 16.5; 'H NMR
(500 MHz, CDCl,, minor diastereomer) § 7.97—7.96 (m, 2H), 7.58—
7.55 (m, 1H), 7.48—7.45 (m, 2H), 7.35-7.28 (m, 5H), 7.25—7.21
(m, 3H), 7.00—6.98 (m, 2H), 4.38 (d, J = 8.4 Hz, 1H), 3.92—3.88 (m,
1H), 3.55 (d, J = 15.3 Hz, 1H), 3.47 (d, ] = 15.5 Hz, 1H), 3.16—3.14
(m, 2H), 2.80—2.77 (m, 1H), 2.64—2.59 (m, 1H), 2.48 (bs, 1H), 0.98
(d, ] = 7.1 Hz, 3H); BC{'H} NMR (125 MHz, CDCl;, minor
diastereomer) & 208.4, 199.4, 142.8, 137.1, 133.4, 1332, 129.6, 128.6
(2C), 128.6, 128.0, 127.5, 127.0, 126.6, 66.5, 65.1, 56.2, S1.1, 41.0,
39.4, 16.4; IR (thin film) 2956, 1705, 1681, 1597, 1580, 1531, 1494,
1449, 1404, 1378 cm™"; HRMS (ESI) m/z caled for C,,H,eNO, (M +
H)* 398.2120, found 398.2123.

Synthesis of 10a from 8a. Pyrrolidine 10a was made from 8a
using an adapted literature procedure.”’ In an inert atmosphere
glovebox, a 5 mL conical vial was charged with [RhCp*Cl,], (0.003 g,
0.005 mmol, 11 mol %), AgOAc (0.001 g, 0.006 mmol, 13 mol %),
Cu(OAc), (0.017 g, 0.094 mmol, 2 equiv), KOAc (0.009 g, 0.092
mmol, 2 equiv), and pyrrolidine 8a (0.018 g, 0.046 mmol, 1 equiv).
The vial was then removed from the glovebox and flushed onto a N,
manifold with a needle. A solution of methyl acrylate (0.008 g, 0.093
mmol, 2 equiv) in MeOH (2 mL) was added to the solids in one
portion. The reaction vial was then capped with a Teflon-lined cap
and heated in an oil bath at 90 °C for 16 h. The product mixture was
concentrated under vacuum, wet-loaded onto silica gel using CH,Cl,
(0.5-1.0 mL), and purified by medium-pressure chromatography
(15% EtOAc/hexanes) to afford 10a as a brown solid (0.012 g, 56%,
dr >20:1): '"H NMR (500 MHz, CDCl,) 6 7.70—7.69 (m, 2H), 7.68—
7.66 (m, 1H), 7.60—7.57 (m, 1H), 7.52—7.49 (m, 2H), 7.38—7.35
(m, 2H), 7.31-7.28 (m, 3H), 7.24—7.23 (m, 3H), 6.89—6.87 (m,
2H), 6.43 (d, ] = 9.5 Hz, 1H), 6.02 (s, 1H), 4.23 (q, ] = 7.2 Hz, 1H),
3.90 (s, 2H), 3.18 (s, 1H), 1.21 (d, J = 7.3 Hz, 3H); *C{'H} NMR
(125 MHz, CDCl,) & 205.3, 193.4, 160.6, 160.5, 142.4, 139.4, 138.5,
132.7, 1323, 129.6, 129.2, 129.1, 129.0, 128.6, 127.8, 127.6, 125.0,
117.2, 112.3, 65.2, 60.7, 49.0, 42.6, 20.6; IR (thin film) 2922, 1713,
1675, 1638, 1598, 1528, 1495, 1453, 1413, 1318 cm™; HRMS (ESI)
m/z caled for C3)H,sNO; (M + H)* 448.1918, found 448.1913; mp
47-50 °C.

Reduction of Fused Pyrrolidine 5a to 11a.>°* A 20 mL
scintillation vial was charged with fused pyrrolidine Sa (0.102 mmol,
1.00 equiv), NaBH;CN (0.510 mmol, 5.00 equiv), and 2 mL of
MeCN to form a 0.05 M solution. A solution of HCI in MeOH (2.00
mL, 1.00 M) was added dropwise, and the reaction mixture was
allowed to stir at 25 °C for ~16 h and monitored by TLC (TLC
eluent, 30% EtOAc/hexanes; Ry of Sa = 0.63, and Ry of 11a = 0.59;
UV, lamp). A second portion of NaBH;CN (0.150 mmol, 1.50
equiv) was added at 16 h, and the reaction mixture was allowed to stir
for an additional 6 h. Once fused pyrrolidine Sa was fully consumed,
the reaction was quenched with saturated NaHCO; (~10 mL) and
the mixture extracted with EtOAc (3 X 25 mL). The combined
organic layers were washed with brine (~25 mL), dried over
anhydrous Na,SO,, and concentrated under vacuum. The resulting
crude residue was wet-loaded onto silica gel using CH,Cl, (0.5—1.0
mL) and purified by medium-pressure chromatography (6% EtOAc/
hexanes) to afford 11a as a beige solid (0.034 g, 78%, dr >20:1): 'H
NMR (500 MHz, CDCl,) § 8.03—8.02 (m, 2H), 7.63—7.58 (m, 3H),
7.52—7.49 (m, 2H), 7.44—7.41 (m, 2H), 7.35—7.31 (m, SH), 7.26—
723 (m, 1H), 426 (d, J = 7.4 Hz, 1H), 3.66 (d, J = 2.7 Hz, 1H),
3.44-3.33 (m, 2H), 2.66 (d, ] = 7.4 Hz, 1H), 2.14 (s, 3H), 1.51 (s,
3H); BC{'"H} NMR (125 MHz, CDCl,) § 205.5, 199.0, 173.7, 143.1,
138.3, 136.9, 133.6, 1314, 129.4, 128.8, 128.4, 128.3, 128.1, 127.8,
1272, 127.0, 66.6, 62.2, 60.2, 54.6, 41.5, 19.8, 14.3; IR (thin film)
2919, 1738, 1696, 1678, 1631, 1597, 1579, 1491, 1446, 1401 cm™;
HRMS (ESI) m/z caled for C,oH,sNO, (M + H)* 422.2120, found
422.2111; mp 109—112 °C.
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