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ABSTRACT: A diastereoselective addition and rearrangement reaction
has been developed for the synthesis of pyrrolidine-2-ylidenes from NH-
isoxazolines and electron-deficient allenes. This method proceeds via the
rearrangement of a proposed N-alkenylisoxazoline intermediate to generate
densely functionalized pyrrolidine-2-ylidenes under simple catalyst-free
conditions that tolerate ketone substituents and install relative stereo-
chemistry at positions 3 and 4 of the heterocycle. Reaction optimization
and the substrate scope are described in addition to studies evaluating the
reactivity of the gem-dione and enaminone groups of the products.

Pyrrolidine-2-ylidenes are N-heterocycles found in bio-
logically active natural products such as plakoridine A,

carzinophilin, azinomycin A, and batzelladine (Scheme 1A).1−3

The enaminone functional group embedded in these molecules
has also been used as an intermediate in the synthesis of other

pyrrolidine targets.4,5 The most common method used for the
synthesis of pyrrolidine-2-ylidenes is the olefination of lactams
or thiolactams.1a,6 Additional synthetic approaches to these
molecules include using intermolecular cycloaddition of
enediones with imines, intramolecular cycloaddition of azides
with Michael acceptors, titanium-catalyzed cyclization of
ynamines in the presence of acyl cynanides, and ring opening
of isoxazoles and isoxazolines (Scheme 1B).7−10 While these
methods have proven to be eRective for pyrrolidine-2-ylidene
synthesis, olefination reactions limit compatibility with ketone
and aldehyde substituents, and installing stereocenters at
positions 3 and 4 of these heterocycles is usually dependent on
the synthesis of precursors. Recently, we reported that gold-
catalyzed N-alkenylation of isoxazolines with ynamides
generates N-alkenylisoxazoline intermediates that undergo
[3,3]-sigmatropic rearrangement to give 2-aminopyrrolines
(Scheme 1C).11 We wondered if the nucleophilic reactivity of
NH-isoxazolines could also be applied to allenones for the
preparation of pyrrolidine-2-ylidenes 3 under mild conditions
that would accommodate ketone substituents and install
relative stereochemistry. While conjugate additions of NH-
isoxazolines appear to be straightforward, limited methods for
the preparation of NH-isoxazolines have inhibited studies of
their reactivity and potential to engage in cascade reac-
tions.11,13 Herein, we describe the synthesis of pyrrolidine-2-
ylidenes 3 from NH-isoxazolines 1 and allenes 2 via conjugate
addition and rearrangement under simple catalyst-free
conditions or with the addition of a Lewis acid (Scheme
1D).12 This reaction gives highly functionalized pyrrolidine-2-
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Scheme 1. Pyrrolidine-2-ylidene Targets and Synthesis
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ylidenes with up to three contiguous stereocenters and expands
the synthetic utility of NH-isoxazolines as modular precursors
to diastereoselective rearrangements for stereoselective hetero-
cycle formation. The scope of this method and investigation of
the novel reactivity of 3 are described below.
The addition of NH-isoxazolines to allenones to generate N-

alkenylisoxazolines and synthesize pyrrolidines was initially
investigated with 1a and 2a (Table 1). NH-Isoxazoline 1a was

prepared as reported by Zhang and co-workers.13 As described
in our previous work, the addition of N-hydroxyenamines to
allenoates can be achieved in the presence of a mild base to
initiate a sigmatropic rearrangement.14 When a mixture of
isoxazoline 1a and allene 2a in CH2Cl2 was treated with either
K2CO3 or quinoline, the desired addition and rearrangement
product 3a was observed in good yield (Table 1, entries 1 and
2). Surprisingly, removal of the base additive led to a small
increase in yield for 3, and optimal conditions for the synthesis
of 3a were determined to be simply a 2:3 mixture of 1a and 2a
in CH2Cl2 (Table 1, entry 9). The reaction was shown to be
tolerant of other solvents and diRerent concentrations but
worked best as a 0.05 M solution (Table 1 entries 4−9). In
analogy to our previous work,11,15 we propose N-alkenylisox-
azoline 4a (or related tautomers) as the intermediate in this
process that can undergo rearrangement through a boat
transition state to form pyrrolidine 3a with the illustrated
relative stereochemistry.
With optimal conditions in hand, the scope of the reaction

was investigated by varying the substituents on the allene and
the NH-isoxazoline. As shown in Scheme 2, allenes with alkyl
and aryl ketone functional groups smoothly underwent
conversion to 3a−3c with NH-isoxazoline 1a. A somewhat
attenuated yield was observed for 3c presumably due to the
lower electrophilicity of 2c. Branched alkyl groups were also
tolerated on the allenone, as shown for 3d. To interrogate the
eRect of substituents on the NH-isoxazoline, the procedure by
Zhang and co-workers13 was expanded to prepare NH-
isoxazolines 1b−1f. NH-Isoxazolines with aryl and heteroaryl
groups adjacent to the N atom were tolerated to give 3e−3h.
When the acyl group of 1a was changed to a furanyl

substituent, pyrrolidines 3i and 3j were prepared in good
yields. More significant changes to the structure of the
substrates required additional changes in the reaction
conditions. For example, allenoate 2e gave 3k in only 42%
yield and dr 10:1 under the optimal conditions shown in Table
1 but gave 3k in 75% yield with dr >20:1 when treated with 1a
in MeOH and H2O. These protic conditions were also tested
for a mixture of 1a and 2a but shown to be inferior to the
optimized conditions determined in Table 1. The structure and
relative stereochemistry of 3 were confirmed with an X-ray
crystal structure of 3l.16 NH-Isoxazolines 1g−1i were prepared
from the corresponding azetidine nitrones11 but did not form
the corresponding pyrrolidines under standard conditions. In
contrast, when 1g−1i were treated with allene 2a in the
presence of catalytic Sc(OTf)3, pyrrolidines 3m−3o, respec-
tively, were formed in moderate yields. With several examples
of pyrrolidine-2-ylidenes 3 in hand, the reactivity of these
compounds was evaluated.
Investigations into the reactivity of pyrrolidine-2-ylidenes 3

focused on interrogating the eRect of the carbonyl function-
alities decorating these molecules. Initial attempts to reduce
the enaminone with hydride reagents and hydrogenation were

Table 1. Optimization of the Synthesis of Pyrrolidine-2-
ylidenes from Isoxazoline 1a and Allene 2aa

entry additive solvent [1a] (M) yieldb (%)
1 K2CO3 CH2Cl2 0.1 80
2 quinoline CH2Cl2 0.1 86
3 − CH2Cl2 0.1 89
4 − MeOH 0.1 76
5 − THF 0.1 69
6 − EtOAc 0.1 78
7 − acetone 0.1 51
8c − CH2Cl2 0.05 85
9c,d − CH2Cl2 0.05 90

aConditions: 1a (1 equiv), 2a (2 equiv), additive (2 equiv), 25 °C, 1
h. bDetermined by 1H NMR spectroscopy. CH2Br2 used as an
internal standard. cFor 3 h. dWith 1.5 equiv of 2a.

Scheme 2. Scope of the Synthesis of Pyrrolidine-2-ylidenes
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met with a lack of reactivity or formation of alternative product
mixtures (Scheme 3A). Further analysis showed that treatment

of 3a with a base leads to the formation of 5a as a single
diastereomer. The relative stereochemistry of 5a was
confirmed by X-ray crystal structure analysis.16 While a variety
of bases such as NaH and KOt-Bu were shown to trigger this
reactivity, DBU was determined to be optimal for the synthesis
of 5a from 3a. This reaction was general for several
pyrrolidine-2-ylidenes 3 as illustrated by successful formation
of 5b−5e, but no reaction was observed for 3m−3o, which do
not have gem-dione functionalities (Scheme 3B). A proposed
mechanism for this reaction is shown in Scheme 3C. Either an
intramolecular or a DBU-facilitated acyl migration could form
intermediate 6a,17 which could be converted into 5a via
enolization at the benzyl ketone followed by addition to the
adjacent acyl group and elimination of H2O. No crossover
products were observed when a mixture of 3b and 3i was
subjected to reaction conditions supporting the absence of
solvent-separated fragments during the acyl transfer. Inde-
pendent synthesis of a diastereomeric mixture of 7 via dipolar
cycloaddition18 followed by treatment with DBU also did not
form the analogous fused pyrrolidine, suggesting that the
enaminone functionality of 3 is required for the initial acyl
transfer (Scheme 3D). These studies identified the gem-dione
of 3 to be activated by the vinylogous amide toward
preferential rearrangement to fused pyrrolidines 5.
Having discovered that the gem-dione functionality domi-

nates the reactivity of 3 under basic conditions, we next
considered the reactivity of 3 after removal of the acyl group.
As shown in Scheme 4A, deacylation of 3a with NaOMe gave
8a in good yield and high diastereoselectivity.19 This
compound smoothly underwent sodium cyanoborohydride
reduction to give 9a in good yield, albeit with low
diastereoselectivity.20 Cyclization of 8a with acrylate gave
10a in moderate yield and high diastereoselectivity following a

procedure reported by Tian, Loh, and co-workers.21 Further
following the trend that the vinylogous amide of 3 reacts as
expected in the absence of the gem-dione, we also showed that
fused pyrrolidine 5a smoothly underwent reduction to 11a
with NaBCNH3 (Scheme 4B).20 Taken together, these
investigations demonstrate the synthetic utility of 3 and how
the gem-dione of 3a−3l can be used as a reactivity-controlling
element.
In summary, we have discovered a conjugate addition and

[3,3]-sigmatropic rearrangement reaction to form pyrrolidine-
2-ylidenes from NH-isoxazolines and allenes. This diaster-
eoselective transformation occurs under mild catalyst-free
conditions and provides access to pyrrolidine-2-ylidenes that
are challenging to achieve by other methods. Further studies
have also identified an unusual reactivity pattern of these
compounds, in which a gem-dione preferentially undergoes acyl
migration and cyclization under basic conditions. Removal of
one of the ketones then allows for the use of known reduction
and cyclization conditions of enaminones to functionalize the
heterocycle. This work expands the chemical space of
accessible pyrrolidine-2-ylidenes and showcases the versatility
of NH-isoxazoline conjugate addition reactions to initiate
cascade reactions for the stereoselective synthesis of diRerent
types of pyrrolines.

P EXPERIMENTAL SECTION
General Considerations. 1H and 13C nuclear magnetic resonance

(NMR) spectra were recorded by using a Bruker AV 500 MHz
spectrometer at ambient temperature. The data are reported as
follows: chemical shift in parts per million from internal
tetramethylsilane on the δ scale, multiplicity (br, broad; s, singlet;
d, doublet; t, triplet; q, quartet; m, multiplet), coupling constants
(hertz), and integration. Infrared (IR) spectra were recorded at
ambient temperature using a Thermo Scientific Nicolet iS5 FT-IR
spectrometer with an iD5 ATR sampler. High-resolution mass spectra
were acquired on an LTQ hybride ion trap Fourier transform
spectrometer using electrospray to ionize the sample and were
obtained by peak matching. Melting points are reported uncorrected.
Analytical thin layer chromatography (TLC) was performed on 0.25
mm extra hard silica gel plates with a UV254 fluorescent indicator.
Medium-pressure liquid chromatography was performed using the
force flow of the indicated solvent system down columns packed with
60 Å (40−60 μm) of mesh silica gel (SiO2). All reagents and solvents
were obtained from commercial sources and, where appropriate,
purified prior to use. CH2Cl2, toluene, and tetrahydrofuran (THF)
were dried by filtration through alumina according to the procedure of
Grubbs.22 MeOH was dried by filtration through a column loaded

Scheme 3. Conversion of 3 into Fused Pyrrolidines 5

Scheme 4. Reactivity of Deacylated Pyrrolidine-2-ylidenes
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with activated 4 Å molecular sieves. NH-Isoxazolines 1a−1f were
prepared following a procedure reported by Zhang and co-
workers.12,11 NH-Isoxazolines 1g−1i were prepared following a
procedure reported by our group.11 Allenes 2 were prepared following
procedures previously reported by our group and others.14,23
General Procedure for Table 1. A 5 mL glass vial was charged

with a 0.100 M solution of isoxazoline 1a13 in the given solvent, mixed
with a 0.150 M solution of allene 2a14 in the same solvent, and treated
with an additive to form a reaction mixture. The vial was then sealed
with a Teflon-sealed screw cap, and the mixture was allowed to stir at
25 °C for the given amount of time. The reaction mixture was then
concentrated under vacuum and mixed with 1.0 equiv of 1,4-
dimethoxybenzene to act as an internal standard for crude yield
determination of pyrrolidine 3a by 1H NMR spectroscopy.
General Procedure A for the Synthesis of Pyrrolidine-2-

ylidenes 3. A 5 mL glass vial was charged with a solution of NH-
isoxazoline 1 in CH2Cl2 (1.50 mL, 0.100 M, 0.150 mmol, 1.00 equiv)
and treated with a solution of allene 2 in CH2Cl2 (1.50 mL, 0.150 M,
0.225 mmol, 1.50 equiv). The vial was then sealed with a Teflon screw
cap and allowed to stir at 25 °C for 2−23 h while the reaction was
monitored by TLC. Upon complete consumption of 1, the reaction
mixture was concentrated under vacuum, wet-loaded onto silica gel
using CH2Cl2 (∼0.5 mL), and purified by medium-pressure
chromatography (8−25% EtOAc/hexanes) to aRord pyrrolidine-2-
ylidenes 3a−3j.
General Procedure B for the Synthesis of Pyrrolidine-2-

ylidenes 3. A 20 mL scintillation vial was charged with NH-
isoxazoline 1 (1.0 equiv), 20% H2O in MeOH (0.01 M), and allene 2
(2.0 equiv) and sealed with a Teflon screw cap. After the mixture had
been stirred for 16 h at 25 °C, pyrrolidine-2-ylidenes 3k and 3l
precipitated from the reaction mixture and were collected by filtration.
The crude product was wet-loaded onto silica gel using CH2Cl2 (∼1
mL). Subsequent medium-pressure chromatography (12% EtOAc/
hexanes) aRorded pyrrolidine-2-ylidenes 3k and 3l.
General Procedure C for the Synthesis of Pyrrolidine-2-

ylidenes 3. A 5 mL glass vial was charged with Sc(OTf)3 (0.007 g,
0.0150 mmol, 10 mol %), diluted with a solution of NH-isoxazoline
111 in CH2Cl2 (1.50 mL, 0.100 M, 0.150 mmol, 1.00 equiv), and
treated with a solution of allene 214 in CH2Cl2 (1.50 mL, 0.150 M,
0.225 mmol, 1.50 equiv). The vial was then sealed with a Teflon screw
cap, and the mixture allowed to stir at 25 °C for 2−23 h while the
reaction was monitored by TLC. Upon complete consumption of 1,
the reaction mixture was concentrated under vacuum, wet-loaded
onto silica gel using CH2Cl2 (∼0.5 mL), and purified by medium-
pressure chromatography (8−25% EtOAc/hexanes) to aRord
pyrrolidine-2-ylidenes 3m−3o.
Pyrrolidine-2-ylidene 3a was prepared by general procedure A using

NH-isoxazoline 1a13 (1.50 mL, 0.100 M in CH2Cl2, 0.160 mmol, 1.00
equiv) and allene 2a14 (1.50 mL, 0.150 M in CH2Cl2, 0.218 mmol,
1.36 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 4 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29,
and Rf of 3a = 0.32; UV254 lamp). Chromatography (15% EtOAc/
hexanes) aRorded pyrrolidine 3a as a yellow solid (0.065 g, 93%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.48 (s, 1H), 7.93−7.92 (m,
2H), 7.55−7.53 (m, 2H), 7.48−7.42 (m, 3H), 7.40−7.35 (m, 3H),
7.17−7.15 (m, 3H), 6.65−6.63 (m, 2H), 5.90 (s, 1H), 5.80 (s, 1H),
3.32 (q, J = 6.9 Hz, 1H), 3.19 (d, J = 17.2 Hz, 1H), 2.77 (d, J = 17.2
Hz, 1H), 2.36 (s, 3H), 1.56 (d, J = 6.9 Hz, 3H); 13C{1H} NMR (125
MHz, CDCl3) δ 204.8, 201.1, 189.6, 167.9, 140.0, 135.9, 131.9, 131.0,
129.7, 129.0, 128.9, 128.3, 128.3, 127.9, 127.2, 127.0, 85.7, 78.2, 65.3,
49.0, 45.4, 30.2, 12.8; IR (thin film) 3305, 1694, 1614, 1576, 1520,
1453, 1360, 1291, 1259, 1243 cm−1; HRMS (ESI) m/z calcd for
C29H28NO3 (M + H)+ 438.2069, found 438.2062; mp 170−172 °C.
Pyrrolidine-2-ylidene 3a was prepared by general procedure B using

NH-isoxazoline 1a13 (9.75 mL, 0.020 M in CH2Cl2, 0.195 mmol, 1.00
equiv) and allene 2a14 (9.75 mL, 0.030 M in CH2Cl2, 0.303 mmol,
1.56 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 16 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29,
and Rf of 3a = 0.32; UV254 lamp). Chromatography (15% EtOAc/
hexanes) aRorded pyrrolidine 3a as a yellow solid (0.054 g, 64%, dr

>20:1). 1H and 13C{1H} NMR data matched the values presented
above.

Pyrrolidine-2-ylidene 3b was prepared by general procedure A using
NH-isoxazoline 1a13 (1.80 mL, 0.100 M in CH2Cl2, 0.184 mmol, 1.00
equiv) and allene 2b (1.80 mL, 0.120 M in CH2Cl2, 0.220 mmol, 1.20
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 23 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29, and
Rf of 3b = 0.53; UV254 lamp). Chromatography (12% EtOAc/
hexanes) aRorded pyrrolidine 3b as a yellow solid (0.058 g, 76%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.08 (s, 1H), 7.50−7.48 (m,
2H), 7.37−7.34 (m, 3H), 7.17−7.14 (m, 3H), 6.62−6.60 (m, 2H),
5.70 (s, 1H), 5.37 (s, 1H), 3.23 (q, J = 6.9 Hz, 1H), 3.18 (d, J = 17.3
Hz, 1H), 2.76 (d, J = 17.3 Hz, 1H), 2.35 (s, 3H), 1.48 (d, J = 6.9 Hz,
3H), 1.19 (s, 9H); 13C{1H} NMR (125 MHz, CDCl3) δ 205.6, 205.0,
201.4, 166.6, 136.0, 132.1, 129.7, 128.9, 128.7, 128.2, 127.8, 127.0,
84.4, 78.0, 65.0, 49.0, 45.3, 41.9, 30.2, 27.8, 12.8; IR (thin film) 3308,
1738, 1695, 1624, 1525, 1498, 1454, 1360, 1300, 1264 cm−1; HRMS
(ESI) m/z calcd for C27H32NO3 (M + H)+ 418.2382, found
418.2379; mp 114−116 °C.

Pyrrolidine-2-ylidene 3c was prepared by general procedure A using
NH-isoxazoline 1a13 (1.80 mL, 0.100 M in CH2Cl2, 0.188 mmol, 1.00
equiv) and allene 2c (1.80 mL, 0.150 M in CH2Cl2, 0.270 mmol, 1.44
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 5 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29, and
Rf of 3c = 0.21; UV254 lamp). Chromatography (20% EtOAc/
hexanes) aRorded pyrrolidine 3c as an orange solid (0.061 g, 69%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.41 (s, 1H), 7.92−7.91 (m,
2H), 7.54−7.52 (m, 2H), 7.38−7.36 (m, 3H), 7.16−7.15 (m, 3H),
6.94−6.92 (m, 2H), 6.64−6.63 (m, 2H), 5.86 (s, 1H), 5.78 (s, 1H),
3.85 (s, 3H), 3.31 (q, J = 7.2 Hz, 1H), 3.19 (d, J = 17.2 Hz, 1H), 2.79
(d, J = 17.2 Hz, 1H), 2.36 (s, 3H), 1.56 (d, J = 6.9 Hz, 3H); 13C{1H}
NMR (125 MHz, CDCl3) δ 204.9, 201.2, 188.7, 167.2, 162.0, 136.0,
132.7, 132.0, 129.7, 129.1, 129.0, 128.8, 128.2, 127.9, 127.0, 113.5,
85.2, 78.1, 65.1, 55.4, 48.9, 45.4, 30.2, 12.9; IR (thin film) 3305, 1693,
1613, 1600, 1573, 1522, 1490, 1454, 1290, 1243 cm−1; HRMS (ESI)
m/z calcd for C30H30NO4 (M + H)+ 468.2175, found 468.2175; mp
152−162 °C.

Pyrrolidine-2-ylidene 3d was prepared by general procedure A using
NH-isoxazoline 1a13 (1.80 mL, 0.100 M in CH2Cl2, 0.186 mmol, 1.00
equiv) and allene 2d (1.80 mL, 0.170 M in CH2Cl2, 0.300 mmol, 1.61
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 4 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29, and
Rf of 3d = 0.42; UV254 lamp). Chromatography (12% EtOAc/
hexanes) aRorded pyrrolidine 3d as an orange solid (0.062 g, 72%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.74 (s, 1H), 7.91−7.89 (m,
2H), 7.48−7.39 (m, 6H), 7.32−7.30 (m, 2H), 7.20−7.13 (m, 3H),
6.70−6.69 (m, 2H), 6.07 (s, 1H), 5.46 (s, 1H), 3.76 (d, J = 18.1 Hz,
1H), 3.54 (d, J = 6.9 Hz, 1H), 2.84 (d, J = 18.1 Hz, 1H), 2.56 (s, 3H),
2.42 (sextet, J = 6.8 Hz, 1H), 1.33 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 7.1
Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 205.8, 202.7, 189.5,
168.4, 140.1, 135.0, 133.2, 131.0, 129.9, 129.3, 129.1, 128.3, 128.1,
127.4, 127.2, 126.7, 87.0, 77.9, 67.9, 58.7, 50.2, 29.9, 27.3, 23.7, 22.7;
IR (thin film) 2959, 1738, 1708, 1610, 1578, 1521, 1453, 1366, 1263,
1231 cm−1; HRMS (ESI) m/z calcd for C31H32NO3 (M + H)+
466.2382, found 466.2379; mp 116−117 °C.

Pyrrolidine-2-ylidene 3e was prepared by general procedure A using
NH-isoxazoline 1b (1.45 mL, 0.100 M in CH2Cl2, 0.124 mmol, 1.00
equiv) and allene 2a14 (1.30 mL, 0.150 M in CH2Cl2, 0.196 mmol,
1.58 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 5 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1b = 0.26,
and Rf of 3e = 0.29; UV254 lamp). Chromatography (15% EtOAc/
hexanes) aRorded pyrrolidine 3e as a yellow solid (0.054 g, 95%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.43 (s, 1H), 7.92−7.91 (m,
2H), 7.54−7.51 (m, 2H), 7.47−7.42 (m, 3H), 7.19−7.18 (m, 3H),
7.05 (t, J = 8.6 Hz, 2H), 6.70−6.68 (m, 2H), 5.90 (s, 1H), 5.74 (s,
1H), 3.30 (q, J = 6.9 Hz, 1H), 3.16 (d, J = 16.9 Hz, 1H), 2.84 (d, J =
16.9 Hz, 1H), 2.31 (s, 3H), 1.57 (d, J = 6.9 Hz, 3H); 13C{1H} NMR
(125 MHz, CDCl3) δ 205.0, 200.8, 189.7 167.8, 162.9 (d, J = 248.4
Hz), 139.9, 131.6, 131.1, 129.9 (2C), 129.6, 128.4, 128.3, 127.2 (2C),
115.8 (d, J = 21.3 Hz), 85.8, 78.1, 64.8, 48.9, 45.2, 30.2, 13.0; IR (thin
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film) 3290, 1694, 1613, 1579, 1517, 1323, 1297, 1251, 1149, 1121
cm−1; HRMS (ESI) m/z calcd for C29H27FNO3 (M + H)+ 456.1975,
found 456.1970; mp 157−160 °C.
Pyrrolidine-2-ylidene 3e (1 mmol scale) was prepared by general

procedure A using NH-isoxazoline 1b (10.0 mL, 0.100 M in CH2Cl2,
1.00 mmol, 1.00 equiv) and allene 2a14 (10.0 mL, 0.125 M in CH2Cl2,
1.25 mmol, 1.25 equiv). The reaction mixture was stirred at 25 °C
and monitored by TLC for 12 h (TLC eluent, 30% EtOAc/hexanes;
Rf of 1b = 0.26, and Rf of 3e = 0.29; UV254 lamp). Chromatography
(15% EtOAc/hexanes) aRorded pyrrolidine 3e as a yellow solid
(0.405 g, 89%, dr >20:1). 1H and 13C{1H} NMR data matched the
values presented above.
Pyrrolidine-2-ylidene 3f was prepared by general procedure A using

NH-isoxazoline 1c11 (0.500 mL, 0.100 M in CH2Cl2, 0.062 mmol,
1.00 equiv) and allene 2a14 (0.500 mL, 0.230 M in CH2Cl2, 0.114
mmol, 1.84 equiv). The reaction mixture was stirred at 25 °C and
monitored by TLC for 6 h (TLC eluent, 30% EtOAc/hexanes; Rf of
1c = 0.20, and Rf of 3f = 0.31; UV254 lamp). Chromatography (17%
EtOAc/hexanes) aRorded pyrrolidine 3f as an orange solid (0.022 g,
75%, dr >20:1): 1H NMR (500 MHz, CDCl3) δ 10.39 (s, 1H), 7.93−
7.91 (m, 2H), 7.46−7.41 (m, 5H), 7.18−7.17 (m, 3H), 6.89−6.87
(m, 2H), 6.72−6.70 (m, 2H), 5.88 (s, 1H), 5.72 (s, 1H), 3.81 (s, 3H),
3.28 (q, J = 7.0 Hz, 1H), 3.20 (d, J = 17.1 Hz, 1H), 2.80 (d, J = 17.0
Hz, 1H), 2.33 (s, 3H), 1.55 (d, J = 6.9 Hz, 3H); 13C{1H} NMR (125
MHz, CDCl3) δ 205.0, 201.1, 189.5, 167.9, 160.0, 140.1, 132.0, 131.0,
129.7, 129.2, 128.3, 128.2, 127.4, 127.2, 127.0, 114.3, 85.5, 78.0, 65.1,
55.4, 48.9, 45.3, 30.2, 12.8; IR (thin film) 3303, 1695, 1608, 1576,
1509, 1364, 1293, 1241, 1175, 1050 cm−1; HRMS (ESI) m/z calcd
for C30H30NO4 (M + H)+ 468.2175, found 468.2174; mp 157−159
°C.
Pyrrolidine-2-ylidene 3g was prepared by general procedure A using

NH-isoxazoline 1d11 (1.50 mL, 0.100 M in CH2Cl2, 0.156 mmol, 1.00
equiv) and allene 2a14 (1.50 mL, 0.180 M in CH2Cl2, 0.276 mmol,
1.77 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 7 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1d = 0.26,
and Rf of 3g = 0.32; UV254 lamp). Chromatography (15% EtOAc/
hexanes) aRorded pyrrolidine 3g as a yellow solid (0.061 g, 82%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.42 (s, 1H), 7.95−7.93 (m,
2H), 7.57−7.55 (m, 1H), 7.50−7.44 (m, 4H), 7.35−7.32 (m, 1H),
7.29−7.26 (m, 1H), 7.15−7.14 (m, 3H), 6.90 (s, 1H), 6.81−6.79 (m,
2H), 5.97 (s, 1H), 5.68 (s, 1H), 3.77 (d, J = 17.6 Hz, 1H), 3.62 (q, J =
7.2 Hz, 1H), 3.31 (d, J = 17.5 Hz, 1H), 2.42 (s, 3H), 1.51 (d, J = 7.1
Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 203.7, 202.4, 190.0,
167.4, 154.9, 151.6, 139.6, 132.3, 131.3, 129.8, 128.4, 128.2, 127.6,
127.3, 127.0, 125.3, 123.6, 121.5, 111.5, 107.3, 87.0, 78.0, 60.2, 48.3,
44.9, 29.1, 12.9; IR (thin film) 2921, 1697, 1614, 1578, 1522, 1453,
1364, 1293, 1241, 1174 cm−1; HRMS (ESI) m/z calcd for
C31H28NO4 (M + H)+ 478.2018, found 478.2014; mp 110−114 °C.
Pyrrolidine-2-ylidene 3h was prepared by general procedure A using

NH-isoxazoline 1e (1.50 mL, 0.100 M in CH2Cl2, 0.148 mmol, 1.00
equiv) and allene 2a14 (1.50 mL, 0.160 M in CH2Cl2, 0.240 mmol,
1.60 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 4 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1e = 0.68,
and Rf of 3h = 0.39; UV254 lamp). Chromatography (12% EtOAc/
hexanes) aRorded pyrrolidine 3h as a yellow solid (0.063 g, 91%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.34 (s, 1H), 7.93−7.91 (m,
2H), 7.46−7.41 (m, 3H), 7.17−7.16 (m, 3H), 7.08 (s, 2H), 6.98 (s,
1H), 6.64−6.62 (m, 2H), 5.88 (s, 1H), 5.72 (s, 1H), 3.29−3.24 (m,
2H), 2.74 (d, J = 17.5 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 6H), 1.55 (d, J =
6.9 Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 204.7, 201.0,
189.6, 167.8, 140.1, 138.8, 135.5, 132.2, 130.9, 130.6, 129.7, 128.3,
128.1, 127.2, 126.9, 125.6, 85.5, 78.1, 65.4, 49.1, 45.7, 30.2, 21.4, 12.6;
IR (thin film) 2918, 1698, 1615, 1578, 1526, 1455, 1379, 1256, 1286,
1244 cm−1; HRMS (ESI) m/z calcd for C31H32NO3 (M + H)+
466.2382, found 466.2378; mp 68−72 °C.
Pyrrolidine-2-ylidene 3i was prepared by general procedure A using

isoxazoline 1f11 (1.50 mL, 0.090 M in CH2Cl2, 0.132 mmol, 1.00
equiv) and allene 2a14 (1.50 mL, 0.140 M in CH2Cl2, 0.203 mmol,
1.54 equiv). The reaction mixture was stirred at 25 °C and monitored
by TLC for 16 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1f = 0.47,

and Rf of 3i = 0.39; UV254 lamp). Chromatography (11% EtOAc/
hexanes) aRorded pyrrolidine 3i as a brown solid (0.051 g, 79%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.45 (s, 1H), 7.92−7.90 (m,
2H), 7.56−7.55 (m, 2H), 7.49−7.48 (m, 1H), 7.45−7.35 (m, 7H),
7.13−7.12 (m, 3H), 6.63−6.62 (m, 1H), 6.60−6.58 (m, 2H), 6.26 (s,
1H), 5.88 (s, 1H), 3.38 (q, J = 7.1 Hz, 1H), 3.04 (d, J = 17.4 Hz, 1H),
2.25 (d, J = 17.4 Hz, 1H), 1.48 (d, J = 7.1 Hz, 3H); 13C{1H} NMR
(125 MHz, CDCl3) δ 199.5, 189.6, 185.0, 168.3, 151.6, 147.0, 140.3,
136.4, 132.8, 130.8, 129.5, 129.1 (2C), 128.2, 127.9 (2C), 127.2,
126.7, 120.5, 113.5, 85.3, 76.3, 64.9, 49.2, 48.1, 12.3; IR (thin film)
3264, 1711, 1656, 1612, 1577, 1562, 1521, 1496, 1455, 1366 cm−1;
HRMS (ESI) m/z calcd for C32H28NO4 (M + H)+ 490.2018, found
490.2025; mp 136−138 °C.

Pyrrolidine-2-ylidene 3j was prepared by general procedure A using
NH-isoxazoline 1f11 (5.60 mL, 0.100 M in CH2Cl2, 0.558 mmol, 1.00
equiv) and allene 2b (5.60 mL, 0.195 M in CH2Cl2, 1.09 mmol, 1.94
equiv). The reaction mixture was stirred at 25 °C and monitored by
TLC for 18 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1f = 0.47, and
Rf of 3j = 0.56; UV254 lamp). Chromatography (7% EtOAc/hexanes)
aRorded pyrrolidine 3j as a yellow solid (0.144 g, 55%, dr >20:1): 1H
NMR (500 MHz, CDCl3) δ 10.03 (s, 1H), 7.52−7.50 (m, 2H), 7.46−
7.45 (m, 1H), 7.43 (s, 1H), 7.37−7.31 (m, 3H), 7.12−7.11 (m, 3H),
6.61−6.60 (m, 1H), 6.58−6.57 (m, 2H), 6.15 (s, 1H), 5.34 (s, 1H),
3.26 (q, J = 7.2 Hz, 1H), 3.02 (d, J = 17.5 Hz, 1H), 2.21 (d, J = 17.4
Hz, 1H), 1.38 (d, J = 7.1 Hz, 3H), 1.17 (s, 9H); 13C{1H} NMR (125
MHz, CDCl3) δ 205.4, 199.6, 185.2, 167.1, 151.7, 146.9, 136.6, 132.9,
129.5, 129.0, 128.9, 127.9 (2C), 126.7, 120.4, 113.4, 83.9, 76.2, 64.7,
49.2, 48.0, 41.8, 27.9, 12.1; IR (thin film) 2964, 1708, 1651, 1620,
1522, 1496, 1456, 1387, 1368, 1295 cm−1; HRMS (ESI) m/z calcd
for C30H32NO4 (M + H)+ 470.2331, found 470.2335; mp 135−140
°C.

Pyrrolidine-2-ylidene 3k was prepared by general procedure B using
NH-isoxazoline 1a13 (4.20 mL, 0.020 M, 0.084 mmol, 1.00 equiv) and
allene 2e23a (4.20 mL, 0.030 M, 0.127 mmol, 1.50 equiv). The
reaction mixture was stirred at 25 °C and monitored by TLC for 16 h
(TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29, and Rf of 3k =
0.37; UV254 lamp). Chromatography (12% EtOAc/hexanes) aRorded
pyrrolidine 3k as a white solid (0.025 g, 75%, dr >20:1): 1H NMR
(500 MHz, CDCl3) δ 8.15 (bs, 1H), 7.51−7.49 (m, 2H), 7.36−7.34
(m, 3H), 7.17−7.14 (m, 3H), 6.65−6.63 (m, 2H), 5.66 (s, 1H), 4.69
(s, 1H), 3.68 (s, 3H), 3.20−3.17 (m, 2H), 2.79 (d, J = 17.2 Hz, 1H),
2.32 (s, 3H), 1.44 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (125 MHz,
CDCl3) δ 205.0, 201.3, 171.1, 165.5, 136.3, 132.1, 129.7, 128.9, 128.7,
128.2, 127.8, 127.0, 78.0, 77.3, 64.5, 50.4, 48.9, 44.8, 30.2, 12.7; IR
(thin film) 3361, 1737, 1694, 1660, 1589, 1579, 1483, 1453, 1363,
1294 cm−1; HRMS (ESI) m/z calcd for C24H25NO4 (M + H)+
392.1784, found 392; mp 118−120 °C.

Pyrrolidine-2-ylidene 3k was prepared by general procedure A using
NH-isoxazoline 1a13 (1.95 mL, 0.100 M, 0.195 mmol, 1.00 equiv) and
allene 2e23a (1.95 mL, 0.165 M, 0.322 mmol, 1.65 equiv). The
reaction mixture was stirred at 25 °C and monitored by TLC for 16 h
(TLC eluent, 30% EtOAc/hexanes; Rf of 1a = 0.29, and Rf of 3k =
0.37; UV254 lamp). Chromatography (12% EtOAc/hexanes) aRorded
pyrrolidine 3k as a white solid (0.032 g, 42%, dr 10:1). 1H and
13C{1H} NMR data matched the values presented above.

Pyrrolidine-2-ylidene 3l was prepared by general procedure B using
isoxazoline 1a13 (0.0559 g, 0.200 mmol, 1.00 equiv), allene 2f23b
(0.0753 g, 0.400 mmol, 2.00 equiv), and 10 mL of 20% H2O in
MeOH. After the mixture had been stirred for 16 h, pyrrolidine 3l
precipitated from the reaction mixture and was collected by filtration
(0.0683 g, 73%, dr >20:1). A single crystal suitable for X-ray
crystallographic analysis was obtained by recrystallization of this solid
in iPrOAc (2.0 mL) with hexane (18 mL) at−20 °C. CCDC
deposition number 2390522: 1H NMR (500 MHz, CDCl3) δ 8.22 (s,
1H), 7.49−7.47 (m, 2H), 7.41−7.37 (m, 3H), 7.32 (t, J = 7.4 Hz,
2H), 7.24 (t, J = 7.4 Hz, 1H), 7.21−7.18 (m, 5H), 6.74−6.72 (m,
2H), 5.65 (s, 1H), 4.70 (s, 1H), 3.64 (s, 3H), 3.57 (dd, J = 7.8, 2.4
Hz, 1H), 3.39 (dd, J = 16.0, 7.9 Hz, 1H), 3.30 (d, J = 17.1 Hz, 1H),
2.98 (dd, J = 16.0, 3.1 Hz, 1H), 2.77 (d, J = 17.2 Hz, 1H), 2.26 (s,
3H); 13C{1H} NMR (125 MHz, CDCl3) δ 204.9, 201.7, 171.1, 165.5,
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139.5, 136.1, 132.2, 129.8, 129.1, 129.0 (2C), 128.3 (2C), 127.8,
127.0, 126.9, 78.5, 78.2, 65.1, 51.2, 50.4, 49.1, 34.9, 30.0; IR (thin
flim) 3374, 1693, 1664, 1593, 1581, 1497, 1479, 1454, 1427, 1400
cm−1; HRMS (ESI) m/z calcd for C30H30NO4 (M + H)+ 468.2175,
found 468.2176; mp 133−138 °C.
Pyrrolidine-2-ylidene 3m was prepared by general procedure C using

NH-isoxazoline 1g11 (1.50 mL, 0.100 M in CH2Cl2, 0.150 mmol, 1.00
equiv), 10 mol % Sc(OTf)3 (0.0070 g, 0.015 mmol, 0.10 equiv), and
allene 2a14 (1.50 mL, 0.150 M in CH2Cl2, 0.225 mmol, 1.50 equiv).
The reaction mixture was stirred at 25 °C and monitored by TLC for
18 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1g = 0.53, and Rf of 3m
= 0.34; UV254 lamp). Chromatography (12% EtOAc/hexanes)
aRorded pyrrolidine 3m as a yellow solid (0.045 g, 67%, dr >20:1):
1H NMR (500 MHz, CDCl3) δ 10.70 (s, 1H), 7.95 (d, J = 6.6 Hz,
2H), 7.61 (d, J = 7.2 Hz, 2H), 7.47−7.41 (m, 4H), 7.37 (t, J = 7.9 Hz,
2H), 5.92 (s, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 3.40 (q, J = 7.3 Hz,
1H), 2.39−2.32 (m, 1H), 2.05−1.98 (m, 1H), 1.38 (d, J = 7.3 Hz,
3H), 0.90 (t, J = 7.5 Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ
202.5, 189.7, 168.6, 168.4, 168.2, 139.8, 139.6, 131.4, 131.1, 128.3
(2C), 128.1, 127.3, 87.2, 79.8, 66.2, 53.5, 53.3, 48.6, 29.3, 14.6, 9.8; IR
(thin film) 2969, 1738, 1660, 1614, 1580, 1533, 1445, 1365, 1323,
1304 cm−1; HRMS (ESI) m/z calcd for C26H28NO6 (M + H)+
450.1917, found 450.1915; mp 96−102 °C.
Pyrrolidine-2-ylidene 3n was prepared by general procedure C using

NH-isoxazoline 1h11 (0.9 mL, 0.093 M in CH2Cl2, 0.084 mmol, 1.00
equiv), 10 mol % Sc(OTf)3 (0.007 g, 0.015 mmol, 0.10 equiv), and
allene 2a14 (0.9 mL, 0.131 M in CH2Cl2, 0.118 mmol, 1.40 equiv).
The reaction mixture was stirred at 25 °C and monitored by TLC for
18 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1h = 0.53, and Rf of 3n
= 0.18; UV254 lamp). Chromatography (20% EtOAc/hexanes)
aRorded pyrrolidine 3n as a yellow solid (0.020 g, 60%, dr >20:1):
1H NMR (500 MHz, CDCl3) δ 10.64 (s, 1H), 7.88 (d, J = 7.7 Hz,
2H), 7.45−7.38 (m, 3H), 5.74 (s, 1H), 3.82 (s, 3H), 3.77 (s, 3H),
3.34 (q, J = 7.3 Hz, 1H), 2.67−2.63 (m, 1H), 2.40−2.34 (m, 1H),
2.25−2.18 (m, 1H), 1.99−1.94 (m, 3H), 1.90−1.77 (m, 2H), 1.33 (d,
J = 7.3 Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 208.7, 189.5,
168.6, 168.4, 167.6, 140.0, 130.9, 128.2, 127.3, 87.1, 79.5, 61.0, 53.4,
53.1, 49.1, 42.6, 33.4, 23.3, 21.9, 14.6; IR (thin film) 2969, 2948,
1738, 1614, 1579, 1531, 1446, 1365, 1228, 1217 cm−1; HRMS (ESI)
m/z calcd for C22H26NO6 (M + H)+ 400.1760, found 400.1747; mp
146−151 °C.
Pyrrolidine-2-ylidene 3o was prepared by general procedure C using

NH-isoxazoline 1i11 (2.0 mL, 0.098 M in CH2Cl2, 0.195 mmol, 1.00
equiv), 10 mol % Sc(OTf)3 (0.010 g, 0.020 mmol, 0.10 equiv), and
allene 2a14 (4.0 mL, 0.110 M in CH2Cl2, 0.439 mmol, 2.25 equiv).
The reaction mixture was stirred at 25 °C and monitored by TLC for
18 h (TLC eluent, 30% EtOAc/hexanes; Rf of 1i = 0.50, and Rf of 3o
= 0.24; UV254 lamp). Chromatography (20% EtOAc/hexanes)
aRorded pyrrolidine 3o as an orange solid (0.054 g, 47%, dr
>20:1): 1H NMR (500 MHz, CDCl3) δ 10.50 (s, 1H), 7.90 (d, J = 7.5
Hz, 2H), 7.44−7.38 (m, 3H), 5.83 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H),
3.16 (q, J = 7.3 Hz, 1H), 2.04 (s, 3H), 1.44 (s, 3H), 1.09 (d, J = 7.3
Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 206.0, 189.7, 168.5,
167.8, 167.2, 139.6, 131.2, 128.3, 127.3, 87.6, 78.6, 60.7, 53.5, 53.4,
47.3, 29.3, 17.9, 10.5; IR (thin film) 2949, 1757, 1731, 1702, 1613,
1578, 1520, 1438, 1378, 1355 cm−1; HRMS (ESI) m/z calcd for
C20H24NO6 (M + H)+ 374.1604, found 374.1590; mp 133−138 °C.
General Procedure D for the Synthesis of Fused

Pyrrolidines 5 from 3. A 20 mL scintillation vial was charged
with pyrrolidine 3 (0.700 mmol, 1.00 equiv), DBU (0.910 mmol, 1.30
equiv), and 10 mL of THF to form a 0.07 M solution of 3. The
reaction mixture was stirred at 25 °C for ∼1 h and monitored by TLC
using a UV254 lamp. Once pyrrolidine 3 was completely consumed,
the mixture was concentrated and the resulting crude residue was wet-
loaded onto silica gel using CH2Cl2 and purified by medium-pressure
chromatography (5−15% EtOAc/hexanes) to aRord fused pyrroli-
dines 5.
Fused Pyrrolidine 5a was prepared by general procedure D using

pyrrolidine 3a (0.743 mmol, 1.00 equiv), DBU (0.966 mmol, 1.30
equiv), and THF (10.0 mL). The reaction mixture was stirred at 25

°C and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/
hexanes; Rf of 3a = 0.32, and Rf of 5a = 0.63; UV254 lamp).
Chromatography (5% EtOAc/hexanes) aRorded fused pyrrolidine 5a
as a white solid (0.241 g, 77%, dr >20:1). A single crystal suitable for
X-ray crystallographic analysis was obtained by recrystallization of this
solid in CHCl3 (1.0 mL) with heptane (10 mL) by diRusion at −10
°C. CCDC deposition number 2370375:15 1H NMR (500 MHz,
CDCl3) δ 10.61 (s, 1H), 7.96 (d, J = 6.4 Hz, 2H), 7.51−7.42 (m,
6H), 7.40−7.37 (m, 4H), 7.32−7.31 (m, 3H), 6.06 (s, 1H), 5.17 (d, J
= 3.5 Hz, 1H), 2.89 (d, J = 3.5 Hz, 1H), 2.36 (s, 3H), 1.67 (s, 3H);
13C{1H} NMR (125 MHz, CDCl3) δ 204.1, 189.5, 172.1, 169.0,
142.6, 140.0, 139.8, 131.2, 130.8, 129.4, 129.2, 128.4 (2C), 128.3,
128.0, 127.2, 125.5, 86.9, 63.9, 63.1, 58.1, 23.4, 14.3; IR (thin film)
2968, 1739, 1707, 1624, 1596, 1579, 1538, 1491, 1479, 1456 cm−1;
HRMS (ESI) m/z calcd for C29H26NO2 (M + H)+ 420.1964, found
420.1964; mp 202−205 °C.

Fused Pyrrolidine 5b was prepared by general procedure D using
pyrrolidine 3b (0.575 mmol, 1.00 equiv), DBU (0.748 mmol, 1.30
equiv), and THF (8.0 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Rf
of 3b = 0.53, and Rf of 5b = 0.60; UV254 lamp). Chromatography
(10% EtOAc/hexanes) aRorded fused pyrrolidine 5b as a yellow solid
(0.152 g, 66%, dr >20:1): 1H NMR (500 MHz, CDCl3) δ 10.14 (s,
1H), 7.44−7.41 (m, 2H), 7.39−7.34 (m, 5H), 7.30−7.29 (m, 3H),
5.53 (s, 1H), 5.04 (d, J = 3.67 Hz, 1H), 2.83 (d, J = 3.7 Hz, 1H), 2.28
(s, 3H), 1.59 (s, 3H), 1.23 (s, 9H); 13C{1H} NMR (125 MHz,
CDCl3) δ 205.4, 204.3, 172.3, 167.7, 142.8, 139.5, 130.8, 129.4, 129.1,
128.4, 128.3, 127.9, 125.5, 85.6, 63.6, 63.0, 57.9, 41.9, 27.9, 23.5, 14.2;
IR (thin film) 2969, 1738, 1704, 1621, 1538, 1482, 1453, 1376, 1269,
1217 cm−1; HRMS (ESI) m/z calcd for C27H30NO2 (M + H)+
400.2277, found 400.2272; mp 62−68 °C.

Fused Pyrrolidine 5c was prepared by general procedure D using
pyrrolidine 3f (0.629 mmol, 1.00 equiv), DBU (0.817 mmol, 1.30
equiv), and THF (9.0 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Rf
of 3f = 0.31, and Rf of 5c = 0.47; UV254 lamp). Chromatography (10%
EtOAc/hexanes) aRorded fused pyrrolidine 5c as a white solid (0.225
g, 80%, dr >20:1): 1H NMR (500 MHz, CDCl3) δ 10.56 (s, 1H), 7.94
(d, J = 8.1 Hz, 2H), 7.51−7.42 (m, 5H), 7.38−7.35 (m, 1H), 7.31−
7.29 (m, 4H), 6.92 (d, J = 8.8 Hz, 2H), 6.04 (s, 1H), 5.11 (d, J = 3.5
Hz, 1H), 3.81 (s, 3H), 2.86 (d, J = 3.5 Hz, 1H), 2.35 (s, 3H), 1.68 (s,
3H); 13C{1H} NMR (125 MHz, CDCl3) δ 204.2, 189.4, 172.1, 168.8,
159.4, 140.0, 139.8, 134.6, 131.1, 130.8, 129.4, 128.4 (2C), 128.3,
127.2, 126.8, 114.5, 86.8, 63.6, 63.3, 58.2, 55.4, 23.5, 14.3; IR (thin
film) 3015, 2969, 1765, 1606, 1576, 1527, 1510, 1477, 1441, 1375
cm−1; HRMS (ESI) m/z calcd for C30H28NO3 (M + H)+ 450.2069,
found 450.2075; mp 107−112 °C.

Fused Pyrrolidine 5d was prepared by general procedure D using
pyrrolidine 3i (0.470 mmol, 1.00 equiv), DBU (0.611 mmol, 1.30
equiv), and THF (6.5 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Rf
of 3i = 0.39, and Rf of 5d = 0.59; UV254 lamp). Chromatography (15%
EtOAc/hexanes) aRorded fused pyrrolidine 5d as a yellow solid
(0.205 g, 93%, dr >20:1): 1H NMR (500 MHz, CDCl3) δ 10.78 (s,
1H), 7.82−7.80 (m, 2H), 7.75 (s, 1H), 7.45−7.39 (m, 10H), 7.34−
7.31 (m, 1H), 7.28−7.26 (m, 2H), 6.45−6.44 (m, 1H), 6.34 (s, 1H),
6.27−6.26 (m, 1H), 5.31−5.30 (m, 1H), 2.99−2.99 (m, 1H), 1.97 (s,
3H); 13C{1H} NMR (125 MHz, CDCl3) δ 203.5, 189.8, 169.8, 157.5,
149.4, 144.4, 142.7, 140.1, 137.7, 131.9, 131.0, 129.1, 129.0 (2C),
128.7, 128.3, 127.9, 127.2, 125.5, 118.2, 112.9, 87.6, 64.3, 63.5, 57.8,
25.2; IR (thin film) 3143, 1738, 1689, 1609, 1574, 1525, 1498, 1463,
1343, 1307 cm−1; HRMS (ESI) m/z calcd for C32H26NO3 (M + H)+
472.1913, found 472.1908; mp 199−202 °C.

Fused Pyrrolidine 5e was prepared by general procedure D using
pyrrolidine 3j (0.132 mmol, 1.00 equiv), DBU (0.174 mmol, 1.32
equiv), and THF (2.0 mL). The reaction mixture was stirred at 25 °C
and monitored by TLC for 1 h (TLC eluent, 30% EtOAc/hexanes; Rf
of 3j = 0.56, and Rf of 5e = 0.72; UV254 lamp). Chromatography (6%
EtOAc/hexanes) aRorded fused pyrrolidine 5e as a yellow solid
(0.053 g, 89%, dr >20:1): 1H NMR (500 MHz, CDCl3) δ 10.25 (s,
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1H), 7.66 (s, 1H), 7.43−7.38 (m, 7H), 7.31−7.29 (m, 1H), 7.26−
7.24 (m, 2H), 6.40−6.39 (m, 1H), 6.22−6.21 (m, 1H), 5.72 (s, 1H),
5.18 (d, J = 3.0 Hz, 1H), 2.93 (d, J = 2.9 Hz, 1H), 1.92 (s, 3H), 1.09
(s, 9H); 13C{1H} NMR (125 MHz, CDCl3) δ 205.8, 203.7, 168.4,
157.9, 149.4, 144.2, 142.9, 137.6, 131.9, 129.1, 129.0, 128.9, 128.6,
127.8, 125.5, 117.8, 112.6, 86.4, 64.1, 63.4, 57.7, 41.9, 27.8, 25.4; IR
(thin film) 2963, 1697, 1621, 1586, 1537, 1465, 1339, 1223, 1160,
1122 cm−1; HRMS (ESI) m/z calcd for C30H30NO3 (M + H)+
452.2226, found 452.2234; mp 65−70 °C.
Deacylation of 3a and Synthesis of 8a. A 20 mL scintillation

vial was charged with sodium metal (0.0250 g, 1.09 mmol) and
purged with N2.24 The vial was cooled to 0 °C with an ice bath, and
MeOH (6.0 mL) was added slowly. After being stirred for 15 min, the
reaction mixture was allowed to warm to ambient temperature. A
second scintillation vial was charged with pyrrolidine 3a (0.178 g,
0.407 mmol, 1.00 equiv) and MeOH (3.0 mL), and the mixture
added in one portion to the freshly prepared NaOMe solution. The
reaction mixture was then stirred for 2 h, and the reaction quenched
with aqueous NH4Cl (10 mL). The mixture was diluted with EtOAc
(∼75 mL), washed with water (2 × 20 mL) and brine (2 × 20 mL),
dried over anhydrous Na2SO4, and concentrated under vacuum. The
resulting crude residue was then wet-loaded onto silica gel using (0.5
mL) CH2Cl2 and purified by medium-pressure chromatography (10%
EtOAc/hexanes), to aRord deacylated pyrrolidine 8a as an orange
solid (0.138 g, 86%, dr >20:1): 1H NMR (500 MHz, CDCl3) δ 10.26
(s, 1H), 7.90−7.88 (m, 2H), 7.46−7.38 (m, 6H), 7.31−7.30 (m, 2H),
7.27−7.23 (m, 3H), 6.93−6.91 (m, 2H), 5.79 (s, 1H), 4.94 (d, J = 8.8
Hz, 1H), 3.61 (d, J = 15.2 Hz, 1H), 3.46 (d, J = 15.1 Hz, 1H), 3.41−
3.36 (m, 1H), 3.07 (t, J = 8.9 Hz, 1H), 1.17 (d, J = 6.97 Hz, 3H);
13C{1H} NMR (125 MHz, CDCl3) δ 206.2, 189.3, 169.6, 140.1,
139.8, 132.3, 130.9, 129.5, 129.2, 128.8 (2C), 128.2, 127.4, 127.1,
126.6, 85.6, 66.1, 64.5, 51.7, 43.1, 16.6; IR (thin film) 3260, 1719,
1607, 1577, 1525, 1498, 1481, 1453, 1394, 1366 cm−1; HRMS (ESI)
m/z calcd for C27H26NO2 (M + H)+ 396.1964, found 396.1971; mp
113−116 °C.
Reduction of Pyrrolidine 8a and Synthesis of 9a.20a A 20 mL

scintillation vial was charged with deacylated pyrrolidine 8a (0.130
mmol, 1.00 equiv), NaBH3CN (0.510 mmol, 3.92 equiv), and 5 mL of
MeCN to form a 0.026 M solution. A solution of HCl in MeOH (2.00
mL, 1.00 M) was added dropwise to the mixture, and the mixture
allowed to stir at 25 °C for ∼16 h and monitored by TLC (TLC
eluent, 25% acetone/pentane; Rf of 8a = 0.56, and Rf of 9a = 0.18;
UV254 lamp). Once 8a was fully consumed, the reaction was quenched
with saturated NaHCO3 (∼10 mL) and the mixture extracted with
EtOAc (3 × 25 mL). The combined organic layers were washed with
brine (∼25 mL), dried over anhydrous Na2SO4, and concentrated
under vacuum. The resulting crude residue was wet-loaded onto silica
gel using CH2Cl2 (0.5−1.0 mL) and purified by medium-pressure
chromatography (10−15% acetone/pentane) to aRord reduced
pyrrolidine 9a as a yellow oil (0.040 g, 77%, dr 2:1): 1H NMR
(500 MHz, CDCl3, major diastereomer) δ 7.96−7.95 (m, 2H), 7.57−
7.54 (m, 1H), 7.47−7.44 (m, 2H), 7.36−7.28 (m, 5H), 7.26−7.20
(m, 3H), 6.95−6.93 (m, 2H), 4.36 (d, J = 8.7 Hz, 1H), 3.69 (td, J =
8.8, 3.2 Hz, 1H), 3.52 (d, J = 15.2 Hz, 1H), 3.41 (d, J = 15.2 Hz, 1H),
3.27 (dd, J = 17.1, 3.2 Hz, 1H), 3.18−3.13 (m, 1H), 2.99 (t, J = 8.7
Hz, 1H), 2.55 (bs, 1H), 2.38−2.31 (m, 1H), 0.98 (t, J = 6.6 Hz, 3H);
13C{1H} NMR (125 MHz, CDCl3, major diastereomer) δ 208.3,
199.6, 143.4, 137.0, 133.2, 133.1, 129.6, 128.9, 128.6 (2C), 128.1,
127.8, 127.0, 126.6, 67.1, 65.9, 61.4, 51.5, 44.1, 44.0, 16.5; 1H NMR
(500 MHz, CDCl3, minor diastereomer) δ 7.97−7.96 (m, 2H), 7.58−
7.55 (m, 1H), 7.48−7.45 (m, 2H), 7.35−7.28 (m, 5H), 7.25−7.21
(m, 3H), 7.00−6.98 (m, 2H), 4.38 (d, J = 8.4 Hz, 1H), 3.92−3.88 (m,
1H), 3.55 (d, J = 15.3 Hz, 1H), 3.47 (d, J = 15.5 Hz, 1H), 3.16−3.14
(m, 2H), 2.80−2.77 (m, 1H), 2.64−2.59 (m, 1H), 2.48 (bs, 1H), 0.98
(d, J = 7.1 Hz, 3H); 13C{1H} NMR (125 MHz, CDCl3, minor
diastereomer) δ 208.4, 199.4, 142.8, 137.1, 133.4, 133.2, 129.6, 128.6
(2C), 128.6, 128.0, 127.5, 127.0, 126.6, 66.5, 65.1, 56.2, 51.1, 41.0,
39.4, 16.4; IR (thin film) 2956, 1705, 1681, 1597, 1580, 1531, 1494,
1449, 1404, 1378 cm−1; HRMS (ESI) m/z calcd for C27H28NO2 (M +
H)+ 398.2120, found 398.2123.

Synthesis of 10a from 8a. Pyrrolidine 10a was made from 8a
using an adapted literature procedure.21 In an inert atmosphere
glovebox, a 5 mL conical vial was charged with [RhCp*Cl2]2 (0.003 g,
0.005 mmol, 11 mol %), AgOAc (0.001 g, 0.006 mmol, 13 mol %),
Cu(OAc)2 (0.017 g, 0.094 mmol, 2 equiv), KOAc (0.009 g, 0.092
mmol, 2 equiv), and pyrrolidine 8a (0.018 g, 0.046 mmol, 1 equiv).
The vial was then removed from the glovebox and flushed onto a N2
manifold with a needle. A solution of methyl acrylate (0.008 g, 0.093
mmol, 2 equiv) in MeOH (2 mL) was added to the solids in one
portion. The reaction vial was then capped with a Teflon-lined cap
and heated in an oil bath at 90 °C for 16 h. The product mixture was
concentrated under vacuum, wet-loaded onto silica gel using CH2Cl2
(0.5−1.0 mL), and purified by medium-pressure chromatography
(15% EtOAc/hexanes) to aRord 10a as a brown solid (0.012 g, 56%,
dr >20:1): 1H NMR (500 MHz, CDCl3) δ 7.70−7.69 (m, 2H), 7.68−
7.66 (m, 1H), 7.60−7.57 (m, 1H), 7.52−7.49 (m, 2H), 7.38−7.35
(m, 2H), 7.31−7.28 (m, 3H), 7.24−7.23 (m, 3H), 6.89−6.87 (m,
2H), 6.43 (d, J = 9.5 Hz, 1H), 6.02 (s, 1H), 4.23 (q, J = 7.2 Hz, 1H),
3.90 (s, 2H), 3.18 (s, 1H), 1.21 (d, J = 7.3 Hz, 3H); 13C{1H} NMR
(125 MHz, CDCl3) δ 205.3, 193.4, 160.6, 160.5, 142.4, 139.4, 138.5,
132.7, 132.3, 129.6, 129.2, 129.1, 129.0, 128.6, 127.8, 127.6, 125.0,
117.2, 112.3, 65.2, 60.7, 49.0, 42.6, 20.6; IR (thin film) 2922, 1713,
1675, 1638, 1598, 1528, 1495, 1453, 1413, 1318 cm−1; HRMS (ESI)
m/z calcd for C30H26NO3 (M + H)+ 448.1915, found 448.1913; mp
47−50 °C.

Reduction of Fused Pyrrolidine 5a to 11a.20a A 20 mL
scintillation vial was charged with fused pyrrolidine 5a (0.102 mmol,
1.00 equiv), NaBH3CN (0.510 mmol, 5.00 equiv), and 2 mL of
MeCN to form a 0.05 M solution. A solution of HCl in MeOH (2.00
mL, 1.00 M) was added dropwise, and the reaction mixture was
allowed to stir at 25 °C for ∼16 h and monitored by TLC (TLC
eluent, 30% EtOAc/hexanes; Rf of 5a = 0.63, and Rf of 11a = 0.59;
UV254 lamp). A second portion of NaBH3CN (0.150 mmol, 1.50
equiv) was added at 16 h, and the reaction mixture was allowed to stir
for an additional 6 h. Once fused pyrrolidine 5a was fully consumed,
the reaction was quenched with saturated NaHCO3 (∼10 mL) and
the mixture extracted with EtOAc (3 × 25 mL). The combined
organic layers were washed with brine (∼25 mL), dried over
anhydrous Na2SO4, and concentrated under vacuum. The resulting
crude residue was wet-loaded onto silica gel using CH2Cl2 (0.5−1.0
mL) and purified by medium-pressure chromatography (6% EtOAc/
hexanes) to aRord 11a as a beige solid (0.034 g, 78%, dr >20:1): 1H
NMR (500 MHz, CDCl3) δ 8.03−8.02 (m, 2H), 7.63−7.58 (m, 3H),
7.52−7.49 (m, 2H), 7.44−7.41 (m, 2H), 7.35−7.31 (m, 5H), 7.26−
7.23 (m, 1H), 4.26 (d, J = 7.4 Hz, 1H), 3.66 (d, J = 2.7 Hz, 1H),
3.44−3.33 (m, 2H), 2.66 (d, J = 7.4 Hz, 1H), 2.14 (s, 3H), 1.51 (s,
3H); 13C{1H} NMR (125 MHz, CDCl3) δ 205.5, 199.0, 173.7, 143.1,
138.3, 136.9, 133.6, 131.4, 129.4, 128.8, 128.4, 128.3, 128.1, 127.8,
127.2, 127.0, 66.6, 62.2, 60.2, 54.6, 41.5, 19.8, 14.3; IR (thin film)
2919, 1738, 1696, 1678, 1631, 1597, 1579, 1491, 1446, 1401 cm−1;
HRMS (ESI) m/z calcd for C29H28NO2 (M + H)+ 422.2120, found
422.2111; mp 109−112 °C.
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